Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network [OSTI]

for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from symbols, and light trucks by large. Greenhouse Gas Emissions Intensity (kg/mi), urban driving cycleLowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross

Edwards, Paul N.

2

Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Greenhouse Gas State Greenhouse Gas (GHG) Emissions Reduction Strategy to someone by E-mail Share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Facebook Tweet about Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Twitter Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Google Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Delicious Rank Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Digg Find More places to share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on AddThis.com... More in this section... Federal

3

Voluntary Agreements for Energy Efficiency or GHG Emissions Reduction in Industry: An Assessment of Programs Around the World  

E-Print Network [OSTI]

for Energy Efficiency and GHG Emissions Reduction infor Energy Efficiency or GHG Emissions Reduction inrelated greenhouse gas (GHG) emissions have been a popular

Price, Lynn

2005-01-01T23:59:59.000Z

4

Potentials of GHG reductions from wastewater treatment for the CDM  

Science Journals Connector (OSTI)

The study aims to evaluate the potential of GHG (greenhouse gas) reductions by installing an ... break-even point of additional investment to reduce GHG is obtained by exchanging carbon price as ... that the meth...

Takaaki Furubayashi; Toshihiko Nakata

2011-07-01T23:59:59.000Z

5

Impact of GHG Emission Reduction on Power Generation Expansion Planning  

Science Journals Connector (OSTI)

In this work the impact of greenhouse gas (GHG) emission reduction on Power Generation Expansion Planning ... models, which also consider environmental constraints and GHG emission limits, is presented. After a s...

F. Careri; C. Genesi; P. Marannino; M. Montagna…

2012-01-01T23:59:59.000Z

6

STATUS OF SCOPING PLAN RECOMMENDED MEASURES The estimated 2020 greenhouse gas (GHG) emission reductions for measures described in the  

E-Print Network [OSTI]

1 STATUS OF SCOPING PLAN RECOMMENDED MEASURES The estimated 2020 greenhouse gas (GHG) emission. These regulations, which reflect ARB's progress towards reducing statewide GHG emissions, include comprehensive through the use of an updated GHG emission forecast. The updated forecast was developed using average

7

NREL: Sustainable NREL - Greenhouse Gas Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Reduction A leader in federal greenhouse gas (GHG) management, NREL has conducted GHG inventories, developed reduction goals, and reported emissions since 2000. NREL...

8

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability ................................................................................................................................. 6 1.2. GHG EMISSION SOURCES .............................................................................................................. 7 1.3. REPORTED GHG EMISSIONS

Brownstone, Rob

9

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20102011 Dalhousie Office of Sustainability. GHG INVENTORY DESIGN .............................................................................. 6 ................................................................................................................................. 6 2.2. GHG EMISSION SOURCES

Brownstone, Rob

10

Measuring and reporting Greenhouse Gas (GHG)  

E-Print Network [OSTI]

Measuring and reporting Greenhouse Gas (GHG) emissions from freight transport Quick reference guide through in measuring and reporting the GHG emissions from your transport operations. You should always use it together with the `full' transport emissions reporting guidance. The transport GHG emissions reporting

11

Methodology for Estimating Reductions of GHG Emissions from Mosaic...  

Open Energy Info (EERE)

GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation...

12

Comparison of marginal abatement cost curves for 2020 and 2030: longer perspectives for effective global GHG emission reductions  

Science Journals Connector (OSTI)

This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of ... order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 ... 2030...

Keigo Akimoto; Fuminori Sano; Takashi Homma; Kenichi Wada…

2012-07-01T23:59:59.000Z

13

Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Reporting Requirement to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Reporting Requirement

14

Voluntary GHG reduction in the US electric industry  

SciTech Connect (OSTI)

The report is a study of efforts by members of the industry to voluntarily reduce their greenhouse gas emission. Dozens of US utilities are leveraging voluntary greenhouse gas (GHG) emissions reduction programs to help develop cost-effective plans for responding to future potential regulation. Many of these utilities are taking aggressive steps to reduce their GHG emissions and positioning themselves as leaders. They are participating in voluntary programs for reasons ranging from pressure by environmental groups and investors to a desire for a stronger voice in shaping climate change policy. The report takes a comprehensive look at what is driving these voluntary efforts, what government and industry help is available to support them, and what specific activities are being undertaken to reduce GHG emissions. It explains the features of the most prominent voluntary utility programs to help companies determine which might best suit their needs. 1 app.

NONE

2005-11-15T23:59:59.000Z

15

Methodology for Estimating Reductions of GHG Emissions from Mosaic  

Open Energy Info (EERE)

Methodology for Estimating Reductions of GHG Emissions from Mosaic Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Agency/Company /Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits assessment, GHG inventory, Resource assessment Resource Type: Publications Website: wbcarbonfinance.org/docs/REDD_Mosaic_Methodology.pdf Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Screenshot References: Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation[1] Overview "This methodology is for project activities that reduce emissions of greenhouse gases (GHG) from mosaic deforestation and, where relevant and

16

Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Emissions Study to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Emissions Study By October 13, 2013, the Washington Office of Financial Management must

17

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

18

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

19

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory  

E-Print Network [OSTI]

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory Summary Queen's University completes annual GHG inventories as part of the ongoing commitment to reduce GHG emissions and address climate in 2010. This is the fourth inventory report. This inventory report accounts for GHG emissions from

Abolmaesumi, Purang

20

Federal Agency Progress Toward Greenhouse Gas Reduction Targets  

Broader source: Energy.gov [DOE]

Excel spreadsheet shows overall government and federal agency reductions in scope 1 and 2 greenhouse gas (GHG) emissions and in indirect scope 3 GHG emissions categories.

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

22

GREENHOUSE GAS (GHG) INVENTORY REPORT 20112012 Office of Sustainability September 2012  

E-Print Network [OSTI]

GREENHOUSE GAS (GHG) INVENTORY REPORT 20112012 Office of Sustainability ................................................................................................................................. 7 1.2. GHG EMISSION SOURCES .............................................................................................................. 8 1.3. REPORTED GHG EMISSIONS

Brownstone, Rob

23

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network [OSTI]

6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Status June 4, 2013 Gillian Charles A few clarifications This presentation and ½ Valmy coal plants) 2 #12;6/5/2013 2 GHG Emissions by Economic Sector in the Pacific Northwest (2010

24

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network [OSTI]

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Regional GHG Emissions ­ Outlook June 4, 2013 Steven Simmons CO2 Emission Outlook for the Pacific NW (ID MW Centralia 1 Centralia WA 1972 2020 730 MW Centralia 2 Centralia WA 1973 2025 730 MW 5 GHG Emission

25

Catalyst Paper No-Carb Strategy for GHG Reduction  

E-Print Network [OSTI]

The Catalyst Paper strategy to manage GHG exposure is a combination of energy reduction initiatives in manufacturing and the effective use of biomass and alternative fuels to produce mill steam and electricity from the powerhouse. The energy...

McClain, C.; Robinson, J.

2008-01-01T23:59:59.000Z

26

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Stationary Combustion Guidance[1] The Greenhouse Gas Protocol tool for stationary combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

27

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion AgencyCompany Organization: World Resources...

28

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources AgencyCompany Organization: World Resources...

29

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

30

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions; and over 5 weeks in August--September, the peak GHG emission period, during 2012. (Pacific Northwest

31

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network [OSTI]

6/5/2013 1 Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Pricing $70 $80 Weighted Average Expected Case 2020 Hi h GHG P i i C $20 $30 $40 $50 $60 dollarspermetricton 2020 High GHG Pricing Case 2020 Low GHG Pricing Case 2025 High GHG Pricing Case 2025 Low GHG

32

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information  

E-Print Network [OSTI]

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad The greenhouse gas (GHG) emissions resulting from the preparation of well pad consist of two parts: the carbon

Jaramillo, Paulina

33

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions (PDF 2.0 MB) Download Acrobat Reader IPIECA, as part of a joint industry task force with the American Petroleum Institute (API) and the International Association of Oil and Gas Producers (OGP), has developed, on behalf of the petroleum industry, a voluntary industry-endorsed approach for measuring and reporting GHG emissions. The petroleum industry has recognized the need for GHG accounting and reporting guidance that is focused specifically on the industry. Current approaches vary among government reporting programs. Companies also differ in how they voluntarily report their emissions data. This variability in approaches has resulted in a lack of comparability of reported GHG

34

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Refrigerant Guide[1] The Greenhouse Gas Protocol tool for refrigeration is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

35

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Electricity Heat, and Steam Purchase Guidance v1.2[1] The Greenhouse Gas Protocol tool for purchased electricity is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

36

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

37

Modeling and Measuring Greenhouse Gas Reduction from Low Carbon Airport Access Modes  

E-Print Network [OSTI]

domestic  greenhouse gas (GHG) emissions in 2003.  Within proportion of aviation system GHG emissions; due to their for aviation  system GHG reduction.  Discrete choice models 

Smirti, Megan

2008-01-01T23:59:59.000Z

38

Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia  

Science Journals Connector (OSTI)

Abstract In the light of European energy-climate package and its measures for increasing security of supply, decreasing the impact on environment and stimulating sustainability, Croatia as a new EU (European Union) member state needs to reconsider and develop new energy policy towards energy efficiency and renewable energy sources. Croatian long-term energy demand and its effect on the future national GHG (greenhouse gas) emissions are analysed in this paper. For that purpose the NeD model was constructed (National energy demand model). The model is comprised out of six modules, each representing one sector: industry, transport, households, services, agriculture and construction. The model is based on bottom up approach. The analysis has shown that energy policy measures, identified through this paper, can potentially achieve energy savings up to 157 PJ in the year 2050, which presents a 40% decrease to referent (frozen efficiency) scenario. Results obtained in this paper were also compared to the Croatian National Energy Strategy for the years 2020 and 2030. It was shown that if already implemented policies were properly taken into account the actual final energy demand for the year 2030 would be 43% lower than projected by the Croatian National Energy Strategy.

Tomislav Pukšec; Brian Vad Mathiesen; Tomislav Novosel; Neven Dui?

2014-01-01T23:59:59.000Z

39

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

40

Modeling the Relative GHG Emissions of Conventional and Shale Gas Production  

Science Journals Connector (OSTI)

Modeling the Relative GHG Emissions of Conventional and Shale Gas Production ... Recent reports show growing reserves of unconventional gas are available and that there is an appetite from policy makers, industry, and others to better understand the GHG impact of exploiting reserves such as shale gas. ... The results show which parameters have most influence on GHG emissions intensity and which are relatively unimportant. ...

Trevor Stephenson; Jose Eduardo Valle; Xavier Riera-Palou

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World  

SciTech Connect (OSTI)

Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

Price, Lynn

2005-06-01T23:59:59.000Z

42

TECHNICAL REPORTS The greenhouse gas (GHG) impact of composting a range  

E-Print Network [OSTI]

TECHNICAL REPORTS 1396 The greenhouse gas (GHG) impact of composting a range of potential by composting and GHG emissions during composting. The primary carbon credits associated with composting storage lagoons and landfills with no gas collection mechanisms. The composting process is a source of GHG

Brown, Sally

43

Greenhouse Gases (GHG) Emissions from Gas Field Water in Southern Gas Field, Sichuan Basin, China  

Science Journals Connector (OSTI)

In order to assess correctly the gases emissions from oil/gas field water and its contributions to the source of greenhouse gases (GHG) at the atmospheric temperature and pressure, ... first developed to study th...

Guojun Chen; Wei Yang; Xuan Fang; Jiaai Zhong…

2014-03-01T23:59:59.000Z

44

Evaluate Greenhouse Gas Reduction Strategies  

Broader source: Energy.gov [DOE]

For each major emission source identified in the previous step to evaluate greenhouse gas (GHG) emission profile, Federal agencies should review possible strategies for reducing GHG emissions and determine what assets may benefit from each strategy.

45

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership. Contribution of Food GHG Emissions Reductions: Moving  

E-Print Network [OSTI]

Partnership. Contribution of Food GHG Emissions Reductions: Moving UBC Beyond Climate Neutral Anahita Aghili of Food GHG Emissions Reductions: Moving UBC Beyond Climate Neutral Group 1 Anahita Aghili Venessa Allain ..........................................................9 Other University Initiatives to reduce GHG emissions .............. 9-11 Review of Previous UBC

46

Corporate Energy Management Strategies for GHG Reduction and Improved Business Performance  

E-Print Network [OSTI]

Corporate Energy Management Strategies for GHG Reduction & Improved Business Performance James E. Robinson, P.E., P.Eng., CEM, CEP Principal Project Engineer DES Global, LLC Greenville, South Carolina ABSTRACT Experience shows... level requires a lengthy project identi- fication, approval, implementation, and final per- formance evaluation cycle. Pending GHG regula- tions, energy cost, and business volatility have corpo- rations accelerating deployment this class of system...

Robinson, J. E.

47

Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Vehicles and Mobile Equipment Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:48am Addthis YOU ARE HERE: Step 3 Reducing petroleum consumption is the principal means to reduce greenhouse gas (GHG) emissions from vehicles and mobile equipment. Each agency has the flexibility to evaluate a variety of options to ensure its strategy best fits the mission and makeup of its fleets. The purpose of this evaluation is to: Identify strategies that will best encourage the reduction of petroleum use in Federal vehicles Estimate the GHG reduction potential and cost effectiveness of these strategies. Next Step After evaluating GHG reduction strategies, the next step in the GHG mitigation planning for vehicles and mobile equipment is to estimate the

48

Evaluate Greenhouse Gas Reduction Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Strategies Reduction Strategies Evaluate Greenhouse Gas Reduction Strategies October 7, 2013 - 10:16am Addthis For each major emission source identified in the previous step to evaluate greenhouse gas (GHG) emission profile, Federal agencies should review possible strategies for reducing GHG emissions and determine what assets may benefit from each strategy. This guidance describes technologies, policies, practices, and other strategies for reducing GHG emissions from each major emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. It also helps users determine what strategies are applicable to their facilities, employees, or other assets, and estimate the GHG emissions that may be avoided if they are adopted. For example, a facility manager may

49

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

50

Establish Internal Greenhouse Gas Emission Reduction Targets | Department  

Broader source: Energy.gov (indexed) [DOE]

Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets October 7, 2013 - 10:24am Addthis Question to Answer What are appropriate GHG emission reduction targets for specific agency programs and sites? Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions. As illustrated in the figure below, two sites may have equal potential to reduce GHG emissions. But a site expecting significant mission-related growth prior to the 2020 target year may have a lower reduction target

51

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies.

52

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:23am Addthis Once Federal sites have been screened for viability of different renewable energy resources to evaluate emissions profile, the next step is to establish what renewable energy resources developed at which particular sites would have the greatest impact on the agency's overall greenhouse gas (GHG) emissions goals. It is important to consider that some types of renewable energy generation could impact not only Scope 1 and 2 GHG goals, but also Scope 3 goals through avoided transmission and distribution losses. Estimate Greenhouse Gas Reduction Potential It is important to note that solar systems can have the greatest reduction

53

Evaluate Greenhouse Gas Reduction Strategies for Buildings  

Broader source: Energy.gov [DOE]

Once key building types and priority sites have been identified, a Federal agency can identify appropriate energy management measures and estimate their impact on each program's building greenhouse gas (GHG) emissions. To support this evaluation, energy managers can use the Buildings GHG Mitigation Worksheet Estimator in tandem with this guidance to estimate of GHG savings and cost.

54

GHG Considerations in Integrated  

E-Print Network [OSTI]

6/5/2013 1 GHG Considerations in Integrated Resource Planning NWPCC Greenhouse Gas and Regional Power System Symposium © 2012 Portland General Electric. All rights reserved. June 4, 2013 GHG in the IRP: OPUC Guidelines OPUC Guidelines for GHG: A four-part harmonyOPUC Guidelines for GHG: A four part

55

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country Mexico Central America References Greenhouse Emissions Baselines and Reduction Potentials for Buildings[1] Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Screenshot "This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial

56

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-Print Network [OSTI]

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

Green, Donna

57

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect (OSTI)

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

58

Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data  

Science Journals Connector (OSTI)

Abstract With the growing share of wind production, understanding its impacts on electricity price and greenhouse gas (GHG) emissions becomes increasingly relevant, especially to design better wind-supporting policies. Internal grid congestion is usually not taken into account when assessing the price impact of fluctuating wind output. Using 2006–2011 hourly data from Ontario (Canada), we establish that the impact of wind output, both on price level and marginal GHG emissions, greatly differs depending on the congestion level. Indeed, from an average of 3.3% price reduction when wind production doubles, the reduction jumps to 5.5% during uncongested hours, but is only 0.8% when congestion prevails. Similarly, avoided GHG emissions due to wind are estimated to 331.93 kilograms per megawatt-hour (kg/MWh) using all data, while for uncongested and congested hours, estimates are respectively 283.49 and 393.68 kg/MWh. These empirical estimates, being based on 2006–2011 Ontario data, cannot be generalized to other contexts. The main contribution of this paper is to underscore the importance of congestion in assessing the price and GHG impacts of wind. We also contribute by developing an approach to create clusters of data according to the congestion status and location. Finally, we compare different approaches to estimate avoided GHG emissions.

Mourad Ben Amor; Etienne Billette de Villemeur; Marie Pellat; Pierre-Olivier Pineau

2014-01-01T23:59:59.000Z

59

Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting October 7, 2013 - 2:25pm Addthis YOU ARE HERE Step 3 This section will help agencies to determine the most visible alternatives to single occupancy vehicle (SOV) commuting at the agencies major worksites establish the number of employees that may reasonably switch to non-SOV methods and estimate the resulting impact greenhouse gas (GHG) emissions at their worksites. Learn how to: Identify relevant alternatives and supporting strategies Evaluate potential adoption of alternatives Estimate the GHG emission impact Identify Employee Commuting Alternatives Alternative employee commuting approaches for Federal agency consideration include both alternative travel methods and alternative work arrangements.

60

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Projections of U. S. GHG Reductions from Nuclear Power New Capacity Based on Historic Levels of Investment  

SciTech Connect (OSTI)

Historical rates of capital investment in nuclear plant construction was used as a guide to estimate the rate of future capacity introduction. The magnitude of nuclear capacity was then used to determine the effect on greenhouse gas (GHG) emissions from electrical production in the U.S. to 2050. Total capital investment in nuclear power plant construction for every U.S. nuclear unit from 1964 to 1990 were obtained and the total investment and divided by their construction period to provide a value for possible rate of investment. The total linear rate of capital expenditure over the entire period was determined as well as that for the period of peak construction from 1973 to 1985, $11.5 billion/y and $17.9 billion/y, respectively in 2004$. These were used with a variety of capital cost estimates for nuclear construction to obtain several scenarios for nuclear capacity additions. Total nuclear generation out to 2050 was calculated assuming current plants would be constrained by 60-year operating licenses (i.e., a single 20-year life extension). The effect on nuclear generating capacity was projected and the resultant impact on GHG emissions determined assuming nuclear would directly replace coal-fired generation. It was concluded that actually reductions in emissions would not be experienced until 2038, yet growth in emissions from electrical production would be slowed up through that point. Nuclear energy, therefore cannot have a dramatic short-term effect on emissions, as likely cannot any energy producing technology due to the significant time to introduce large-scale changes. Nuclear power, however, can have a major longer term impact on emissions, particularly under more favorable cost and investment conditions.

Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

62

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

63

Evaluate Greenhouse Gas Reduction Strategies for Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Evaluate Greenhouse Gas Reduction Strategies for Buildings October 7, 2013 - 11:00am Addthis YOU ARE HERE: Step 3 Once key building types and priority sites have been identified, a Federal agency can identify appropriate energy management measures and estimate their impact on each program's building greenhouse gas (GHG) emissions. To support this evaluation, energy managers can use the Buildings GHG Mitigation Worksheet Estimator in tandem with this guidance to estimate of GHG savings and cost. Figure 1 - An image of an organizational-type flowchart. A rectangle labeled 'Program' has a line pointing to a rectangle labeled 'Building Type.' 'Building Type' has a lines pointing to rectangles labeled 'Site Ranked Overall #1,' 'Site Ranked Overall #2,' and 'Site Ranked Overall #3.'

64

South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country South Africa UN Region Southern Africa References South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings[1] South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Screenshot "This report aims to provide: a summary quantification of the influence of buildings on climate

65

Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions  

Science Journals Connector (OSTI)

Abstract Using plug-in electric vehicles (PEVs) has become an important component of greenhouse gas (GHG) emissions reduction strategy in the transportation sector. Assessing the net effect of \\{PEVs\\} on GHG emissions, however, is dependent on factors such as type and scale of electricity generation sources, adoption rate, and charging behavior. This study creates a comprehensive model that estimates the energy load and GHG emissions impacts for the years 2020 and 2030 for the city of Los Angeles. For 2020, model simulations show that the PEV charging loads will be modest with negligible effects on the overall system load profile. Contrary to previous study results, the average marginal carbon intensity is higher if PEV charging occurs during off-peak hours. These results suggest that current economic incentives to encourage off-peak charging result in greater GHG emissions. Model simulations for 2030 show that PEV charging loads increase significantly resulting in potential generation shortages. There are also significant grid operation challenges as the region?s energy grid is required to ramp up and down rapidly to meet PEV loads. For 2030, the average marginal carbon intensity for off-peak charging becomes lower than peak charging mainly due to the removal of coal from the power generation portfolio.

Jae D. Kim; Mansour Rahimi

2014-01-01T23:59:59.000Z

66

GHG Management Institute GHG MRV Curriculum | Open Energy Information  

Open Energy Info (EERE)

GHG Management Institute GHG MRV Curriculum GHG Management Institute GHG MRV Curriculum Jump to: navigation, search Tool Summary Name: GHG Management Institute GHG MRV Curriculum Agency/Company /Organization: Greenhouse Gas Management Institute (GHGMI), The Climate Registry Sector: Energy, Land Topics: GHG inventory Resource Type: Training materials Website: ghginstitute.org/2010/03/16/tcr-ghgmi-partnership/ References: GHG Management Institute GHG MRV Curriculum[1] "The training courses build on GHGMI's rigorous curriculum and e-learning capabilities and incorporate The Registry's expertise in helping companies measure and report their carbon footprints. Coursework will cover the basics of GHG accounting and reporting to The Registry as well as GHG verification for inventories, ensuring that a new generation of

67

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Potential and Cost-Effectiveness Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:58am Addthis YOU ARE HERE: Step 3 After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies. Table 1. Framework for Identifying Optimal Vehicle Acquisition Strategies Step Summary Purpose PLAN and COLLECT 1 Determine vehicle acquisition requirements Establish a structured Vehicle Allocation Matrix (VAM) to determine the numbers and types of vehicles required to accomplish your fleet's mission

68

Recalculating GHG emissions saving of palm oil biodiesel  

Science Journals Connector (OSTI)

In 2010, the Renewable Energy Directive (RED) came into force in the EU and establishes a framework for achieving legally binding greenhouse gas (GHG) emission reductions. Only sustainable biofuels can...2-emissi...

Gernot Pehnelt; Christoph Vietze

2013-04-01T23:59:59.000Z

69

Greenhouse Gas Mitigation Planning  

Broader source: Energy.gov [DOE]

The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency.

70

GBTL Workshop GHG Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf More Documents & Publications GBTL...

