National Library of Energy BETA

Sample records for gas ghg reduction

  1. Methodology for Estimating Reductions of GHG Emissions from Mosaic...

    Open Energy Info (EERE)

    Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of...

  2. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  3. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  4. Catalyst Paper No-Carb Strategy for GHG Reduction 

    E-Print Network [OSTI]

    McClain, C.; Robinson, J.

    2008-01-01

    The Catalyst Paper strategy to manage GHG exposure is a combination of energy reduction initiatives in manufacturing and the effective use of biomass and alternative fuels to produce mill steam and electricity from the powerhouse. The energy...

  5. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...

    Open Energy Info (EERE)

    The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

  6. Greenhouse Gas (GHG) Inventory City College of New York (CCNY)

    E-Print Network [OSTI]

    Sun, Yi

    Greenhouse Gas (GHG) Inventory Program City College of New York (CCNY) New York, New York September 2008 #12;13749/42550 Greenhouse Gas (GHG) Inventory Program Prepared for: City College of New York Township Line Road 2 Valley Square, Suite 120 Blue Bell, Pennsylvania 19422 #12;City College of New York

  7. GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability

    E-Print Network [OSTI]

    Brownstone, Rob

    ..................................... 30 Appendix E: Canadian Default Factors for Calculating CO2 Emissions from Combustion of Natural Gas GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability ......................................................... 34 Appendix K: Fleet Vehicles on Campus .............

  8. Sharing the Burden of GHG Reductions

    E-Print Network [OSTI]

    Jacoby, Henry D.

    The G8 countries propose a goal of a 50% reduction in global emissions by 2050, in an effort that needs to take account of other agreements specifying that developing countries are to be provided with incentives to action ...

  9. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  10. Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting Tool (NEAT) for Long Term Energy and GHG Impacts Evaluation: Domestic Freight Component Documentation and User's...

  11. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  12. Regional GHG Emissions Stat s Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    ,00070.0 Historical CO2 Emissions of the NW Power System CO2 Emissions Hydro Gen Fossil Fuel Gen (NG + Coal) Wind Gen6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium power system All emissions are displayed in short tons (not metric tons) The Pacific Northwest (PNW

  13. Analyzing California's GHG Reduction Paths using CA-TIMES Energy System Model

    E-Print Network [OSTI]

    California at Davis, University of

    Analyzing California's GHG Reduction Paths using CA-TIMES Energy System Model Christopher Yang@ucdavis.edu NextSTEPS (Sustainable Transportation Energy Pathways) #12;CA-TIMES Model Overview · CA-TIMES is a bottom-up, linear optimization model of California's energy sectors ­ Technology and resources details

  14. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year--and are projected to rise another 60 percent by 2030 (see Figure 1).1 Most of the world's emissions come from

  15. TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range

    E-Print Network [OSTI]

    Brown, Sally

    . For example, a facility that composts an equal mixture of manure, newsprint, and food waste could conserve are through CH4 avoidance when feedstocks are composted instead of landfilled (municipal solid wasteTECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential

  16. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  17. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  18. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership Contribution of Food GHG Emissions Reduction: Moving

    E-Print Network [OSTI]

    target: Ensure that 90% of UBC's food system waste can be composted or recycled by 2015. We reviewed Waste Management, UBC Food Services and the AMS Food and Beverage Partnership Contribution of Food GHG Emissions Reduction: Moving UBC Beyond Climate Neutral Jennifer Baum

  20. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  1. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  2. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  3. The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Emissions of the principal greenhouse gas (GHG), car-

    E-Print Network [OSTI]

    Battles, John

    ..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Emissions of the principal greenhouse gas (GHG), car- bon dioxide (CO2), are driven primarily by the burn accumulation in forests and CO2 emissions from tropical deforestation (Canadell and Raupach 2008). Particular fixation by plant photosynthesis) and heterotrophic res- piration (CO2 emission by non-photosynthetic organ

  4. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  5. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  6. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    management program following national energy managementwith national-level energy or GHG tax programs, LBNLnational level energy efficiency and GHG emissions reduction programs.

  7. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  8. FEMP Assists White House in Setting GHG Reduction Target for Federal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcoming events in Indian Country.EnergyQ:

  9. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  10. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

  11. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  12. Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products , Chase L.D.C.b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products Bessou C, accounting in 2011 for 31.3% of the global oils and fats production (Oil World, 2012). About 10% of global production is certified by RSPO, the Roundtable on Sustainable Palm Oil (Oil World, 2012; RSPO, 2013). RSPO

  13. NOx reduction in gas turbine combustors 

    E-Print Network [OSTI]

    Sung, Nak Won

    1976-01-01

    NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

  14. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  15. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect (OSTI)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ? 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  16. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  17. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  18. Reducing Greenhouse Gas Emissions for Climate Stabilization

    E-Print Network [OSTI]

    Thomas, David D.

    Reducing Greenhouse Gas Emissions for Climate Stabilization: Framing Regional Options L A U R A S C reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut The call to cut global greenhouse gas (GHG) emissions by up to 80% below 2000 levels, which researchers

  19. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction...

  20. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction and Exhaust Gas Recirculation Systems Optimization Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown...

  1. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  2. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  3. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    CSEM WP 167 Greenhouse Gas Reductions under Low Carbon Fuel94720-5180 www.ucei.org Greenhouse Gas Reductions under LowLCFS) seeks to reduce greenhouse gas emissions by capping an

  4. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  5. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01

    Admin- istration. Wang, M. The Greenhouse Gases, RegulatedGreenhouse Gas Reductions under Low Carbon Fuel Standards?LCFS) seeks to reduce greenhouse gas emissions by capping an

  6. South Africa - Greenhouse Gas Emission Baselines and Reduction...

    Open Energy Info (EERE)

    South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and...

  7. Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a...

  8. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirăo Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F.; Gutberlet, Jutta

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in Săo Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In Săo Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  9. Sauget Plant Flare Gas Reduction Project 

    E-Print Network [OSTI]

    Ratkowski, D. P.

    2007-01-01

    Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

  10. Waste-to-energy sector and the mitigation of greenhouse gas emissions

    SciTech Connect (OSTI)

    Fotis, S.C. [Van Ness Feldman, Washington, DC (United States); Sussman, D. [Poubelle Associates, Washington, DC (United States)

    1997-12-01

    The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in the United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.

  11. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  12. NREL: Sustainable NREL - Greenhouse Gas Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS - Simple ModelCafeteria A photoGreenhouse Gas

  13. Generalised hydrodynamic reductions of the kinetic equation for soliton gas

    E-Print Network [OSTI]

    Generalised hydrodynamic reductions of the kinetic equation for soliton gas Gennady A. El1 , Maxim of Russian Academy of Sciences, Moscow, 53 Leninskij Prospekt, Moscow, Russia 3 Laboratory of Geometric, Moscow, Russia 4 Institute for Nuclear Research, National Academy of Sciences of Ukraine, 47 pr. Nauky

  14. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  15. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  16. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  17. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

  18. Should We Consider the CoBenefits of Agricultural GHG Levan Elbakidze, Bruce A. McCarl

    E-Print Network [OSTI]

    McCarl, Bruce A.

    agricultural management strategies are utilized to offset or reduce greenhouse gas (GHG) emissions discussed case where a coal fired electrical powerplant, which is allocated fewer emission permits than

  19. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

  20. INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS

    E-Print Network [OSTI]

    McCarl, Bruce A.

    INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS: DEVELOPING A FAMILY OF RESPONSE FUNCTIONS 1 of economy-wide analysis of greenhouse gas mitigation options can be found in a special issue of the Energy

  1. The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel

    E-Print Network [OSTI]

    The Economic, Energy, and GHG Emissions Impacts of Proposed 2017­2025 Vehicle Fuel Economy in the passenger vehicle fleet to evaluate the economic, energy use, and greenhouse gas (GHG) emissions impacts analysis need to be related to the economic, technological, and political forces that drive emissions

  2. DRAFT VERSION September 6, 2009 1 1990 GHG Baseline for Building Energy Use

    E-Print Network [OSTI]

    Escher, Christine

    DRAFT VERSION ­ September 6, 2009 1 1990 GHG Baseline for Building Energy Use in the Oregon of 1990 building energy use and the associated greenhouse gas (GHG) emissions for Oregon University System's stated intent. Specifically, there is a focus on building energy use, the single largest source of direct

  3. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  4. GBTL Workshop GHG Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FAR 31.205-6Applicationsnatural gas as

  5. Bioenergy crop greenhouse gas mitigation potential under a range of management practices

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Bioenergy crop greenhouse gas mitigation potential under a range of management practices T A R A W on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction an important renewable energy source for replacement of fossil fuels, but is of questionable greenhouse gas

  6. CALIFORNIA CLIMATE POLICY MODELING (CCPM) DIALOG Greenhouse Gas Emissions Modeling

    E-Print Network [OSTI]

    California at Davis, University of

    H2 CALIFORNIA CLIMATE POLICY MODELING (CCPM) DIALOG Greenhouse Gas Emissions Modeling ­ California goals of criteria pollutant and GHG emission reduction. · Modelers need to work with policy makers more to policy-makers and stakeholders. 5 #12;Greenhouse Gas Emissions Modeling ­ California 2030 #12;

  7. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOE Patents [OSTI]

    Viola, Michael B. (Macomb Township, MI)

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  8. Multiscale model reduction for shale gas transport in fractured media

    E-Print Network [OSTI]

    Akkutlu, I Y; Vasilyeva, Maria

    2015-01-01

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work \\cite{aes14}, where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method. In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. We developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations on a Cartesian fine grid. In this paper, we consider arbitrary fracture orientations and use triangular fine grid and developed GMsFEM for nonlinear flows. Moreover, we develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region ...

  9. GHG Management Institute GHG MRV Curriculum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD Inc Jump to:GHG

  10. Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.

    SciTech Connect (OSTI)

    Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

    2000-01-01

    Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

  11. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  12. Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2009-01-01

    an 80% reduction in greenhouse gas emissions from ,Board, 2008. California Greenhouse Gas Emission Inventory.A. , 2003. Reducing Greenhouse Gas Emissions from US

  13. Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach

    E-Print Network [OSTI]

    Tanthullu Athmaram, Kumaresh Babu

    2012-01-01

    This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

  14. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence annual reduction of greenhouse gases of 6% below 1990 levels between 2008 and 2012. The transportation committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012

  15. ASSESSING GREENHOUSE GAS REDUCTIONS IN THE TRANSITION ECONOMIES USING A HYBRID ENERGY-

    E-Print Network [OSTI]

    ASSESSING GREENHOUSE GAS REDUCTIONS IN THE TRANSITION ECONOMIES USING A HYBRID ENERGY- ECONOMY: Assessing Greenhouse Gas Reductions in the Transition Economies Using a Hybrid Energy- Economy Model Project/Approved: _______________________________________ #12;iii ABSTRACT In this research, the CIMS hybrid energy-economy modelling framework is used

  16. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    Berkeley National Laboratory’s Energy Analysis Program forare often national-level energy or GHG programs that combinea national-level energy or GHG emissions mitigation program

  17. EPA-GHG Inventory Targeted Data Collection Strategies and Software...

    Open Energy Info (EERE)

    EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools (Redirected from US EPA GHG Inventory Targeted Data Collection Strategies and Software Tools) Jump to:...

