Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

2

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

3

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

4

Covered Product Category: Residential Gas Furnaces  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

5

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

REFINERY FURNACES RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI Sp...A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

6

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

7

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

8

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

9

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

10

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

11

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

12

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

13

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

14

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

15

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

16

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

17

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

18

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

19

Model of the radial distribution of gas in the blast furnace  

SciTech Connect (OSTI)

This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

Nikus, M.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1996-12-31T23:59:59.000Z

20

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

ASHRAE test procedure for several furnace efficiency levels (80%, 81%, 90%,ASHRAE Test Procedure 80% AFUE (Two-stage, BPM) 81% AFUE (Two-stage, BPM) 90%

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

22

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

23

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

24

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

25

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect (OSTI)

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

26

Gas-powder flow in blast furnace with different shapes of cohesive zone  

SciTech Connect (OSTI)

With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia)

2006-11-15T23:59:59.000Z

27

Direct current, closed furnace silicon technology  

SciTech Connect (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

28

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

29

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotofFurnaces Covered

30

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

31

Gas-Fired Boilers and Furnaces | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related-GammaGas

32

Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace  

SciTech Connect (OSTI)

Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

1995-12-01T23:59:59.000Z

33

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

34

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect (OSTI)

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

35

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

36

Process control techniques for the Sidmar blast furnaces  

SciTech Connect (OSTI)

The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

1995-12-01T23:59:59.000Z

37

Light gas gun with reduced timing jitter  

DOE Patents [OSTI]

Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

Laabs, G.W.; Funk, D.J.; Asay, B.W.

1998-06-09T23:59:59.000Z

38

DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg  

SciTech Connect (OSTI)

Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

2004-03-01T23:59:59.000Z

39

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

40

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

and F. Southworh. 2004. Heat pump water heater technology:gas tankless water heaters, heat pump water heaters,heat pump space heaters, and solar water heaters, as well as

Lekov, Alex

2011-01-01T23:59:59.000Z

42

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

43

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently...

O'Brien, T.

2008-01-01T23:59:59.000Z

44

Effective Lone Star program reduces unaccounted-for gas  

SciTech Connect (OSTI)

Lone Star's program for holding down its gas losses implements individual remedies for each of six broad categories of unaccounted-for gas: measurement at other than base conditions, meter inaccuracy, meter-reading errors, accounting mistakes, unmetered or unrecorded gas use, and leakage. Even though some of these remedies will not be fully effective for 2 more years, the program's first year of operation has reduced unaccounted-for gas volumes by 9.2%.

Wallace, J.E.

1982-04-01T23:59:59.000Z

45

Improved graphite furnace atomizer  

DOE Patents [OSTI]

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

46

Furnace assembly  

DOE Patents [OSTI]

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

47

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS  

E-Print Network [OSTI]

(CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

48

Process for production of synthesis gas with reduced sulfur content  

DOE Patents [OSTI]

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

49

Rebuilding of Rautaruukki blast furnaces  

SciTech Connect (OSTI)

Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

50

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect (OSTI)

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

51

Two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1998-05-05T23:59:59.000Z

52

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

53

Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A. [Inland Steel Co., East Chicago, IN (United States)

1995-12-01T23:59:59.000Z

54

An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial GasFired Furnace \\Lambda  

E-Print Network [OSTI]

for the convective, viscous, and radiative heat transport terms in the mixed cells, while a finite element [20] which accounts for species diffusion, convective and radiative heat transfer, viscous transportAn Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas

55

Environmental assessment for proposed energy conservation standards for two types of consumer products; refrigerators, refrigerator-freezers, and freezers; small gas furnaces; and a proposed No standard standard for television sets  

SciTech Connect (OSTI)

This environmental assessment (EA) evaluates the environmental impacts resulting from new or amended energy-efficiency standard for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as mandated by the National Appliance Energy Conservation Act of 1987. A complete description of the Engineering and Economic Analysis of the proposed standards may be found elsewhere in the Technical Support Document (TSD). Four of the 14 scenarios for product design changes described in the Engineering Analysis of the TSD are chosen for environmental assessment based on their relative importance as design measures. Values for energy savings that result from product design changes are also taken from the TSD. The two main environmental concerns addressed are emissions from fossil fuel-fired electricity generation and the chlorofluorcarbons used in the production of rigid insulation foam. Each of the 12 design options for refrigerators and freezers result in decreased electricity use and and, therefore, reduced power plant emissions. Design changes that call for additional rigid foam insulation per appliance are of interest because they affect chlorofluorocarbon consumption. There is strong evidence that chlorofluorocarbons migrate to the stratosphere, break down, and catalyze the destruction of stratospheric ozone.