71

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions |  

Open Energy Info (EERE)

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Jump to: navigation, search Tool Summary Name: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions Agency/Company /Organization: World Bank Sector: Energy Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Publications, Lessons learned/best practices Website: www.p2pays.org/ref/22/21739.pdf References: Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions[1] Summary "Rigor in baselines It's important to establish the right degree of rigor in baselining. Overly lax baselines will threaten the system's credibility and usefulness, and shift rents from high quality providers to low quality providers of offsets. Overly stringent baselines will discourage valid projects and

72

Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products  

Science Journals Connector (OSTI)

Abstract Waste-to-ethanol conversion is a promising technology to provide renewable transportation fuel while mitigating feedstock risks and land use conflicts. It also has the potential to reduce environmental impacts from waste management such as greenhouse gas (GHG) emissions that contribute to climate change. This paper analyzes the life cycle GHG emissions associated with a novel process for the conversion of food processing waste into ethanol (EtOH) and the co-products of compost and animal feed. Data are based on a pilot plant co-fermenting retail food waste with a sugary industrial wastewater, using a simultaneous saccharification and fermentation (SSF) process at room temperature with a grinding pretreatment. The process produced 295 L EtOH/dry t feedstock. Lifecycle GHG emissions associated with the ethanol production process were 1458 gCO2e/L EtOH. When the impact of avoided landfill emissions from diverting food waste to use as feedstock are considered, the process results in net negative GHG emissions and approximately 500% improvement relative to corn ethanol or gasoline production. This finding illustrates how feedstock and alternative waste disposal options have important implications in life cycle GHG results for waste-to-energy pathways.

Jacqueline Ebner; Callie Babbitt; Martin Winer; Brian Hilton; Anahita Williamson

2014-01-01T23:59:59.000Z

73

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions in Freight Transportation," Paper No. 2007-AWMA-443, Proceedings, 100th  

E-Print Network [OSTI]

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions Gas (GHG) Emissions in Freight Transportation Extended Abstract # 2007-A-443-AWMA H. Christopher Frey for approximately 9% of total greenhouse gas (GHG) emissions in the United States.1-2 The individual contributions

Frey, H. Christopher

74

Advancing Development and Greenhouse Gas Reductions in Vietnams...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity for Low Emission Development Strategies EE energy efficiency FIT feed-in tariff GHG greenhouse gas GIS geographical information system GIZ Deutsche Gesellschaft fr...

75

Evaluate Greenhouse Gas Reduction Strategies for Business Travel  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions (GHG), this section provides guidance to Federal agencies on what strategies are typically available, when they are usually applicable, and best practices for supporting deployment. To reduce travel-related emissions, agencies can either conduct business using a means besides travel (i.e. travel less), or travel more efficiently by, for example, combining multiple objectives/trips into one. While these two options appear straightforward, reducing business travel emissions can be a difficult topic to approach with employees. A top-down travel management approach can have near-term benefits in terms of cost-savings and GHG reduction but may have unintended consequences when cuts are made across the board and will not likely be sustained by behavior change if budgets are later increased.

76

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect (OSTI)

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

77

Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard  

E-Print Network [OSTI]

1 ? ?) and ? respectively. GHG emissions per unit of blend1 ? ?)? i + ?? i Reduction in GHG emissions with respect toSeries Regulation of GHG emissions from transportation 

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

78

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

79

Greenhouse Gas Reductions: SF6  

SciTech Connect (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2012-01-01T23:59:59.000Z

80

Life Cycle GHG Emissions from Microalgal Biodiesel – A CA-GREET Model  

Science Journals Connector (OSTI)

Life Cycle GHG Emissions from Microalgal Biodiesel – A CA-GREET Model ... A life cycle assessment (LCA) focused on greenhouse gas (GHG) emissions from the production of microalgal biodiesel was carried out based on a detailed engineering and economic analysis. ... Based on detailed mass and energy balances, calculated GHG emissions from this algal biodiesel system are 70% lower than those of conventional diesel fuel, meeting the minimum 50% GHG reduction requirements under the EPA RFS2 and 60% for the European Union Renewable Energy Directive. ...

Ian C. Woertz; John R. Benemann; Niu Du; Stefan Unnasch; Dominick Mendola; B. Greg Mitchell; Tryg J. Lundquist

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GHG Mitigation Technology Performance Evaluations Underway at the GHG Technology Verification Center  

Science Journals Connector (OSTI)

The Greenhouse Gas (GHG) Technology Verification Center is one of 12 ... technology performance data. The Center focuses on GHG mitigation and monitoring technologies and has completed ... natural gas industry, e...

Stephen D. Piccot; David A. Kirchgessner

2000-01-01T23:59:59.000Z

82

GHG | Open Energy Information  

Open Energy Info (EERE)

GHG Jump to: navigation, search Name: GHG Place: Germany Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: GHG1 This...

83

Buildings GHG Mitigation Estimator Worksheet, Version 1 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings GHG Mitigation Estimator Worksheet, Version 1 Buildings GHG Mitigation Estimator Worksheet, Version 1 Buildings GHG Mitigation Estimator Worksheet, Version 1 Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be

84

Assess Employee Awareness of Alternative Commuting and Trip-Reduction Programs for Greenhouse Gas Profile  

Broader source: Energy.gov [DOE]

For evaluating a greenhouse gas (GHG) profile, success can be measured by employee awareness and use of commuting alternatives and trip-reduction efforts. Efforts include guaranteed ride home programs, and showers for walkers and bicyclists. Low use or awareness of an option, combined with a high willingness to use an option, such as teleworking, may suggest the need to improve communications about available alternatives.

85

Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products , Chase L.D.C.b  

E-Print Network [OSTI]

1 Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products Bessou C.1016/j.jclepro.2013.12.008 (Pre-proof version) ABSTRACT The Roundtable on Sustainable Palm Oil (RSPO) is a non-profit association promoting sustainable palm oil through a voluntary certification scheme. Two

Paris-Sud XI, Université de

86

Evaluate Greenhouse Gas Reduction Strategies for Employee Commuting  

Broader source: Energy.gov [DOE]

This section will help agencies to determine the most visible alternatives to single occupancy vehicle (SOV) commuting at the agencies major worksites establish the number of employees that may reasonably switch to non-SOV methods and estimate the resulting impact greenhouse gas (GHG) emissions at their worksites. Learn how to: Identify relevant alternatives and supporting strategies Evaluate potential adoption of alternatives Estimate the GHG emission impact

87

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect (OSTI)

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

88

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

89

The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete – A review  

Science Journals Connector (OSTI)

Abstract Global climate change is one of the most significant environmental impacts at the moment. One central issue for the building and construction industry to address global climate change is the development of credible carbon labelling schemes for building materials. Various carbon labelling schemes have been developed for concrete due to its high contribution to global greenhouse gas (GHG) emissions. However, as most carbon labelling schemes adopt cradle-to-gate as system boundary, the credibility of the eco-label information may not be satisfactory because recent studies show that the use and end-of-life phases can have a significant impact on the life cycle GHG emissions of concrete in terms of carbonation, maintenance and rehabilitation, other indirect emissions, and recycling activities. A comprehensive review on the life cycle assessment of concrete is presented to holistically examine the importance of use and end-of-life phases to the life cycle GHG quantification of concrete. The recent published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication also mandates the use of cradle-to-grave to provide publicly available eco-label information when the use and end-of-life phases of concrete can be appropriately simulated. With the support of Building Information Modelling (BIM) and other simulation technologies, the contribution of use and end-of-life phases to the life cycle GHG emissions of concrete should not be overlooked in future studies.

Peng Wu; Bo Xia; Xianbo Zhao

2014-01-01T23:59:59.000Z

90

Greenhouse Gas Mitigation Planning Data and Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools Greenhouse Gas Mitigation Planning Data and Tools October 7, 2013 - 10:27am Addthis These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for: Buildings Vehicles and mobile equipment Business travel Employee commuting. Buildings Table 1 features data and tools to help with GHG mitigation planning for buildings. Table 1. GHG Mitigation Planning Data and Tools for Buildings Data or Tool Source Description Planning Use Buildings GHG Mitigation Worksheet Estimator Federal Energy Management Program (FEMP) Estimates savings and costs from GHG reduction strategies Evaluate GHG Reduction Strategies Estimate Costs to Implement GHG Reduction Strategies

91

Project Information Form Project Title Urban Spatial Structure and GHG Emissions  

E-Print Network [OSTI]

Project Information Form Project Title Urban Spatial Structure and GHG Emissions University UC specified GHG reduction targets. This requires clear evidence that links from urban spatial structure

California at Davis, University of

92

GHG Update/CAP Progress ReportGHG Update/CAP Progress Report 2010 GHG Update2010 GHG Update  

E-Print Network [OSTI]

GHG Update/CAP Progress ReportGHG Update/CAP Progress Report May 2010 #12;2010 GHG Update2010 GHG,434 2009 levels = 398,780 6.2% #12;2010 GHG Update - University2010 GHG Update University 400,000 328 for year 2.5 more Duke Forests purchased #12;2010 GHG Update - University2010 GHG Update University

Zhou, Pei

93

Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses  

Science Journals Connector (OSTI)

Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses ... The life cycle greenhouse gas (GHG) emissions and economics of electricity generation through anaerobic digestion (AD) of household source-separated organic waste (HSSOW) are investigated within the FiT program. ... AD can potentially provide considerable GHG emission reductions (up to 1 t CO2eq/t HSSOW) at relatively low to moderate cost (-$35 to 160/t CO2eq) by displacing fossil electricity and preventing the emission of landfill gas. ...

David Sanscartier; Heather L. MacLean; Bradley Saville

2011-12-14T23:59:59.000Z

94

Greenhouse Gas Mitigation Planning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mitigation Mitigation Planning Greenhouse Gas Mitigation Planning October 7, 2013 - 10:08am Addthis The Greenhouse Gas (GHG) Mitigation Planning section provides Federal agency personnel with guidance to achieve agency GHG reduction goals in the most cost-effective way. Using a portfolio-based management approach for GHG mitigation planning, agencies will be able to prioritize strategies for GHG mitigation. Agencies can also use this guidance to set appropriate GHG reduction targets for different programs and sites within an agency. Learn more about the benefits of portfolio-based planning for GHG mitigation. Also see information about greenhouse gas mitigation planning data and tools. Step-by-Step The GHG mitigation planning process follows six key steps. Click on a step

95

European renewable energy directive: Critical analysis of important default values and methods for calculating greenhouse gas (GHG) emissions of palm oil biodiesel  

Science Journals Connector (OSTI)

The GHG calculation method provided in Annex V of ... the EU-RED was used to calculate the GHG-emissions from palm oil production systems. Moreover...

Heinz Stichnothe; Frank Schuchardt…

2014-06-01T23:59:59.000Z

96

Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Reducing petroleum consumption is the principal means to reduce greenhouse gas (GHG) emissions from vehicles and mobile equipment. Each agency has the flexibility to evaluate a variety of options to ensure its strategy best fits the mission and makeup of its fleets.

97

Summary of Fast Pyrolysis and Upgrading GHG Analyses  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ? 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

Snowden-Swan, Lesley J.; Male, Jonathan L.

2012-12-07T23:59:59.000Z

98

Danish Greenhouse Gas Reduction Scenarios for 2020  

E-Print Network [OSTI]

.4 ECONOMIC GROWTH 51 2.5 GROWTH IN ENERGY SERVICES 52 2.6 FUEL PRICES 53 2.7 CO2-PRICE 54 2.8 TECHNOLOGY DATADanish Greenhouse Gas Reduction Scenarios for 2020 and 2050 February 2008 Prepared by Ea Energy 54 2.9 ENERGY RESOURCES 55 3 DANISH GREENHOUSE GAS EMISSION 58 3.1 GREENHOUSE GAS SOURCES 58 4

99

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Broader source: Energy.gov (indexed) [DOE]

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

100

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production  

Science Journals Connector (OSTI)

Sustainability and Energy Development: Influences of Greenhouse Gas Emission Reduction Options on Water Use in Energy Production ... Water consumption for nuclear energy could be reduced, while also increasing the safety of nuclear plants, by deploying new high temperature gas reactors that potentially allow for internal operating temperatures in excess of 900 °C and combined cycle turbine designs. ... Whittaker, S.; White, D.; Law, D.; Chalatumyk, R. In IEA GHG Weyburn CO2Monitoring and Storage Project Summary Report 2000 - 2004, 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, Wilson, M.; Monea, M., Eds.; Petroleum Technology Research Centre: Vancouver, Canada, 2004. ...

D. Craig Cooper; Gerald Sehlke

2012-01-25T23:59:59.000Z

102

Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Rate Natural Gas Rate Reduction - SoCalGas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on Google Bookmark Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on Delicious Rank Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Rate Reduction - SoCalGas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Rate Reduction - SoCalGas Southern California Gas Company (SoCalGas) offers natural gas at discounted

103

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

104

GHG Management Institute curriculum | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GHG Management Institute curriculum Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GHG Management Institute curriculum Agency/Company /Organization: Greenhouse Gas Management Institute (GHGMI) Partner: Various Sector: Energy, Land, Climate Focus Area: Non-renewable Energy, Energy Efficiency, Buildings, Buildings - Commercial, Buildings - Residential, Renewable Energy, Biomass, - Landfill Gas, - Anaerobic Digestion, Solar, Wind, Forestry, Offsets and Certificates, Greenhouse Gas, Land Use Topics: Finance, Implementation, GHG inventory, Market analysis

105

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network [OSTI]

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions requirements as foundation for GHG reductions Consider a mix of direct mandatory and market mechanisms Pursue

106

Russia at GHG Market  

Science Journals Connector (OSTI)

In the first Kyoto commitment period Russia could be the major supplier for the greenhouse gases (GHG) emissions market. Potential Russian supply depends on the ability of Russia to keep GHG emissions lower than ...

Alexander Golub; Elena Strukova

2004-03-01T23:59:59.000Z

107

The Future Energy and GHG Emissions Impact of Alternative Personal  

E-Print Network [OSTI]

The Future Energy and GHG Emissions Impact of Alternative Personal Transportation Pathways in China://globalchange.mit.edu/ Printed on recycled paper #12;The Future Energy and GHG Emissions Impact of Alternative Personal uncertainty in future energy and greenhouse gas (GHG) emissions projections for China is the evolution

108

11 2011 Society of Chemical Industry and John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. 1:1120 (2011); DOI: 10.1002/ghg3 Perspective  

E-Print Network [OSTI]

:11­20 (2011); DOI: 10.1002/ghg3 Perspective Correspondence to: Quanlin Zhou, Earth Sciences Division, Lawrence Online Library (wileyonlinelibrary.com). DOI: 10.1002/ghg3.001 On scale and magnitude of pressure build:11­20 (2011); DOI: 10.1002/ghg3 storage projects, because the combined annual injection rate of these storage

Zhou, Quanlin

109

Climate VISION: Private Sector Initiatives: Minerals: GHG Work...  

Office of Scientific and Technical Information (OSTI)

four major areas of activity - Emissions Measurement and Reporting, Opportunities for GHG Inventory Protocols Reduction of GHGs, Cross-Sector Projects, and Research &...

110

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

111

Reducing GHG emissions in the United States' transportation sector  

SciTech Connect (OSTI)

Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

2011-01-01T23:59:59.000Z

112

Establish Internal Greenhouse Gas Emission Reduction Targets  

Broader source: Energy.gov [DOE]

Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions.

113

Climate VISION: Private Sector Initiatives: Minerals: GHG Inventory...  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols Read the Industrial Minerals Association - North America (IMA-NA) Borates and Soda Ash Sections Greenhouse Gas Inventory Protocol (PDF 75 KB) Download...

114

Spatial GHG inventory at the regional level: accounting for uncertainty  

Science Journals Connector (OSTI)

Methodology and geo-information technology for spatial analysis of processes of greenhouse gas (GHG) emissions from mobile and stationary sources of...

R. Bun; Kh. Hamal; M. Gusti; A. Bun

2010-11-01T23:59:59.000Z

115

Spatial GHG inventory at the regional level: accounting for uncertainty  

Science Journals Connector (OSTI)

Methodology and geo-information technology for spatial analysis of processes of greenhouse gas (GHG) emissions from mobile and stationary sources of...

R. Bun; Kh. Hamal; M. Gusti; A. Bun

2011-01-01T23:59:59.000Z

116

Evaluation of Freight Truck Anti-Idling Strategies for Reduction of Greenhouse Gas Emissions.  

E-Print Network [OSTI]

??It is important to identify ways to reduce greenhouse gas (GHG) emissions in order to combat climate change. Freight trucks emit 5.5 percent of U.S.… (more)

Kuo, Po-Yao

2008-01-01T23:59:59.000Z

117

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Agency/Company /Organization Hiroshima University Focus Area Transportation Topics Co-benefits assessment, GHG inventory, Pathways analysis Resource Type Publications Website http://ir.lib.hiroshima-u.ac.j Program Start 2010 Country Bangladesh UN Region South-Eastern Asia References Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies"

118

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) | Open  

Open Energy Info (EERE)

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Jump to: navigation, search Tool Summary Name: EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climateleaders/index.html Cost: Free The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop an annual GHG inventory based on the EPA Climate Leaders Greenhouse Gas Inventory Protocol. Overview The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop

119

Article published Greenhouse Gases: Science and Technology DOI: 10.1002/ghg.1395  

E-Print Network [OSTI]

Article published Greenhouse Gases: Science and Technology DOI: 10.1002/ghg.1395 National Corridors.1002/ghg.1395 #12;1 Introduction The need to reduce greenhouse gas (GHG) emissions by present energy.1, 2 Carbon dioxide (CO2) is the most worrisome GHG because of its long residence time

Paris-Sud XI, Université de

120

Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria  

Science Journals Connector (OSTI)

Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets.

Johannes Schmidt; Sylvain Leduc; Erik Dotzauer; Erwin Schmid

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The IPCC/OECD/IEA Greenhouse Gas Inventories Programme: International Methods for the Estimation, Monitoring and Verification of GHG Emission Inventories  

Science Journals Connector (OSTI)

The aims of this paper are to summarise the current status in international methods for the estimation of GHG inventories and the relevance of this work...

Dr. Bo Lim; Pierre Boileau; Yamil Bonduki

1999-01-01T23:59:59.000Z

122

National and Sectoral GHG Mitigation Potential: A Comparison Across Models  

Open Energy Info (EERE)

National and Sectoral GHG Mitigation Potential: A Comparison Across Models National and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary Name: National and Sectoral GHG Mitigation Potential: A Comparison Across Models Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: GHG inventory, Policies/deployment programs, Pathways analysis Resource Type: Software/modeling tools, Publications, Lessons learned/best practices Website: www.iea.org/papers/2009/Mitigation_potentials.pdf References: National and Sectoral GHG Mitigation Potential: A Comparison Across Models[1] Summary "This paper focuses on mitigation potential to provide a comparative assessment across key economies. GHG mitigation potential is defined here to be the level of GHG emission reductions that could be realised, relative

123

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

124

The reduction of greenhouse gas emissions using various thermal systems in a landfill site  

Science Journals Connector (OSTI)

In this paper, the Greenhouse Gas (GHG) emissions from an uncontrolled landfill site filled with Municipal Solid Waste (MSW) are compared with those from controlled sites in which collected Landfill Gases (LFG) are utilised by various technologies. These technologies include flaring, conventional electricity generation technologies such as Internal Combustion Engine (ICE) and Gas Turbine (GT) and an emerging technology, Solid Oxide Fuel Cell (SOFC). The results show that SOFC is the best option for reducing the GHG emissions among the studied technologies. In the case when SOFC is used, GHG emissions from the controlled site are reduced by 63% compared to the uncontrolled site. This case has a specific lifetime GHG emission of 2.38 tonnes CO2 .eq/MWh when only electricity is produced and 1.12 tonnes CO2.eq/MWh for a cogeneration application.

C. Ozgur Colpan; Ibrahim Dincer; Feridun Hamdullahpur

2009-01-01T23:59:59.000Z

125

Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown to readily meet the 2010 EPA requirments for NOx and PM emisisons...

126

Reduction in Fabrication Costs of Gas Diffusion Layers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Layers Reduction in Fabrication Costs of Gas Diffusion Layers 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

127

South Africa - Greenhouse Gas Emission Baselines and Reduction...  

Open Energy Info (EERE)

Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings AgencyCompany Organization...

128

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

129

U.S. HDV GHG and Fuel Efficiency Final Rule | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HDV GHG and Fuel Efficiency Final Rule U.S. HDV GHG and Fuel Efficiency Final Rule Reviews medium- and heavy-duty truck fuel efficiency and greenhouse gas emissions standards and...

130

Energy efficiency improvement and GHG abatement in the global production of primary aluminium  

Science Journals Connector (OSTI)

Primary aluminium production is a highly energy-intensive and greenhouse gas (GHG)-emitting process responsible for about 1 % of global GHG emissions. In 2009, the two most ... implementation of energy efficiency...

Katerina Kermeli; Peter-Hans ter Weer; Wina Crijns-Graus…

2014-10-01T23:59:59.000Z

131

Regional spatial inventories (cadastres) of GHG emissions in the Energy sector: Accounting for uncertainty  

Science Journals Connector (OSTI)

An improvement of methods for the inventory of greenhouse gas (GHG) emissions is necessary to ensure effective control ... do not reflect specifics of regional processes of GHG emission and absorption for large-a...

Khrystyna Boychuk; Rostyslav Bun

2014-06-01T23:59:59.000Z

132

Selected GHG Emission Supply Curves | Open Energy Information  

Open Energy Info (EERE)

Selected GHG Emission Supply Curves Selected GHG Emission Supply Curves Jump to: navigation, search Tool Summary Name: Selected GHG Emission Supply Curves Agency/Company /Organization: Northwest Power and Conservation Council Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy, Industry, Transportation, Forestry, Agriculture Topics: GHG inventory, Pathways analysis Resource Type: Dataset, Publications Website: www.nwcouncil.org/energy/grac/20090130_Supply%20Curves_NWPCC_FINAL.pdf Selected GHG Emission Supply Curves Screenshot References: Selected GHG Emission Supply Curves[1] Background "The ECL supply curve model includes data on potential emission reductions for approximately 60 separate technology options. It allows the examination of multiple scenarios involving the inclusion or exclusion of technology

133

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

134

E-Print Network 3.0 - alternative fuel reductions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zero Emissions Summary: ,000 Passengers 1.6 to 2.0 Times Better Fuel Economy 43% GHG Reductions (Reforming Natural Gas; 100... of Alternative Fuels Policy 510-891-7244,...

135

Pipeline gas pressure reduction with refrigeration generation  

SciTech Connect (OSTI)

The high pressure of pipeline gas is reduced to the low pressure of a distribution system with simultaneous generation of refrigeration by passing the gas through two successive centrifugal compressors driven by two turbo-expanders in which the compressed gas is expanded to successively lower pressures. Refrigeration is recovered from the gas as it leaves each turbo-expander. Methanol is injected into the pipeline gas before it is expanded to prevent ice formation. Aqueous methanol condensate separated from the expanded gas is distilled for the recovery and reuse of methanol.

Markbreiter, S. J.; Schorr, H. P.

1985-06-11T23:59:59.000Z

136

A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper  

Science Journals Connector (OSTI)

The aim of this work is to compare greenhouse gas (GHG) emissions from producing tissue paper from virgin...

Eskinder Demisse Gemechu; Isabela Butnar…

2013-09-01T23:59:59.000Z

137

Energy efficiency and greenhouse gas emission reduction potentials in sugar production processes in Thailand  

Science Journals Connector (OSTI)

Abstract Sugarcane is one of the most promising sources of green energy for a major sugar producing country like Thailand. Any efforts to improve energy efficiency in sugar industry would result for green energy production and more avoided GHG emissions. This paper assesses the potentials for energy saving and GHG emission reduction in sugar production in Thailand. It is found that there is a wide gap between the most efficient mills and the less efficient ones among the country’s 47 mills, with specific steam consumption ranging from 400 to 646 kg steam/ton cane. Thus significant potential exists for energy saving and GHG emission reduction in many mills, using some of the 17 commonly common technologies/measures identified. For the nine mills studied, which could have resulted in a combined saving savings of 23–32% of the total mill energy consumption, further savings of 5–14% could be achieved.