  18. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  19. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    Vehicle Activity Network Efficiency GHG Emissions Operational Efficiency Alternative EnergyAlternative energy includes the substitution of fuels other than fossil fuels for vehicle

  20. Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Stress reduction in sputter deposited films using nanostructured compliant layers by high working October 2004; accepted 13 December 2004; published 27 June 2005 We present a strategy of stress reduction as a compliant layer to reduce the stress of the subsequently deposited continuous film grown under low gas

  1. Pre-converted nitric oxide gas in catalytic reduction system

    DOE Patents [OSTI]

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

    1999-04-06

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO{sub 2} in the presence of O{sub 2}. The second stage serves to convert NO{sub 2} to environmentally benign gases that include N{sub 2}, CO{sub 2}, and H{sub 2}O. By preconverting NO to NO{sub 2} in the first stage, the efficiency of the second stage for NO{sub x} reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO{sub 2} in the presence of O{sub 2} and includes platinum/alumina, e.g., Pt/Al{sub 2}O{sub 3} catalyst. A flow of hydrocarbons (C{sub x}H{sub y}) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO{sub 2} from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO{sub 2} to N{sub 2}, CO{sub 2}, and H{sub 2}O, and includes a {gamma}-Al{sub 2}O{sub 3}. The hydrocarbons and NO{sub x} are simultaneously reduced while passing through the second catalyst. 9 figs.

  2. Pre-converted nitric oxide gas in catalytic reduction system

    DOE Patents [OSTI]

    Hsiao, Mark C. (Livermore, CA); Merritt, Bernard T. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA)

    1999-01-01

    A two-stage catalyst comprises an oxidative first stage and a reductive second stage. The first stage is intended to convert NO to NO.sub.2 in the presence of O.sub.2. The second stage serves to convert NO.sub.2 to environmentally benign gases that include N2, CO2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber. An oxidizing first catalyst converts NO to NO.sub.2 in the presence of O.sub.2 and includes platinum/alumina, e.g., Pt/Al.sub.2 O.sub.3 catalyst. A flow of hydrocarbons (C.sub.x H.sub.y) is input from a pipe into a second chamber. For example, propene can be used as a source of hydrocarbons. The NO.sub.2 from the first catalyst mixes with the hydrocarbons in the second chamber. The mixture proceeds to a second reduction catalyst that converts NO.sub.2 to N2, CO2, and H.sub.2 O, and includes a gamma-alumina .gamma.-Al.sub.2 O.sub.3. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the second catalyst.

  3. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOE Patents [OSTI]

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  4. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  5. Greenhouse Gas Emissions Reduction Benefits of Workplace Charging |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013 April 2013DepartmentGreenPaulDepartment of

  6. DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice of Headquarters AccountingDOEEnergyHuman Capital

  7. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    nuclear energy, or with fossil energy coupled with carbon capture and storage, could yield much greater GHG reductions than with vehicle efficiency

  8. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO{sub 2} e (glass) to ?19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  9. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership. Contribution of Food Greenhouse Gas Emissions

    E-Print Network [OSTI]

    similar to the Land and Food Systems (LFS) Orchard Garden, 0.019 tons of Carbon Dioxide (CO2) emissions an external source. This study attempts to quantify the GHG emissions from the transportation of the food Partnership. Contribution of Food Greenhouse Gas Emissions Reductions: Moving UBC Beyond Climate Neutral

  10. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    E-Print Network [OSTI]

    Pedersen, Tom

    and CNG RCVs. c A 24% reduction of GHG emissions (CO2-equivalent) may be realized by switching from diesel to CNG. c CNG RCVs are estimated to be cost effective and may lead to reduced fuel costs. a r t i c l e i 2012 Keywords: Life cycle assessment (LCA) Compressed natural gas (CNG) Refuse collection vehicle (RCV

  11. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  12. Abating Greenhouse Gas Emissions through Cash-for-Clunker Programs

    E-Print Network [OSTI]

    Allen, Alexander; Carpenter, Rachel; Morrison, Geoff

    2009-01-01

    by multiplying the passenger car emissions estimate by the36 MPG new car to achieve the same GHG emissions reduction.U.S. (CARS) Stimulate auto industry and reduce GHG emissions

  13. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01

    RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA., Rome, Italy ABSTRACT... Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented. INTRODUCTION Petroleum refining...

  14. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    for presentation at DOE First National Conference on Carbon Sequestration, May 14-17, 2001, Washington D.C. #12 sequestration generally refers to the absorption of carbon dioxide from the atmosphere through photosyntheticEconomic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration

  15. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  16. Forecasting and Capturing Emission Reductions Using Industrial Energy Management and Reporting Systems 

    E-Print Network [OSTI]

    Robinson, J.

    2010-01-01

    The Mandatory 2010 Green House Gas (GHG) Reporting Regulations and pending climate change legislation has increased interest in Energy Management and Reporting Systems (EMRS) as a means of both reducing and reporting GHG emissions. This paper...

  17. Impacts of greenhouse gas mitigation policies on agricultural land

    E-Print Network [OSTI]

    Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

  18. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Environmental Management (EM)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  19. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  20. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    vehicles used liquefied natural gas, liquefied petroleum1,793 -100 to -84% Other Fuels Liquefied Natural Gas (LNG)Compressed Natural Gas (CNG) Liquefied Petroleum Gases (LPG)

  1. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. FEMP Assists White House in Setting GHG Reduction Target for...

    Office of Environmental Management (EM)

    technologies, including photovoltaics, operating concurrently. (Photo Credit U.S. Marine Corps) FEMP Completes 2000th Renewable Energy Optimization Screening FEMP Assists...

  4. Methodology for Estimating Reductions of GHG Emissions from Mosaic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH Jump to: navigation, searchMetalco SpA

  5. Health Benefits of GHG Reduction | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of LastProgramsHealth

  6. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect (OSTI)

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  7. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    Diesel (Coal-to- Liquids) Hydrogen (Natural Gas, pipeline)Hydrogen (Natural Gas, liquid H2 truck) Hydrogen (Coal,Natural Gas, on-site Natural Gas, liquid H2 truck, w/o or w/

  8. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect (OSTI)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  9. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    Avoided Energy/GHG Tax Emissions trading Target Settingexits • Calculating trading group targets • Measuring energyemissions trading scheme, and a “light touch” on energy

  10. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    DEFRA), 2005a. UK Emissions Trading Scheme. London: DEFRA.Energy/GHG Tax Emissions trading Target Setting Penaltiesthe European Union Emissions Trading Scheme and a lack of

  11. GBTL Workshop GHG Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShotB, Title III, Title VOpeningAttendeesGHG

  12. GHG Management Institute curriculum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOH OffshoreGHESolar JumpGHG

  13. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Darrow, K et al. (2009), “CHP Market Assessment” Integratedwith combined heat and power (CHP) capability deployment ingas emissions (GHG) reductions. CHP applications at large

  14. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    and A. Schafer, Reducing Greenhouse Gas Emissions from U.S.Council. Marintek, Study of Greenhouse Gas Emissions fromfor Biofuels Increases Greenhouse Gases Through Emissions

  15. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  16. Energy and GHG Emissions in British Columbia 1990 -2010

    E-Print Network [OSTI]

    Pedersen, Tom

    Energy and GHG Emissions in British Columbia 1990 - 2010 Report Highlights John Nyboer and Maximilian Kniewasser Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser for Climate Solutions 1 HIGHLIGHTS The Energy and GHG Emissions in British

  17. The Future Energy and GHG Emissions Impact of Alternative Personal

    E-Print Network [OSTI]

    The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal Paul N. Kishimoto, Sergey Paltsev and Valerie J. Karplus Report No. 231 September 2012 China Energy

  18. Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US

    E-Print Network [OSTI]

    Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models February 2011 Accepted 16 August 2011 Available online 17 September 2011 Keywords: Energy efficiency that a large potential for profitable energy efficiency exists in the US, and that substantial greenhouse gas

  19. Gas Carburization of Thin-Walled Austenitic Stainless Steel Formed via the Reduction of Metal Oxide Extrusions

    E-Print Network [OSTI]

    Li, Mo

    Gas Carburization of Thin-Walled Austenitic Stainless Steel Formed via the Reduction of Metal Oxide with constant carbon composition. In the case of stainless steels, the protective layer of chrome oxide must the surface hardness of steel by introducing a carbon-rich gas environment to a specimen at an elevated

  20. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    Electricity (Natural Gas Combined Cycle) Electricity (Coal,efficiency enabled by combined cycle systems at stationarybut also using combined cycle and fuel cell-based power

  1. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  2. Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

    E-Print Network [OSTI]

    Morris, Jennifer

    Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

  3. Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming

    E-Print Network [OSTI]

    2007-01-01

    Vegetation Changes, and Greenhouse Gas Warming M ASARU Yin the simulation. Greenhouse gas warming * The Nationalvegetation change, and greenhouse gas (GHG) warming using

  4. Optimal Design and Allocation of Electrified Vehicles and Dedicated Charging Infrastructure for Minimum Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    for Minimum Greenhouse Gas Emissions Submitted for Presentation at the 2011 Annual Meeting to reduce greenhouse gas (GHG) emissions from personal transportation by shifting energy demand from

  5. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    internal combustion enginesand gas turbines, fuel cells,2, the external combustion engines(gas turbine and Stifling)or external combustion engines, such as the gas turbine or

  6. Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore 

    E-Print Network [OSTI]

    Carballo Salas, Jose Gilberto

    2006-04-12

    When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a decrease in gas relative...

  7. Analysis of U.S. Greenhouse Gas Tax Proposals

    E-Print Network [OSTI]

    Metcalf, Gilbert E.

    The U.S. Congress is considering a set of bills designed to limit the nation’s greenhouse gas (GHG)

  8. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    a remarkable source of carbon dioxide (CO2) emissions from anthropogenic and industrial activities [4 for indirect reduction (IR) of iron oxides in blast furnaces (BFs), carbon dioxide emissions can be lessened. Motivated from utilizing hydrogen and mitigating greenhouse gas emissions in ironmaking, the reaction

  9. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect (OSTI)

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all six melter runs (bubbled and non-bubbled runs for each of the three feeds). The steady state selection was made by limiting the standard deviation of the average vapor space temperature readings from two bare thermocouples (TT-03 and TT-05) to less than 5 C in most cases at a constant feed rate. The steady state data thus selected were mass and heat balanced and the off-gas data were re-baselined to assess the flammability potential of each feed under the DWPF melter operating conditions. Efforts were made to extract as much information out of the data as possible necessary to extend the applicability of the existing baseline cold cap and off-gas combustion models to the glycolic and sugar flowsheet feeds. This report details the outcome of these activities.

  10. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from "http:...

  11. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    from purchased electricity, transport or mobile sources, refrigeration and air conditioning equipment, and several industrial sectors. References 1.0 1.1 "Stationary...

  12. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    from stationary combustion, transport or mobile sources, refrigeration and air conditioning equipment, and several industrial sectors. References 1.0 1.1 "Electricity...