Not Available

1988-01-01T23:59:59.000Z

56

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

57

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

58

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

59

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 7, July--September 1993  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. Foster Wheeler Development Corporation (FWDC) is leading a team of companies involved in this effort. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown in Figure 1.

Not Available

1993-11-01T23:59:59.000Z

60

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network [OSTI]

NANGAS (North American Natural Gas Analysis System), E2020 (Modeling Forum (EMF). 2003. Natural Gas, Fuel Diversity and2003. Increasing U.S. Natural Gas Supplies: A Discussion

Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy Savers [EERE]

greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program...

62

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

63

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Broader source: Energy.gov (indexed) [DOE]

As these "conventional" reservoirs become harder to find, however, we are turning to oil and natural gas in shale or other less-permeable geologic formations, which do not...

64

Trends in furnace control  

SciTech Connect (OSTI)

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

65

Portable instrument and method for detecting reduced sulfur compounds in a gas  

DOE Patents [OSTI]

A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

1983-06-01T23:59:59.000Z

66

A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)  

SciTech Connect (OSTI)

Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

Nabi, G.

1996-12-31T23:59:59.000Z

67

Vertical two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1999-03-16T23:59:59.000Z

68

Automatic Control System of Car-Bottom Reheating Furnace  

E-Print Network [OSTI]

At present China has large quantities of two-regenerator gas reheating furnaces which are old in fashion and low in calorific efficiency. Therefore, the question how to increase the calorific efficiency is very much concerned on condition...

Xueqiao, M.; Weilian, X.; Hongchen, Z.

69

Evaluation of heat flux through blast furnace shell with attached sensors  

SciTech Connect (OSTI)

Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

1996-12-31T23:59:59.000Z

70

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect (OSTI)

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

71

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

Not Available

1997-10-01T23:59:59.000Z

72

Reduced Regeneration Energy CO2 Adsorbent | Center for Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenterandGas SeparationsRelevant to

73

REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING  

E-Print Network [OSTI]

mitigation effort post-2012. Reducing GHG emissions from Deforestation and Degradation (REDD)2 in developing of Environment of Mexico1 Esteve Corbera and Katrina Brown Tyndall Centre for Climate Change Research, UK School of Mexico or the Mexican Government. #12;ABSTRACT This paper provides a critical perspective to the debate

Watson, Andrew

74

E-Print Network 3.0 - arc furnaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Solar Energy for the Production of Fullerenes and Summary: with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere......

75

Effect of furnace atmosphere on E-glass foaming  

SciTech Connect (OSTI)

The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-12-01T23:59:59.000Z

76

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Patents [OSTI]

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

77

Residential Furnace Blower Performance  

E-Print Network [OSTI]

conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

78

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry production facilities in Texas.  

E-Print Network [OSTI]

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry Summary: There are increasing numbers of poultry production buildings, with large, densely housed flocks to allow producers to meet the increasing demand for poultry products and, yet, reduce the environmental

Mukhtar, Saqib

79

Recent improvements in casthouse practices at the Kwangyang blast furnaces  

SciTech Connect (OSTI)

POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

1997-12-31T23:59:59.000Z

80

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces  

SciTech Connect (OSTI)

Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu [Nippon Steel Corp., Kimitsu, Chiba (Japan). Kimitsu Works; Nakagome, Michiru; Kuze, Toshisuke [Nippon Steel Corp., Futtsu, Chiba (Japan); Imuta, Akira [Nippon Steel Corp., Tokyo (Japan). Plant and Machinery Div.