Sumate Sathitbun-anan; Bundit Fungtammasan; Mirko Barz; Boonrod Sajjakulnukit; Suthum Pathumsawad

2014-01-01T23:59:59.000Z

138

EPA wants to know your GHG emissions  

SciTech Connect (OSTI)

The Environmental Protection Agency (EPA) issued a proposal in mid-March that mandates reporting of greenhouse gas (GHG) emissions from large sources in the U.S. including electricity-generating facilities. Anyone emitting more than 25,000 metric tons per year of GHGs to submit annual reports starting in 2011.

NONE

2009-06-15T23:59:59.000Z

139

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

140

Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels  

Science Journals Connector (OSTI)

Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels ... Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. ... Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. ...

Mauro F. Chavez-Rodriguez; Silvia A. Nebra

2010-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS  

E-Print Network [OSTI]

INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS: DEVELOPING A FAMILY OF RESPONSE FUNCTIONS 1. Introduction There has been a recent increase in concern over the greenhouse gas (GHG) climate change forcing

McCarl, Bruce A.

142

2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors  

E-Print Network [OSTI]

2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors by the Department for Environment, Food and Rural Affairs #12;2008 Guidelines to Defra's GHG Conversion Factors and to update the Guidelines to Defra's Greenhouse Gas (GHG) Conversion Factors, which represent the current

143

Quantifying the impact of future land-use changes against increases in GHG concentrations  

E-Print Network [OSTI]

Quantifying the impact of future land-use changes against increases in GHG concentrations A changes relative to the increase in greenhouse gas (GHG) concentrations is assessed in time-slice simula of vegetation change to GHG concentration increase is of the order of 10% for a B2 scenario, and can reach 30

Paris-Sud XI, Université de

144

DRAFT VERSION September 6, 2009 1 1990 GHG Baseline for Building Energy Use  

E-Print Network [OSTI]

DRAFT VERSION ­ September 6, 2009 1 1990 GHG Baseline for Building Energy Use in the Oregon of 1990 building energy use and the associated greenhouse gas (GHG) emissions for Oregon University System's seven institutions. This GHG calculation or "carbon footprint" is accompanied by a sensitivity analysis

Escher, Christine

145

Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach  

Science Journals Connector (OSTI)

Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach ... Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. ... We study the effect of incomplete information on estimates of GHG emissions from oil production operations. ...

Kourosh Vafi; Adam R. Brandt

2014-08-10T23:59:59.000Z

146

Climate VISION: Private Sector Initiatives: Minerals: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information Read the Industrial Minerals Association - North America (IMA-NA) 2011 Greenhouse Gas and Energy Survey Industry Summary for the period from 2000 to 2010 (PDF 16...

147

GHG emissions | OpenEI  

Open Energy Info (EERE)

GHG emissions GHG emissions Dataset Summary Description These datasets include GHG and CO2 emissions statistics for the European Union (EU). The statistics are available from the European Commission. Source European Commission Date Released Unknown Date Updated Unknown Keywords Biofuels CO2 emissions EU GHG emissions Data application/vnd.ms-excel icon Total GHG and CO2 Emissions for EU (xls, 853.5 KiB) application/vnd.ms-excel icon GHG Emissions by Sector, all member countries (xls, 2 MiB) application/vnd.ms-excel icon GHG Emissions from Transport, all member countries (xls, 1.3 MiB) application/vnd.ms-excel icon CO2 emissions by sector, all member countries (xls, 2.1 MiB) application/vnd.ms-excel icon CO2 emissions by transport, all member countries (xls, 1.5 MiB)

148

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems  

Science Journals Connector (OSTI)

Energy, Greenhouse Gas, and Cost Reductions for Municipal Recycling Systems ... An evaluation of the energy, greenhouse gas, and costs savings associated with logistics and infrastructure improvements to a curbside recycling program is presented. ... MSW recycling has been found to be costly for most municipalities compared to landfill disposal. ...

Mikhail Chester; Elliot Martin; Nakul Sathaye

2008-02-08T23:59:59.000Z

149

Deep carbon reductions in California require electrification and integration across economic This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long mandates a return of State GHG emissions to the 1990 level by 2020, and Executive Order S-3-05 sets a goal Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING ENVIRONMENTAL RESEARCH

Kammen, Daniel M.

150

Microsoft Word - Global Natural Gas Markets_White Paper_FINAL...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

they are still seeking to reduce reliance on natural gas through increases in renewable energy. Brunei is one such 105 January 23, 2014. "EU targets 40% reduction in GHG...

151

Uncertainty of forest carbon stock changes – implications to the total uncertainty of GHG inventory of Finland  

Science Journals Connector (OSTI)

Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of ... . This paper presents an uncertainty analys...

S. Monni; M. Peltoniemi; T. Palosuo; A. Lehtonen; R. Mäkipää…

2007-04-01T23:59:59.000Z

152

Resources on Greenhouse Gas | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Greenhouse Gases Resources on Greenhouse Gas Resources on Greenhouse Gas Many helpful resources about greenhouse gases (GHG) are available. Also see Contacts. GHG Reporting and...

153

Federal Greenhouse Gas Inventories and Performance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inventories and Performance Inventories and Performance Federal Greenhouse Gas Inventories and Performance October 7, 2013 - 10:07am Addthis The Federal Energy Management Program (FEMP) provides links to progress data tables illustrating Federal agency progress in meeting the greenhouse gas (GHG) reduction targets established under Executive Order (E.O.) 13514, as well as the comprehensive greenhouse gas inventories as reported by the Federal agencies: Federal GHG Requirements Overview E.O. 13514 required Federal agencies to set individual targets for reduction of combined Scope 1 and 2 GHG emissions in FY 2020 compared to FY 2008. When all agency targets are combined, the overall target for the entire Federal Government is a 28% reduction in FY 2020 compared to FY 2008. GHG emissions from certain

154

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation |  

Broader source: Energy.gov (indexed) [DOE]

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation October 7, 2013 - 11:13am Addthis After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be considered as an option for meeting the agency's GHG reduction goals. Renewable energy can reduce emissions in all three GHG emission scopes by displacing conventional fossil fuel use. The focus of this guidance is prioritizing on-site renewable energy projects that will best support GHG reduction goals. It is intended to provide a high-level screening approach for on-site renewable energy projects to support agency- or program-level portfolio planning. General

155

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

156

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions By Patti Wieser April 25, 2011 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. In an effort to respond to President Obama's call to reduce greenhouse gas emissions by 28 percent by the year 2020, researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have identified ways to cut emissions that will allow the facility to exceed that goal - a decade early. Staff members at the laboratory, where scientists are finding ways to produce fusion energy, have trimmed the facility's greenhouse gas emissions

157

Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting  

Broader source: Energy.gov [DOE]

Proposed programs to reduce employee commute greenhouse gas (GHG) emissions should be prioritized at individual worksites and across agency worksites to help the agency understand what actions and worksites are most critical to reaching its goal. This section aims to help the employee transportation coordinators (ETCs) and telework coordinators to understand what commute reduction programs will yield the greatest "bang-for-the-buck" and what level of GHG reductions a site or program can achieve get with available resources.

158

Gas phase contributions to topochemical hydride reduction reactions  

SciTech Connect (OSTI)

Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

Kobayashi, Yoji [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Li, Zhaofei [Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Hirai, Kei [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tassel, Cédric [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302 (Japan); Loyer, François [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Institut des Sciences Chimiques de Rennes, UMR 6226 Université de Rennes 1-CNRS, équipe CSM, Bât. 10B, Campus de Beaulieu, 263, Avenue du Général Leclerc, 35042 Rennes Cedex (France); Ichikawa, Noriya [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Abe, Naoyuki [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Yamamoto, Takafumi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Shimakawa, Yuichi [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); and others

2013-11-15T23:59:59.000Z

159

GHG mitigation options database (GMOD) and analysis tool  

Science Journals Connector (OSTI)

Abstract There is a growing public consensus that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions and that it will be necessary for the global community to use low-carbon technologies in both the energy and industrial sectors (IEA, 2013). As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD). The database is a repository of data on available GHG technologies in various stages of development for several industry sectors. It can also be used to assess the performance, costs, and limitations of various mitigation control options. This paper further describes the objectives of GMOD, the data available in GMOD, and functionality of GMOD as an analysis tool. In addition, examples are provided to demonstrate GMOD's usability and capabilities. A comparison of GMOD to other existing GHG mitigation databases is also provided along with the recommended next steps for GMOD.

Gurbakhash Bhander; Nick Hutson; Jacky Rosati; Frank Princiotta; Kristine Pelt; Jim Staudt; Jeffrey Petrusa

2014-01-01T23:59:59.000Z

160

GBTL Workshop GHG Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advisory Committees Science & Innovation Clean Coal Carbon Capture and Storage Oil & Gas 9 | Natural Gas-Biomass to Liquids Workshop DOE FE Studies Add National Perspective...

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Should We Consider the CoBenefits of Agricultural GHG Levan Elbakidze, Bruce A. McCarl  

E-Print Network [OSTI]

Should We Consider the CoBenefits of Agricultural GHG Offsets Levan Elbakidze, Bruce A. Mc agricultural management strategies are utilized to offset or reduce greenhouse gas (GHG) emissions 84% of U.S. GHG emissions arise from the petroleum related energy and electrical power sectors. Under

McCarl, Bruce A.

162

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US  

E-Print Network [OSTI]

Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models of energy efficiency potential and green- house gas (GHG) abatement potential that have been highly, and that profitable energy efficiency improvements are the reason. For the US, McKinsey estimates that GHG emissions

163

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions  

Science Journals Connector (OSTI)

Implications of Near-Term Coal Power Plant Retirement for SO2 and NOX and Life Cycle GHG Emissions ... Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. ... Resulting changes in fuel use, life cycle greenhouse gas (GHG) emissions, and emissions of sulfur and nitrogen oxides are estimated. ...

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

2012-08-13T23:59:59.000Z

164

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

165

Reduction of titania by methane-hydrogen-argon gas mixture  

SciTech Connect (OSTI)

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1,373 to 1,773 K. The reduction production product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1,373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1,723 K. A further increase in temperature to 1,773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

Zhang, G.; Ostrovski, O.

2000-02-01T23:59:59.000Z

166

Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...  

Broader source: Energy.gov (indexed) [DOE]

gas (GHG) perspective? *How do those results compare with natural gas sourced from Russia and delivered to the same European and Asian markets via pipeline? Life Cycle GHG...

167

Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production  

SciTech Connect (OSTI)

Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

D. Craig Cooper; Gerald Sehlke

2012-01-01T23:59:59.000Z

168

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

169

Federal Greenhouse Gas Inventories and Performance  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides links to progress data tables illustrating Federal agency progress in meeting the greenhouse gas (GHG) reduction targets established under Executive Order (E.O.) 13514, as well as the comprehensive greenhouse gas inventories as reported by the Federal agencies.

170

A Consumption-Based GHG Inventory for the U.S. State of Oregon  

Science Journals Connector (OSTI)

A Consumption-Based GHG Inventory for the U.S. State of Oregon ... Many U.S. states conduct greenhouse gas (GHG) inventories to inform their climate change planning efforts. ... Accordingly, a consumption-based perspective opens new opportunities for many states and their local government partners to reduce GHG emissions, such as initiatives to advance lower-carbon public sector or household consumption, that are well within their sphere of influence. ...

Peter Erickson; David Allaway; Michael Lazarus; Elizabeth A. Stanton

2012-03-22T23:59:59.000Z

171

Regional GHG Mitigation Response and Leakage Effects  

E-Print Network [OSTI]

Regional GHG Mitigation Response and Leakage Effects: Scenario Analysis of U.S. Forestry of Analysis · Assess net GHG mitigation potential in forestry & ag · Use FASOM-GHG model · Mitigation results) ­ vary GHG targets ­ vary payment approach · Show regional mitigation potential across U

McCarl, Bruce A.

172

Prioritize Strategies and Set Internal Reduction Targets for Scope 3  

Broader source: Energy.gov (indexed) [DOE]

Strategies and Set Internal Reduction Targets for Scope Strategies and Set Internal Reduction Targets for Scope 3 Greenhouse Gas Emissions Prioritize Strategies and Set Internal Reduction Targets for Scope 3 Greenhouse Gas Emissions October 7, 2013 - 10:22am Addthis The final steps in the greenhouse gas (GHG) mitigation planning process for Scope 3 emissions include: Prioritizing strategies across all Scope 3 emission sources Setting internal Scope 3 reduction targets. Prioritizing All Scope 3 Strategies Once the Federal agency understands what Scope 3 reductions are feasible and at what costs, it should prioritize proposed GHG reduction activities across all Scope 3 emission sources. This prioritization will help agencies determine how to get the most out of limited resources for Scope 3 mitigation. It will also assist in developing more informed targets at the

173

Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy  

Science Journals Connector (OSTI)

Abstract Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N2O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained.

C. Buratti; M. Barbanera; F. Fantozzi

2013-01-01T23:59:59.000Z

174

Techno-economic assessment of the impact of phase change material thermal storage on the energy consumption and GHG emissions of the Canadian Housing Stock  

Science Journals Connector (OSTI)

Responsible for 17% of all energy consumption and 16% of greenhouse gas (GHG) emissions in Canada, the residential sector ... substantial opportunities for reducing both energy consumption and GHG emissions. Bein...

Sara Nikoofard; V. Ismet Ugursal; Ian Beausoleil-Morrison

2014-11-01T23:59:59.000Z

175

DMSP-IEES: A Stochastic Programming Model Based on Dual-Interval and Multi-Stage Scenarios Modeling Approaches for Energy Systems Management and GHG Emissions Control  

Science Journals Connector (OSTI)

Energy-related activities contribute a major portion of anthropogenic greenhouse gas (GHG) emissions into the atmosphere. In this ... -environment systems management, in which issues of GHG-emission mitigation ca...

G. C. Li; G. H. Huang; Z. F. Liu

2014-10-01T23:59:59.000Z

176

Prioritize Greenhouse Gas Mitigation Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies Prioritize Greenhouse Gas Mitigation Strategies October 7, 2013 - 10:20am Addthis Once a Federal agency understands what greenhouse gas (GHG) reductions are feasible and at what cost, proposed GHG reduction activities may be prioritized. While it may be useful for personnel responsible for managing GHG emissions to prioritize actions within emission categories-for example, prioritizing building emission reduction measures-prioritization should also occur across all major emission Scope 1 and 2 emission sources and all Scope 3 emission sources. Guidance on prioritizing strategies for specific emission sources includes: Buildings Vehicles and mobile equipment Business travel Employee commuting. Prioritizing actions across fleet, facility, and fugitive sources will

177

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

178

Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using Artificial Neural Network  

Science Journals Connector (OSTI)

Abstract The present study addresses the amount of input–output energy utilized in apple production in West Azarbayjan province of Iran. The environmental indices of greenhouse emissions during apple production were determined as another end of this investigation. Finally, the potential of a supervised Artificial Neural Network (ANN) approach was assessed to prognosticate the energy consumption and environmental indices of apple production in the studying location. The associated data for the production of apple were collected randomly from 100 orchardists by using a face to face questionnaire method. Energy inputs included human labor, machinery, diesel fuel, seeds, herbicide, pesticide, chemical fertilizers, manure, irrigation water and electricity. The total input and output energies of 77,064.24 MJ ha?1 and 802,695 MJ ha?1 were obtained for apple production in the study region where the value of total GHG emission was estimated at 1195.79 kg CO2eq ha?1. The results revealed that the total consumed energy input could be classified as direct energy (65.97%), and indirect energy (33.76%) or renewable energy (45.37%) and nonrenewable energy (46.97%). The modeling implementations indicated that the lowest RMSE and MAPE of 0.11 and 0.68 were obtained at 16 neurons. At this number of neurons, the best predicting model was achieved. The R2 values of 0.9879 and 0.9827 were obtained for energy input and environmental indices prediction, respectively. The promising ability of the developed ANN in this study indicates that ANN is powerful and robust tool to be served as a functional and dynamic field of studying interest in the realm of energy consumption modeling.

Hamid Taghavifar; Aref Mardani

2014-01-01T23:59:59.000Z

179

Event:GHG Protocol Latin America and Caribbean Regional Training: How to  

Open Energy Info (EERE)

Protocol Latin America and Caribbean Regional Training: How to Protocol Latin America and Caribbean Regional Training: How to Establish a National Corporate Emissions Reporting Program Jump to: navigation, search Calendar.png GHG Protocol Latin America and Caribbean Regional Training: How to Establish a National Corporate Emissions Reporting Program: all day on 2011/08/29 Aug 29 - Sept 2: Bogota, Colombia This regional workshop will provide training for government agencies, business/industry associations and key NGOs on how to establish and implement national- or regional-level corporate greenhouse gas (GHG) emissions reporting programs and trainings. The workshop will include two parts: a training of trainers of corporate GHG accounting and reporting, and a corporate GHG program design course. Members of the Brazil GHG Protocol Program, the Mexico GHG Protocol

180

Climate change : enhanced : recent reductions in China's greenhouse gas emissions.  

SciTech Connect (OSTI)

Using the most recent energy and other statistical data, we have estimated the annual trends in China's greenhouse gas emissions for the period 1990 to 2000. The authors of this Policy Forum calculate that CO2 emissions declined by 7.3% between 1996 and 2000, while CH4 emissions declined by 2.2% between 1997 and 2000. These reductions were due to a combination of energy reforms, economic restructuring, forestry policies, and economic slowdown. The effects of these emission changes on global mean temperatures are estimated and compared with the effects of concurrent changes in two aerosol species, sulfate and black carbon.

Streets, D. G.; Jiang, K.; Hu, X.; Sinton, J. E.; Zhang, X.-Q.; Xu, D.; Jacobson, M. Z.; Hansen, J. E.; Decision and Information Sciences; Energy Research Inst.; LBNL; Chinese Academy of Forestry; Stanford Univ.; NASA Goddard Inst. for Space Studies

2001-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward  

Science Journals Connector (OSTI)

Abstract There have been many efforts to improve sugarcane cultivation and conversion technologies in the ethanol industry. In this study, an economic assessment and greenhouse gas (GHG) emissions analysis are performed on ethanol produced conventionally from sugarcane sugar and on an emerging process where the sugarcane bagasse is additionally used to produce ethanol. The combined conventional plus lignocellulosic ethanol pathway is found to be less economically favorable than the conventional ethanol pathway unless a series of technical challenges associated with cost reductions in lignocellulosic ethanol production are overcome, reaching a production cost at 0.31 $/L. This is expected to be achieved in a prospective 2020 scenario. GHG emissions savings against gasoline for both the conventional ethanol and the conventional plus lignocellulosic ethanol pathways are confirmed and found to increase with technological developments projected to occur over time. However, the absolute numbers are highly sensitive to the way of claiming credits from surplus electricity co-generated in the mill. These are 86%, 110% and 150% for the conventional ethanol in the 2020 scenario when the surplus electricity is assumed to replace the average electricity, the ‘combined-sources’ based electricity and the marginal electricity, respectively. For the conventional plus lignocellulosic ethanol pathway, they are 80%, 85% and 95% respectively in the 2020 scenario. Finally, a series of sensitivity analyses found the comparison in the GHG emissions between the two production pathways is not sensitive to changes in the sugarcane yield or the emissions factor for the enzymes used in the lignocellulosic ethanol process. However, the plant size is an influential factor on both the ethanol production cost (a lowest MESP of 0.26 $/L at the scale of 4 MM tonne cane/yr) and the GHG emission factors, partially because of the important role that transport of feedstock biomass (sugarcane and trash) plays in both elements.

Lei Wang; Raul Quiceno; Catherine Price; Rick Malpas; Jeremy Woods

2014-01-01T23:59:59.000Z

182

IGES GHG Emissions Data | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Emissions Data IGES GHG Emissions Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IGES GHG Emissions Data Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset Website: www.iges.or.jp/en/cdm/report_kyoto.html References: IGES GHG Emissions Data[1] Summary "IGES GHG Emissions Data is aimed at providing comprehensive, organised information on the GHG emissions from Annex I countries to the UNFCCC in an easy-to-understand way. All information is extracted from the publicly available sources on the UNFCCC web-site and this data will be updated regularly. " References ↑ "IGES GHG Emissions Data" Retrieved from "http://en.openei.org/w/index.php?title=IGES_GHG_Emissions_Data&oldid=383109"

183

Attachment C - Summary GHG Emissions Data FINAL | Department...  

Broader source: Energy.gov (indexed) [DOE]

Attachment C - Summary GHG Emissions Data FINAL Attachment C - Summary GHG Emissions Data FINAL Attachment-C-Summary-GHG-Emissions-Data-FINAL.xlsx Description Attachment C -...

184

Energy Demand and GHG Mitigation Options  

Science Journals Connector (OSTI)

N. African countries, although not committed to reduce their GHG emissions, can take advantage of their high ... CSP potential in order to contribute to the GHG mitigation effort by providing clean energy (potent...

Leonidas Paroussos; Pantelis Capros…

2013-01-01T23:59:59.000Z

185

The contribution that reporting of greenhouse gas  

E-Print Network [OSTI]

reductions: Review of the contribution of reporting to GHG emissions reductions 13 4.2. Investor use of GHG emissions data: How are investors using GHG emissions reports? 18 4.3. CDSB: Investors, Climate Risk and Company Disclosures 31 5. Other relevant recent research 34 5.1. IEMA special report: GHG Management

186

Halving global GHG emissions by 2050 without depending on nuclear and CCS  

Science Journals Connector (OSTI)

In this paper, we assessed the technological feasibility and economic viability of the mid-term (until 2050) GHG emission reduction target required for stabilization of ... efficiency improvement in curbing the c...

Osamu Akashi; Tatsuya Hanaoka; Toshihiko Masui; Mikiko Kainuma

2014-04-01T23:59:59.000Z

187

Deep carbon reductions in California require electrification and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deep carbon reductions in California require electrification and Deep carbon reductions in California require electrification and integration across economic sectors Title Deep carbon reductions in California require electrification and integration across economic sectors Publication Type Journal Article Year of Publication 2013 Authors Wei, Max, James H. Nelson, J. Greenblatt, Ana Mileva, Josiah Johnston, Michael K. Ting, Christopher Yang, Christopher M. Jones, James E. McMahon, and Daniel M. Kammen Journal Environmental Research Letters Volume 8 Issue 1 Abstract Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.

188

Deep carbon reductions in California require electrification and integration across economic sectors  

Science Journals Connector (OSTI)

Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California.

Max Wei; James H Nelson; Jeffery B Greenblatt; Ana Mileva; Josiah Johnston; Michael Ting; Christopher Yang; Chris Jones; James E McMahon; Daniel M Kammen

2013-01-01T23:59:59.000Z

189

Energy market failure in road transport: Is there scope for ‘no regrets’ greenhouse gas reduction?  

Science Journals Connector (OSTI)

The Australian Government policy on reduction of greenhouse gas emissions announced in 1990 includes exploring the scope for immediate, low cost reductions. Such measures can be taken as including ‘no regrets’...

Barry Naughten; Bruce Bowen; Tony Beck

1993-12-01T23:59:59.000Z

190

Variability and trends of major stratospheric warmings in simulations under constant and increasing GHG concentrations  

Science Journals Connector (OSTI)

Ensemble simulations with a coupled ocean-troposphere-stratosphere model for the pre-industrial era (1860 AD), late twentieth century (1990 AD) greenhouse gas (GHG) concentrations, the SRES scenarios B1, A1B ... ...