  13. Regional GHG Emissions O tlook Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    demand The model can also track CO2 emissions heat rates, emission rates, hydro shapes... Fuel prices Emission Rate Load Heat Rate 10 mmbtu/MWh Fuel 80,000 mmbtu Combined Cycle Plant 212 lb/mmbtu Emission Rate 4 8,000 MWh Load Heat Rate 7 mmbtu/MWh Fuel 56,000 mmbtu 3,276 tons CO2 Emission Rate 117 lb

  14. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute Jump to:

  15. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute Jump to:and Air Conditioning |

  16. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind Resources <forGerman WindCombustion | Open

  17. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind Resources <forGerman WindCombustion |

  18. Importance Sampling Variance Reduction for the Fokker-Planck Rarefied Gas Particle Method

    E-Print Network [OSTI]

    Collyer, Benjamin; Lockerby, Duncan

    2015-01-01

    Models and methods that are able to accurately and efficiently predict the flows of low-speed rarefied gases are in high demand, due to the increasing ability to manufacture devices at micro and nano scales. One such model and method is a Fokker-Planck approximation to the Boltzmann equation, which can be solved numerically by a stochastic particle method. The stochastic nature of this method leads to noisy estimates of the thermodynamic quantities one wishes to sample when the signal is small in comparison to the thermal velocity of the gas. Recently, Gorji et al have proposed a method which is able to greatly reduce the variance of the estimators, by creating a correlated stochastic process which acts as a control variate for the noisy estimates. However, there are potential difficulties involved when the geometry of the problem is complex, as the method requires the density to be solved for independently. Importance sampling is a variance reduction technique that has already been shown to successfully redu...

  19. Modeling and Measuring Greenhouse Gas Reduction from Low Carbon Airport Access Modes

    E-Print Network [OSTI]

    Smirti, Megan

    2008-01-01

    Updated State?level Greenhouse  Gas Emission Coefficients Agency (EPA) (2006) Greenhouse Gas Emissions from the U.S.  Port of Seattle (2008) Greenhouse Gas Emissions Inventory.  

  20. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  1. Development and Update of Models for Long-Term Energy and GHG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update of Models for Long-Term Energy and GHG Impact Evaluation Development and Update of Models for Long-Term Energy and GHG Impact Evaluation 2013 DOE Hydrogen and Fuel Cells...

  2. CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised Draft NEPA Guidance on GHG Emissions and Climate Change CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change March 3, 2015 - 10:37am Addthis CEQ...

  3. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

  4. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01

    fuel consumption and of greenhouse gas (GHG) emissions fromand N 2 O are the major greenhouse gases produced in soils,O is the most important greenhouse gas that is emitted from

  5. What GHG Concentration Targets are Reachable in this Century?

    E-Print Network [OSTI]

    Paltsev, Sergey

    2013-07-26

    We offer simulations that help to understand the relationship between GHG emissions and concentrations, and the relative role of long-lived (e.g., CO2) and short-lived (e.g., CH4) emissions. We show that, absent technologies ...

  6. GHG Inventory Update Summary December 2014

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    : Emissions from all on-campus fuel combustion (co-gen facility, heating oil, propane) Direct Transportation inventories. The first several charts illustrate campus consumption of electricity, gas/diesel, propane, and the Flathead Lake biological station, use propane for the heating of their buildings. This is a possible reason

  7. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  8. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    the primary goal of alternative energy; and GHG/kWh onlyGas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigating

  9. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    Powerplant Efficiency (%) FF Vehicle Fuel/Technologies gmC02) pp I Llecmcity gmC02 ] j KJ)Fuel gm j Coal Steam Oil Steam GasGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJf°r Usage for Various Powerplant

  10. Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms

    E-Print Network [OSTI]

    Shaheen, Susan A.; Bejamin-Chung, Jade; Allen, Denise; Howe-Steiger, Linda

    2009-01-01

    1999?for fuel economy, CO2 emissions, car dealerships Tax onfor passenger cars and induce GHG emission reductions. Taxesregulates CO2 emissions from passenger cars; the policy

  11. An investigation of gas separation membranes for reduction of thermal treatment emissions

    SciTech Connect (OSTI)

    Stull, D.M.; Logsdon, B.W.; Pellegrino, J.J.

    1994-05-16

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

  12. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  13. Reduction of green house gas emission by clean power Jinxu Ding and Arun Somani

    E-Print Network [OSTI]

    , fossil fuels play an important role. The estimation of Energy Information Administration [7] of Depart.8%, coal 26.6% and natural gas 22.9%. The total value of these sources is 86.3% share for fossil fuels in primary energy production in the world. Burning fossil fuels produces about 21.3 billion tons of CO2 every

  14. Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  15. Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsJennifer B....

  16. IGES GHG Calculator For Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro Industries Ltd Jump to:IGES GHG

  17. ECN GHG Marginal Abatement Cost curves (NAMAC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek Europe GmbH JumpE+CoTheECN GHG

  18. Selected GHG Emission Supply Curves | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbonOpenSchulthess GroupSmart GridSeikoOpenBankGHG

  19. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

  20. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  1. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  2. Methods for ensuring compliance in an international greenhouse gas trading system

    SciTech Connect (OSTI)

    Hargrave, T.; Helme, E.A.

    1998-12-31

    At the third Conference of the Parties to the UN Framework Convention on Climate Change held in December, 1997, the international community established binding greenhouse gas (GHG) emissions obligations for industrialized countries. The Parties to the new Kyoto Protocol also agreed on the use of a number of market-based mechanisms, including international GHG emissions trading. These market mechanisms were of critical to the importance because they have the potential to significantly reduce the costs of treaty compliance. In principle, an international cap-and-trade system appears to be one of the most cost-effective means of reducing GHG emissions. Maintaining the integrity of the trading system is of primary importance in ensuring that trading helps countries to meet their GHG commitments. This paper explores methods for ensuring compliance in an international greenhouse gas trading system, starting with a discussion of preconditions for participation in trading and then moving to features of an international compliance system. Achieving maximum compliance with international requirements may best be accomplished by limiting participation in trading to Annex I countries that maintain strong domestic compliance systems. Prior to the climate negotiations in Kyoto in December 1997, the US Administration proposed a number of preconditions for participation in trading, including the adoption of international measurement standards and the establishment of domestic compliance and enforcement programs. This paper explores these and other preconditions, including the establishment of tough domestic financial penalties on companies that exceed allowed emissions and seller responsibility for the delivery of real reductions. The paper also discusses several necessary features of the international compliance system.

  3. Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network on the overall power consumption and on the GHG emissions with just 25% of green energy sources. I. INTRODUCTION]. In the zero carbon approach, renewable (green) energy sources (e.g. sun, wind, tide) are employed and no GHGs

  4. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  5. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  6. John Rosenblum, roseenveng@sbcglobal.net 1 REDUCING GREENHOUSE GAS IMPACTS IN

    E-Print Network [OSTI]

    Keller, Arturo A.

    @sbcglobal.net 8 2005 Water-Related Unit Energy Costs for Santa Rosa's Urban Water Cycle $410 #12;John RosenblumREDUCED GHG Reductions from Energy Efficiency Projects in the Wastewater System #12;John Rosenblum, roseenveng@sbcglobal.net MEETING GHG TARGETS IN THE URBAN WATER CYCLE REQUIRES IMPROVING CUSTOMERS' WATER/ENERGY

  7. October 31, 2001 Water Quality Co-Benefits

    E-Print Network [OSTI]

    McCarl, Bruce A.

    that generate GHG emissions through fossil fuel combustion. Terrestrial or biological carbon sequestration gas (GHG) mitigation through (1) carbon sequestration, (2) reduction of GHG emissions from management practices, and (3 ) substitution of renewable biomass based products for materials and processes

  8. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  9. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect (OSTI)

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry basis. There were no signs of catalyst deactivation throughout the 6 day demonstration program, even under the high steam (>50%) content and chemically reducing conditions inherent to the THOR process. Utilization of the common Three-Way automotive catalyst may prove to be a cost effective method for improving NO{sub x} emissions from thermal treatment processes that utilize similar processing conditions. This paper will discuss the details of the implementation and performance of the Three-Way catalytic DeNO{sub x} unit at the THOR ESTD, as well as a discussion of future work to determine the long-term durability of the catalyst in the THOR process. (authors)

  10. Biochar amendment and greenhouse gas emissions from agricultural soils 

    E-Print Network [OSTI]

    Case, Sean Daniel Charles

    2013-11-28

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide ...

  11. Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

  12. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect (OSTI)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  13. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  14. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  15. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  16. Corporate Energy Management Strategies for GHG Reduction and Improved Business Performance 

    E-Print Network [OSTI]

    Robinson, J. E.

    2009-01-01

    Manager(s) Corporate EMRS Implementation Team Facilities Facility Utility Optimizer Capital Projects Operations Energy Services Environmental Services Energy Contracts EMRS Assessment Team Facility Utility Optimizer Facility Utility Optimizer... Technologies An example of this evolution is well documented in the Energy Management and Reporting Systems (EMRS) 7 . The EMRS is a combination of technolo- gies to provide low cost, high return control and en- gineering services project to reduce utility...

  17. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  18. Assessing seasonal greenhouse gas emissions and belowground C anAssessing seasonal greenhouse gas emissions and belowground C and N processes under different fired N processes under different fire frequencies in soils of Sierra Nevada chaparral shrublands

    E-Print Network [OSTI]

    Norton, Jay B.

    Assessing seasonal greenhouse gas emissions and belowground C anAssessing seasonal greenhouse gas of greenhouse gases (GHG) to the atmosphere is lacking. ·Historically, fire played a critical role in shaping

  19. Clean Coal Technology: Reduction of NO{sub x} and SO{sub 2} using gas reburning, sorbent injection, and integrated technologies. Topical report No. 3, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program), is a unique government/industry cost-shared effort to develop these advanced coal-based technologies. The CCT Program provides numerous options for addressing a wide range of energy and environmental issues, including acid rain, global climate change, improved energy efficiency, energy security, and environmental qualitiy. It is intended to demonstrate a new generation of full-scale, ``showcase`` facilities built through the United States. Gas Reburning, Sorbent Injection and Integrated Technologies -- the subject of this Topical Report -- are one such set of promising innovative developments. In addition to discussing the technologies involved, this report will describe two specific projects, results to date, and the commercial promise of these processes. The objectives of Gas Reburning and Sorbent Injection were to have a 60% reduction in NO{sub x} emissions and a 50% reduction in SO{sub 2} emissions. These objectives have been achieved at the tangentially-fired boiler at the Hennepin site of Illinois Power and at the cyclone-fired boiler operated by City Water, Light and Power in Springfield, Illinois. The other project, Gas Reburning and Low NO{sub x} Burners had the goal of a 70% NO{sub x} reduction from the wall-fired boiler operated by Public Service of Colorado at Denver. In early preliminary testing, this goal was also achieved. Energy and Environmental Research (EER) is now ready to design and install Gas Rebunting and Sorbent Injection systems, and Gas Reburning-Low NO{sub x}, Burner systems for any utility or industrial application. These technologies are offered with performance and emission control guarantees.

  20. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  1. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1992-06-10

    Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

  2. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    fuel switching, and cogeneration. These measures can oftenthe installation of cogeneration natural gas plants. Cement:They also implemented cogeneration plants and have increased

  3. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    They also implemented cogeneration plants and have increasedinstallation of cogeneration natural gas plants. Cement: Therefineries, 27 power plants, and 5 cogeneration facilities (

  4. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  5. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2014-04-01

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  6. Effects of Various Membrane Electrode Assemblies on the Electrochemical Reduction of Carbon Dioxide in the Gas Phase

    E-Print Network [OSTI]

    Petta, Jason

    Effects of Various Membrane Electrode Assemblies on the Electrochemical Reduction of Carbon Dioxide to decrease net carbon dioxide emissions and mitigate the effects of global warming, it is necessary to find are primarily responsible for the increase in carbon dioxide concentrations and therefore a main cause

  7. New Jersey: EERE-Supported Technology Lowers GHG Emissions 70...

    Broader source: Energy.gov (indexed) [DOE]

    for Use of CO2 in Concrete Curing Project Overview Positive Impact R&D 100 Award-winning technology helps reduce greenhouse gas emissions in cement and concrete products up to...