1997-12-31T23:59:59.000Z

82

Federal, state and utility roles in reducing new building greenhouse gas emissions  

SciTech Connect (OSTI)

This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

1995-03-01T23:59:59.000Z

83

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

84

Application of AI techniques to blast furnace operations  

SciTech Connect (OSTI)

It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

1995-10-01T23:59:59.000Z

85

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere  

E-Print Network [OSTI]

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

Montes-Hernandez, German

86

Furnaces | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using RenewableFurnaces Jump to:

87

Modelling of multiphase flow in ironmaking blast furnace  

SciTech Connect (OSTI)

A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

2009-01-15T23:59:59.000Z

88

Operating experience with 100% pellet burden on Amanda blast furnace  

SciTech Connect (OSTI)

A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

1993-01-01T23:59:59.000Z

89

Cupola Furnace Computer Process Model  

SciTech Connect (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

90

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

91

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

92

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect (OSTI)

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

93

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

94

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

95

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

96

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

97

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents [OSTI]

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

98

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect (OSTI)

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

99

Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption  

SciTech Connect (OSTI)

The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

1995-12-01T23:59:59.000Z

100

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

102

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

103

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 3. Final report  

SciTech Connect (OSTI)

Testing of an atmospheric circulating bed pyrolyzer was done at Southern Illinois University. A variety of experiments have been conducted in a laboratory scale pyrolyzer with coal input flow rates from 2 to 6 lb/h. three feed coal particle sizes, corresponding to a nominal -40 mesh, -30 mesh and -18 mesh were used. The limestone used in the tests was a Genstar limestone. Parameters investigated in the tests include the influence of superficial velocity, temperature and coal-air mass ratios. Char particle size distributions under various test conditions have been measured and the char composition determined. Fuel gas composition, yields and heating values have been investigated. Char morphology has been studied using scanning electron microscopy. Char reactivity for selected samples has been measures, and the influence of feed coal size, bed temperature and superficial velocity has been determined. Material balance calculations have been performed and found to be in very good agreement. Energy audit calculations for the process have been made to investigate the flow of energy and to estimate the losses during the process. Full details of the data, results obtained and conclusions drawn are presented.

NONE

1996-05-01T23:59:59.000Z

104

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network [OSTI]

10% Figure A-3. Annual Natural Gas Heat Rates, by Study UCSBarret, C. 1992. “U.S. Natural Gas Market: A DisequilibriumCalifornia’s Reliance on Natural Gas. Santa Monica, Calif. :

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

105

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

106

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

107

Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream  

SciTech Connect (OSTI)

A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI); Den, Ling (Sterling Heights, MI); Viola, Michael B. (Macomb Township, MI); Lee, Jong-Hwan (Rochester Hills, MI)

2011-08-30T23:59:59.000Z

108

Improvement of tap holes at Wakayama No. 5 blast furnace  

SciTech Connect (OSTI)

The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1995-12-01T23:59:59.000Z

109

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect (OSTI)

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

110

Air Leakage of Furnaces and Air Handlers Iain S. Walker, Mike Lubliner, Darryl Dickerhoff,  

E-Print Network [OSTI]

Air Leakage of Furnaces and Air Handlers of California. #12;1 Air Leakage of Furnaces and Air Handlers Iain S. Walker, LBNL Mike Lubliner, Washington been made in reducing air leakage in residential and to a lesser extent small commercial forced air

111

Hot metal Si control at Kwangyang blast furnaces  

SciTech Connect (OSTI)

Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H. [POSCO, Cheollanamdo (Korea, Republic of). Kwangyang Works

1995-12-01T23:59:59.000Z

112

Reduced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivisionReduced intermittency in

113

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

114

High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005  

SciTech Connect (OSTI)

GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

Soupos, V.; Zelepouga, S.; Rue, D.

2005-06-30T23:59:59.000Z

115

Multi-strike ignition to improve performance, reduce misfiring of large gas engines  

SciTech Connect (OSTI)

New product and application information is now available on the advanced `CPU-2OOO` digital ignition system introduced by Altronic earlier this year for large-bore gas engines and integral compressors. The system is designed to improve performance, reduce misfiring, and be easily retrofitted to existing large-bore engines. including those that are being converted to lean-burn combustion in order to reduce emissions. To do this, the CPU-2OOO system features a selectable multi-striking mode, a selectable energy level and second spark plug cut-off control, a choice of global or individual cylinder timing control, and a high-energy long-duration spark. The 24 Vdc-powered system also offers comprehensive display and communications capabilities, plus system diagnostics and self-test functions. The system uses existing Altronic II-CPU coils, pickups, primary wiring harnesses and other hardware, allowing for easy upgrades of existing II-CPU installations. Also, a detonation avoidance system is being developed as an option for engine protection. Altronic says the field tests have demonstrated the ability of the CPU-20OO system to ignite extra-lean mixtures created when turbochargers are added to engines that previously operated at much richer levels. NO{sub x} emissions have been reduced by as much as 88%, to less than 2.7 g/kWh.