S. Schimanke; T. Spangehl; H. Huebener; U. Cubasch

2013-04-01T23:59:59.000Z

191

Developing Energy Crops for Thermal Applications: Optimizing Fuel Quality, Energy Security and GHG Mitigation  

Science Journals Connector (OSTI)

Unprecedented opportunities for biofuel development are occurring as a result of increasing energy security concerns and the need to reduce greenhouse gas (GHG) emissions. This chapter analyzes the potential ... ...

Roger Samson; Claudia Ho Lem…

2008-01-01T23:59:59.000Z

192

Life-Cycle GHG Emissions From Conventional IC Engine Vehicles and EVs: A Comparative Assessment  

Science Journals Connector (OSTI)

In the USA, the federal fuel economy standards are set to get tougher by 35 % over the next five years. In July 2009, leaders of the European Union and G8 announced an objective to reduce greenhouse gas (GHG) emi...

Arghya Sardar; Suresh Babu Muttana

2012-12-01T23:59:59.000Z

193

The Role of Abatement Costs in GHG Permit Allocations: A Global Stabilization Scenario Analysis  

Science Journals Connector (OSTI)

Our objective is to propose permit allocation schemes that lead to a fair distribution of the net abatement cost among regions in a global greenhouse gas (GHG) stabilization scenario. We use a detailed...

Kathleen Vaillancourt; Richard Loulou; Amit Kanudia

2008-05-01T23:59:59.000Z

194

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow  

Broader source: Energy.gov [DOE]

The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

195

Spatial GHG Inventory: Analysis of Uncertainty Sources. A Case Study for Ukraine  

Science Journals Connector (OSTI)

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) defines obligations for its parties to reduce their greenhouse gas (GHG) emissions compared with those of a base ... ) has ...

R. Bun; M. Gusti; L. Kujii; O. Tokar; Y. Tsybrivskyy…

2007-09-01T23:59:59.000Z

196

RESTRUCTURING OF THE JORDANIAN UTILITY SECTOR AND ITS ASSOCIATED GHG EMISSIONS: A FUTURE PROJECTION  

Science Journals Connector (OSTI)

As a small non?oil producing Middle Eastern country of a young and growing population and rapid urbanization Jordan like many countries all over the world was and is still facing the problem of meeting the rapidly increasing demand of electricity. The main objective of this study is to review many current aspects of the Jordanian electricity sector including electricity generation electricity consumption energy related emissions and future possibilities based on time series forecasting through the term of the Clean Development Mechanism (CDM) arrangement under the Kyoto Protocol in which the Hashemite Kingdom of Jordan had signed lately which allows industrialized countries with a greenhouse gas reduction commitment to invest in projects that reduce emissions in developing countries as an alternative to more expensive emission reductions in their own countries. Several scenarios are proposed in this study based on projected electricity consumption data until year 2028. Without attempting to replace the currently existing fossil?fuel based power plant technologies in Jordan by clean ones electricity consumption and associated GHG emissions are predicted to rise by 138% by year 2028; however if new clean technologies are adopted gradually over the same period electricity consumption as well as GHG emissions will ascend at a lower rate.

Rami Hikmat Fouad; Ahmed Al?Ghandoor; Mohammad Al?Khateeb; Hamada Bata

2008-01-01T23:59:59.000Z

197

Reducing California's Greenhouse Gas Emissions through ProductLife-Cycle Optimization  

SciTech Connect (OSTI)

Product life-cycle optimization addresses the reduction ofenvironmental burdens associated with the production, use, andend-of-life stages of a product s life cycle. In this paper, we offer anevaluation of the opportunities related to product life-cycleoptimization in California for two key products: personal computers (PCs)and concrete. For each product, we present the results of an explorativecase study to identify specific opportunities for greenhouse gas (GHG)emissions reductions at each stage of the product life cycle. We thenoffer a discussion of the practical policy options that may exist forrealizing the identified GHG reduction opportunities. The case studiesdemonstrate that there may be significant GHG mitigation options as wellas a number of policy options that could lead to life-cycle GHG emissionsreductions for PCs and concrete in California.

Masanet, Eric; Price, Lynn; de la Rue du Can, Stephane; Worrell,Ernst

2005-12-30T23:59:59.000Z

198

Investigation of greenhouse gas reduction strategies by industries : an enterprise systems architecting approach  

E-Print Network [OSTI]

This thesis explores an enterprise systems architecting approach to investigate the greenhouse gas reduction strategies followed by industries, especially for automotive industry and Information Technology industry. The ...

Tanthullu Athmaram, Kumaresh Babu

2012-01-01T23:59:59.000Z

199

Guidance on measuring and reporting Greenhouse Gas  

E-Print Network [OSTI]

Guidance on measuring and reporting Greenhouse Gas (GHG) emissions from freight transport This guidance provides clear instructions on calculating the greenhouse gas (GHG) emissions from freight and report your greenhouse gas emissions', by providing more specific information and examples relating

200

Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Employee Commuting Prioritize Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:29pm Addthis YOU ARE HERE Step 5 Proposed programs to reduce employee commute greenhouse gas (GHG) emissions should be prioritized at individual worksites and across agency worksites to help the agency understand what actions and worksites are most critical to reaching its goal. This section aims to help the employee transportation coordinators (ETCs) and telework coordinators to understand what commute reduction programs will yield the greatest "bang-for-the-buck" and what level of GHG reductions a site or program can achieve get with available resources. Criteria may include: GHG emission reduction potential by the 2020 target date Cost effectiveness ($ invested per MTCO2e avoided)

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Emissions Emissions Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions October 7, 2013 - 10:12am Addthis Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. Such changes could represent either an additional significant hurdle to overcome or a significant reduction in the effort required to drive emissions down-in the absence of any direct GHG mitigation reduction strategies. This will help each organization establish its "business as usual" emission profile in 2020, the year agencies are expected to meet their Scope 1 and 2 and Scope 3 GHG emission-reduction goals.

202

Federal Greenhouse Gas Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements Requirements Federal Greenhouse Gas Requirements October 7, 2013 - 10:02am Addthis Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable

203

\\{NOx\\} reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization  

Science Journals Connector (OSTI)

Lean combustion is a standard approach used to reduce \\{NOx\\} emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further \\{NOx\\} reductions. Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in \\{NOx\\} emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.

Mathew D. Ruter; Daniel B. Olsen; Mark V. Scotto; Mark A. Perna

2012-01-01T23:59:59.000Z

204

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network [OSTI]

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On reductions in GHG, and b) use analytical tools/methods to assess the emissions reductions possible through and prioritized based on factors such as cost effectiveness, potential for emission reductions, and applicability

205

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

206

Assess Employee Awareness of Alternative Commuting and Trip-Reduction  

Broader source: Energy.gov (indexed) [DOE]

Assess Employee Awareness of Alternative Commuting and Assess Employee Awareness of Alternative Commuting and Trip-Reduction Programs for Greenhouse Gas Profile Assess Employee Awareness of Alternative Commuting and Trip-Reduction Programs for Greenhouse Gas Profile October 7, 2013 - 2:19pm Addthis YOU ARE HERE: Step 2 For evaluating a greenhouse gas (GHG) profile, success can be measured by employee awareness and use of commuting alternatives and trip-reduction efforts. Efforts include guaranteed ride home programs, and showers for walkers and bicyclists. Low use or awareness of an option, combined with a high willingness to use an option, such as teleworking, may suggest the need to improve communications about available alternatives. Next Steps For evaluating a GHG emissions profile for employee commuting, also learn

207

Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms  

E-Print Network [OSTI]

policy at the US state level to decrease GHG emissions?ABU.S. has failed to adopt GHG reduction policies at the national levelU.S. has failed to adopt GHG reduction policies at the national level

Shaheen, Susan A.; Bejamin-Chung, Jade; Allen, Denise; Howe-Steiger, Linda

2009-01-01T23:59:59.000Z

208

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

SciTech Connect (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

209

UNEP-Risoe-Economics of GHG Limitations: Country Study Series | Open Energy  

Open Energy Info (EERE)

(Redirected from UNEP-Risoe - Economics of GHG Limitations: Country Study (Redirected from UNEP-Risoe - Economics of GHG Limitations: Country Study Series) Jump to: navigation, search Name UNEP-Risoe - Economics of GHG Limitations: Country Study Series Agency/Company /Organization UNEP-Risoe Centre Sector Energy, Land Topics Policies/deployment programs, Pathways analysis, Background analysis, Resource assessment Website http://www.uneprisoe.org/Econo References Economics of Greenhouse Gas Limitations[1] Country study series: Argentina, Ecuador, Estonia, Hungary, Indonesia, Mauritius, Senegal, Vietnam Parallel country studies: Botswana, Tanzania, Zambia Regional Studies: Andean Region, Southern African Development Community (SADC) References ↑ "Economics of Greenhouse Gas Limitations" Retrieved from "http://en.openei.org/w/index.php?title=UNEP-Risoe-Economics_of_GHG_Limitations:_Country_Study_Series&oldid=377226"

210

Capacity Development for GHG inventories and MRV in Tunisia | Open Energy  

Open Energy Info (EERE)

GHG inventories and MRV in Tunisia GHG inventories and MRV in Tunisia Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS, -NAMA, Policies/deployment programs Program End 2015 Country Tunisia Northern Africa References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview Tunisia has developed NAMA approaches; however, robust systems by which to measure, report and verify (MRV) these measures are still lacking. The project supports the establishment of a comprehensive national MRV system for mitigation measures including greenhouse gas monitoring. This will be

211

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network [OSTI]

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2008 Guidelines to Defra's GHG Conversion Factors 2008 Guidelines to Defra's GHG Conversion Factors yellow = Calculation results Page 1 of 15 #12;2008 Guidelines to Defra's GHG Conversion Factors Annex 1

212

Prioritize Greenhouse Gas Mitigation Strategies for Buildings | Department  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Prioritize Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:10am Addthis YOU ARE HERE: Step 5 After evaluating the cost to implement energy-savings measures and the greenhouse gas (GHG) reduction potential for buildings, the program or site may prioritize implementation of those measures using criteria of importance to the Federal agency. The Buildings GHG Mitigation Estimator summarizes energy savings and costs by program, site, building type, and mitigation measure. This can help users at different levels of the organization understand where the largest GHG reduction potential lies, and which mitigation measures are most common across programs and sites and then plan investments accordingly. Criteria for prioritization will vary by agency but may include:

213

Greenhouse Gas Emissions of Biomethane for Transport: Uncertainties and Allocation Methods  

Science Journals Connector (OSTI)

Employing a life-cycle assessment approach, this paper studies greenhouse gas (GHG) emissions resulting from biomethane used as transportation fuel. It focuses on both GHG allocation methodologies and uncertainties regarding GHG emissions from biomethane. ...

V. Uusitalo; J. Havukainen; V. Kapustina; R. Soukka; M. Horttanainen

2014-02-17T23:59:59.000Z

214

Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning  

Science Journals Connector (OSTI)

A high-negative voltage at the cathode initiates a dark discharge resulting in a reduction of the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. An experiment indicated that nearly 44% of the carbon dioxide in exhaust gas disappears after a high-voltage application to the cathode. The energy needed for the endothermic reaction of the carbon dioxidedissociation corresponding to this concentration reduction is provided mainly by the internal energy reduction of the discharge gas which is nearly 20 times the electrical energy for electron emission.

Han S. Uhm; Chul H. Kim

2009-01-01T23:59:59.000Z

215

Evaluate Greenhouse Gas Emissions Profile for Employee Commuting  

Broader source: Energy.gov [DOE]

To fulfill annual reporting requirements under Executive Order 13514, Federal agencies must estimate the total commute miles traveled by employees using each transportation method. While these data are rolled up to the agency level for reporting purposes, effective planning for commuter greenhouse gas (GHG) emission reductions requires an understanding of employee commute behavior at the worksite level.

216

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

217

Problematic of estimating GHG emissions in Logistics Company  

Science Journals Connector (OSTI)

According to OECD GHG emission database[2], the transportation sector occupies 13.1% of global GHG emission and 23% of global energy use ... Therefore, logistics companies should absolutely struggle with GHG emis...

YeoJu WON; SeungWoo KANG; SeongIl UM…

2012-01-01T23:59:59.000Z

218

Nitrogen oxides reduction by staged combustion of LCV gas  

E-Print Network [OSTI]

to the high nitrogen content (1-2%) of the agricultural wastes, burning of the LCV gas derived from them can result in NO?emissions in excess of 2000 ppm. NO?emissions during combustion of LCV gas derived from gasification of cotton gin trash have been.... Wayne A. LePori for serving on my committee and for the advice and time he offer me. His experience on gasification and combustion of LCV gas was an invaluable source. I appreciate Dr. Mario A. Colaluca for serving on my committee and for his help...

Cabrera Sixto, Jose Manuel

2012-06-07T23:59:59.000Z

219

EPA-GHG Inventory Targeted Data Collection Strategies and Software...  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools (Redirected from US EPA GHG Inventory Targeted Data Collection Strategies and Software Tools) Jump to:...

220

UNFCCC Individual Reviews of GHG Inventories | Open Energy Information  

Open Energy Info (EERE)

Reviews of GHG Inventories Jump to: navigation, search Name UNFCCC Individual Reviews of GHG Inventories AgencyCompany Organization United Nations Framework Convention on Climate...

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Strategies for the Commercialization & Deployment of GHG Intensity...  

Broader source: Energy.gov (indexed) [DOE]

Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices Strategies for the Commercialization & Deployment of GHG Intensity-Reducing...

222

Reducing greenhouse gas emissions for climate stabilization: framing regional options  

SciTech Connect (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

2009-03-15T23:59:59.000Z

223

Tunisia-Capacity Development for GHG inventories and MRV | Open Energy  

Open Energy Info (EERE)

Tunisia-Capacity Development for GHG inventories and MRV Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS, -NAMA, Policies/deployment programs Program End 2015 Country Tunisia Northern Africa References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview Tunisia has developed NAMA approaches; however, robust systems by which to measure, report and verify (MRV) these measures are still lacking. The project supports the establishment of a comprehensive national MRV system

224

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

225

A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control  

Science Journals Connector (OSTI)

Crop disease not only threatens global food security by reducing crop production at a time of growing demand, but also contributes to greenhouse gas (GHG) emissions by reducing efficiency of N fertiliser ... oper...

Robert R. Carlton; Jon S. West; Pete Smith…

2012-05-01T23:59:59.000Z

226

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network [OSTI]

's environmental and economic goals are to ensure ... (e) greenhouse gas emissions will be at least ten per cent). The Nova Scotia Department of Energy also assumes this level of emissions by 2020 in its background paper of carbon dioxide. #12;Energy Research Group: Achieving a ten percent greenhouse gas reduction 2 shows NRCan

Hughes, Larry

227

Anode shroud for off-gas capture and removal from electrolytic oxide reduction system  

DOE Patents [OSTI]

An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

2014-07-08T23:59:59.000Z

228

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG  

E-Print Network [OSTI]

more significant effects on energy dependence and greenhouse gas emissions. INTRODUCTION AND MOTIVATION to the trend scenario) while reducing CO2 emissions only slightly (by 5.13 percent, relative to trend but produces 25% of all greenhouse gas (GHG) emissions (BBC, 2002), with 28% of these emanating from

Kockelman, Kara M.

229

The effect of precooling inlet air on CHP efficiency in natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Almost all pressure reduction stations in Iran use expansion valves to reduce the natural gas pressure, which leads to wasting large amount of exergy. In this paper, a system is proposed which includes the modification of a conventional pressure reduction station with the addition of a turbo expander and a gas turbine for power recovery and generation. The next step is investigating the effect of heat exchanger on proposed combined heat and power system. The objective of the simulation is first to investigate the effects of modifying components performance equations on system efficiency and performance at a set operating condition. Secondly, to conduct feasibility study of using a heat exchanger at gas pressure reduction station to boost station efficiency in terms of energy saving and economic value. The result demonstrates that by precooling inlet air of gas turbine, station efficiency increases specially when the turbine works at full load.

Mahyar Kargaran; Mahmoood Farzaneh-Grod; Mohammad Saberi

2013-01-01T23:59:59.000Z

230

China-GHG Monitoring | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » China-GHG Monitoring (Redirected from GIZ-China GHG Monitoring) Jump to: navigation, search Name China - GHG Monitoring Agency/Company /Organization German Agency for International Cooperation (GIZ), Center for Clean Air Policy Partner on behalf of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Focus Area Energy Efficiency Topics Low emission development planning Program Start 2011 Program End 2014 Country China Eastern Asia References GTZ in the People's Republic of China[1] Overview The project aims to develop capacities for a GHG-Monitoring system and an

231

UNFCCC-GHG Inventory Methodological Documents and Training Materials | Open  

Open Energy Info (EERE)

UNFCCC-GHG Inventory Methodological Documents and Training Materials UNFCCC-GHG Inventory Methodological Documents and Training Materials Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC GHG inventory Methodological Documents and Training Materials Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory Resource Type: Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: unfccc.int/national_reports/non-annex_i_natcom/training_material/metho Cost: Free References: UNFCCC GHG inventory Methodological Documents and Training Materials[1] Logo: UNFCCC GHG inventory Methodological Documents and Training Materials Visit the website for GHG inventory training materials, software support

232

UNFCCC-GHG Inventory Methodological Documents and Training Materials | Open  

Open Energy Info (EERE)

UNFCCC-GHG Inventory Methodological Documents and Training Materials UNFCCC-GHG Inventory Methodological Documents and Training Materials (Redirected from UNFCCC GHG Inventory Methodological Documents and Training Materials) Jump to: navigation, search Tool Summary Name: UNFCCC GHG inventory Methodological Documents and Training Materials Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory Resource Type: Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: unfccc.int/national_reports/non-annex_i_natcom/training_material/metho Cost: Free References: UNFCCC GHG inventory Methodological Documents and Training Materials[1] Logo: UNFCCC GHG inventory Methodological Documents and Training Materials

233

UNFCCC-GHG Inventory Review Training Program | Open Energy Information  

Open Energy Info (EERE)

UNFCCC-GHG Inventory Review Training Program UNFCCC-GHG Inventory Review Training Program (Redirected from UNFCCC GHG Inventory Review Training Program) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC GHG inventory Review Training Program Agency/Company /Organization: United Nations Framework Convention on Climate Change Topics: GHG inventory Resource Type: Training materials Website: unfccc.int/national_reports/annex_i_ghg_inventories/inventory_review_t UNFCCC GHG inventory Review Training Program Screenshot References: UNFCCC GHG inventory Review Training Program[1] Logo: UNFCCC GHG inventory Review Training Program The Basic Course of the updated training programme covers technical aspects of the review of GHG inventories under the Convention. It consists of seven modules, including a general module and six individual modules on the

234

Life cycle GHG analysis of rice straw bio-DME production and application in Thailand  

Science Journals Connector (OSTI)

Abstract Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization.

Thapat Silalertruksa; Shabbir H. Gheewala; Masayuki Sagisaka; Katsunobu Yamaguchi

2013-01-01T23:59:59.000Z

235

Federal Energy Management Program: Federal Greenhouse Gas Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable energy generation projects

236

UNEP-Risoe-Economics of GHG Limitations: Country Study Series | Open Energy  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name UNEP-Risoe - Economics of GHG Limitations: Country Study Series Agency/Company /Organization UNEP-Risoe Centre Sector Energy, Land Topics Policies/deployment programs, Pathways analysis, Background analysis, Resource assessment Website http://www.uneprisoe.org/Econo References Economics of Greenhouse Gas Limitations[1] Country study series: Argentina, Ecuador, Estonia, Hungary, Indonesia, Mauritius, Senegal, Vietnam Parallel country studies: Botswana, Tanzania, Zambia Regional Studies: Andean Region, Southern African Development Community (SADC) References ↑ "Economics of Greenhouse Gas Limitations" Retrieved from "http://en.openei.org/w/index.php?title=UNEP-Risoe-Economics_of_GHG_Limitations:_Country_Study_Series&oldid=377226"

237

Life-cycle GHG emission Factors of Final Energy in China  

Science Journals Connector (OSTI)

Abstract In this manuscript, a model for the estimation of the life-cycle GHG emission factors of final energy and an empirical study of China is presented. A linear programming method is utilized to solve the problem that several forms of final energy are utilized in the life-cycle of one certain type of final energy. Nine types of final energy are considered, including raw coal, crude oil, raw natural gas, treated coal, diesel, gasoline, fuel oil, treated natural gas, and electricity. The results indicate that the life-cycle GHG emission factors of final energy in China slightly decreased in recent years.

Jiang Lixue; Ou Xunmin; Ma Linwei; Li Zheng; Ni Weidou

2013-01-01T23:59:59.000Z

238

Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices  

Science Journals Connector (OSTI)

Abstract Recent regulations on biofuels require reporting of greenhouse gas (GHG) emission reductions related to feedstock-specific biofuels. However, the inclusion of GHG emissions from land-use change (LUC) into law and policy remains a subject of active discussion, with LUC–GHG emissions an issue of intense research. This article identifies key modelling choices for assessing the impact of biofuel production on LUC–GHG emissions. The identification of these modelling choices derives from evaluation and critical comparison of models from commonly accepted biofuels–LUC–GHG modelling approaches. The selection and comparison of models were intended to cover factors related to production of agricultural-based biofuel, provision of land for feedstock, and GHG emissions from land-use conversion. However, some fundamental modelling issues are common to all stages of assessment and require resolution, including choice of scale and spatial coverage, approach to accounting for time, and level of aggregation. It is argued here that significant improvements have been made to address LUC–GHG emissions from biofuels. Several models have been created, adapted, coupled, and integrated, but room for improvement remains in representing LUC–GHG emissions from specific biofuel production pathways, as follows: more detailed and integrated modelling of biofuel supply chains; more complete modelling of policy frameworks, accounting for forest dynamics and other drivers of LUC; more heterogeneous modelling of spatial patterns of LUC and associated GHG emissions; and clearer procedures for accounting for the time-dependency of variables. It is concluded that coupling the results of different models is a convenient strategy for addressing effects with different time and space scales. In contrast, model integration requires unified scales and time approaches to provide generalised representations of the system. Guidelines for estimating and reporting LUC–GHG emissions are required to help modellers to define the most suitable approaches and policy makers to better understand the complex impacts of agricultural-based biofuel production.

Luis Panichelli; Edgard Gnansounou

2015-01-01T23:59:59.000Z

239

Establish Building Locations for Greenhouse Gas Mitigation | Department of  

Broader source: Energy.gov (indexed) [DOE]

Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation Establish Building Locations for Greenhouse Gas Mitigation October 7, 2013 - 10:53am Addthis YOU ARE HERE Step 2 After estimating greenhouse gas (GHG) emissions by building type, building location is an important consideration in evaluating the relevance of energy-saving strategies due to variations in heating and cooling needs, and the GHG reduction potential due to variability of emissions factors across regions of the grid. If site-level energy use estimates are available for each of the program's key building types, the program can identify building locations with the greatest emission reduction potential by using the benchmarking approach. Locations with the worst energy performance relative to the benchmark are

240

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program  

Broader source: Energy.gov [DOE]

When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs.

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

After a Federal agency has collected detailed information about its vehicle inventory, fuel consumption, usage, mission, and alternative fuel availability, it can analyze the data to determine the most cost-effective options for petroleum reduction and greenhouse gas (GHG) mitigation.

242

Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction.

243

Federal Register Notice for Life Cycle Greenhouse Gas Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas from the United States (Life Cycle Analysis Greenhouse Gas Report, or LCA GHG Report) and invites the submission of comments. LifecycleGreenhouseGas.pdf More...