  8. Energy and GHG Emissions in British Columbia 1990 -2010

    E-Print Network [OSTI]

    Pedersen, Tom

    (STC) publication Report on Energy Supply and Demand (RESD) is the primary supply and use, greenhouse gas emissions and energy efficiency in British Columbia. It includes total energy use and emissions data for all sectors and some industries

  9. POLICYBRIEF Can Deep Cuts in GHG Emissions from

    E-Print Network [OSTI]

    California at Davis, University of

    using gasoline and some buses and delivery trucks using natural gas. Trucking companies currently buy by conventional and hybrid diesel trucks (and to gasoline for trucks using that fuel). The advantage

  10. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Prinn, Ronald G.

    With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

  11. Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)

    E-Print Network [OSTI]

    MacDonald, Lee

    Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM) NREL Scientists Ngugi, Gabe Olchin, Catherine Stewart Summary Greenhouse gas (GHG) emissions and climate change pose one-induced warming of the planet. Hence, improved management practices are essential for reducing greenhouse gas (CO2

  12. UBC Social, Ecological Economic Development Studies (SEEDS) Student Report GHG Emissions Data Tracker User Manual

    E-Print Network [OSTI]

    of a project/report." #12;GHG Emissions Data Tracker User Manual #12;Add/Edit vehicles Vehicles type addition will be saved automatically. Add Vehicles: Enter Vehicles name in the bottom most blank space and once you enter the first character it will create a new record in database. Edit Vehicles: Click on the text box that you

  13. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    relative to coal than base case IV: Transportation cost isCoal-based ethanol pro- 0.430 duction cost ($/liter) Ethanol transportation 0.050 cost -transportation 0.130 cost - road ($/liter) Energy used in biore?ning 13.85 (MJ/liter) GHG intensity of coal-

  14. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  15. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore »that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  16. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  17. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  18. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  19. Attachment C - Summary GHG Emissions Data FINAL | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt'sDOE Phased Retirement

  20. Attachment C Summary GHG Emissions Data FINAL | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt'sDOE Phased

  1. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  2. U.S. Greenhouse Gas Cap-and-Trade Proposals: Application of a Forward-Looking Computable General Equilibrium Model

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    We develop a forward-looking version of the MIT Emissions Prediction and Policy Analysis (EPPA) model, and apply it to examine the economic implications of proposals in the U.S. Congress to limit greenhouse gas (GHG) ...

  3. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  4. Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions

    E-Print Network [OSTI]

    Cuellar, Amanda Dulcinea

    2012-01-01

    To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

  5. Status of flue-gas treatment technologies for combined SO[sub 2]/NO[sub x] reduction

    SciTech Connect (OSTI)

    Livengood, C.D. (Argonne National Lab., IL (United States). Energy Systems Div.); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1993-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO.) regulations have fueled research and development efforts on the technologies for the combined control of sulfur dioxide (SO[sub 2]) and NO[sub x]. The integrated removal of both SO[sub 2] and NO[sub x] in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  6. 1 University of California, Davis, Oct 1, 2015 Life Cycle Greenhouse Gas (GHG)

    E-Print Network [OSTI]

    California at Davis, University of

    32 32 37 23 43 44 48 44 45 43 47 48 45 48 48 Conv. diesel HEV Conventional diesel CNG LNG central CI LNG distributed CI LNG central SI F-T diesel w/ CCS LNG distributed SI Oil sand diesel F-T diesel w;10 University of California, Davis, Oct 1, 2015 LNG/CNG vs. Diesel (MHDVs) 80% 90% 100% 110% 120% 0% 1% 2% 3% 4

  7. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  8. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    Land Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H received September 12, 2010. Accepted September 14, 2010. Debates surrounding the greenhouse gas (GHG emissions of California crude and in situ oil sands production (

  9. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    E-Print Network [OSTI]

    Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil) for long periods to mitigate greenhouse gases (GHG) emissions. Forest fertilization can improve yield and C

  10. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01

    Natural Gas Miscellaneous Oil TOTAL Energy Consumption of the China’Natural Gas Miscellaneous Oil TOTAL Energy Consumption of the China’Natural Gas Miscellaneous Oil TOTAL Energy Consumption of the China’

  11. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01

    in BF N.A. Injection of coke oven gas in BF Top-pressureVariable speed drive coke oven gas compressors Coke dryin BF Injection of coke oven gas in BF Top-pressure recovery

  12. A multi-objective programming model for assessment the GHG emissions in MSW management

    SciTech Connect (OSTI)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.

  13. Mali-Reducing the GHG Impacts of Sustainable Intensification | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformation Reducing the GHG Impacts of Sustainable

  14. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  15. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam methane reforming for a unit of H{sub 2} delivered at refueling stations. In particular, 73-98% of GHG emissions and 81- 99% of fossil energy use are reduced by nuclear-based H{sub 2} relative to natural gas-based H{sub 2}, depending on the uranium enrichment technology and type of nuclear reactor used. When H{sub 2} is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions. (authors)

  16. Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian-Pacific Countries

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian&M University Seniority of authorship is shared November 2001 #12;Greenhouse Gas Mitigation Through Energy Crops in greenhouse gas (GHG) emission mitigation efforts has increased in recent years. While the original text

  17. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01

    systems in EAF plants Variable speed drives for flue gas control, pumps, fans in integrated steel mills Cogeneration

  18. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  19. Supplanting ecosystem services provided by scavengers raises greenhouse gas

    E-Print Network [OSTI]

    Richner, Heinz

    Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions Zebensui to human-induced increments in atmospheric concentrations of greenhouse gases (GHG) is one of the most concentrations of some gases such as carbon dioxide, methane or nitrous oxide (globally called greenhouse gases

  20. Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe

    E-Print Network [OSTI]

    Boyer, Edmond

    balance; Agro-ecosystem model; CERES-EGC; Bayesian calibration; Green- house gases; Nitrous oxidePredicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe gases (GHG) con- tributing to net greenhouse gas balance of agro-ecosystems. Evaluating the impact

  1. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application explore the implications for Canada's industrial sector of an economy-wide, compulsory greenhouse gas of the Canadian industrial sector to GHG charges implemented throughout the economy, starting in the year 2006

  2. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric options is an important step in formulating a cohesive strategy to abate U.S. greenhouse gas (GHG

  3. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR 

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01

    to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today...

  4. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  5. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    SciTech Connect (OSTI)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  6. Environ. Res. Lett. 10 (2015) 034012 doi:10.1088/1748-9326/10/3/034012 An approach for verifying biogenic greenhouse gas emissions

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    2015-01-01

    for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data Stephen M.ogle@colostate.edu Keywords: greenhouse gas emissions inventory, atmospheric inversion modeling, emissions verification, carbon cycle Abstract Verifying national greenhouse gas(GHG)emissionsinventoriesis a criticalstep

  7. The Effect of Transaction Costs on Greenhouse Gas Emission Mitigation for Agriculture and Forestry 

    E-Print Network [OSTI]

    Kim, Seong Woo

    2011-08-08

    of the activities of agricultural and forestry to EPA?s carbon prices: 40 percent from tillage practices, 30 percent from afforestation, 20 percent from methane capture, and 20 percent from production of bioenergy crops. Mooney et al. (2003................................ 14 III ECONOMIC POTENTIAL OF GHG EMISSION REDUCTIONS: EFFECTS OF INCLUDING TRANSACTION COSTS IN ELIGIBILITY ................................................................................. 19 Introduction...

  8. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  9. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  10. 1 Forecasting Greenhouse Gas Emissions from Urban Regions: 2 Microsimulation of Land Use and Transport Patterns in Austin, Texas

    E-Print Network [OSTI]

    Kockelman, Kara M.

    use electricity, natural gas and other energy sources regularly52 for space conditioning and powering1 Forecasting Greenhouse Gas Emissions from Urban Regions: 2 Microsimulation of Land Use 2030 household energy 26 demands and GHG emissions estimates are compared under five different land use

  11. 2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)

    E-Print Network [OSTI]

    % conventional petrol and diesel (i.e. refined from crude oil). iii. The lifecycle emissions factors Scope 1 or Scope 3 as defined by the GHG Protocol (e.g. depends on ownership of vehicle stock

  12. Greenhouse gas emissions from Scottish arable agriculture and the potential for biochar to be used as an agricultural greenhouse gas mitigation option 

    E-Print Network [OSTI]

    Winning, Nicola Jane

    2015-06-30

    Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) which has a global warming potential 296 times greater than that of carbon dioxide (CO2). Agriculture is a major source of N2O and in the UK approximately 71 % of ...

  13. About the research Across Europe heat and power generation for the

    E-Print Network [OSTI]

    Bristol, University of

    gases (GHG) and the disease burden from air pollution. A building can cause GHG emissions directly via daily use. A building affects public health and wellbeing via the air pollution generated in meeting, Switzerland Policy implications Potential for greenhouse gas (GHG) and air pollution reduction by building

  14. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  15. Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices

    Broader source: Energy.gov [DOE]

    This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

  16. NOx reduction methods and apparatuses

    DOE Patents [OSTI]

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  17. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  18. Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power"

    E-Print Network [OSTI]

    measures and renewable energy technologies in the near term. However, much of their rationale reflects costs and levelized costs of electricity, we refer readers to Table 1.9 of the Global Energy Assessment that nuclear power is unable to displace greenhouse gas (GHG) emissions as effectively as energy efficiency

  19. Plant-Wide NOx Reduction Strategies 

    E-Print Network [OSTI]

    Baukal, C.; Waibel, D.; Webster, T.

    2006-01-01

    flue gases into the flame is a proven technique for reducing NOx emissions (see Figure 6). There are two common ways to recirculate combustion exhaust products through a flame – flue gas recirculation (FGR) and internal flue gas recirculation... reduces NOx. Garg (1992) estimated NOx reductions of up to 50% using flue gas recirculation [7]. combustor burner fuel recirculated combustion products air ID fan to atmosphere Figure 7. Schematic of flue gas recirculation [8]. Internal flue gas...

  20. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  1. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore »conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  2. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01

    BERKELEY NATIONAL LABORATORY Greenhouse Gas Abatement withan equal opportunity employer. Greenhouse Gas Abatement withgeneration (DG) in greenhouse gas reductions by * a p p l y

  3. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Environmental Management (EM)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

  4. Microsoft PowerPoint - FNC NEPA GHG Climate Slides -- 16Jan2015...

    Broader source: Energy.gov (indexed) [DOE]

    REVISED DRAFT GUIDANCE ON CONSIDERATION OF GREENHOUSE GAS EMISSIONS AND THE EFFECTS OF CLIMATE CHANGE IN NATIONAL ENVIRONMENTAL POLICY ACT REVIEWS HORST G GRECZMIEL ASSOCIATE...

  5. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  6. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  7. Do We Need Resource Planning to Achieve 2030/2050 GHG Goals?

    E-Print Network [OSTI]

    California at Davis, University of

    ) 2. Low-carbon electricity (e.g., 50% renewables in 2030 in CA) 3. Fuel-switching away from fossil fuels (electric vehicles, and electrification of buildings, or low-carbon produced fuels like hydrogen reductions and reduce costs · Electricity decarbonization without aggressive efficiency requires greater

  8. EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG

    E-Print Network [OSTI]

    Kockelman, Kara M.

    more significant effects on energy dependence and greenhouse gas emissions. INTRODUCTION AND MOTIVATION all #12;scenarios. And HEVs, PHEVs and Smart Cars are estimated to represent a major share

  9. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  10. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant...