NONE

1995-10-01T23:59:59.000Z

116

Cement advanced furnace and process  

SciTech Connect (OSTI)

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

117

Residential Condensing Gas Furnaces | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryer (AppendixCondensing

118

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network [OSTI]

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

119

Comparing Residential Furnace Blowers for  

E-Print Network [OSTI]

of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

120

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

122

Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300,...

123

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

124

New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

125

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

126

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

127

Peoples Gas- Commercial and Industrial Prescriptive Rebate Program  

Broader source: Energy.gov [DOE]

Peoples Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers,...

128

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

Furnace (2) Heater (35) Water Heater (32) ~ Space u.. c:Emissionsfrom Gas-fired Water Heaters, Report No. 1507,gas furnaces and water heaters," JAPCA 31:1268 (1981). Table

Traynor, G.W.

2011-01-01T23:59:59.000Z

129

Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices  

SciTech Connect (OSTI)

New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

Committee on Climate Change Science and Technology Integration (CCCSTI)

2009-01-01T23:59:59.000Z

130

REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS  

SciTech Connect (OSTI)

An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

Ronald C. Surdam

2003-12-29T23:59:59.000Z

131

Ferrosilicon smelting in a direct current furnace  

DOE Patents [OSTI]

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

132

Crystal growth furnace with trap doors  

DOE Patents [OSTI]

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

133

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

134

Measurement of airflow in residential furnaces  

SciTech Connect (OSTI)

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

135

Furnaces Data | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department ofFurnaces

136

Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace  

SciTech Connect (OSTI)

In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

1995-12-01T23:59:59.000Z

137

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

138

Colorado Natural Gas- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

139

Nicor Gas- Commercial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Nicor Gas offers a variety of rebates to commercial customers for the purchase and installation of energy efficient products. Rebates are available on water heaters, furnaces, boilers, boiler...

140

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network [OSTI]

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

Haseltine, D. M.; Laffitte, R. D.

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Existing and prospective blast-furnace conditions  

SciTech Connect (OSTI)

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

142

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

143

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

144

Optical cavity furnace for semiconductor wafer processing  

DOE Patents [OSTI]

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

145

Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow  

DOE Patents [OSTI]

An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

Orosa, John

2014-03-11T23:59:59.000Z

146

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

147

DOE Publishes Notice of Proposed Rulemaking for Residential Furnace...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Furnace Fans Energy Conservation Standards DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards October 25, 2013 - 12:00am Addthis...

148

Optimizing Blast Furnace Operation to Increase Efficiency and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

149

Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach  

SciTech Connect (OSTI)

In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.

Beau, Mathieu, E-mail: mbeau@stp.dias.ie [Dublin Institute for Advanced Studies School of Theoretical Physics, 10 Burlington Road, Dublin 4 (Ireland)] [Dublin Institute for Advanced Studies School of Theoretical Physics, 10 Burlington Road, Dublin 4 (Ireland); Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Aarhus C (Denmark)] [Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Aarhus C (Denmark)

2014-05-15T23:59:59.000Z

150

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

151

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

152

The formation of an ore free blast furnace center by bell charging  

SciTech Connect (OSTI)

A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C. [Hoogovens Research and Development, IJmuiden (Netherlands); Toxopeus, H.L.; Vliet, C. van der [Hoogovens Staal Primary Products, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

153

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect (OSTI)

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

Mills, Evan

2009-07-16T23:59:59.000Z

154

High productivity in Australian blast furnaces  

SciTech Connect (OSTI)

Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

1995-12-01T23:59:59.000Z

155

Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates  

SciTech Connect (OSTI)

Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

1996-12-31T23:59:59.000Z

156

The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant  

SciTech Connect (OSTI)

There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

1996-12-31T23:59:59.000Z

157

Catalysts, systems and methods to reduce NOX in an exhaust gas stream  

DOE Patents [OSTI]

Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ)

2010-07-20T23:59:59.000Z

158

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

used to power your water heater? a. Natural Gas b. Propaneranges, furnaces and water heaters. The most common gasof gas heaters or water heaters within the home (indicating

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

159

Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area  

SciTech Connect (OSTI)

As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

Kandt, A.; Hotchkiss, E.; Fiebig, M.