244

UNFCCC-GHG Inventory Review Training Program | Open Energy Information  

Open Energy Info (EERE)

UNFCCC-GHG Inventory Review Training Program UNFCCC-GHG Inventory Review Training Program Jump to: navigation, search Tool Summary Name: UNFCCC GHG inventory Review Training Program Agency/Company /Organization: United Nations Framework Convention on Climate Change Topics: GHG inventory Resource Type: Training materials Website: unfccc.int/national_reports/annex_i_ghg_inventories/inventory_review_t UNFCCC GHG inventory Review Training Program Screenshot References: UNFCCC GHG inventory Review Training Program[1] Logo: UNFCCC GHG inventory Review Training Program The Basic Course of the updated training programme covers technical aspects of the review of GHG inventories under the Convention. It consists of seven modules, including a general module and six individual modules on the review of individual IPCC sectors.

245

2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)  

E-Print Network [OSTI]

2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA;2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Introduction Last updated: Aug-11 emissions conversion factors. What are Greenhouse Gas Conversion Factors? These conversion factors allow

246

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

247

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network [OSTI]

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

248

GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach  

E-Print Network [OSTI]

Estimating Global Forestry GHG Mitigation Potential andN ATIONAL L ABORATORY GHG Mitigation Potential, Costs andopportunity employer. LBNL-58291 GHG Mitigation Potential,

Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

2005-01-01T23:59:59.000Z

249

The hydrogen energy economy: its long-term role in greenhouse gas reduction  

E-Print Network [OSTI]

The hydrogen energy economy: its long-term role in greenhouse gas reduction Geoff Dutton, Abigail for Climate Change Research Technical Report 18 #12;The Hydrogen Energy Economy: its long term role 2005 This is the final report from Tyndall research project IT1.26 (The Hydrogen energy economy: its

Watson, Andrew

250

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

251

Greenhouse Gas Mitigation Planning for Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings October 7, 2013 - 10:29am Addthis Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion sources; Scope 2 from indirect electricity, heat, or steam purchases; and Scope 3 emissions from transmission and distribution losses. Also see Use Renewable Energy in Buildings for Greenhouse Gas Mitigation. Step 1: Assess Agency Size Changes Step 2: Evaluate Emissions Profile Step 3: Evaluate Reduction Strategies Step 4: Estimate Implementation Costs Step 5: Prioritize Strategies Helpful Data and Tools See GHG planning data and tools for buildings.

252

Alternative Fuels Data Center: State Emissions Reductions Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Emissions State Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: State Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: State Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: State Emissions Reductions Requirements on Digg Find More places to share Alternative Fuels Data Center: State Emissions Reductions Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Emissions Reductions Requirements Washington state must limit greenhouse gas (GHG) emissions to achieve the

253

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect (OSTI)

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

254

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

cost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or enginecost of GHG emissions reductions to facilitate comparison with other approaches, such as vehicle replacement or engine

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

255

Evaluate Greenhouse Gas Emissions Profile  

Broader source: Energy.gov [DOE]

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

256

Greenhouse Gas Guidance and Reporting  

Broader source: Energy.gov [DOE]

Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change.

257

Insights from Agricultural GHG Offset studies that might  

E-Print Network [OSTI]

Insights from Agricultural GHG Offset studies that might Influence IAM Modeling Bruce A. Mc #12;How are landHow are land--use and terrestrial GHGuse and terrestrial GHG mitigation decisions/expert ­ Crop mix shift Varieties GHG Mitigation ­ Methane from rice, enteric, manure, others N2O from

McCarl, Bruce A.

258

Assessing Economic Potential for GHG Offsets in US Agriculture  

E-Print Network [OSTI]

Assessing Economic Potential for GHG Offsets in US Agriculture and Forestry Presented at Workshop Goals Examine the portfolio of land based GHG mitigation strategies and identify ones for further Educate on needed scope of economic analysis Bring in a full cost and GHG accounting Look at market

McCarl, Bruce A.

259

GHG Targets as Insurance Against Catastrophic Climate Damages  

E-Print Network [OSTI]

GHG Targets as Insurance Against Catastrophic Climate Damages Martin L. Weitzman The climate system GHG concentration targets as insurance against catastrophic climate-change temperatures and damages, the primary reason for keeping GHG levels down is to insure against high-temperature catastrophic climate

260

Achieving greenhouse gas emission reductions in developing countries through energy efficient lighting projects in the Clean Development Mechanism (CDM)  

SciTech Connect (OSTI)

Energy efficiency can help address the challenge of increasing access to modern energy services, reduce the need for capital-intensive supply investments as well as mitigating climate change. Efficient lighting is a promising sector for improving the adequacy and reliability of power systems and reducing emissions in developing countries. However, these measures are hardly represented in the CDM portfolio. The COP/MOP decision to include programs of activities in the CDM could open the door to the implementation of a large number of energy efficiency projects in developing countries. Since GHG reductions are essentially the emission equivalent of energy savings, the CDM can benefit from long established energy efficiency methodologies for quantifying energy savings and fulfilling CDM methodological requirements. The integration of the CDM into energy efficiency programs could help spur a necessary transformation in the lighting market.

Figueres, C.; Bosi, M.

2006-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Simulation of the GHG Abatement Potentials in the U.S. Building Sector by 2050  

E-Print Network [OSTI]

ABORATORY SIMULATION OF THE GHG ABATEMENT POTENTIALS IN THECanada SIMULATION OF THE GHG ABATEMENT POTENTIALS IN THE

Stadler, Michael

2010-01-01T23:59:59.000Z

262

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network [OSTI]

Cockerill T. 2008. Life cycle GHG assessment of fossil fuelreduce greenhouse gas (GHG) emissions and avoid unintendedemission reduction, and the net GHG emission reduction. We

Sathre, Roger

2011-01-01T23:59:59.000Z

263

Quantifying Greenhouse Gas Emissions from Human Activities: Toward  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location: 90-3122 Local to international control of anthropogenic greenhouse gas (GHG) emissions will require systematic estimation of emissions and independent verification. California, the only state in the US with legislated controls on GHG emissions, is conducting research to enable emissions verification of the mandated emissions reductions (AB-32). The California Energy Commission supports the California Greenhouse Gas Emissions Measurement (CALGEM) project at LBNL. In collaboration with NOAA, CALGEM measures mixing ratios of all significant GHGs at two tall-towers and on aircraft in

264

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov (indexed) [DOE]

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting October 7, 2013 - 1:47pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey. The default survey methodology in the Federal GHG Accounting Guidance is designed to collect the minimum data for emissions calculations. Additional information may be necessary to determine which trip reduction strategies are best suited for specific employee populations. The optional questions in the advanced survey methodology or data gathered through an agency-defined employee commute survey can provide this understanding.

265

Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile |  

Broader source: Energy.gov (indexed) [DOE]

Establish Employee Commuting Behavior Baseline for Greenhouse Gas Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile Establish Employee Commuting Behavior Baseline for Greenhouse Gas Profile October 7, 2013 - 1:49pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile, once employee commuting survey data are collected and priority worksites have been identified, the survey responses should be analyzed for each major worksite to establish a behavior baseline. Depending on the agency's size and where it places accountability for GHG commuting emissions reduction goals, it may be to most appropriate to have individual programs or operating units assess their own employee commute data. Exceptions should be made when programs share facilities. For example, at a headquarters office building, a single program may take

266

Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects  

Science Journals Connector (OSTI)

...greenhouse-gas emissions in an area...only produce greenhouse-gas (GHG) bene...reduce GHG emissions. The leakage...mitigation (energy, transportation...emissions-reducing activities...be inversely related (notably in...

2002-01-01T23:59:59.000Z

267

Greenhouse Gas Emission Reductions from Domestic Anaerobic Digesters Linked with Sustainable Sanitation in Rural China  

Science Journals Connector (OSTI)

Greenhouse Gas Emission Reductions from Domestic Anaerobic Digesters Linked with Sustainable Sanitation in Rural China ... (3) A key technology that may permit a switch from solid fuels to cleaner gaseous fuels in rural China is anaerobic digestion, where organic human and animal wastes are digested under anaerobic conditions generating biogas, composed primarily of methane (CH4), which can be sequestered and burned for cooking, heating, and lighting. ...

Radhika Dhingra; Erick R. Christensen; Yang Liu; Bo Zhong; Chang-Fu Wu; Michael G. Yost; Justin V. Remais

2011-02-24T23:59:59.000Z

268

Economic feasibility of carbon emission reduction in electricity generation, a case study based on Sri Lanka  

Science Journals Connector (OSTI)

The main purpose of this paper is an assessment of economic feasibility in reducing carbon dioxide emission of electricity generation in Sri Lanka. The paper shows that the present annual green house gas (GHG) emission with respect to electricity generation in Sri Lanka is about 2.8 million metric tons. The identified total GHG emission reduction potential in electricity generation is about 37 GW. The total reduction in GHG will be 16 million metric tons per year. Considering the savings on fossil fuel combustion, the total investment on CHG reduction methods would be recovered within a reasonable period as confirmed by a sensitivity analysis. To achieve these benefits, broad policies and guidelines are presented in-line with the country's environmental obligations. This is the first time that this type of scientific research study has been carried out in Sri Lanka to ascertain the current situation of GHG emission of electricity generation, to identify possible methods in reducing carbon dioxide emission and their economic feasibility. The methodology employed and the policies derived can be used as guides to similar types of research in other countries as well.

S.W.S.B. Dasanayaka; W. Jayarathne

2012-01-01T23:59:59.000Z

269

Impacts of greenhouse gas mitigation policies on agricultural land  

E-Print Network [OSTI]

Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

270

Greenhouse Gas Management Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

Not Available

2011-11-01T23:59:59.000Z

271

Prioritize Strategies and Set Internal Reduction Targets for Scope 3 Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions.

272

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

273

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

274

NREL: Energy Analysis - Natural Gas-Fired Generation Results...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, natural gas-fired electricity generation systems (based...

275

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment |  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reduction Strategies for Vehicles and Mobile Petroleum Reduction Strategies for Vehicles and Mobile Equipment Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:50am Addthis YOU ARE HERE: Step 3 As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels. These strategies provide a framework for an agency to use when developing a strategic plan that can be specifically tailored to match the agency's fleet profile and meet its mission. Agency fleet managers should evaluate petroleum reduction strategies and tactics for each fleet location, based on an evaluation of site-specific

276

Climate VISION: Private Sector Initiatives: Oil and Gas: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The following are summary descriptions of actions taken to date by the American Petroleum Institute (API) and its members, as related to the Climate VISION program and GHG emissions intensity reduction, in general. For more complete information, please visit API's website (www.api.org) and view Climate Challenge:A Progress Report and, for the most recent examples, please see Companies Address Climate Change. (Also please browse API member company websites for additional information on company climate change initiatives.) API Climate Greenhouse Gas Estimation & Reporting Challenge API has developed and is distributing accurate greenhouse gas emissions estimating tools via its Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB). The Compendium implements more robust

277

CO2 emission reduction from natural gas power stations using a precipitating solvent absorption process  

Science Journals Connector (OSTI)

Abstract There has been a rapid increase in the use of natural gas for power generation based on gas turbine technology which elevates the importance of carbon dioxide (CO2) capture technology to reduce CO2 emissions from gas turbine based power stations. The low content of CO2 in the gas turbine exhaust results in low rates of CO2 absorption and larger absorption equipment when compared to studies done on coal fired power stations. Furthermore the high oxygen (O2) content in the exhaust gas adversely affects the solvent stability, particularly for the traditional amine based solvents. This paper describes how exhaust gas recirculation (EGR) along with CO2CRC's low cost “UNO MK 3” precipitating potassium carbonate (K2CO3) process can overcome the challenges of CO2 capture from gas turbine power stations. To further bring down the energy requirements of the capture process, heat integration of the UNO MK 3 process with power generation process is carried out. An economic analysis of the various retrofit options is performed. The current study shows that in the case of retrofitting the UNO MK 3 process to a natural gas combined cycle (NGCC), the use of EGR can reduce the energy penalty of CO2 capture by 15%, whilst a reduction of up to 25% can be achieved with the heat integration strategies described. Significantly the study shows that converting an existing open cycle gas turbine (OCGT) to a combined cycle with steam generation along with retrofitting CO2 capture presents a different steam cycle design for the maximum power output from the combined cycle with CO2 capture. Such a conversion actually produces more power and offers an alternative low emission retrofit pathway for gas fired power. Cost analysis shows that inclusion of the UNO MK 3 CO2 capture process with EGR to an existing NGCC is expected to increase the cost of electricity (COE) by 20%. However, retrofit/repowering of an underutilised or peaking OCGT station with the inclusion of CO2 capture can reduce the COE as well as produce low emission power. This is achieved by increasing the load factor and incorporating a purpose built steam generation cycle.

Jai Kant Pandit; Trent Harkin; Clare Anderson; Minh Ho; Dianne Wiley; Barry Hooper

2014-01-01T23:59:59.000Z

278

Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold  

Science Journals Connector (OSTI)

Brown’s gas (HHO) has recently been introduced to the auto industry as a new source of energy. The present work proposes the design of a new device attached to the engine to integrate an HHO production system with the gasoline engine. The proposed HHO generating device is compact and can be installed in the engine compartment. This auxiliary device was designed, constructed, integrated and tested on a gasoline engine. Test experiments were conducted on a 197cc (Honda G 200) single-cylinder engine. The outcome shows that the optimal surface area of an electrolyte needed to generate sufficient amount of HHO is twenty times that of the piston surface area. Also, the volume of water needed in the cell is about one and half times that of the engine capacity. Eventually, the goals of the integration are: a 20–30% reduction in fuel consumption, lower exhaust temperature, and consequently a reduction in pollution.

Ammar A. Al-Rousan

2010-01-01T23:59:59.000Z

279

Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline  

Science Journals Connector (OSTI)

Recent results of GDF SUEZ Research and Innovation Division (RID) activities on Compressed Natural Gas (CNG) vehicles are depicted in this paper:• The prototype “Toyota Prius II Hybrid CNG Vehicle”, developed with IFP Energies Nouvelles, combines a natural gas thermal engine with a hybrid electric motorization. After optimization, CO2 emissions, measured on chassis dynamometer, were 76 g/km on NEDC cycle. • The use of raw biogas in CNG Vehicle has been explored. These tests have shown that raw biogas (not upgraded) can be used as a fuel, if blended with natural gas. In fact, the use of raw biogas can be envisaged in dedicated CNG engines, if new engine technologies (lean CNG combustion) are developed. In such a case natural gas can be blended with up to 70% volume of not upgraded biogas. • The potential reduction of greenhouse gases (GHG) emissions related both to the optimization of the CNG vehicle and to the use of biomethane as a vehicle fuel has been evaluated. GHG emissions from CNG vehicles (mono-fuel and hybrid) may be significantly lower than emissions of gasoline vehicles: around 17% lower in the case of dedicated CNG Vehicle and up to 51% lower in the case of hybrid CNG vehicles. In addition, biomethane (from the anaerobic digestion of waste) brings the GHG emission levels, over the course of the life cycle, down to more than 80% compared to a gasoline vehicle. Emission levels are lowered by 87% in the case of the Toyota Prius CNG Hybrid prototype fuelled by biomethane produced from waste (in comparison to a gasoline vehicle). Thus, biomethane allows a reduction of GHG emissions far below the minimum required by the European Directive on the Promotion of Renewable Energy Sources (2009/28/EC). These results have shown that the combination of optimized and innovative engines with the use of biomethane as a fuel permits to significantly reduce the GHG emissions.

Olivier Bordelanne; Micheline Montero; Frédérique Bravin; Anne Prieur-Vernat; Olga Oliveti-Selmi; Hélène Pierre; Marion Papadopoulo; Thomas Muller

2011-01-01T23:59:59.000Z

280

NO, Reduction in a Gas Fired Utility Boiler by Combustion Modifications  

E-Print Network [OSTI]

Data on the effect of several combustion modifications on the for-math of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6 % reduced the NO, formation by 33 % and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the fire4mx WBS founb to be Ineffective. Staged combustion was found to reduce the NO, emlssions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NO, formation by about 20 ppm. The lowest NO, emisdons of 42 ppm (at about 3 % 02) in the stack was obtained for air only to one top burner and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost entirely of nitric oxide (NO) and nitrogen dioxide (N02) with NO2 usually only l or 2 % of the total. After leaving the stack, the NO eventually combines with atmospheric oxygen to form NOp. The Environmental Protection Agency has sponsored several studies1-I0 on reducing NO, emissions while maintaining thermal efficiency of boilers. Other studies have been sponsored by The Electric Power Research Institute (EPRI) " and Argonne National

Jerry A. Bullin; Dan Wilkerson

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UNFCCC-GHG Inventory Data | Open Energy Information  

Open Energy Info (EERE)

Inventory Data) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC GHG inventory Data AgencyCompany Organization: United Nations Framework Convention on Climate...

282

Uganda-Reducing the GHG Impacts of Sustainable Intensification...  

Open Energy Info (EERE)

and incentives that enable smallholder farmers and common-pool resource users to reduce GHG emissions and improve livelihoods Test and identify desirable on-farm practices and...

283

Assess and improve the national GHG inventory and other economic...  

Open Energy Info (EERE)

improve the national GHG inventory and other economic and resource data as needed for LEDS development Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework...

284

UNFCCC-GHG Inventory Data | Open Energy Information  

Open Energy Info (EERE)

United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset Website: unfccc.intghgdata...

285

Low Carbon Growth: a Potential Path for Mexico - GHG Abatement...  

Open Energy Info (EERE)

Path for Mexico - GHG Abatement Cost Curve AgencyCompany Organization Centro Mario Molina, McKinsey and Company Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy...

286

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG...  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols Principles for a Steel Industry Methodology for Reporting Carbon-Related Energy Sources and Raw Materials (PDF 48 KB) Download Acrobat Reader Steel Industry...

287

Technological Options for Reducing Non-CO2 GHG Emissions  

Science Journals Connector (OSTI)

A project titled Clearinghouse of Technological Options for Reducing Anthropogenic Non-CO 2 GHG Emissions from All Sectors was recently conducted. The o...

Prof. Dr. Jeff Kuo Ph.D.; P.E.

2012-01-01T23:59:59.000Z

288

Climate VISION: Private Sector Initiatives: Magnesium: GHG Inventory...  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols The Magnesium Industry Partnership's SF6 emissions tracking and reporting software tool (Excel based) can be accessed by visiting the Partnership's...

289

Ghana-Reducing the GHG Impacts of Sustainable Intensification...  

Open Energy Info (EERE)

Ghana-Reducing the GHG Impacts of Sustainable Intensification in East Africa AgencyCompany Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian...

290

National Planning for GHG Mitigation in Agriculture: A Guidance...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Planning for GHG Mitigation in Agriculture: A Guidance Document AgencyCompany Organization: Food and...

291

Attachment C Summary GHG Emissions Data FINAL | Department of...  

Office of Environmental Management (EM)

Documents & Publications Attachment C - Summary GHG Emissions Data FINAL Amendment: Energy and Emissions Benefit Table (December 30, 2008) Output-Based Regulations: A Handbook...

292

The effect of natural gas supply on US renewable energy and CO2 emissions  

Science Journals Connector (OSTI)

Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013–55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

Christine Shearer; John Bistline; Mason Inman; Steven J Davis

2014-01-01T23:59:59.000Z

293

Greenhouse gas emissions reduction in China by cleaner coal technology towards 2020  

Science Journals Connector (OSTI)

Abstract The Chinese energy system, a major CO2 emitter, relies heavily on fossil fuels, especially coal. Coal will continue to play a major role in the new installed power generation capacity in the future, which will cause unavoidable environmental problems. Clean coal technologies (CCTs) are essential for emissions reduction in the power sector. In general, \\{CCTs\\} cover coal upgrading, efficiency improvements, advanced technologies and zero emissions technologies. Besides these, \\{CCTs\\} also include other emissions reduction technologies and comprehensive utilization technologies in China. This paper review the complete life cycle modeling of CCTs. The advanced technologies include super-critical (super-C), ultra super-critical (USC) and integrated gasification combined cycle (IGCC). The results show that the higher efficiency technologies have lower potential impacts. Compared with the average level of power generation technology, CO2 emissions reduction is 6.4% for super-C, 37.4% for USC and 61.5% for IGCC. Four coal power scenarios are developed based on the assumption of potential investment power for \\{CCTs\\} in 2020, which are super-C, USC, USC and old low efficiency generation substitution by USC, IGCC and carbon capture and storage (CCS). The CO2 emissions intensity is 1.93 kg/kWh for super-C, 1.69 kg/kWh for USC, 1.59 kg/kWh for USC + replacement and 1.29 kg/kWh for IGCC + CCS. The CO2 emissions intensity was 1.95 kg/kWh in 2010, which had decreased 5.5% compared with the level in 2005. The energy structure is continuously being improved and optimized. The potential carbon reduction will be limited in the power system in 2020 by current commercial \\{CCTs\\} with the generation efficiency increase. The most impressive technology is IGCC with CCS which enables greenhouse gas reduction of 37.6% compared with the level in 2005.

Guangling Zhao; Sha Chen

2014-01-01T23:59:59.000Z

294

Greenhouse Gas Mitigation Planning Data and Tools  

Broader source: Energy.gov [DOE]

These data and tools from the U.S. Department of Energy (DOE) and other organizations can help Federal agencies with greenhouse gas (GHG) mitigation planning for:

295

Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste  

Science Journals Connector (OSTI)

The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA's requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).

Mohammad Pourbafrani; Jon McKechnie; Heather L MacLean; Bradley A Saville

2013-01-01T23:59:59.000Z

296

An interval fixed-mix stochastic programming method for greenhouse gas mitigation in energy systems under uncertainty  

Science Journals Connector (OSTI)

In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas (GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an integer programming framework, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions have been generated. They can be used for generating plans for energy resource/electricity allocation and capacity expansion and help decision makers identify desired GHG mitigation policies under various economic costs and environmental requirements.

Y.L. Xie; Y.P. Li; G.H. Huang; Y.F. Li

2010-01-01T23:59:59.000Z

297

Gas cofiring in coal-fired stokers for emissions reduction and performance improvement  

SciTech Connect (OSTI)

Adding gas burners above the grate of a coal-fired stoker can be an economical method of reducing gaseous and particulate emissions and improving efficiency and operational flexibility. With this cofiring configuration, the improved heat distribution and mixing with the stoker combustion products can give reduced opacity, reduced emissions of particulate, NO{sub x} and SO{sub 2}, improved carbon burnout and lower overall ash, reduced excess air, faster load response, cleaner and quicker lightoffs, improved turndown at both lower and upper capacity limits, and improved performance with problematic coals. To develop and validate the cofiring technology, three cofire field experiments have been conducted. A 165,000 lb/hr spreader stoker and mass feed chain grate stokers rated at 40,000 and 75,000 lb/hr have been retrofit with gas burners and tested in the field. The two larger units used dual, opposed burners, while the smaller unit was retrofit with a single burner. With the spreader stoker, the primary benefits of gas cofire was reduction in opacity episodes with coal quality variability and recovery of lost derate. With the larger chain grate unit, the primary benefit was reduction of NO{sub x} and SO{sub 2} to within Title V limits and elimination of opacity episodes during startup and load swings. With the smaller chain grate, the primary benefit was ability to operate at low loads without unacceptable opacity excursions which had previously required a backup boiler. In all cases, the economics justified the capital burner system retrofit cost and incremental fuel costs.

Mason, H.B.; Drennan, S.; Chan, I.; Kinney, W.L.; Borland, D.