  11. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    E-Print Network [OSTI]

    Zhou, Yaoqi

    and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

  12. Integrability Singular reduction

    E-Print Network [OSTI]

    Patrick, George

    Motivation Integrability Singular reduction Integration of Singular quotients Summary References Singular reduction of Poisson manifolds and integrability Rui L. Fernandes1 Joint work with J.P. Ortega Fernandes Singular reduction and integrability #12;Motivation Integrability Singular reduction Integration

  13. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  14. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  15. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    installed to replace hydro power, in terms of GHG emissions.coal-fired power plant or a hydro-power facility. 4. The GHG

  16. Reduction of NOx Emissions in Alamo Area Council of Government Projects 

    E-Print Network [OSTI]

    Haberl, J. S.; Zhu, Y.; Im, P.

    2004-01-01

    This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by ...

  17. Insights from Agricultural and Forestry GHG Offset Bruce A. McCarl

    E-Print Network [OSTI]

    McCarl, Bruce A.

    suitable. This diversity across the landscape causes differential production alterations and greenhouse gas regimes as well as in association with mitigation (i.e. carbon price) incentives. This paper draws upon. The basic nature of the insights to be discussed will arise from studies of the portfolio share of various

  18. Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks

    E-Print Network [OSTI]

    McCarl, Bruce A.

    for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry can be achieved through AF efforts by employing sink strategies, biofuel production or emissions management relative to carbon, methane (CH4) or nitrous oxide (N2O). Agricultural and forestry participation

  19. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    SciTech Connect (OSTI)

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  20. 2 Key Achievements 7 Greenhouse Gas Reduction

    E-Print Network [OSTI]

    DomesticWater Stormwater Management 26 Research, Education & Civic Engagement Research & Education Student conservation, and research, education, and civic engagement. In addition to providing further statistical since 2008, even with the addition of more than 560,000 square feet of building space. · Electricity

  1. Danish Greenhouse Gas Reduction Scenarios for 2020

    E-Print Network [OSTI]

    .4 ECONOMIC GROWTH 51 2.5 GROWTH IN ENERGY SERVICES 52 2.6 FUEL PRICES 53 2.7 CO2-PRICE 54 2.8 TECHNOLOGY DATA to coordinate the assumptions of the reference projections for 2020 with the Danish Energy Authority Analyses The work has been followed by a project steering group with representatives from Danish

  2. Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China

    E-Print Network [OSTI]

    Yasarer, Lindsey

    2014-11-19

    Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China Lindsey MW Yasarer, PhD Candidate, University of Kansas Dr. Zhe Li, Associate Professor, Chongqing University Dr.... Belinda Sturm, Associate Professor, University of Kansas RESERVOIR GREENHOUSE GAS EMISSIONS (Image from FURNAS www.dsr.inpe.br) HOW TO SCALE UP GHG EMISSIONS? PROJECT OBJECTIVE: Estimate overall greenhouse gas emissions from the Pengxi River Backwater...

  3. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  4. Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    can also offset greenhouse gas (GHG) emissions by increasing production of energy crops, which can Professor Department of Agricultural Economics Texas A&M University Hamburg, Germany April 2003 1 #12 with conventional agricultural production. Competition among practices is examined under a wide range

  5. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    sulfur dioxide smelting reduction smelting reduction iron three-dimensional tonne top-gas recycling blast furnace tonnes per day ultra-low-

  6. CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency |CBA.PDF&#0; MoreJune 28,Emissions and the|

  7. Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions

    E-Print Network [OSTI]

    Jensen, Max

    of the electricity sector; the rapid and widespread deployment of innovative technologies such as heat pumps in the industrial, buildings and transport sectors, with the aim of identifying common themes and drawing context

  8. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  9. The Essential Role of State Enforcement in the Brave New World of Greenhouse Gas Emission Limits

    E-Print Network [OSTI]

    Bogoshian, Matt; Alex, Ken

    2009-01-01

    the Brave New World of Greenhouse Gas Emission Limits MattNATURE AND EXTENT OF THE GREENHOUSE GAS EMISSION REDUCTIONa similar situation with greenhouse gas emission reductions.

  10. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  11. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  12. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore »in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  13. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  14. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  15. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    to GHG/kWh of the USA electricity supply chain are coalTurbine Nuclear (USA) Coal 3.3 Electricity Marginal GHG/kWhNet GHG/kWh of Electricity – example based on USA. Figure 2:

  16. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  17. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  18. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  19. Natural Gas Exports from Iran

    Reports and Publications (EIA)

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  20. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  1. Greenhouse gas performance standards: From each according to his emission intensity or from each according to his emissions?

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2013-01-01

    Hughes, and C.R. Knittel. Greenhouse Gas Reductions underoil sands industry’s greenhouse gas emissions. EnvironmentalA cost curve for greenhouse gas reduction. McKinsey

  2. GHG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD Inc Jump

  3. ARM - Campaign Instrument - ghg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrent : 0.0 WaitingMay

  4. ARM - Instrument - ghg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstpsgovInstrumentsclap Documentation ARM DatagovInstrumentsflask

  5. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  6. Final Flue Gas Cleaning (FFGC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01

    -scale FFGC plant. I. EMISSION REDUCTION TECHNOLOGIES Pollution reduction technologies addressed in this document can be used to clean up any type of flue gas including the high pollution levels from untreated coal fired power plants. A typical... tons by 2010 and at 15 tons by 2018. Although coal fired industry representatives state, “there still is no mercury control technology that exists today that can achieve the reduction levels finalized by the Clean Air Mercury rule”( g ), WOW...

  7. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  8. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    #12;The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on Electricity Prices the impact of proposed federal regulations aimed at reductions in carbon dioxide (CO2) emissions gas emissions; however, it does not attempt to model the full details of the proposed legislation

  9. Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet

    E-Print Network [OSTI]

    Kromer, Matthew A

    2007-01-01

    Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

  10. Fermilab Today | Tip of the Week Archive | 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to ride together to and from work. You can also track your cost savings and greenhouse gas (GHG) emission reductions through the website whether you travel by train, car or...

  11. Potential energy savings on the MIT campus

    E-Print Network [OSTI]

    Amanti, Steven Thomas

    2006-01-01

    The MIT community and the City of Cambridge embarked on initiatives to reduce energy consumption and Greenhouse Gas emissions in accordance with the Kyoto Protocol which calls for a 20 % reduction in 1990 levels of GHG ...

  12. Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan

    E-Print Network [OSTI]

    Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

    2010-01-01

    Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

  13. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore »clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production. « less

  14. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    to GHG/kWh of the USA electricity supply chain are coalGHG/kWh of electricity example based on USA. Distributionnuclear (USA) are different because of the electricity mix

  15. II. Greenhouse gas markets, carbon dioxide credits and biofuels17

    E-Print Network [OSTI]

    biofuels production. GHG policies18 that create a carbon price either through an emissions trading system analysed in the previous chapter. GHG policies that create an emissions trading system such as the cap

  16. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  17. Reduction of Film Coolant in High Pressure Turbines

    E-Print Network [OSTI]

    Wirsum Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen Prof. Dr.-Ing. Ingo RöhleReduction of Film Coolant in High Pressure Turbines Bachelor Thesis in Computational Engineering Institute of Propulsion Technology, German Aerospace Center #12;Abstract Gas turbine development has been

  18. Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using CRiSP

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using of Engineers began the Gas Abatement Study in order to address the problem of gas and its effects on the Snake and Columbia Rivers. One important question is how much gas reductions caused by structural changes at a few

  19. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  20. Paperwork Reduction Act

    Broader source: Energy.gov [DOE]

    The Paperwork Reduction Act requires that all federal websites request permission from the Office of Management and Budget (OMB) before collecting information from 10 or more members of the public....

  1. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  2. Sandia Energy - Greenhouse Gas Source Attribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for 80 percent of anthropogenic GHG emissions and 98 percent of anthropogenic CO2 emissions. Approximately 60 percent of anthropogenic CO2 emissions are from the use of...

  3. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  4. Reduction of NOx by plasma-assisted methods , F. Leipold1

    E-Print Network [OSTI]

    Reduction of NOx by plasma-assisted methods A. Fateev1 , F. Leipold1 , Y. Kusano1 , B. Stenum1 , H acid rain and ozone production when it is released into the air. Reduction of NOx in the exhaust gas-assisted techniques for NOx-reduction: direct treatment of exhaust gases by plasma, injection of N atoms and injection

  5. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.

    E-Print Network [OSTI]

    Cheah, Lynette W. (Lynette Wan Ting)

    2010-01-01

    Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

  6. Kinetics of Fe(III)*EDTA reduction by ascorbic acid

    SciTech Connect (OSTI)

    Li, W.; Harkness, J.B.L.; Mendelsohn, M.H.

    1992-12-01

    The kinetics of the reduction of ferric chelate by ascorbic acid have been determined at a typical flue-gas scrubber-system operating temperature ({approximately}55{degrees}C). The ascorbic acid reaction has the same reduction rate expression as the reduction by bisulfite ions, namely, first order with respect to the concentrations of both Fe(III)*EDTA and monoionic species of ascorbic acid. The reaction rate isnegative first order with respect to Fe(II)*EDTA concentration. In the pH range of 6--8, reduction of the hydrolyzed form of the metal chelate compound was negligible. The rate constant for the ascorbic acid reduction reaction is almost 400 times larger than that for the bisulfite reduction reaction under the same reaction conditions. There was no contribution associated with the nonionized form of ascorbic acid.

  7. Kinetics of Fe(III)*EDTA reduction by ascorbic acid

    SciTech Connect (OSTI)

    Li, W.; Harkness, J.B.L.; Mendelsohn, M.H.

    1992-01-01

    The kinetics of the reduction of ferric chelate by ascorbic acid have been determined at a typical flue-gas scrubber-system operating temperature ([approximately]55[degrees]C). The ascorbic acid reaction has the same reduction rate expression as the reduction by bisulfite ions, namely, first order with respect to the concentrations of both Fe(III)*EDTA and monoionic species of ascorbic acid. The reaction rate isnegative first order with respect to Fe(II)*EDTA concentration. In the pH range of 6--8, reduction of the hydrolyzed form of the metal chelate compound was negligible. The rate constant for the ascorbic acid reduction reaction is almost 400 times larger than that for the bisulfite reduction reaction under the same reaction conditions. There was no contribution associated with the nonionized form of ascorbic acid.

  8. Candidate Fuels for Vehicle Fuel Cell Power Systems

    E-Print Network [OSTI]

    · Energy security · Energy use reduction · Greenhouse gas (GHG) and other emissions reductions · Other engine vehicle, HEV = hybrid (battery/ICE) electric vehicle, NG SR = natural gas steam reformer price premium · Subsidies/taxes · Supply chain (natural gas, materials) · Fuel economy · FCV and fueling

  9. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    SciTech Connect (OSTI)

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  10. REDUCTIONS WITHOUT REGRET: SUMMARY

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-16

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  11. Microsoft PowerPoint - FNC NEPA GHG Climate Slides -- 16Jan2015 updated 23Jan2015.pptx [Read-Only]

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane HydrateUpdate EMDictionary 1.0.Koda

  12. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  13. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  14. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  15. Picturing wavepacket reduction

    E-Print Network [OSTI]

    Arthur Jabs

    2015-03-18

    A coherent picture of the wavepacket-reduction process is proposed which is formulated in the framework of a deterministic and realist interpretation where the concepts of knowledge or information and of point particles do not appear. It is shown how the picture accounts for the experiments on interaction-free and delayed-choice measurements and those on interference with partial absorption.