2010-10-01T23:59:59.000Z

160

Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing  

E-Print Network [OSTI]

by fluidized bed gasification at temperatures below the 1090 K (1500 F) ash fusion temperatur es. Subsequent burning of the LCV gas r esulted in the same type of severe slagging, fouling, and cor r osion pr oblems as wer e encounter ed dur ing combustion... concentrations during fuel rich combustion, can also fix N2 to give CN and HCN (Fenimore, 1971), thus contributing to the amount of fixed nitrogen available for the fuel NOx path. NOx formed by this path, suggested by Fenimore (1971), is known as "prompt...

Finch, Stanley Frank

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network [OSTI]

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

162

Recycling of electric-arc-furnace dust  

SciTech Connect (OSTI)

Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

Sresty, G.C.

1990-05-01T23:59:59.000Z

163

Flue gas cleaning with ammonia reduces SO{sub 2} emission  

SciTech Connect (OSTI)

This paper describes the technical and commercial development and basis for application in North America for wet flue gas desulfurization (FGD) of the AMASOX{reg_sign} (i.e. Ammonia Absorbs Sulfur Oxides) Process of Krupp Uhde (Germany) employing ammonia reagent. This process technology has been emerging slowly and stepwise over a twenty-year period in reaching the present stage of commercial applicability. The discussion herein considers the need for accommodating to and advantageously addressing the increasing number of applications with high and ultra-high flue-gas concentrations of SO{sub 2} at the boiler outlet accompanied by significant levels of other pollutants. Key measures in accomplishing this include use of important process innovations. This, as well, calls for the effective use, when applicable, of wet electrostatic precipitator mist-elimination means to gain low/minimum-opacity stack plume trailoff in wet scrubber use together with reduction of air toxics to low concentrations. With cost-effectiveness in electric utility service, detailed herein, superior to FGD processes commonly used to date in high-sulfur service, utilization of this technology is expanding. Important, potentially trend-setting types of powerplant applications of ammonia FGD are reviewed to identify foreseen market sectors and procurement trends that will at the same time serve to substantially broaden lowest-cost coal utilization.

Emish, G.J. [Krupp Wilputte Corp., Bridgeville, PA (United States); Schulte, W. [Krupp Uhde GmbH, Dortmund (Germany); Ellison, W. [Ellison Consultants, Monrovia, MD (United States)

1997-12-31T23:59:59.000Z

164

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach  

SciTech Connect (OSTI)

Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

Amy Childers

2011-03-30T23:59:59.000Z

165

Blast furnace supervision and control system  

SciTech Connect (OSTI)

On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

1997-12-31T23:59:59.000Z

166

A consortium approach to glass furnace modeling.  

SciTech Connect (OSTI)

Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

Chang, S.-L.; Golchert, B.; Petrick, M.

1999-04-20T23:59:59.000Z

167

Energy Assessment Protocol for Glass Furnaces  

E-Print Network [OSTI]

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

168

Studies of charging stream trajectories and burden distribution in the blast furnace  

SciTech Connect (OSTI)

This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

1993-01-01T23:59:59.000Z

169

Optimized Design of a Furnace Cooling System  

E-Print Network [OSTI]

-evaluate the dynamics of heat transfer for a key piece of industrial equipment, a sintering furnace. The goal is to optimize furnace operations to relieve an operations bottleneck for a tungsten carbide drill nozzle production facility. In light of plans to mitigate... convection are the radiation shield and the inner chamber door. 2) Analysis Preliminary analysis and calculations have been made to determine the impact of increased convection. This was done by creating a theoretical spherical mass of tungsten carbide...