1996-12-31T23:59:59.000Z

298

Rank Sites by Building Type and Location for Greenhouse Gas Mitigation |  

Broader source: Energy.gov (indexed) [DOE]

Rank Sites by Building Type and Location for Greenhouse Gas Rank Sites by Building Type and Location for Greenhouse Gas Mitigation Rank Sites by Building Type and Location for Greenhouse Gas Mitigation October 7, 2013 - 10:57am Addthis YOU ARE HERE: Step 2 After establishing building locations for greenhouse gas (GHG) mitigation analysis, the next step is to rank sites using the additional factors of eGRID region and climate region. In the Table 1 example below, because Site C and Site D represent the same proportion of Program B's office space (22% each), evaluating eGRID region and climate region will help to prioritize which sites may have a greater potential for GHG reductions. Table 1. Example: Program B Office Location Evaluation Site Name Percent of total Program SF by building type (%) eGRID Climate Region eGRID-Climate Weight1 Location Rank

299

Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry  

SciTech Connect (OSTI)

Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

Price, Lynn; Murtishaw, Scott; Worrell, Ernst

2003-06-01T23:59:59.000Z

300

Thermoecological cost of electricity production in the natural gas pressure reduction process  

Science Journals Connector (OSTI)

Abstract The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022.

Wojciech J. Kostowski; Sergio Usón; Wojciech Stanek; Pawe? Bargiel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Green IS for GHG emission reporting on product-level? an action design research project in the meat industry  

Science Journals Connector (OSTI)

Greenhouse gas emission reporting gained importance in the last years, due to societal and governmental pressure. However, this task is highly complex, especially in interdependent batch production processes and for reporting on the product-level. Green ... Keywords: GHG emissions, Green IS, PCF, action design research, design science, meat industry, product carbon footprint

Hendrik Hilpert; Christoph Beckers; Lutz M. Kolbe; Matthias Schumann

2013-06-01T23:59:59.000Z

302

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

Electricity (Natural Gas Combined Cycle) Electricity (Coal,efficiency enabled by combined cycle systems at stationarybut also using combined cycle and fuel cell-based power

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

303

Energy and GHG Emissions in British Columbia 1990 -2010  

E-Print Network [OSTI]

Energy and GHG Emissions in British Columbia 1990 - 2010 Report Highlights John Nyboer and Maximilian Kniewasser Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser for Climate Solutions 1 HIGHLIGHTS The Energy and GHG Emissions in British

Pedersen, Tom

304

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

E-Print Network [OSTI]

use and greenhouse gas (GHG) emissions of a variety of goodsto the supply chain energy and GHG “footprints” of goods andto estimate achievable household GHG footprint reductions

Masanet, Eric

2010-01-01T23:59:59.000Z

305

Future development of Syrian power sector in view of GHG mitigation options  

Science Journals Connector (OSTI)

Abstract The future Syrian electricity generation system has been optimally expanded based on the least-cost approach taking into account a set of policy constraints. In addition to the reference scenario (RS) that reflects the baseline development an alternative GHG mitigation scenario (MS) has been considered. MS deals with evaluating the impact of the adopted mitigation policy on the cost and prospects of energy sources and generation technologies with emphasis on renewables and efficiency improvement measures. The achieved GHG reduction will amount to 2 Mton CO2 in 2020 and increase steadily to 4–7.8 Mton in 2025 and 2030 respectively. The cumulative amount of GHG reduction over the study period will add up to almost 54 Mton of CO2. The specific emission factor of MS case will approach 0.42 kg CO2/kWh in 2030 compared to 0.52 kg CO2/kWh in the baseline case. The expected additional total discounted cost of the proposed mitigation measures come close to US$ 3 Billion. The resulting additional cost of CO2 mitigation per generated electricity unit arrives at 25 US$/MWh corresponding to 25% of current Syrian generation cost.

A. Hainoun; H. Omar; S. Almoustafa; M.K. Seif-Eldin; Y. Meslmani

2014-01-01T23:59:59.000Z

306

The Trucking Sector Optimization Model: A tool for predicting carrier and shipper responses to policies aiming to reduce GHG emissions  

Science Journals Connector (OSTI)

Abstract In response to the growing Climate Change problem, governments around the world are seeking to reduce the greenhouse gas (GHG) emissions of trucking. The Trucking Sector Optimization (TSO) model is introduced as a tool for studying the decisions that shippers and carriers make throughout time (focusing on investments in Fuel Saving Technologies), and for evaluating their impact on life-cycle GHG emissions. A case study of fuel taxation in California is used to highlight the importance of (1) modeling the trucking sector comprehensively, (2) modeling the dynamics of the stock of vehicles, and (3) modeling different sources of emissions.

Sebastian E. Guerrero; Samer M. Madanat; Robert C. Leachman

2013-01-01T23:59:59.000Z

307

Analysis and Modeling on the GHG Emissions in Dyeing and Finishing Processes  

Science Journals Connector (OSTI)

This paper analyzes the GHG emissions from each process in dyeing and ... energy using and industrial activities contribute the main GHG emissions. And a model is created to calculate the GHG emissions in dyeing ...

Yingxiang Fan; Ming Du; Hui Song

2011-01-01T23:59:59.000Z

308

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks  

E-Print Network [OSTI]

Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks. #12;2 Integrating Agricultural and Forestry GHG Mitigation Response into General Economy Frameworks and Forestry Response to GHG Mitigation into General Economy Frameworks: Developing a Family of Response

McCarl, Bruce A.

309

ECN GHG Marginal Abatement Cost curves (NAMAC) | Open Energy Information  

Open Energy Info (EERE)

ECN GHG Marginal Abatement Cost curves (NAMAC) ECN GHG Marginal Abatement Cost curves (NAMAC) Jump to: navigation, search Tool Summary Name: ECN GHG Marginal Abatement Cost curves for the Non-Annex I region (NAMAC) Agency/Company /Organization: Energy Research Centre of the Netherlands Sector: Energy, Land Topics: Resource assessment, Pathways analysis, Background analysis Website: www.ecn.nl/docs/library/report/2006/e06060.pdf References: GHG Marginal Abatement Cost curves for the Non-Annex I region[1] GHG Marginal Abatement Cost curves for the Non-Annex I region (NAMAC) (1999-present) ECN has developed a Marginal Abatement Cost curve containing detailed information on mitigation technologies and abatement costs in developing countries. * The MAC was first developed for the Dutch Ministry of Foreign

310

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

311

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Other Resources Other Resources Pew Center on Global Climate Change Pew Center brings together major organizations with critical scientific, economic, and technological expertise focused on global climate change and educates the public on associated risks, challenges, and solutions. Massachusetts Institute of Technology (MIT) The MIT joint program on the science and policy of global change provides research, independent policy analysis, and public education in global environmental change. IEA Greenhouse Gas Programme The IEA greenhouse gas R&D program (IEA GHG) aims to identify and evaluate fossil fuel-based GHG reduction technologies, disseminate results, and identify target technologies for appropriate and practical R&D. Nature Conservancy The Nature Conservancy sponsors projects that protect ecosystems and

312

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

313

Greenhouse Gas Mitigation Planning for Business Travel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Business Travel Business Travel Greenhouse Gas Mitigation Planning for Business Travel October 7, 2013 - 1:20pm Addthis Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3 emissions, but represents about 20% of Scope 3 emissions for the Federal sector as whole. While other emissions categories have been the focus of efficiency improvements for several years, few agencies have been actively planning to manage business travel for GHG reduction purposes. Travel management due to budgetary constraints has typically been more common for Federal agencies in the past. Because air travel emissions are the biggest source of travel emissions for most agencies, this guidance focuses on planning for

314

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:13pm Addthis YOU ARE HERE: Step 4 Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy. The costs to reduce GHG emissions can vary greatly from cost-free behavior modification to the high-cost of purchasing zero-emission battery electric vehicles and associated fueling infrastructure. This section provides an overview of the costs and savings to consider when planning for mobile source emissions reductions, including efforts to: Reduce vehicle miles traveled

315

Reductions of NO{sub x} emissions on oil and gas firing at Bowline Unit 1  

SciTech Connect (OSTI)

In response to the NYSDEC, Part 227 regulations for the emissions of nitrogen oxides (NO{sub x}), Orange and Rockland Utilities, Inc. (ORU) and Burns & Roe Company (BRC) evaluated the options available to reduce the NO{sub x} emissions at two oil and gas fired units at Bowline Point Generating Station. Replacement of all of the existing burners with new low NO{sub x} burners and possibly overfire air ports presents the most costly method of achieving this goal. Therefore, other methods of NO{sub x} reduction were considered including utilizing some form of off-stoichiometric, burners out of service (BOOS), firing. It was determined that the stringent emission limits could be met utilizing off-stoichiometric firing techniques. New oil gun atomizer tips allowing off-stoichiometric firing with mechanical atomization and swirlers of a new design are replacing the existing atomizers. The new hardware eliminates the problems of opacity while operating with off-stoichiometric firing.

Paschedag, A.E.; Martinsen, R.A.; O`Sullivan, R.C.; Schmidt, D.W. [and others

1996-01-01T23:59:59.000Z

316

E-Print Network 3.0 - annual waste reduction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on waste and climate ISWA General Secretariat Summary: the potential for waste related GHG emissions reductions. The International Solid Waste Association (ISWA... ) is committed...

317

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible with Economic Development Speaker(s): Taishi Sugiyama Date: August 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Lynn Price We have analyzed scenarios of Japanese energy systems in the 21st century with special focus on the electrification and climate change mitigation. We have described the causality pathway as to how the major drivers will have impacts on the structure of energy systems and found the followings: (1) Steady electrification in the building sector is expected driven by technological progresses and social change in the absence of climate change policy; (2) With strong greenhouse gas emission constraints, the combination of accelerated electrification across all sectors and

318

E-Print Network 3.0 - avoid ghg emissions Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetic, Summary: and avoided GHG emissions (3, 24). The pyrolysis facility for this LCA is assumed to operate in a manner... the avoided GHG emissions for biochar production...

319

Response to “Comment on ‘Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning’ ” [Phys. Plasmas17, 014701 (2010)  

Science Journals Connector (OSTI)

A high-voltage cathode initiates an electron emission resulting in a reduction in the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. Assuming that the observed carbon dioxide reduction is originated from the molecular decomposition the energy needed for the endothermic reaction of this carbon dioxide reduction may stem primarily from the internal energy reduction in the exhaust gas in accordance of the first law of the thermodynamics. An oxygen increase due to the reduction in carbon dioxide in a discharge gas was observed in real time.

Han S. Uhm; Chul H. Kim

2010-01-01T23:59:59.000Z

320

Bangladesh-Reducing the GHG Impacts of Sustainable Intensification | Open  

Open Energy Info (EERE)

Bangladesh-Reducing the GHG Impacts of Sustainable Intensification Bangladesh-Reducing the GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Bangladesh-Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources  

Science Journals Connector (OSTI)

We suggest a 2D-plot representation combined with life cycle greenhouse gas (GHG) emissions and life cycle cost for various energy conversion technologies. In general, life cycle ... use life cycle GHG emissions ...

Heetae Kim; Claudio Tenreiro; Tae Kyu Ahn

2013-10-01T23:59:59.000Z

322

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

323

Reducing the GHG Impacts of Sustainable Intensification | Open Energy  

Open Energy Info (EERE)

GHG Impacts of Sustainable Intensification GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture Topics Adaptation, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

324

Ethiopia-Reducing the GHG Impacts of Sustainable Intensification | Open  

Open Energy Info (EERE)

Ethiopia-Reducing the GHG Impacts of Sustainable Intensification Ethiopia-Reducing the GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Ethiopia-Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture Topics Adaptation, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

325

Designing a Domestic GHG-Emissions Trading System  

Science Journals Connector (OSTI)

The Norwegian commitment under the Kyoto Protocol is that the emissions of GHG in the period 2008–2012 shall not...2—equivalents. This implies that the emissions have to be reduced by 3 million tons compared to t...

Dean Anderson; Kjell Roland; Per Schreiner…

1999-01-01T23:59:59.000Z

326

Tanzania-Reducing the GHG Impacts of Sustainable Intensification | Open  

Open Energy Info (EERE)

Tanzania-Reducing the GHG Impacts of Sustainable Intensification Tanzania-Reducing the GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Tanzania-Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture Topics Adaptation, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

327

Biofuels and Greenhouse Gas Emissions: Green or Red?  

Science Journals Connector (OSTI)

Biofuels and Greenhouse Gas Emissions: Green or Red? ... Although it is widely recognized that cellulosic feedstocks have a much lower environmental footprint, the U.S. Environmental Protection Agency (EPA) recently adjusted the congressionally mandated 2010 100 million gallon yr?1 cellulosic biofuel mandate to 6.5 million gallons, a ?95% reduction, based on the lack of progress in bringing cellulosic biofuels to the marketplace. ... Converting rain forest, peatland, savanna, or grassland to produce food crop-based biofuels in Brazil, southeast Asia, and the US creates a biofuel C debt by releasing 17-420 times more CO2 than the annual greenhouse gas (GHG) redns. ...

Mark O. Barnett

2010-06-16T23:59:59.000Z

328

Greenhouse Gas Guidance and Reporting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Federal Guidance Read the White House Council on Environmental Quality's...

329

Life Cycle Boundaries and Greenhouse Gas Emissions from Beef Cattle.  

E-Print Network [OSTI]

??Beef cattle are estimated to directly contribute 26% of U.S. agricultural greenhouse gas (GHG) emissions, and future climate change policy may target reducing these emissions.… (more)

Dudley, Quentin M

2012-01-01T23:59:59.000Z

330

Greenhouse Gas Emissions from Aviation and Marine Transportation...  

Open Energy Info (EERE)

Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org...

331

The Greenhouse Gas Protocol Initiative: Measurement and Estimation...  

Open Energy Info (EERE)

Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of...

332

Annual Greenhouse Gas and Sustainability Data Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

agency-aggregated data necessary for calculating scope 1, 2, and 3 greenhouse gas (GHG) emissions in the commonly used, native units of energy consumption and fugitive...

333

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings  

Broader source: Energy.gov [DOE]

After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings.

334

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...  

Open Energy Info (EERE)

Land Focus Area Renewable Energy, Agriculture, Forestry, Greenhouse Gas, Land Use Topics GHG inventory, Low emission development planning, -LEDS, Policiesdeployment programs...

335

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source.

336

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings  

Broader source: Energy.gov [DOE]

When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts.

337

Analysis of U.S. Greenhouse Gas Tax Proposals  

E-Print Network [OSTI]

The U.S. Congress is considering a set of bills designed to limit the nation’s greenhouse gas (GHG)

Metcalf, Gilbert E.

338

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov [DOE]

For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey.

339

Eco Logic International gas-phase chemical reduction process: The thermal desorption unit. Applications analysis report. Final report  

SciTech Connect (OSTI)

The report details the Superfund Innovative Technology Evaluation of the Eco Logic International`s gas-phase chemical reduction process, with an emphasis on their thermal desorption unit. The Eco Logic process employs a high temperature reactor filled with hydrogen as a means to destroy chlorinated organic wastes. The process is designed around a reduction reaction, which reduces the organic wastes into a high-BTU gas product. The thermal desorption unit is designed to work in conjunction with the Eco Logic Reactor system. It is intended to process soils and sludges, desorbing the organic contaminants into a hydrogen gas stream for subsequent treatment and destruction within the Reactor System. The demonstration program was conducted at the Middleground Island Landfill in Bay City, Michigan during October to December, 1992. The report provides details of the test program, summaries of analytical tests conducted on a variety of process streams, process economics, and case study information.

Sudell, G.

1994-09-01T23:59:59.000Z

340

Wealth, Responsibility, and Equity: Exploring an Allocation Framework for Global GHG Emissions  

Science Journals Connector (OSTI)

The need to develop a framework for allocatingnational GHG emissions based on ‘rights to theatmosphere’...

Ambuj D. Sagar

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GHG emissions and energy performance of offshore wind power  

Science Journals Connector (OSTI)

Abstract This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts. There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities. Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.

Hanne Lerche Raadal; Bjørn Ivar Vold; Anders Myhr; Tor Anders Nygaard

2014-01-01T23:59:59.000Z

342

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Slide courtesy of BioAmber #12;80% GHG Intensity 50% GHG Intensity 40% GHG Intensity 20% Reduction 50 Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e.g. bio-butanol Cellulosic Biofuel 60% GHG Reduction e.g. ethanol from corn stover or wood Greenhouse Gas

Levinson, David M.

343

Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental Externalities  

E-Print Network [OSTI]

emissions, it is clear that the energy usage will be subject to corresponding policies. Many have pointed of greenhouse gases (GHG) through net emissions reduction is needed to mitigate climate change. Energy estimated to account for 7.2 percent of all US GHG emissions, while total net sequestration from land

McCarl, Bruce A.

344

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Broader source: Energy.gov (indexed) [DOE]

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

345

Greenhouse Gas Mitigation Planning for Employee Commuting | Department of  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting Greenhouse Gas Mitigation Planning for Employee Commuting October 7, 2013 - 1:39pm Addthis Employee commuting is the single largest source of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. The establishment of Federal telework and transportation coordination programs over the past decade creates a strong foundation for commute behavior change. However few agencies have achieved substantial commuting emissions reductions from their fiscal year 2008 baseline inventories. Effective planning for aggressive commute reductions starts with the location of agency facilities. Facility siting and design decisions should be made with public transportation access in mind to make it easier for

346

Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use  

Science Journals Connector (OSTI)

Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus.We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19–48%, 40–62%, 90–103%, 77–97% and 101–115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.

Michael Wang; Jeongwoo Han; Jennifer B Dunn; Hao Cai; Amgad Elgowainy

2012-01-01T23:59:59.000Z

347

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:36am Addthis YOU ARE HERE Step 2 After a Federal agency has collected detailed information about its vehicle inventory, fuel consumption, usage, mission, and alternative fuel availability, it can analyze the data to determine the most cost-effective options for petroleum reduction and greenhouse gas (GHG) mitigation. Data can be analyzed at the agency, program, fleet (or site), or vehicle level for the following purposes: Determining the most important mobile emission sources Determining whether vehicles are performing and being utilized to minimize GHG emissions Identifying mission constraints. Next Step After analyzing data for evaluating an emissions profile, the next step in

348

Reduction of nitrogen oxides in diesel exhaust: Prospects for use of synthesis gas  

Science Journals Connector (OSTI)

Already commercialized and some of the most promising technologies of nitrogen oxide reduction in automotive diesel exhaust are compared. The Boreskov Institute of Catalysis... x ...

V. A. Kirillov; E. I. Smirnov; Yu. I. Amosov; A. S. Bobrin…

2009-01-01T23:59:59.000Z

349

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information The electric power industry reports the vast majority of their emissions (greater than 99 percent) through the use of continuous emissions monitors and fuel-use estimated data that are transmitted to the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA). EIA annually publishes data on GHG emissions and electric power generation. The "Electric Power Sector" in these publications is defined by EIA as the "energy-consuming sector that consists of electricity only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public - i.e., North American Industry Classification System 22 plants". It does not include CO2 emissions or

350

Capturing Fugitives to Reduce DOE's GHG Emissions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions November 15, 2011 - 2:04pm Addthis An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration. An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration.

351

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

352

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

353

Energy transition and path creation for natural gas in the Brazilian electricity mix  

Science Journals Connector (OSTI)

Abstract Emerging economies will account for more than 90% of net energy demand growth to 2035. Although there is international consent about the need for reducing green-house gas (GHG) emissions, reduction targets have been left to governments' responsibility. Such opening lead to different energy policies and approaches among countries, specially comparing developing economies to developed ones. Technology development and new reserves found have set natural gas as the lead resource for transitioning energy mixes to lower carbon levels. However, hydropower has been the main source for the Brazilian electricity grid, and increasing dispatch of natural gas in fact increases GHG, which has been the core of current Brazilian energy policies. We estimated future Brazilian market shares of hydro, thermal, wind and nuclear power, through historical data analysis of power dispatch and installed capacity. The findings propose that current Brazilian administration is creating a new technological path, which will lead far from the desired GHG targets. If actual growth rate of thermal power continues, by the year 2022 thermal plants will be major suppliers of the Brazilian electricity grid, leaving hydro with the second largest market share. Furthermore, we propose several approaches for increasing adoption of renewable distributed generation and the development of other market niches for natural gas in Brazil, as alternative paths.

Fabrício Peter Vahl; Nelson Casarotto Filho

2015-01-01T23:59:59.000Z

354

A Way through the Impasse in U.S. Climate Change Legislation: A GHG Tax That Possesses Political and Administrative Feasibility and Conforms to International Law  

E-Print Network [OSTI]

Trade? . II. THIS GHG TAX CONFORMS TOA. The Political Feasibility of a. GHG Tax .. B.Administrative Feasibility of a GHG Tax C. Cap and

Lowe, Sean

2011-01-01T23:59:59.000Z

355

Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States  

Broader source: Energy.gov [DOE]

This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows:...

356

More wind generation means lower GHG emissions, right?  

SciTech Connect (OSTI)

The answer to what will be the net effect of an x percent increase in wind generation on GHG emissions in a given system is not a simple y percent -- but is likely to depend on many variables, assumptions, modeling, and number crunching. But the result is important, and hence there has been a flurry of contradictory studies, confusing policymakers and the general public alike. While one can certainly find exceptions, under most circumstances, more renewable generation can be expected to result in lower GHG emissions.

NONE

2010-11-15T23:59:59.000Z

357

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

358

The connection between 2006 IPCC GHG inventory methodology and ISO 14064-1 certification standard – A reference point for the environmental policies at sub-national scale  

Science Journals Connector (OSTI)

Abstract The article shows how a joint application of the 2006 IPCC methodology and the ISO 14064-1 standard of certification, as well as the co-operation between academic, legislative and administrative organizations, are important points for a sustainable management of an administrative jurisdiction, providing positive environmental effects. The administrative systems can choose validated ISO 14064-1 GHG inventories, produced in time series, as a strategy tool for local management, as a compass to orient future policy decisions. The Province of Siena (Tuscany, Central Italy) was one regional system in Europe to achieve the ISO 14064-1 certification of its GHG inventories, developed in time series applying the 2006 IPCC methodology. The results of the time series (year 2006–2010) of GHG inventories elaborated for the Province of Siena point out that the performed environmental management policies may bring about a significant reduction of GHG emission released to the atmosphere over time (net emission: 449 Gg CO2eq in 2006, 84 Gg CO2eq in 2010). The experience of the Province of Siena can be considered a significant reference model for all public authorities at the micro and macro scale who are interested in reducing GHG emission.

Simone Bastianoni; Michela Marchi; Dario Caro; Paolo Casprini; Federico Maria Pulselli

2014-01-01T23:59:59.000Z

359

Resources on Greenhouse Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Resources on Greenhouse Gas October 7, 2013 - 2:30pm Addthis Many helpful resources about greenhouse gases (GHG) are available. Also see Contacts. GHG Reporting and Accounting Tools Annual GHG and Sustainability Data Report: Lists resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist agencies with completing comprehensive GHG inventory reporting requirements under Executive Order (E.O.) 13514. General Services Administration (GSA) Carbon Footprint and Green Procurement Tool: Voluntary tool developed by GSA to assist agencies in managing GHGs as required by E.O. 13514. Also see Greenhouse Gas Mitigation Planning Data and Tools.

360

An investigation of gas separation membranes for reduction of thermal treatment emissions  

SciTech Connect (OSTI)

Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

Stull, D.M.; Logsdon, B.W. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Pellegrino, J.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Data needs for greenhouse gas (GHG) mitigation planning related to Federal agency vehicles and mobile equipment can be described in terms of five key categories.

362

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies  

Broader source: Energy.gov [DOE]

To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy.

363

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

364

Price Disclosure, Marginal Abatement Cost Information and Market Power in a Bilateral GHG Emissions Trading Experiment  

Science Journals Connector (OSTI)

Against the global warming, the discussion on how to control the total amount of greenhouse gases (GHG’s) has started among countries in the ... which was the first agreement on the quantified GHG emission limita...