  16. NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11

    E-Print Network [OSTI]

    McGaughey, Alan

    NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse Gas For Transportation or Electricity? Climate Change Implications Aranya Venkatesh, Paulina Jaramillo

  17. Progress Update: Creating Mobile Emission Reduction Credits

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists

  18. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  19. Forest Fuels ReductionForest Fuels Reduction Department of

    E-Print Network [OSTI]

    Bolding, M. Chad

    are the soil management and watershed implications from alternative fuels reduction approaches? 3. How do are the productivity and cost rates for alternative choices of equipment for mechanical fuels reduction; what of mechanical fuel reduction alternatives? What are the economic differences related to stand type

  20. Molten carbonate fuel cell reduction of nickel deposits

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  1. A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

    2013-08-01

    Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

  2. Electrical Cost Reduction Via Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01

    REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used in industry. However... reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per...

  3. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  4. Gas Mask 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  7. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  8. Thermo-Wetting and Friction Reduction Characterization of

    E-Print Network [OSTI]

    Hidrovo, Carlos H.

    such surfaces include frost prevention on aircraft flight surfaces to self-cleaning features on solar energy Microtextured superhydrophobic surfaces have shown potential in friction reduction applications and could the Cassie state even under elevated pressure drops by increasing the temperature in the gas layer

  9. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

  10. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01

    permits and low carbon energy trading equilibria are bothx = 0 is equivalent to trading energy, then it follows thatthe LCFS by trading carbon, energy, or weighted emissions

  11. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    permits and low carbon energy trading equilibria are bothx = 0 is equivalent to trading energy, then it follows thatthe LCFS by trading carbon, energy, or weighted emissions

  12. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    production. The second best energy-based LCFS Propositions 1This section analyzes the best energy-based LCFS a regulator2 damages for the second-best energy-based LCFS. Tol (2005),

  13. Reduction in Fabrication Costs of Gas Diffusion Layers

    Broader source: Energy.gov (indexed) [DOE]

    throughout oven to maintain consistent heat treatment profile. With high temperature optics and fiber optic cable can accurately read temperatures above 250C without added...

  14. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01

    power, and asymmetric ?rms are discussed in the section on trading.market power in the two industries for future work. Tradingpower. In Section 4, we discuss meeting the LCFS by trading

  15. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    power, and asymmetric ?rms are discussed in the section on trading.market power in the two industries for future work. Tradingpower. In Section 4, we discuss meeting the LCFS by trading

  16. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization

    Broader source: Energy.gov [DOE]

    A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons through independent testing programs.

  17. DOE Technical Assistance on Greenhouse Gas Reduction Strategies...

    Office of Environmental Management (EM)

    For information on the U.S. Environmental Protection Agency's (EPA) proposed carbon pollution standards, including the Clean Power Plan, visit EPA.gov. The proposed standards...

  18. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER...

    Office of Scientific and Technical Information (OSTI)

    (ORNL); National Transportation Research Center Sponsoring Org: EE USDOE - Office of Energy Efficiency and Renewable Energy (EE) Country of Publication: United States Language:...

  19. Nitrogen oxides reduction by staged combustion of LCV gas 

    E-Print Network [OSTI]

    Cabrera Sixto, Jose Manuel

    1990-01-01

    ); and the bottom (figure 4). The purpose of this design was to provide flexsMity to modify the CC. Figure 5 shows a sectional view of the cydone combustor designed. The dimensions in this drawing were calculated based on a CGT feeding rate in the gasifier... TABLES OF THE STATISTICAL ANALYSES Primary Equivalence Ratio Overall Equivalence Ratio Delay Time between Stages Inlet Reynolds Number Combustion Temperature F/A Ratio in Gasifier D COMPUTER PROGRAM USED IN THE CAMAC SYSTEM E EXAMPLE . 162 163...

  20. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    relevant market power is at the re?ning and retail levels,growth, re?ning and retail. While market power does not

  1. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01

    relevant market power is at the re?ning and retail levels,growth, re?ning and retail. While market power does not

  2. Diesel emission reduction using internal exhaust gas recirculation

    DOE Patents [OSTI]

    He, Xin (Denver, CO); Durrett, Russell P. (Bloomfield Hills, MI)

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  3. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    Reports and Publications (EIA)

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  4. Reduction in Fabrication Costs of Gas Diffusion Layers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation mn002morgan2011o.pdf More Documents & Publications DOE's...

  5. Reduction in Fabrication Costs of Gas Diffusion Layers

    SciTech Connect (OSTI)

    Jason Morgan; Donald Connors; Michael Hickner

    2012-07-10

    Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

  6. South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc JumpPennsylvania:Sound Beach, New|from

  7. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO is developed by EMDPowerMexican

  8. Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono, MexicoBanhamOil Home There areOpen

  9. PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los ANot sure howSummaryPrinceton

  10. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent: FreeformArticle) |

  11. Greenhouse Gas Reductions: SF6 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreenGreen is

  12. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  13. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  14. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  15. The Effect of Acid Additives on Carbonate Rock Wettability and Spent Acid Recovery in Low Permeability Gas Carbonates 

    E-Print Network [OSTI]

    Saneifar, Mehrnoosh

    2012-10-19

    Spent acid retention in the near-wellbore region causes reduction of relative permeability to gas and eventually curtailed gas production. In low-permeability gas carbonate reservoirs, capillary forces are the key parameters that affect the trapping...

  16. An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

  17. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  18. PAPERWORK REDUCTION ACT SUBMISSION

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926Families | Department ofbookletThe AssetTopics. OMB

  19. Global Threat Reduction Initiative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoandMinimaland(GTO)GetSafeguards |Global

  20. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J. (Energy Systems)

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  1. California’s K-12 Educational Infrastructure Investments: Leveraging the State’s Role for Quality School Facilities in Sustainable Communities

    E-Print Network [OSTI]

    Vincent, Jeffrey M.

    2012-01-01

    gas  (GHG)  emissions,  particularly  from  vehicle  miles  decrease  in  vehicle  travel  and   GHG  emissions  from  vehicle  miles  traveled  and   greenhouse  gas  emissions  

  2. Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction Marcellus Shale Production

    E-Print Network [OSTI]

    Demirel, Melik C.

    include the following: Supercritical fluid fractures rock, Subterranean heat exchanger, PressurizedPENNSTATE Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction ­ Marcellus Shale natural gas wells have a wellhead pressure that exceeds the material limits of typical above

  3. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years.

  4. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  5. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  6. SUSTAINABILITY 2013/14 FAST FACTS

    E-Print Network [OSTI]

    REBATES AND GHG EMISSIONS REDUCTION INCENTIVES 57% OF CAMPUS DISTRICT ENERGY SYSTEM HEAT SOURCED FROM

  7. Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH Devin T and characterization of a microfluidic reactor for the electrochemical reduction of carbon dioxide. The use of gas submitted January 27, 2010; revised manuscript received April 7, 2010. Published June 29, 2010. Carbon

  8. Theoretical Calculation of Reduction Potentials Junming Ho, Michelle L. Coote1

    E-Print Network [OSTI]

    Truhlar, Donald G

    of Reduction Potentials A. Gas phase free energies of reaction B. Free energies of solvation C. Standard states or free energy changes for electrochemical half-reactions. In practice, the high reactivity of many reduction potential difficult. For this reason, computational chemistry offers a valuable alternative

  9. U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World

    E-Print Network [OSTI]

    McCarl, Bruce A.

    U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective the IMPAC project. #12;Abstract International agreements are likely to stimulate greenhouse gas mitigation Words Agricultural Sinks, Emissions Trading, Greenhouse Gas Emission Reductions, Kyoto Protocol #12

  10. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  11. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  12. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    Open Energy Info (EERE)

    electricity, stationary combustion, mobile combustion, refrigeration and air conditioning equipment, and several industrial sectors. References 1.0 1.1 "GHG...

  13. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    GHG emissions for conventional gasoline, conventional diesel fuel, and kerosene-based jet fuel. The model served as the primary calculation tool for the results reported in the...

  14. Gas mixtures for gas-filled radiation detectors

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Maxey, David V. (Knoxville, TN); Carter, James G. (Knoxville, TN)

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  15. Improved gas mixtures for gas-filled radiation detectors

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  16. Gas mixtures for gas-filled particle detectors

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Maxey, David V. (Knoxville, TN); Carter, James G. (Oak Ridge, TN)

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  17. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect (OSTI)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.

  18. 5, 755794, 2005 Reduction methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 755­794, 2005 Reduction methods for chemical schemes S. Szopa et al. Title Page Abstract Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations S. Szopa 1

  19. Environmental Sustainability Paper Usage / Reduction

    E-Print Network [OSTI]

    ;carbon footprint and develop carbon reduction projects around IT and staff/student behaviour change is supported by the Environmental Sustainability Manager and is seen as a key link to the University's Carbon Management Programme (e.g. to produce a forecast of carbon reductions as required by the Carbon Trust

  20. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  1. Biomass Cookstoves Technical Meeting. Summary Report

    SciTech Connect (OSTI)

    none,

    2011-05-01

    In regions where biomass is a traditional fuel for cooking, improved cookstoves can enhance indoor air quality, personal health, livelihoods, and the environment—while substantially reducing greenhouse gas (GHG) emissions. Although ongoing efforts have successfully disseminated improved stoves that achieve many of these benefits, substantially greater emissions reductions are needed to comply with international guidelines for indoor air quality and to limit GHG emissions like black carbon.

  2. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    SciTech Connect (OSTI)

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft/sup 2/ of column cross section were tested and found acceptable.

  3. Alumina catalysts for reduction of NOx from methanol fueled diesel engine

    SciTech Connect (OSTI)

    Yamamoto, Toshiro; Noda, Akira; Sakamoto, Takashi; Sato, Yoshio [Ministry of Transport of Japan, Kumamoto (Japan)

    1996-09-01

    NOx selective reducing catalysts are expected to be used for lean-burn gasoline engines and diesel engines as an effective NOx reduction measure. The authors are interested in the combination of methanol, as a reducing agent, and alumina catalyst, and have considered the NOx reduction method using effectively much unburned methanol. In this report, in order to investigate the effect of NOx reduction by the alumina catalyst, the experiment was carried out by feeding the actual exhaust gas from the methanol engine into the alumina catalyst. As a result, it was confirmed that, without addition of any other reducing agents into the exhaust gas, the alumina catalyst has activity to reduce NOx.

  4. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    SciTech Connect (OSTI)

    Committee on Climate Change Science and Technology Integration

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

  5. DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS

    SciTech Connect (OSTI)

    Barbier, Charlotte N [ORNL; D'Urso, Brian R [ORNL; Jenner, Elliot [University of Pittsburgh

    2012-01-01

    Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.

  6. CO2 reduction for Urban Goods Movement: is it possible to reach the factor 4 by 2050? GONZALEZ-FELIU, Jesus; AMBROSINI, Christian; ROUTHIER, Jean-Louis

    E-Print Network [OSTI]

    Boyer, Edmond

    al., 2006). The green house gas reduction of 75%, i.e., the target imposed in France, takes the name. Keywords: urban goods movement, greenhouse gas, sustainability, factor 4. INTRODUCTION The main conclusion their greenhouse gas emissions by 2050. In these countries, the industrial greenhouse gas emissions are stabilised

  7. Economics of Steam Pressure Reduction 

    E-Print Network [OSTI]

    Sylva, D. M.

    1985-01-01

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  8. The role of plant physiology and dynamic vegetation feedbacks in the climate response to low GHG concentrations typical of late stages of previous interglacials

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    in the modern control simulation. The plant physiology response alone is a small component of the total cooling globally (0.16 K), but it contributes an additional cooling of about half that caused by changes-use efficiency from an atmospheric CO2 concentration enhancement (reduction), whereas the transpiration through

  9. Steam Pressure Reduction, Opportunities, and Issues

    SciTech Connect (OSTI)

    Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

    2006-01-01

    Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

  10. Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas emission

    E-Print Network [OSTI]

    Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas greenhouse gas emissions reductions. Without a major change in direction towards more compulsory policies, it seems unlikely that Canada will achieve significant domestic greenhouse gas reductions over and beyond

  11. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  12. Optimization for Design and Operation of Natural Gas Transmission Networks 

    E-Print Network [OSTI]

    Dilaveroglu, Sebnem 1986-

    2012-08-22

    This study addresses the problem of designing a new natural gas transmission network or expanding an existing network while minimizing the total investment and operating costs. A substantial reduction in costs can be ...

  13. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  14. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  15. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  16. NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption

    SciTech Connect (OSTI)

    Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T.

    2005-08-01

    In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

  17. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  18. Pollution Prevention - Environmental Impact Reduction Checklists...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers The...

  19. Engineering MulticomponentNanocatalystsfor Oxygen Reduction ...

    Office of Scientific and Technical Information (OSTI)

    Engineering MulticomponentNanocatalystsfor Oxygen Reduction Citation Details In-Document Search Title: Engineering MulticomponentNanocatalystsfor Oxygen Reduction Authors: Guo,...

  20. Steam Pressure Reduction: Opportunities and Issues | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Pressure Reduction: Opportunities and Issues Steam Pressure Reduction: Opportunities and Issues This brief details industrial steam generation systems best practices and...

  1. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  2. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  3. Gas Drill 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    .C. Wang, B.T. Lovell, Program, Summary Report TE4258-5-84, J. McCrank, "Topping of a Combined Gas DOE/ET/11292, Oct. 1984. and Steam Turbine Powerplant using a TAM Combustor," Thermo Electron [4J Final Report: "Thermionic Energy Report No. 4258... for each Btu fired in the burners has been cal culated with the process gas temperature as a variable. It was shown [2 ] that the maximum thermionic power produced is 18 kW per million Btu fired per hour. All com bustors are similar but progressively...

  4. Gas sensor with attenuated drift characteristic

    DOE Patents [OSTI]

    Chen, Ing-Shin (Danbury, CT) [Danbury, CT; Chen, Philip S. H. (Bethel, CT) [Bethel, CT; Neuner, Jeffrey W. (Bethel, CT) [Bethel, CT; Welch, James (Fairfield, CT) [Fairfield, CT; Hendrix, Bryan (Danbury, CT) [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  5. Documents de Travail du Centre d'Economie de la Sorbonne

    E-Print Network [OSTI]

    Boyer, Edmond

    green- house gas emissions in the period 2008 - 2012 by 8 percent with respect to the 1990 year levels reductions (ERs) from a project which reduces green- house gases emissions compared with what would have to reduce their greenhouse gas (GHG) emissions either voluntarily, or, increasingly, because of current

  6. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  7. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  8. Technical Report NREL/TP-6A2-48258

    E-Print Network [OSTI]

    Emissions Trading Scheme (European Union) EU European Union GHG greenhouse gas ITC investment tax credit MWh

  9. MIT Joint Program on the Science and Policy of Global Change

    E-Print Network [OSTI]

    regulation and have gained attention recently within the context of greenhouse gas (GHG) emissions trading

  10. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more »i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  11. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  12. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    3 (Table 6 and Figure 4), and LPG savings 13 million tonnes.electricity and 28 billion m 3 LPG, with a CO2 reduction ofGas WH* (billion m 3 ) LPG WH (million tonnes) Electric

  13. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  14. Emissions Reduction Impact of Renewables 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs... of NOx/MWh Unit: lbs of NOx/MWh p. 26 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 OSD eGrid for NOx Emissions Unit: Tons of NOx/OSD p. 27 Energy Systems Laboratory ? 2012 p. 28 Energy Systems Laboratory ? 2012 p...

  15. 2008 world direct reduction statistics

    SciTech Connect (OSTI)

    NONE

    2009-07-01

    This supplement discusses total direct reduced iron (DRI) production for 2007 and 2008 by process. Total 2008 production by MIDREX(reg sign) direct reduction process plants was over 39.8 million tons. The total of all coal-based processes was 17.6 million tons. Statistics for world DRI production are also given by region for 2007 and 2008 and by year (1970-2009). Capacity utilization for 2008 by process is given. World DRI production by region and by process is given for 1998-2008 and world DRI shipments are given from the 1970s to 2008. A list of world direct reduction plants is included.

  16. Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Emission Mitigation Heng-Chi Lee Assistant Professor Institute of Applied Economics National Taiwan Ocean greenhouse gas emissions. Reduction efforts may involve the agricultural sector through options emission reductions. As a consequence, emission reduction efforts in implementing countries may be offset

  17. Water Use Reduction Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Case Studies Water Use Reduction Case Studies These case studies offer examples of water use reduction projects implemented...

  18. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    accounting process; evaluate the cost-effectiveness of urban forestry programs with CO2 reduction measures carbon dioxide (CO2 ) reduction. The calculation of CO2 reduction that can be made with the use climate. With these Guidelines, they can: report current and future CO2 reductions through a standardized

  19. Evaluating metalorganic frameworks for natural gas storage

    E-Print Network [OSTI]

    suited for light-duty passenger vehicles. For instance, compressed natural gas (CNG) requires expensive and cargo space. Even with compression to 250 bar, the energy density of CNG (near 9 MJ LÀ1 ) is only 26% that of gasoline,2a leading to a signicant reduction in the driving range of a vehicle. Moreover, CNG refueling

  20. Final Technical Report HFC Concrete: A Low-�������­���¹�������Energy, Carbon-�������­Dioxide-�������­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

  1. Algorithm FIRE -- Feynman Integral REduction

    E-Print Network [OSTI]

    A. V. Smirnov

    2008-08-02

    The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.

  2. Background reduction in cryogenic detectors

    SciTech Connect (OSTI)

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  3. tion Program on SIDS Reduction

    E-Print Network [OSTI]

    Rau, Don C.

    Continu R ing Ed i u s ca k tion Program on SIDS Reduction CURRICULUM FOR NURSES U.S. DEPARTMENT of Pediatrics, First Candle/SIDS Alliance, and the Association of SIDS and Infant Mortality Programs. FIRST and is conducting live training sessions for this program at nursing conferences across the country. The mission

  4. Multi-component Zirconia-Titania Mixed Oxides: Catalytic Materials with Unprecedented Performance in the Selective Catalytic Reduction of NOx

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the Selective Catalytic Reduction of NOx with NH3 after harsh hydrothermal ageing. Nathalie MARCOTTE1#, Bernard catalytic reduction. 1. Introduction. The abatement of nitrogen oxides (NOx) and particulate matter (PM% H2O, ~ 1050 K) is a prerequisite for deNOx catalysts of tomorrow in Diesel exhaust gas treatment

  5. Reduction in Unit Steam Production 

    E-Print Network [OSTI]

    Gombos, R.

    2004-01-01

    In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

  6. Refueling stations for natural gas vehicles

    SciTech Connect (OSTI)

    Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

    1991-01-01

    The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

  7. Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition Office of

  8. Advances in potassium catalyzed NOx reduction by carbon materials: An overview

    SciTech Connect (OSTI)

    Bueno-Lopez, A.; Garcia-Garcia, A.; Illan-Gomez, M.J.; Linares-Solano, A.; de Lecea, C.S.M. [University of Alicante, Alicante (Spain). Dept. of Inorganic Chemistry

    2007-06-15

    The research work conducted in our group concerning the study of the potassium-catalyzed NOx reduction by carbon materials is presented. The importance of the different variables affecting the NOx-carbon reactions is discussed, e.g. carbon porosity, coal rank, potassium loading, influence of the binder used, and effect of the gas composition. The catalyst loading is the main feature affecting the selectivity for NOx reduction against O{sub 2} combustion. The NOx reduction without important combustion in O{sub 2} occurs between 350 and 475{sup o}C in the presence of the catalyst. The presence of H{sub 2}O in the gas mixture enhances NOx reduction at low carbon conversions, but as the reaction proceeds, it decreases as the selectivity does. The presence of CO{sub 2} diminishes the activity and selectivity of the catalyst. SO{sub 2} completely inhibits the catalytic activity of potassium due to sulfate formation.

  9. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect (OSTI)

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  10. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  11. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  12. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  13. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  14. Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb MarNGPL Production,Energy Office

  15. 1 2014 Society of Chemical Industry and John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. 4:127 (2014); DOI: 10.1002/ghg Received August 14, 2013; revised January 9, 2014; accepted January 10, 2014

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    2014-01-01

    Virginia University, Morganstown, WV, USA Abstract: Capturing carbon dioxide (CO2) from large point sources on Climate Change (IPCC) defines carbon capture and storage (CCS) as `a process consisting of the separation Modeling pressure and saturation distribution in a CO2 storage project using a Surrogate Reservoir Model

  16. Reprintedfrom GreenhouseGasControl Technologies.B. Eliasson,P. Riemer,andA. Wokaun,eds.,Pergamon,Amsterdam,1999. Proceedingsofthe~ International ConferenceonGHG Control Technologies.mterlaken,Switzerland,30Aug.-2 Sept.1998

    E-Print Network [OSTI]

    for transportation and stationary combined heat and power (CHP) applications are creating renewed interest

  17. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Li, Mo

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  18. Use of ion conductors in the pyrochemical reduction of oxides

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1994-02-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

  19. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  20. Opportunities for Achieving Significant Energy Reduction in Existing University Buildings

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    Management Karen Zaharee, Analyst Mike Penn, OEHS Colleen McGinty, Director Construction Shaun Finn, LEED Energy Supply 106 kBtu Energy Expenses/GHG #12;BU Energy Use Index: kbtu/ft2, by building type 72 106 72. Zhong & A. Ly) FY2007 Net Area Energy Cost CRC 9.3 M ft2 79% BUMC (1) 1.2 M ft2 21% Total 10.5 M ft2 100

  1. Carbon dioxide reduction to alcohols using perovskite-type electrocatalysts

    SciTech Connect (OSTI)

    Schwartz, M.; Cook, R.L.; Kehoe, V.M.; MacDuff, R.C.; Patel, J.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1993-03-01

    Electrochemical reduction of CO[sub 2] under ambient conditions to methanol, ethanol, and n-propanol is reported at perovskite-type A[sub 1.8]A[prime][sub 0.2]CuO[sub 4] (A = La, Pr, and Gd; A[prime] = Sr and Th) electrocatalysts when incorporated into gas diffusion electrodes. In the absence of copper at the perovskite B lattice site, no activity was found. This investigation resulted in the identification of electrochemical conditions whereby perovskite-type electrocatalysts could achieve cumulative Faradaic efficiencies for CO[sub 2] reduction to methanol, ethanol, and n-propanol up to [congruent] 40% at current densities of 180 mA/cm[sup 2].

  2. EPA Source Reduction Assistance Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.

  3. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

  4. Active skin for turbulent drag reduction 

    E-Print Network [OSTI]

    Mani, Raghavendran

    2002-01-01

    capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or "smart" skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational...