Yoichi Hizen; Tatsuyoshi Saijo

2002-01-01T23:59:59.000Z

365

What GHG Concentration Targets are Reachable in this Century?  

E-Print Network [OSTI]

We offer simulations that help to understand the relationship between GHG emissions and concentrations, and the relative role of long-lived (e.g., CO2) and short-lived (e.g., CH4) emissions. We show that, absent technologies ...

Paltsev, Sergey

2013-07-26T23:59:59.000Z

366

Current Activities of the GHG Scientific Advisory Group Ed Dlugokencky  

E-Print Network [OSTI]

. Motivation High GWP gases Valuable in emissions trading Network of measurements likely to expand. This may be important as our observations are used to verify emission inventories under GHG emissions trading schemes. We also prepare documents that can be used by developing countries to assess

367

DOE Technical Assistance on Greenhouse Gas Reduction Strategies in the Electric Power Sector  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) will continue to offer analysis and technical support for state, local, tribal and regional planning efforts related to reducing greenhouse gas emissions in the...

368

Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions  

Science Journals Connector (OSTI)

The mitigation of greenhouse gas emissions to acceptable levels is arguably the greatest...2 increase in the atmosphere. Carbon dioxide sequestration that consists of separation, transportation and...2..., is one...

Maryam Takht Ravanchi; Saeed Sahebdelfar…

2011-06-01T23:59:59.000Z

369

Progress in NO sub x and CO emission reduction of gas turbines  

SciTech Connect (OSTI)

Extensive operating experience with hybrid burners assembled in large combustion chambers has been gained over the last 3 1/2 years. Operating results have been equally successful for newly installed gas turbines as well as units retrofitted with the dry low NO{sub x} burners. For new V94.2 and V84.2 gas turbines built by Siemens/KWU for 50 and 60 Hz applications, this combustion system has become a standard feature.

Maghon, H.; Berenbrick, P. (Siemens, KWV, Mulheim (DE)); Termuehlen, H.; Gartner, G. (Siemens Power Corp., Brandenton, FL (US))

1990-01-01T23:59:59.000Z

370

Improving GHG inventories by regional information exchange: a report from Asia  

Science Journals Connector (OSTI)

The major outcomes of WGIAs intended to help countries improve GHG inventories, can be summarised as follows:...

Chisa Umemiya

2006-08-01T23:59:59.000Z

371

Insights from Agricultural and Forestry GHG Offset Bruce A. McCarl  

E-Print Network [OSTI]

Insights from Agricultural and Forestry GHG Offset Studies Bruce A. McCarl Regents Professor Agricultural and Forestry GHG Offset Studies that Might Influence IAM Modeling," that will appear in the book and Forestry GHG Offset Studies 1 Introduction The agricultural and forestry (AF) sectors exhibit critical

McCarl, Bruce A.

372

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL  

E-Print Network [OSTI]

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES ­ THE METHOD BEHIND GESTABOUES TOOL Pradel M., Reverdy, A.L. ORBIT2012 1 Assessing GHG emissions from sludge treatment and disposal. These different disposal routes as well as the sludge treatments produce greenhouse gases (GHG). To help

Boyer, Edmond

373

2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting  

E-Print Network [OSTI]

2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors October 2010 www.defra.gov.uk #12;2010 Guidelines to Defra / DECCs GHG Conversion Factors by the Department for Environment, Food and Rural Affairs #12;2010 Guidelines to Defra / DECCs GHG Conversion

374

McCarl contribution to ED Document Terrestrial GHG Quantification and Accounting  

E-Print Network [OSTI]

McCarl contribution to ED Document Terrestrial GHG Quantification and Accounting 1 Prices across.4.2.1 Current cost of a GHG offset................................................................ 13 1.4.2.2 Current offset equivalent of a GHG offset............................................ 14 1.4.2.3 Per unit

McCarl, Bruce A.

375

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting  

E-Print Network [OSTI]

2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors October 2009 www.defra.gov.uk #12;2009 Guidelines to Defra / DECC's GHG Conversion Factors and Rural Affairs #12;2009 Guidelines to Defra / DECC's GHG Conversion Factors: Methodology Paper

376

Supporting Private Healthcare in Developing Countries: The GHG Debates Oxfam in the British Medical Journal  

E-Print Network [OSTI]

Supporting Private Healthcare in Developing Countries: The GHG Debates Oxfam in the British programmes in poor countries, says Oxfam." The GHG and Oxfam Debate the Private Sector in the BMJ In March, Dominic Montagu, the GHG's Health System Initiative Lead, analyzed the report and found several

Klein, Ophir

377

UBC Social, Ecological Economic Development Studies (SEEDS) Student Report GHG Emissions Data Tracker User Manual  

E-Print Network [OSTI]

UBC Social, Ecological Economic Development Studies (SEEDS) Student Report GHG Emissions Data of a project/report." #12;GHG Emissions Data Tracker User Manual #12;Add/Edit vehicles Vehicles type addition field #12;Add New GHG Emissions Data This is the average CO2 data, distinguish by year, that user can

378

Heat loss reduction and hydrocarbon combustion in ultra-micro combustors for ultra-micro gas turbines  

Science Journals Connector (OSTI)

For the development of ultra-micro combustors for Ultra-Micro Gas Turbines (UMGT), heat loss reduction and hydrocarbon fuel use are the key issues. An approach for reducing the effect of heat loss in ultra-micro combustors was proposed. The heat loss ratio (HLR), which was defined as the ratio of heat loss rate from a combustor to heat release rate in the combustor, was related to the space heating rate (SHR), and experiments using some flat-flame ultra-micro combustors with hydrogen/air premixture exhibited the relation of HLR ? SHR?0.92/? (?, characteristic length of combustor). From the viewpoint of heat loss reduction, burning at high SHR in compact ultra-micro combustors is essential for a practical UMGT combustor. As for hydrocarbon combustion, the flat-flame burning method with and without catalyst was applied to propane fuel. The flat-flame combustor, having an inner diameter of 18.5 mm, a height of 3.5 mm, and a volume of 0.806 cm3, could form a propane flame successfully in the chamber without a catalyst and achieved an extremely high SHR of 3370 MW/(MPa m3). Flame stable region was wide enough, and the combustion efficiency achieved was more than 99.4% between the equivalence ratios of 0.5 and 0.7 at m ? a = 0.06 g / s . The flat-flame combustor using a Pt-impregnated porous plate showed catalytic combustion, but did not improve the combustion characteristic. On the other hand, the flat-flame combustor using a nozzle whose surface was covered with Pt showed a combination of catalytic and gas-phase combustion with improved combustion efficiency for a wider range of equivalence ratios, due to CO oxidation in the burned gas after gas-phase combustion in the chamber.

Takashi Sakurai; Saburo Yuasa; Taku Honda; Shoko Shimotori

2009-01-01T23:59:59.000Z

379

International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies  

E-Print Network [OSTI]

examine air pollution (and other pollutant) control policypolicies to control non-GHG air pollutants. These studiesair pollutant emission reduction and ancillary carbon benefits of SO 2 control

Williams, Christopher

2014-01-01T23:59:59.000Z

380

Recovery of Wasted Mechanical Energy from the Reduction of Natural Gas Pressure  

Science Journals Connector (OSTI)

Abstract At the present time in Romania, the transition from the natural gas transportation system to the distribution system is done only thru the use of pressure reducing stations. Here the pressure drop is usually done by using throttle valves or pressure reducing valves, where the gas energy is spent without doing any work. In this article we propose the use of turbo-expanders in the pressure reducing stations, where the natural gas pressure from the transportation grid is high and needs to drop to lower levels to enter the distribution grids, in this way part of the energy consumed in the compression stations are recovered. The plans are made at this time for a pilot project at the pressure reducing station in the city of Onesti, Bacau County.

Iancu Andrei; Tudorache Valentin; Tarean Cristina; Toma Niculae

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Broader source: Energy.gov (indexed) [DOE]

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

382

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Broader source: Energy.gov (indexed) [DOE]

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

383

Energy systems planning and GHG-emission control under uncertainty in the province of Liaoning, China – A dynamic inexact energy systems optimization model  

Science Journals Connector (OSTI)

Abstract In this study, a dynamic interval-parameter optimization model (DIP-REM) has been developed for supporting long-term energy systems planning in association with GHG mitigation in the region of Liaoning province. The model can describe Liaoning province energy planning systems as networks of a series of energy flows, transferring extracted/imported energy resources to end users through a variety of conversion and transmission technologies over a number of periods and address the problem of GHG-emission reduction within a general energy planning systems framework under uncertainty. Two scenarios (including a reference case) are considered corresponding to different GHG-emission mitigation levels for in-depth analysis of interactions existing among energy, socio-economy and environment in the Liaoning province. Useful solutions for Liaoning province energy planning systems have been generated, reflecting trade-offs among energy-related, environmental and economic considerations. The results can not only provide optimal energy resource/service allocation and capacity-expansion plans, but also help decision-makers identify desired policies for GHG mitigation with a cost-effective manner in the region of Liaoning province. Thus, it can be used by decision makers as an effective technique in examining and visualizing impacts of energy and environmental policies, regional development strategies and emission reduction measures within an integrated and dynamic framework.

J. Liu; Q.G. Lin; G.H. Huang; Q. Wu; H.P. Li

2013-01-01T23:59:59.000Z

384

Renewable portfolio standards, Greenhouse gas reduction, and Long-Line transmission investments in the WECC  

SciTech Connect (OSTI)

New, long-distance transmission lines to remote areas with concentrations of high-quality renewable resources can help western states meet the challenges of increasing renewable energy procurement and reducing greenhouse gas emissions more cost-effectively than reliance on local resources alone. The approach applied here to the Western Electricity Coordinating Council is useful for an initial determination of the net benefits of long-line transmission between regions with heterogeneous resource quality. (author)

Olson, Arne; Orans, Ren; Allen, Doug; Moore, Jack; Woo, C.K.

2009-11-15T23:59:59.000Z

385

A mathematical model of a gas-fed oxygen reduction porous electrode  

E-Print Network [OSTI]

. Experimental Procedure C. Experimental Results D. Analysis of Results IV. MODEL DEVELOPMENT 8 11 12 19 23 A. Gas Phase Diffusion B. Agglomerate Phase C. Reaction Rate Expression D. Boundary Conditions E. Solution of Equations MODEL PREDICTIONS VI... theories and equations that describe the physical processes in the electrode. A half cell apparatus is used in conducting the experiments for this study in which the membrane and electrode (MkE) assembly is fabricated without the porous anode. Instead...

Ridge, Stephen James

1988-01-01T23:59:59.000Z

386

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the automobile industry were 3.5 MMTCE in 1995. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of August 30, 2002. These include mostly data from 2000 and partial data from

387

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook 2007" data, energy-related CO2 emissions projected for the Iron and Steel industry were 133.5 MMTCO2 in 2006. The AEO Supplementary Tables were generated for the reference case of the Annual Energy Outlook 2007 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005-2030. The AEO2007 reflects data and information available as of September 15, 2006. Source: Annual Energy Outlook 2007 (PDF 38.44 KB) with

388

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of energy helps to pinpoint areas of energy intensity and characterize the unique energy needs of individual industries. On the supply side, the footprints provide details on the energy purchased from utilities (electricity, fossil fuels), energy generated onsite, and excess energy transported to the local grid. On the demand side, the footprints illustrate where and how energy is used within a typical plant, from central boilers to motors. Most important, the footprints identify where energy is lost due to inefficiencies, both inside and outside the plant boundary. Considerable energy is lost, for example, in steam and

389

Climate VISION: Private Sector Initiatives: Mining: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the mining industry were 31.2 MMTCE in 2002. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of August 30, 2002.) Source: Annual Energy Outlook 2003 with Projections to 2025, U.S.

390

Climate VISION: Private Sector Initiatives: Cement: GHG Information -  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of energy helps to pinpoint areas of energy intensity and characterize the unique energy needs of individual industries. On the supply side, the footprints provide details on the energy purchased from utilities (electricity, fossil fuels), energy generated onsite, and excess energy transported to the local grid. On the demand side, the footprints illustrate where and how energy is used within a typical plant, from central boilers to motors. Most important, the footprints identify where energy is lost due to inefficiencies, both inside and outside the plant boundary. Considerable energy is lost, for example, in steam and

391

Climate VISION: Private Sector Initiatives: Iron and Steel: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

392

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook 2007" data, energy-related CO2 emissions projected for the Bulk Chemical industry was 349.0 MMTCO2 in 2004. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2007 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005-2030. The AEO2007 reflects data and information available as of September 15, 2006. Source: Annual Energy Outlook 2007 with projections to 2030, U.S.

393

Ethanol production in biorefineries using lignocellulosic feedstock – GHG performance, energy balance and implications of life cycle calculation methodology  

Science Journals Connector (OSTI)

Abstract Co-production of high-value biobased products in biorefineries is a promising option for optimized utilization of biomass. Lignocellulosic materials such as agricultural and forest residues have been identified as attractive alternative feedstocks because of their high availability and low resource demand. This study assessed the greenhouse gas (GHG) performance and energy balance of ethanol co-production with biogas and electricity in biorefineries using straw and forest residues. Two calculation methods were used: Method I (ISO), which applied the international standard for life cycle assessment, and Method II, which applied the EU Renewable Energy Directive (RED) methodology. These methods differed in allocation procedure, functional unit and system boundaries. Analysis of the importance of significant methodological choices and critical parameters showed that the results varied depending on calculation method, with co-product handling and the inclusion of upstream impacts from residue harvesting explaining most of the differences. Important life cycle steps were process inputs in terms of enzymes and changes in soil organic carbon content due to removal of residues. Ethanol produced from forest residues generally gave lower GHG emissions than straw-based ethanol. The GHG savings for both feedstocks were 51–84% relative to fossil fuel. Omission of upstream impacts from residue recovery in agriculture and forestry in the RED method means that it risks overlooking important environmental effects of residue reuse. Furthermore, the default allocation procedure used in the RED method (energy allocation) may need revision for biorefineries where multiple products with different characteristics are co-produced.

Hanna Karlsson; Pål Börjesson; Per-Anders Hansson; Serina Ahlgren

2014-01-01T23:59:59.000Z

394

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

395

LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)  

SciTech Connect (OSTI)

In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

2009-07-20T23:59:59.000Z

396

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

397

Greenhouse Gas Mitigation Planning for Business Travel  

Broader source: Energy.gov [DOE]

Business travel is among the largest sources of Scope 3 greenhouse gas (GHG) emissions accounted for by Federal agencies. For some agencies, business travel can represent up to 60% of Scope 3...

398

Greenhouse Gas Mitigation Planning for Buildings  

Broader source: Energy.gov [DOE]

Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion...

399

Enhanced CO2 Gas Storage in Coal  

Science Journals Connector (OSTI)

Greenhouse gas (GHG) such as carbon dioxide (CO2) is largely believed to be a primary contributor to global warming. ... Four coals of various rank exploited from four main coal seams in China were tested. ...

Shu-Qing Hao; Sungho Kim; Yong Qin; Xue-Hai Fu

2013-12-05T23:59:59.000Z

400

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

402

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

403

An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Natural gas is transported in pipelines at high pressures. To distribute the gas locally at locations along the pipeline the pressure must be reduced before the gas enters the local distribution system. Most pressure reduction stations in North America use expansion valves for this purpose. The expansion process produces a temperature decrease which can cause problems so the gas must be preheated before entering the expansion valve. Usually this is done using a natural gas-fired boiler. To reduce the energy consumption the pressure drop can be achieved by passing the gas through a turboexpander which generates electrical power. With a turboexpander system the gas must also be preheated, a gas-fired boiler again used. A new approach which uses a hybrid turboexpander-fuel cell system has been considered here. In such a system, a Molten Carbonate Fuel Cell (MCFC) utilizing natural gas is used to preheat the gas before it flows through the turboexpander and to provide low emission electrical power. The main objective of the present work was to investigate the factors affecting the performance of such a system. Data on natural gas usage in typical smaller Canadian city was used as an input to a simulation of a hybrid gas expansion station in the city.

Clifford Howard; Patrick Oosthuizen; Brant Peppley

2011-01-01T23:59:59.000Z

404

Secretary of Energy Memorandum on DOE Greenhouse Gas Emission Reduction Goals  

Broader source: Energy.gov (indexed) [DOE]

March 31,2010 March 31,2010 MEMORANDUM FOR HEADS OF FROM: STEVEN CHU SUBJECT: Implementation of Executive Order 135 14, Federal Leadership in Environmental, Energy, and Economic Performance Addressing the crisis of climate change is the challenge of our time, and a fundamental priority for the Department of Energy. As the agency charged with advancing the Nation's energy security, we are committed to developing energy efficient technologies that support the transformation to a low-carbon economy. We must also lead by example in reducing greenhouse gas emissions associated with our own operations and facilities. On October 5,2009, the President issued Executive Order (EO) 135 14, "Federal Leadership in Environmental, Energy, and Economic Performance." This requires all

405

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

SciTech Connect (OSTI)

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

406

Idaho National Laboratory’s FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

407

Baselines for Greenhouse Gas Reductions: Problems, Precedents, Solutions.” Paper prepared for the Carbon Offsets Unit  

E-Print Network [OSTI]

Acknowledgements: Much of section 7 on lessons from demand-side-management is based on a background paper by Daniel Violette and Shannon Ragland of Hagler-Bailly Consulting. The discussion of the US emissions reductions credits draws on a background paper by Byron Swift of the Environmental Law Institute. The menu-choice method for baseline revelation was proposed in background material by Tracy Lewis. I am grateful to Johannes Heister and Charles Feinstein for helpful discussions and comments. However, all interpretations, conclusions, and errors are mine. The findings, interpretations, and conclusions expressed in this paper are entirely those of the author. They do not necessarily represent the view of the World Bank, its Executive Directors, or the countries they represent. SUMMARY Rigor in baselines It's important to establish the right degree of rigor in baselining. Overly lax baselines will threaten the system's credibility and usefulness, and shift rents from high quality providers to low quality providers of offsets. Overly stringent baselines will discourage valid projects and drive up project costs. The only 'magic bullet ' for baselining is to set up a national or sectoral baseline, and define offsets

Kenneth M. Chomitz

1998-01-01T23:59:59.000Z

408

Assess Potential Changes in Business Travel that Impact Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

Changes in Business Travel that Impact Greenhouse Changes in Business Travel that Impact Greenhouse Gas Emissions Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions October 7, 2013 - 1:22pm Addthis YOU ARE HERE Step 1 For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction. Conditions that may contribute to a significant increase or decrease in the agency's business travel, beyond specific efforts to reduce business travel demand, include: Significant changes in the agency's budget Addition or completion of major program activities that require

409

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in  

Broader source: Energy.gov (indexed) [DOE]

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:27am Addthis At this point in the analysis for using renewable energy in buildings, after estimating costs to implement strategies, there should be a list of sites and promising renewable energy technologies. The next step in the analysis is to prioritize those sites and technologies to achieve cost-effective reductions in greenhouse (GHG) emissions. In prioritizing the locations for cost-effective renewable energy project development, start with the sites that have the: Best resources Best financial incentives Highest energy rates. These factors are the most important for determining the economic viability

410

Building Trust in GHG Inventories from the United States and China | Open  

Open Energy Info (EERE)

Building Trust in GHG Inventories from the United States and China Building Trust in GHG Inventories from the United States and China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Counting the Gigatones: Building Trust in GHG Inventories from the United States and China Agency/Company /Organization: World Wildlife Fund Sector: Energy Focus Area: Conventional Energy Topics: GHG inventory, Background analysis Resource Type: Publications, Lessons learned/best practices Website: www.worldwildlife.org/climate/Publications/WWFBinaryitem16605.pdf Country: China, United States UN Region: Eastern Asia, Northern America Counting the Gigatones: Building Trust in GHG Inventories from the United States and China Screenshot References: GHG inventories China and US[1] "China and the United States are the world's largest emitters of

411

Event:Hands-on Training Workshop for the Africa Region on National GHG  

Open Energy Info (EERE)

GHG GHG inventories Jump to: navigation, search Calendar.png Hands-on Training Workshop for the Africa Region on National GHG inventories: on 2012/04/23 This hands-on training workshop hosted by the Consultative Group of Experts of the UNFCCC is aimed at assisting non-Annex I Parties in improving the preparation of the GHG inventories section of the national communications through training on a wide range of approaches, methods and tools. Event Details Name Hands-on Training Workshop for the Africa Region on National GHG inventories Date 2012/04/23 Location Namibia Organizer UNFCCC Tags LEDS, CLEAN, Training Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:Hands-on_Training_Workshop_for_the_Africa_Region_on_National_GHG_inventories&oldid=4184

412

Using Advanced Technology-Rich Models for Regional And Global Economic Analysis of GHG Mitigation  

Science Journals Connector (OSTI)

This article presents the case for a detailed regional analysis of the economic impacts of GHG control, via a set of inter-connected...

Richard Loulou; Amit Kanudia

2002-01-01T23:59:59.000Z

413

Boston Carbon Corp | Open Energy Information  

Open Energy Info (EERE)

technologies and processes, for which their clients can claim greenhouse gas (GHG) emission reductions and secure GHG Credits. Coordinates: 34.591093, -81.464796...

414

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

from renewable biomass and yields at least a 50% reduction in lifecycle greenhouse gas (GHG) emissions relative to the average lifecycle GHG emissions for petroleum-based diesel...

415

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the state by spurring technological innovation, New Jersey established greenhouse gas (GHG) emissions reduction targets. These targets include stabilization of GHG emissions to...

416

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

from renewable biomass that yields at least a 60% reduction in lifecycle greenhouse gas (GHG) emissions relative to the average lifecycle GHG emissions for petroleum-based fuel...

417

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

SciTech Connect (OSTI)

A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

Greenblatt, Jeffery B.

2013-10-10T23:59:59.000Z

418

Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor  

SciTech Connect (OSTI)

Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. The sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.

Song, Q.L.; Xiao, R.; Deng, Z.Y.; Shen, L.H.; Xiao, J.; Zhang, M.Y. [Southeast University, Nanjing (China)

2008-12-15T23:59:59.000Z

419

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.  

SciTech Connect (OSTI)

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

Han, J.; Mintz, M.; Wang, M. (Energy Systems)

2011-12-14T23:59:59.000Z

420

International Journal of Greenhouse Gas Control 16 (2013) 129144 Contents lists available at SciVerse ScienceDirect  

E-Print Network [OSTI]

.elsevier.com/locate/ijggc Comparative lifecycle inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR) methods inventory (LCI) to compare the lifecycle greenhouse gas (GHG) emis- sions of enhanced oil recovery (EOR oil recovery CCS Biomass IGCC NGCC Carbon credits a b s t r a c t This study uses a process lifecycle

Jaramillo, Paulina

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Venting and leaking of methane from shale gas development: response to Cathles et al.  

Science Journals Connector (OSTI)

In April 2011, we published the first comprehensive analysis of greenhouse gas (GHG) emissions from shale gas obtained by hydraulic fracturing, with a focus...2012...). Here, we respond to those criticisms. We st...