  5. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  6. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

    SciTech Connect (OSTI)

    Terris T. Yang; Hsiaotao T. Bi [University of British Columbia, Vancouver, BC (Canada). Department of Chemical & Biological Engineering

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NOx molar ratio, flue gas oxygen concentration, and gas velocity on NOx conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NOx conversion decreased with an increasing flue gas flow velocity in the annulus U{sub A} but increased with an increasing reductant gas flow velocity in the draft tube U{sub D}. The NOx adsorption ratio decreased with increasing U{sub A}. In most cases, NOx conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O{sub 2} in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O{sub 2} in the flue gas using Fe/ZSM-5 as the deNOx catalyst. 22 refs., 10 figs.

  7. SALARY REDUCTION AGREEMENT ______ Original Agreement ______ Amended Agreement

    E-Print Network [OSTI]

    Fernandez, Eduardo

    SALARY REDUCTION AGREEMENT ______ Original Agreement ______ Amended Agreement By this agreement that it will not apply to salary subsequently earned by giving at least thirty days written notice of the date(ies), by completing an amended Salary Reduction Agreement. The total of the salary reduction

  8. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  9. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    Extending the EU Emissions Trading Scheme to Aviation.Air Transport Emissions Trading Scheme Workshop, UKaviation in its GHG emission trading system (i.e. , by

  10. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Life cycle assessments (LCA) typically include an analysisyears required to output the LCA determined energy demand ofdetermined through LCA. GHG Saved are the emissions

  11. Risk Reduction with a Fuzzy Expert Exploration Tool

    SciTech Connect (OSTI)

    Weiss, William W.; Broadhead, Ron; Mundorf, William R.

    2003-03-06

    A state-of-the-art exploration ''expert'' tool, relying on a computerized database and computer maps generated by neural networks, was developed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk can be reduced with the use of a properly developed and validated ''Fuzzy Expert Exploration (FEE) Tool.'' This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs.

  12. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing0-19Rulison -Reduction Pilot

  13. Reduction of Water Use in Wet FGD Systems

    SciTech Connect (OSTI)

    David Rencher

    2008-06-30

    Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assess the resulting impact on APC systems. An analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs were going to be conducted. The tests were intended to determine the impact of operation of cooling flue gas temperatures on FGD water consumption, ESP particulate removal, SO{sub 3} removal, and Hg removal, and to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger. Testing was going to be conducted on Columbian coal (with properties similar to low-sulfur Eastern bituminous coal) and SO{sub 3} will be spiked onto the flue gas to simulate operation with higher SO{sub 3} concentrations resulting from firing a higher sulfur coal, or operating with a selective catalytic reduction (SCR) unit. The project was also going to include associate planning, laboratory analytical support, reporting, and management activities. The URS project team finalized a conceptual alternative approach to demonstrate, via an engineering study, the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption. This idea was presented in summary format to NETL for consideration. NETL determined that this alternative approach deviated from the original project objectives, and that it would be in the best interest of all parties involved to cancel the project.

  14. NOx Reduction through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R.; Thompson, R.; Staedter, M.

    2007-01-01

    . Moreover, possible changes in fuel type (in dual fire applications), the introduction of Flue Gas Recirculation and system characteristics such as burner properties introduce further nonlinearities to the air/fuel ratio. Since these system... reactions. Additional tuning parameters include separate behavior management for different fuels in dual fuel applications, incorporation of multiple fans, and control of any dampers that might remain in the system. Human Machine Interface...

  15. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  16. A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty

    E-Print Network [OSTI]

    Gevers, Michel

    A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty model reduction with controller reduction for the same PWR system. We show that closed-loop techniques to the design of a low-order con- troller for a realistic model of order 42 of a Pressurized Water Reactor (PWR

  17. Fuel switching in the electricity sector under the EU ETS: Review and prospective

    SciTech Connect (OSTI)

    Delarue, E.; Voorspools, K.; D'haeseleer, W.

    2008-06-15

    The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS. In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.

  18. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  19. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  20. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01

    the Australian National Green- house Gas Inventory (DCCEE,fuel emissions Carbon and green house gas (GHG) accounts are

  1. DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO Core/Shell Catalysts Yangchun Lan,[a, b] Chao Gai,[c] Paul J. A. Kenis,*[b] and Jiaxing Lu*[a] 1. Introduction Carbon dioxide (CO2) is the most notorious greenhouse gas, which is released by both natural and artificial

  2. ENERGY MATERIALS & THERMOELECTRICS Reduction of nickel oxide particles by hydrogen studied

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    ENERGY MATERIALS & THERMOELECTRICS Reduction of nickel oxide particles by hydrogen studied oxide (NiO) particles is per- formed under 1.3 mbar of hydrogen gas (H2) in an envi- ronmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS

  3. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment 

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12

    -road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA... Gas ....................................................................... 24 Biodiesel ............................................................................ 24 Hydrogen...

  4. Which Idling Reduction Technologeis are the Best? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Reduction Technologeis are the Best? Which Idling Reduction Technologeis are the Best? Benefits due to idling reduction depend on fuel and capital cost of equipment, idling...

  5. Engine Friction Reduction Through Surface Finish and Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Reduction Through Surface Finish and Coatings Engine Friction Reduction Through Surface Finish and Coatings Opportunities exist for friction reduction in piston rings and...

  6. SCR Technologies for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for NOx Reduction SCR Technologies for NOx Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerhesser.pdf More...

  7. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect (OSTI)

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  8. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  9. Dimensional Reduction in Quantum Gravity

    E-Print Network [OSTI]

    G. 't Hooft

    2009-03-20

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

  10. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  11. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  12. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  13. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

  14. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  15. University at Buffalo Climate Action Plan

    E-Print Network [OSTI]

    Krovi, Venkat

    ......................................................................................................... 3-26 3.5 Cumulative Reduction in UB's Carbon Footprint.......................................... 3)....................................................................... 1-5 2 UB's Greenhouse Gas Footprint..............................................2-1 2.1 Technical-9 2.4 The Impact of Campus Growth on UB's GHG Footprint.............................. 2-11 3 Actions

  16. Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-Print Network [OSTI]

    McCarl, Bruce A.

    uncertain. When depending on land based carbon credits, entities facing limits on their carbon emissions. Introduction Reduction of atmospheric carbon dioxide (CO2), a major greenhouse gas (GHG), is central their emissions (Butt and McCarl, 2004). Various studies have explored the potential of land-based carbon

  17. SEE6999 Dissertation Dr. Wen ZHOU

    E-Print Network [OSTI]

    Po, Lai-Man

    , rainwater harvesting and wastewater reclamation) in Hong Kong 9. Zero-Food waste Town Development 10. Evaluation of Energy Recovery and GHG Reduction Potentials by Waste to Energy 11. Greenhouse gas accounting in Waste Sector in Hong Kong #12;SEE6999 Dissertation Dr. Denis YU 12. Polymer electrolyte for battery

  18. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    and private financing vehicles for alternative energy and greenhouse gas (GHG) emissions reductions for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109 Honolulu, HI 96822 Prepared by: University of Hawai`i Economic Research Organization Energy and Greenhouse

  19. The influence of biodiesel composition on compression ignition combustion and emissions

    E-Print Network [OSTI]

    Jones, Peter JS

    in anthropogenic emissions of greenhouse gases (GHG) are to be achieved4,5 . Such factors have driven legislative alternatives to fossil fuels are necessary for the reduction of anthropogenic greenhouse gas emissionsThe influence of biodiesel composition on compression ignition combustion and emissions Paul

  20. PAPERWORK REDUCTION ACT OF 1995

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926Families | Department ofbookletThe AssetTopics

  1. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  2. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  3. Future of Natural Gas

    Energy Savers [EERE]

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  4. Gas Kick Mechanistic Model 

    E-Print Network [OSTI]

    Zubairy, Raheel

    2014-04-18

    Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial ...

  5. What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions

    SciTech Connect (OSTI)

    Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

    1990-01-01

    Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

  6. Fischer-Tropsch electrochemical CO[sub 2] reduction to fuels and chemicals

    SciTech Connect (OSTI)

    Schwartz, M.; Vercauteren, M.E.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1994-11-01

    This investigation was directed toward the rational selection of cathode electrocatalysts compatible with promoting carbon dioxide reduction at practical rates to commercially significant fuels and chemicals. Work performed identified electrocatalyst sites, incorporated into gas-diffusion electrodes, demonstrating high activity toward promoting both CO[sub 2] reduction to adsorbed CO and subsequent electron transfer leading to final reaction products. The feature of electrocatalysis identified was in its apparent ability to maintain a high coverage of adsorbed CO intermediate species at reaction sites available for further reduction to products. Carbon dioxide reduction proceeded at significantly lower overpotentials and higher rates and faradaic efficiencies than previously found to this time at unit-activity copper.

  7. Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios

    SciTech Connect (OSTI)

    Keyser, David; Warner, Ethan; Curley, Christina

    2015-04-23

    Methane (CH4) is a potent greenhouse gas that is released from the natural gas supply chain into the atmosphere as a result of fugitive emissions1 and venting2 . We assess five potential CH4 reduction scenarios from transmission, storage, and distribution (TS&D) using published literature on the costs and the estimated quantity of CH4 reduced. We utilize cost and methane inventory data from ICF (2014) and Warner et al. (forthcoming) as well as data from Barrett and McCulloch (2014) and the American Gas Association (AGA) (2013) to estimate that the implementation of these measures could support approximately 85,000 jobs annually from 2015 to 2019 and reduce CH4 emissions from natural gas TS&D by over 40%. Based on standard input/output analysis methodology, measures are estimated to support over $8 billion in GDP annually over the same time period and allow producers to recover approximately $912 million annually in captured gas.

  8. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  10. A Power Reduction Technique Through Dynamic Runtime Algorithm For CMOS VLSI Circuits

    E-Print Network [OSTI]

    Kadry, Syed Md. Jaffrey Al-

    2012-01-01

    Standby power reductionPower Reduction in 32 bit FullAdder . . . . . . . . . . . . . . . . . . . Power Reduction

  11. Metal Artifact Reduction in Computed Tomography /

    E-Print Network [OSTI]

    Karimi, Seemeen

    2014-01-01

    Monoenergetic imaging of dual-energy CT reduces artifactsartifact reduction by dual energy computed tomography usingimage re- construction for dual energy X-ray transmission

  12. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company...

  13. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions...

  14. Dimension Reduction of Chemical Process Simulation Data

    E-Print Network [OSTI]

    Truemper, Klaus

    transportation systems and the majority of electric power plants rely directly or indirectly on the combustion: dimension reduction, subgroup discovery, lazy learner, modeling combustion 1 Introduction Virtually all

  15. National Idling Reduction Network News - December 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ssprogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub- Program)...

  16. National Idling Reduction Network News - January 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub- Program)...

  17. National Idling Reduction Network News - November 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    essprogramssblilp.htm Environmental Finance Center, University of Maryland Port of Baltimore Clean Diesel Program (including Locomotive Engine Idle Reduction Grant Sub-Program)...

  18. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  19. National Idling Reduction Network News - April 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    go to http:www.transportation.anl.govenginesidlingtools.html. The idling reduction Web pages of DOE's Alternative Fuels and Advanced Vehicles Data Center website have also...

  20. National Idling Reduction Network News - June 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2011 http:www07.grants.govsearchsearch.do? &modeVIEW&oppId101073 San Diego Air Pollution Control District (California) Goods Movement Emission Reduction Program:...