Robert W. Howarth; Renee Santoro; Anthony Ingraffea

2012-07-01T23:59:59.000Z

422

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

CMU  CO 2   CO 2 e  EIO?LCA  GHG  GWP  HVAC  IO  IPCC  kg 14 Supply Chain GHG3: Estimated average GHG emission factors for California

Masanet, Eric

2010-01-01T23:59:59.000Z

423

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are  

E-Print Network [OSTI]

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network on the overall power consumption and on the GHG emissions with just 25% of green energy sources. I. INTRODUCTION]. In the zero carbon approach, renewable (green) energy sources (e.g. sun, wind, tide) are employed and no GHGs

Politècnica de Catalunya, Universitat

424

Greenhouse Gas Training Program for Inventory and Mitigation Modeling |  

Open Energy Info (EERE)

Greenhouse Gas Training Program for Inventory and Mitigation Modeling Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Agency/Company /Organization: Future Perfect Sector: Climate Focus Area: GHG Inventory Development, Greenhouse Gas Topics: GHG inventory, Low emission development planning, -LEDS Resource Type: Case studies/examples, Training materials Website: www.gpstrategiesltd.com/divisions/future-perfect/ Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling[1] Logo: Greenhouse Gas Training Program for Inventory and Mitigation Modeling Jointly sponsored by Greenhouse Gas Inventory & Research (GIR) Center of

425

Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health  

SciTech Connect (OSTI)

Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

2013-10-01T23:59:59.000Z

426

Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094  

SciTech Connect (OSTI)

Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry basis. There were no signs of catalyst deactivation throughout the 6 day demonstration program, even under the high steam (>50%) content and chemically reducing conditions inherent to the THOR process. Utilization of the common Three-Way automotive catalyst may prove to be a cost effective method for improving NO{sub x} emissions from thermal treatment processes that utilize similar processing conditions. This paper will discuss the details of the implementation and performance of the Three-Way catalytic DeNO{sub x} unit at the THOR ESTD, as well as a discussion of future work to determine the long-term durability of the catalyst in the THOR process. (authors)

Foster, Adam L.; Ki Song, P.E. [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)

2013-07-01T23:59:59.000Z

427

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

428

Low Carbon Growth: a Potential Path for Mexico - GHG Abatement Cost Curve |  

Open Energy Info (EERE)

Growth: a Potential Path for Mexico - GHG Abatement Cost Curve Growth: a Potential Path for Mexico - GHG Abatement Cost Curve (Redirected from Mexico-McKinsey GHG Abatement Cost Curve) Jump to: navigation, search Name Low Carbon Growth: a Potential Path for Mexico - GHG Abatement Cost Curve Agency/Company /Organization Centro Mario Molina, McKinsey and Company Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Resource assessment, Background analysis Website http://www.esmap.org/filez/pub Country Mexico Central America References ESMAP Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth:_a_Potential_Path_for_Mexico_-_GHG_Abatement_Cost_Curve&oldid=3289

429

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open  

Open Energy Info (EERE)

CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

430

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools |  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools (Redirected from US EPA GHG Inventory Targeted Data Collection Strategies and Software Tools) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: US EPA GHG inventory Targeted Data Collection Strategies and Software Tools Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/swtoo Country: Nicaragua, Panama, Guatemala, Costa Rica, El Salvador, Honduras, Belize Cost: Free Central America, Central America, Central America, Central America, Central America, Central America, Central America

431

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z

432

Evaluate Greenhouse Gas Emissions Profile for Employee Commuting |  

Broader source: Energy.gov (indexed) [DOE]

Employee Commuting Employee Commuting Evaluate Greenhouse Gas Emissions Profile for Employee Commuting October 7, 2013 - 1:44pm Addthis YOU ARE HERE Step 2 To fulfill annual reporting requirements under Executive Order 13514, Federal agencies must estimate the total commute miles traveled by employees using each transportation method. While these data are rolled up to the agency level for reporting purposes, effective planning for commuter greenhouse gas (GHG) emission reductions requires an understanding of employee commute behavior at the worksite level. For agencies with hundreds or thousands of worksites across the country, worksite level analysis may not be feasible for all locations. It is recommended that agencies focus initial analysis on the largest worksites or clusters of worksites in major metropolitan areas with similar commuting

433

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Vehicles and Mobile Equipment Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:19pm Addthis YOU ARE HERE: Step 5 In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure,

434

Greenhouse Gas Guidance and Reporting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guidance and Guidance and Reporting Greenhouse Gas Guidance and Reporting October 7, 2013 - 10:05am Addthis Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Federal Guidance Read the White House Council on Environmental Quality's (CEQ), Federal Greenhouse Gas Accounting and Reporting Guidance, and associated Technical Support Document. Accounting and Reporting Resources Visit the FedCenter Greenhouse Gas Inventory Reporting website to find the following resources and tools to help complete GHG inventory reporting requirements under Executive Order 13514: FEMP and CEQ Reporting Resources: Core documents for Federal GHG reporting Checklist: Step-by-step introduction to GHG accounting

435

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network [OSTI]

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

436

Greenhouse Gas Mitigation Planning for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Fleets, non-fleet vehicles, aircraft, ships, and mobile equipment contribute to a large percentage of the Federal government's comprehensive Scope 1 and 2 greenhouse gas (GHG) emissions inventory.

437

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation  

Broader source: Energy.gov [DOE]

After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be...

438

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The fleet today runs more than 500 hybrid vehicles, which each reduce greenhouse gas (GHG) emissions by 30 percent. In 2011, it deployed 20 all-electric vans, which are...

439

Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned  

SciTech Connect (OSTI)

The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

Carpenter, A.; Hotchkiss, E.; Kandt, A.

2013-02-01T23:59:59.000Z

440

Opportunities to reduce greenhouse gas emissions from households in Nigeria  

Science Journals Connector (OSTI)

Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas (GHG) emissions through its consumption...2) emissions from kerosene combustion for lighting

O. Adeoti; S. O. Osho

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Deftitions and Long-Run Cost Dynamics  

E-Print Network [OSTI]

debate the cost of greenhouse gas (GHG) reduction, andpolicy-makers do not know whom to believe dynamics of GHG emission reduction. We explore these generic methodological issues with a case study of GHG reduction costs in Canada. INTRODUCTION In deciding how and by how much to reduce greenhouse gas (GHG

442

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based on Monte-Carlo simulations  

E-Print Network [OSTI]

Simplified life cycle approach: GHG variability assessment for onshore wind electricity based in the literature. In the special case of greenhouses gases (GHG) from wind power electricity, the LCA results performances with a simplified life cycle approach. Variability of GHG performances of onshore wind turbines

Paris-Sud XI, Université de

443

15th International Conference Ramiran, May 3-6, 2013, Versailles Accounting GHG emissions from sludge treatment and disposal routes  

E-Print Network [OSTI]

15th International Conference Ramiran, May 3-6, 2013, Versailles Accounting GHG emissions from is responsible of greenhouse gases (GHG) emissions. In 2010 and 2011, Irstea produces a tool called G ESTABoues to quantify GHG emissions emitted during sludge treatment and disposal routes. This paper aims to present how

Paris-Sud XI, Université de

444

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

445

Idaho National Laboratory’s Greenhouse Gas FY08 Baseline  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

446

U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)  

Reports and Publications (EIA)

On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

2006-01-01T23:59:59.000Z

447

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...and conventional gas are not significantly...harmonized estimates of life cycle GHG emissions...unconventional gas used for electricity...combined cycle turbine (NGCC) compared...explanation of the remaining harmonization...evaluated shale gas LCAs: inclusion of missing life cycle stages...

Garvin A. Heath; Patrick O’Donoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

448

How California Came to Pass AB 32, the Global Warming Solutions Act of 2006  

E-Print Network [OSTI]

s statewide greenhouse gas (GHG) emissions be reduced to theand stringent control on GHG emissions than exists in anyEleven other states have set GHG emission reduction targets,

Hanemann, W. Michael

2007-01-01T23:59:59.000Z

449

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network [OSTI]

green_city/Green_city_PDFs/GHG%20Methodology.pdf ICLEI.Program. WRI-WBCSD. GHG Protocol – China Program. Worldor greenhouse gas emission (GHG) reduction targets. Local

Zhou, Nan

2012-01-01T23:59:59.000Z

450

Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective  

Science Journals Connector (OSTI)

The production and supply of food currently accounts for 20–30% of greenhouse gas (GHG) emissions in the UK and the government and nongovernmental organisations are seeking to reduce these environmental burdens. Local authorities all over UK establish community farms with the aim to produce more sustainable food for citizens. This study used environmental Life Cycle Assessment (LCA) to quantify the potential savings of food-related GHG emissions that may be achieved with the establishment of an urban community farm, based on a case study recently found in the London Borough of Sutton. The work identified elements of the farm design that require the greatest attention to maximise these savings. The greatest reductions can be achieved by selecting the right crops: (i) providing the highest yields in local conditions and (ii) usually produced in energy-intensive greenhouses or air-freighted to UK from outside Europe. Implications from further development of the farm on the local, unused land were examined, taking into account market requirements. This showed that land used on an urban fringe for food production could potentially reduce greenhouse gas emissions in Sutton by up to 34 t CO2e ha?1 a?1. Although the percentage of this reduction in total diet emissions is relatively low, the result exceeds carbon sequestration rates for the conventional urban green space projects, such as parks and forests.

Michal Kulak; Anil Graves; Julia Chatterton

2013-01-01T23:59:59.000Z

451

Burkina Faso-Reducing the GHG Impacts of Sustainable Intensification | Open  

Open Energy Info (EERE)

Burkina Faso-Reducing the GHG Impacts of Sustainable Intensification Burkina Faso-Reducing the GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Burkina Faso-Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture

452

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1992-06-10T23:59:59.000Z

453

Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective  

Science Journals Connector (OSTI)

Abstract In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China.

Xianshuo Xu; Tao Zhao; Nan Liu; Jidong Kang

2014-01-01T23:59:59.000Z

454

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

455

A Comparison of GHG Inventories and Reduction Goals for Different Countries in Europe  

Science Journals Connector (OSTI)

This paper will present an overview of the role of the European Environment Agency (EEA) in environmental information at the European level for policy making and assessment as well as present and analyse some ...

Gordon McInnes

1999-01-01T23:59:59.000Z

456

Kenya-Reducing the GHG Impacts of Sustainable Intensification | Open Energy  

Open Energy Info (EERE)

Kenya-Reducing the GHG Impacts of Sustainable Intensification Kenya-Reducing the GHG Impacts of Sustainable Intensification Jump to: navigation, search Name Kenya-Reducing the GHG Impacts of Sustainable Intensification in East Africa Agency/Company /Organization CGIAR's Climate Change, Agriculture and Food Security (CCAFS), Canadian International Development Agency (CIDA), the Danish International Development Agency (DANIDA), the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in Agroforestry (ICRAF), International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), International Water Management Institute (IWMI), Ministry of Agriculture Sector Land Focus Area Agriculture Topics Adaptation, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, GHG inventory, Low emission development planning, -LEDS, -TNA

457

Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy 9 33 Feedstock energy 3 448 Total primary and feedstock energy* 5 1,557 GHG combustion emissions MMT CO 2 e Total 5 62 Onsite 6 23 *When total primary energy and...

458

Use of IPCC GHG key sources analysis to Mexico’s environmental policy  

Science Journals Connector (OSTI)

Intergovernmental Panel on Climate Change (IPCC) Tier 1 key sources level 1 assessment was applied to the 1994–1994 National Greenhouse Gases (GHG) emission inventory for Mexico in order to ... was carried out to...

Xochitl Cruz-Núñez; Luis Conde…

2008-02-01T23:59:59.000Z

459

National GHG inventories: Recent developments under the IPCC/OECD Joint Programme  

Science Journals Connector (OSTI)

This paper summarises key results of the Joint IPCC/OECD Programme, in particular the draft IPCC Guidelines for National GHG Inventories...to be released in January 1994. The focus is on how these results are lik...

Jan Corfee Morlot; Paul Schwengels…

1994-05-01T23:59:59.000Z

460

National GHG Inventories: Recent Developments under the IPCC/OECD Joint Programme  

Science Journals Connector (OSTI)

This paper summarises key results of the Joint IPCC/OECD Programme, in particular the draft IPCC Guidelines for National GHG Inventories...to be released in January 1994. The focus is on how these results are lik...

Jan Corfee Morlot; Paul Schwengels…

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pricing and Technology Options: An Analysis of Ontario Electricity Capacity Requirements and GHG Emissions  

Science Journals Connector (OSTI)

Many jurisdictions face the problem of having to reduce GHG emissions and new electricity capacity requirements. Ontario...2, SO2 and NOx emissions under different technologies. We also introduce “transfer of dem...

Pierre-Olivier Pineau; Stephan Schott

2005-01-01T23:59:59.000Z

462

Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Nonprocess energy 1 94 Feedstock energy 6 8 Total primary and feedstock energy* 3 3,565 GHG combustion emissions MMT CO 2 e Total 3 140 Onsite 3 68 * When total primary energy and...

463

Assessment of GHG inventories from the LUCF sector of Annex-I countries  

Science Journals Connector (OSTI)

Reporting of CO2...emissions and removals from the landuse change and forestry (LUCF) sector is assessed in this paper based onthe National GHG inventories and the National Communications submittedby the...2 (555...

N.H. Ravindranath; Rodel Lasco; P. Sudha

2001-01-01T23:59:59.000Z

464

The role of energy intensity improvement in the AR4 GHG stabilization scenarios  

Science Journals Connector (OSTI)

This study analyzes the role of energy intensity improvement in the short term (to the year 2020) and midterm (to the year 2050) in the context of long-term greenhouse gases (GHG) stabilization scenarios. The dat...

Tatsuya Hanaoka; Mikiko Kainuma; Yuzuru Matsuoka

2009-05-01T23:59:59.000Z

465

Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

Heath, G.

2012-06-01T23:59:59.000Z

466

Development and Update of Models for Long-Term Energy and GHG...  

Office of Environmental Management (EM)

Update of Models for Long-Term Energy and GHG Impact Evaluation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

467

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools |  

Open Energy Info (EERE)

EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools EPA-GHG Inventory Targeted Data Collection Strategies and Software Tools Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Targeted Data Collection Strategies and Software Tools Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learned/best practices, Training materials, Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/swtoo Country: Nicaragua, Panama, Guatemala, Costa Rica, El Salvador, Honduras, Belize Cost: Free Central America, Central America, Central America, Central America, Central America, Central America, Central America Coordinates: 13.7040888°, -89.1814075°

468

The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters  

Science Journals Connector (OSTI)

Abstract In this study a computational procedure for the computation of Joule–Thomson coefficient of natural gas has been developed using fundamental thermodynamic equations and AGA-8 equation of state, and then the minimum possible temperature of the natural gas entering to the pressure regulator of city gate stations (CGS) is calculated. As a case study, a CGS located in Bistoon (of Iran's CGSs) with nominal capacity of 20,000 SCMH has been considered. A comparison has been made between the calculated results and corresponding collected data from the station within 10 months. Results of this study help to determine the minimum temperature values of entering gas with different pressures to the regulator in order to avoid hydrate formation of the outlet gas, and can be used to design appropriate temperature control systems for water bath heaters and in turn save consumed energy for gas heating. The results show that heating the gas up to calculated minimum temperatures can save energy consumption of heaters by 43%. Also, it is indicated that by applying a control system, based on the result of this study, in the CGS the payback period would be less than a year.

Esmail Ashouri; Farzad Veysi; Ehsan Shojaeizadeh; Maryam Asadi

2014-01-01T23:59:59.000Z

469

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

from those exceeding the GHG target. Table: Summary ofBiofuel blending mandates. Low GHG fuel standards. Carbonpetroleum fuels. Use of lower GHG content fossil fuels (eg

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

470

Analysis of greenhouse gases trading system using conversations among stakeholders  

Science Journals Connector (OSTI)

Greenhouse gas (GHG) reduction agreement makes up the targeted reduction of a legally binding GHG for each country or region. It enables us to buy and sell some GHG with other countries; it is the GHG trading system. But now, some free riders, ... Keywords: GHG emissions, GHG trading systems, MAS, agent-based modelling, agent-based systems, consumer behaviour, emissions reduction, free riders, genetic algorithms, global warming, greenhouse gases, multi-agent simulation, multi-agent systems

Setsuya Kurahashi; Masato Ohori

2010-08-01T23:59:59.000Z

471

Reduction on Synthesis Gas Costs by Decrease of Steam/Carbon and Oxygen/Carbon Ratios in the Feedstock  

Science Journals Connector (OSTI)

The costs for syngas production at low steam/carbon and oxygen/carbon ratios have been analyzed for simplified process schemes of the main syngas production technologies (steam?CO2 reforming, autothermal reforming, and combined reforming) and different synthesis gas compositions. ... The process scheme is shown in Figure 2. Natural gas, saturated steam, and CO2 are preheated to 300?500 °C and mixed in the reactor burner at a pressure of 30 kg/cm2. ...

L. Basini; L. Piovesan

1998-01-05T23:59:59.000Z

472

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

473

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

474

New Scenario & Analytical Tools January 31, 2014  

E-Print Network [OSTI]

Use is the Answer at least part of #12;Assembly Bill 32 Greenhouse Gas Emissions #12;California GHG Gases GHG Reduction Vehicle Efficiency Fuel GHG Content Vehicle Miles Traveled Source: Growing Cooler, 2007 Land Use #12;Senate Bill 375 Regulates VMT ­ GHG Connection Targets: Establishes Regional GHG (VMT

Bertini, Robert L.

475

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

476

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure, headquarters level fleet managers and sustainability personnel should ensure that site-level staff have the necessary data collection tools to be able to analyze, strategically prioritize, and finally report their mitigation efforts. It is important for agencies to define the roles and responsibilities of their headquarters and site-level staff to ensure that strategies are continually refined based on performance.

477

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REVIEW AND PLAN NARRATIVE 14 GOAL 1: Greenhouse Gas Reduction 14 1.1 28% Scope 1 & 2 GHG reduction by FY 2020 from a FY 2008 baseline 14 1.2 13% Scope 3 GHG Reduction 19 GOAL...

478

Greenhouse Gas Management Institute (GHGMI) | Open Energy Information  

Open Energy Info (EERE)

Institute (GHGMI) Institute (GHGMI) Jump to: navigation, search Logo: Greenhouse Gas Management Institute (GHGMI) Name Greenhouse Gas Management Institute (GHGMI) Address Washington, D.C. Place Washington, District of Columbia Phone number 1-888-778-1972 Website http://ghginstitute.org/housek References http://ghginstitute.org/housekeeping/contact-us/ No information has been entered for this organization. Add Organization The Greenhouse Gas Management Institute (GHGMI) was founded in response to the growing demand for qualified greenhouse gas (GHG) professionals. Just as engineering and financial accounting rely on certified professionals, GHG emissions management requires a highly competent and ethical professional class to undertake measurement, reporting, auditing, and

479

Nitrate reduction  

DOE Patents [OSTI]

Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

2000-01-01T23:59:59.000Z

480

U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...  

Energy Savers [EERE]

2012 The report ranks the energy use, energy losses, and energy-related greenhouse gas (GHG) emissions of 15 sectors. These sectors collectively account for 94% of all energy use...

Note: This page contains sample records for the topic "gas ghg reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy.

482

Corporate greenhouse gas management in the context of emissions trading regimes  

Science Journals Connector (OSTI)

The article analyses the impact greenhouse gas emissions trading (GHG-ET) regimes have on companies ... The main consequences of the European Union’s emissions trading scheme (which, albeit limited to CO2 emissio...

Ralf Antes

2006-01-01T23:59:59.000Z

483

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting  

Broader source: Energy.gov [DOE]

For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated.

484

Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. economy, converting raw materials such as petroleum, natural gas, minerals, coal, air, and water into more than 70,000 diverse products. Chemical products are critical...

485

Preliminary GHG Emissions Inventory for the Slovak Republic  

Science Journals Connector (OSTI)

This paper presents preliminary results of a greenhouse gas emissions inventory for the Slovak Republic. The key gases included are carbon dioxide, methane, and nitrous oxide. Chlorofluorocarbons are excluded ...

Katarína Mare?kova; Pavol Bielek; Stanislav Kucirek…

1996-01-01T23:59:59.000Z

486

Energy and GHG Emissions in British Columbia 1990 -2010  

E-Print Network [OSTI]

supply and use, greenhouse gas emissions and energy efficiency in British Columbia Canadian Industrial Energy End-use Data and Analysis Centre (CIEEDAC) Simon Fraser University June 2012 Environment Canada, Natural Resources Canada, Aluminium Industry Association, Canadian Chemical Producers

Pedersen, Tom

487

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: GHG Uncertainty Guide[1] The Greenhouse Gas Protocol Uncertainty Tool is designed to facilitate a quantitative and qualitative estimation of uncertainty associated with a

488

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program |  

Broader source: Energy.gov (indexed) [DOE]

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program October 7, 2013 - 10:48am Addthis When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs. Using the total buildings energy use by program, these emissions profile can be calculated using the Federal Energy Management Program's Annual GHG and Sustainability Data Report site. In the example below, Agency ABC should focus on Programs B and C first because together they represent over 80% of building emissions. Agencies

489

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

490

Land-use change and greenhouse gas emissions from corn and cellulosic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

491

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

492

Assess and improve the national GHG inventory and other economic and  

Open Energy Info (EERE)

Assess and improve the national GHG inventory and other economic and Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

493

Greenhouse Gas Emissions for Different Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

494

Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO2 capture  

Science Journals Connector (OSTI)

Abstract The cogeneration of substitute/synthetic natural gas (SNG) and power from coal based plants with CO2 capture is an effective way to improve energy efficiency and to reduce CO2 emissions. In this paper, we evaluate the techno-economic performance of a SNG and power cogeneration technology with CO2 capture. Current localization level (the cost difference of a technology in different nations and districts) of each subunit of this technology is analyzed. The cost reduction potential of this technology is also predicted, and the role of technology localization and efficiency upgrade in cost reduction is investigated based on a range of learning rates and different coal prices from 90$/t to 150$/t. Results show that the unit investment of this cogeneration technology presented in our previous paper is around 1700$/kW currently and the investment of SNG synthesis, coal gasification and combined cycle unit comprises over 60% of the total investment. The equivalent SNG production cost is quite sensitive to coal prices and ranges from 0.15 to 0.50$/Nm3. Through localization, the unit investment of this technology can be decreased by 30% currently. The key technologies including coal gasification, SNG synthesis and high performance gas turbine need further localization because of their relatively low current localization levels and big localization potential. Through cost learning, the future investment of the technology can be decreased to 700–1100$/kW, which may be competitive with the unit investment of IGCC technology with CO2 capture and even may be lower than that of the pulverized coal power plant with CO2 capture. Technology localization and efficiency upgrade will play important roles in cost reduction, which can contribute 300–500$/kW and 125–225$/kW to cost reduction, respectively. The results presented in this paper indicate that the coal to SNG and power technology with CO2 capture is a promising and competitive option for energy saving and CO2 abatement, and can be a support for policy making, technology options etc.

Sheng Li; Hongguang Jin; Lin Gao; Xiaosong Zhang; Xiaozhou Ji

2014-01-01T23:59:59.000Z

495

Oxygen reduction on gas-diffusion electrodes for phosphoric acid fuel cells by a potential decay method  

SciTech Connect (OSTI)

The reduction of gaseous oxygen on carbon-supported platinum electrodes has been studied at 150 C with polarization and potential decay measurements. The electrolyte was either 100 weight percent phosphoric acid or that acid with a fluorinated additive, potassium perfluorohexanesulfonate (C{sub 6}F{sub 13}SO{sub 3}K). The pseudo-Tafel curves of the overpotential vs log (ii{sub L}/(i{sub L}{minus}i)) show a two-slope behavior, probably due to different adsorption mechanisms. The potential relaxations as functions of log (t+r) and log({minus}d{eta}/dt) have been plotted. The variations of these slopes and the dependence of the double-layer capacitance on the overpotential depended on the electrode manufacture and the kind of electrolyte (whether containing the fluorinated additive or not).

Li Qingfeng; Xiao Gang; Hjuler, H.A.; Berg, R.W.; Bjerrum, N.J. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry

1995-10-01T23:59:59.000Z

496

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) p