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

170

Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation  

DOE Patents [OSTI]

Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ); Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI)

2011-05-17T23:59:59.000Z

171

Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation  

DOE Patents [OSTI]

Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.

Koermer, Gerald S. (Basking Ridge, NJ); Moini, Ahmad (Princeton, NJ); Furbeck, Howard (Hamilton, NJ); Castellano, Christopher R. (Ringoes, NJ)

2012-05-08T23:59:59.000Z

172

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOE Patents [OSTI]

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01T23:59:59.000Z

173

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

174

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

175

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

176

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

177

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind PowerProcesses |FY

178

Reduce Air Infiltration in Furnaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | DepartmentRecruit MilitaryRedAir

179

Operational considerations for high level blast furnace fuel injection  

SciTech Connect (OSTI)

Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

1996-12-31T23:59:59.000Z

180

Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

182

Cascade Natural Gas- Conservation Incentives for Existing Homes  

Broader source: Energy.gov [DOE]

Cascade Natural Gas offers a variety of incentives to residential customers for making energy efficiency improvements to existing homes. Eligible equipment includes furnaces, water heaters,...

183

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

184

Columbia Gas of Virginia- Business Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers and controls, laundromat clothes...

185

Orange and Rockland Utilities (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

186

Columbia Gas of Kentucky- Home Savings Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

187

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

188

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these...

189

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

190

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

191

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect (OSTI)

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

192

PSNC Energy (Gas)- Energy-Efficient Appliance Rebate Program  

Broader source: Energy.gov [DOE]

PSNC offers rebates to customers who purchase energy-efficient natural gas water heaters or natural gas furnaces. The rebate is available only when existing natural gas-fired water heating or...

193

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

SciTech Connect (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

194

Fireside carburization of stainless steel furnace tubes  

SciTech Connect (OSTI)

Most heavy Venezuelan crudes are recognized for having a high total acid number (TAN) that is usually associated with a high tendency to produce naphthenic acid corrosion. To resist this type of corrosion in vacuum heaters, 9Cr-1Mo steel and stainless steels containing molybdenum are usually recommended. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service, and just one year after undergoing the last turnaround inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 C (1250 F). Metallographic and Scanning Electron Microscopic (SEM) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023 O/O).Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur due to asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures.

Mirabal, E.; Molina, C. [PDVSA-Refineria Isla, Curayao (Netherlands); Mayorga, A.; Hau, J.L. [PDVSA-Intevep, Caracas (Venezuela)

1999-11-01T23:59:59.000Z

195

Continuous austempering fluidized bed furnace. Final report  

SciTech Connect (OSTI)

The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

1997-09-23T23:59:59.000Z

196

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

Schlichting, Mark R. (Chesterton, IN)

1994-01-01T23:59:59.000Z

197

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

Schlichting, M.R.

1994-12-20T23:59:59.000Z

198

Blast furnace control after the year 2000  

SciTech Connect (OSTI)

Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

1996-12-31T23:59:59.000Z

199

Segmented ceramic liner for induction furnaces  

DOE Patents [OSTI]

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

200

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents [OSTI]

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network [OSTI]

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

202

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Broader source: Energy.gov (indexed) [DOE]

Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has...

203

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

204

Effect of coal and coke qualities on blast furnace injection and productivity at Taranto  

SciTech Connect (OSTI)

Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

1995-12-01T23:59:59.000Z

205

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...%. This expansion was centered around the melt department where the four existing 13MVA electric arc furnaces were augmented with two additional 13MVA arc furnaces. A waste heat recovery system was installed on all six of the arc furnaces which, with modifica...

Darby, D. F.

206

Energy Savings in Electric Arc Furnace Melting  

E-Print Network [OSTI]

Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

Lubbeck, W.

1982-01-01T23:59:59.000Z

207

Proceedings of the 45th electric furnace conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

Not Available

1988-01-01T23:59:59.000Z

208

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace  

E-Print Network [OSTI]

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the "C" clamp. Take the ceramic and quartz end caps off. 2. Load your samples into a quartz boat. Load

Reif, Rafael

209

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

210

Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Gas Retention and Release Behavior  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies performed to establish the methodology to perform reduced-scale gas retention and release tests with PJM systems in non-Newtonian fluids with gas generation. The technical basis for scaled testing with unsteady jet mixing systems in gas-generating non-Newtonian fluids is presented in the form of a bubble migration model that accounts for the gas generation rate, the average bubble rise velocity, and the geometry of the vessel. Scaling laws developed from the model were validated with gas holdup and release tests conducted at three scales: large scale, 1/4 scale, and 1/9 scale. Experiments were conducted with two non-Newtonian simulants with in-situ gas generation by decomposition of hydrogen peroxide. The data were compared non-dimensionally, and the important scale laws were examined. From these results, scaling laws are developed which allow the design of mixing systems at a reduced scale.

Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

211

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect (OSTI)

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

212

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

213

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

214

Gary No. 13 blast furnace achieves 400 lbs/THM coal injection in 9 months  

SciTech Connect (OSTI)

Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM of natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.

Sherman, G.J.; Schuett, K.J.; White, D.G.; O`Donnell, E.M. [U.S. Steel Group, Gary, IN (United States)

1995-12-01T23:59:59.000Z

215

Temperatures in the blast furnace refractory lining  

SciTech Connect (OSTI)

The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

1995-12-01T23:59:59.000Z

216

Optimized Utility Systems and Furnace Integration  

E-Print Network [OSTI]

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

217

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

E-Print Network [OSTI]

Atlas, 1996b (? ). “Black Liquor gasification –IntroductionBerglin, N. July, 1998. Black Liquor Gasifier/Gas TurbinePreliminary Economics of Black Liquor Gasification Combined

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-01-01T23:59:59.000Z

218

MidAmerican Energy (Gas)- Commercial EnergyAdvantage Rebate Program  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for commercial customers to improve the energy efficiency of facilities. Qualified natural gas equipment includes ovens, steamers, fryers, furnaces...

219

Efficiency Maine Business Programs (Unitil Gas)- Commercial Energy Efficiency Programs (Maine)  

Broader source: Energy.gov [DOE]

Efficiency Maine offers natural gas efficiency rebates to Unitil customers. Equipment eligible for rebates includes boilers, furnaces, ECM units, unit heaters and food service equipment. Rebates...

220

Texas Gas Service- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Texas Gas Service offers an incentive for its residential customers within the Austin and Sunset Valley city limits to install new central furnaces, hydronic water heaters, high efficiency gas...

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PG&E (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for...

222

System and method for making metallic iron with reduced CO.sub.2 emissions  

DOE Patents [OSTI]

A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

2014-10-14T23:59:59.000Z

223

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

224

In situ measurements of Krypton in Xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed  

E-Print Network [OSTI]

A new method for measuring trace amounts of krypton in xenon using a cold trap with a residual gas analyzer has been developed, which achieves an increased sensitivity by temporarily reducing the pumping speed while expending a minimal amount of xenon. By partially closing a custom built butterfly valve between the measurement chamber and the turbomolecular pump, a sensitivity of 40 ppt has been reached. This method has been tested on an ultra-pure gas sample from Air Liquide with an unknown intrinsic krypton concentration, yielding a krypton concentration of $330 \\pm 200$ ppt.

Ethan Brown; Stephan Rosendahl; Christian Huhmann; Christian Weinheimer; Hans Kettling

2012-12-20T23:59:59.000Z

225

Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

226

Benefits of ceramic fiber for saving energy in reheat furnaces  

SciTech Connect (OSTI)

Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

Norris, A. (Carborundum Co., Niagara Falls, NY (United States))

1993-07-01T23:59:59.000Z

227

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

228

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

229

Simple Maintenance Saves Costly Furnace Repair/Replacement |...  

Broader source: Energy.gov (indexed) [DOE]

furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the...

230

Control of carbon balance in a silicon smelting furnace  

DOE Patents [OSTI]

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

231

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

232

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect (OSTI)

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

233

Electric and Gas Fired Radiant Tubes 'ERT'  

E-Print Network [OSTI]

The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

Nilsen, E. K.

1981-01-01T23:59:59.000Z

234

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

looks at the total energy consumption for several efficiencyno difference in the total energy consumption at the samereduction in the total energy consumption. In contrast, the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

235

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L.3

236

American Gas Association (AGA) for DOE Furnace Product Class | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Grid Implementation |Challenge America'sof

237

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

Comfort Series 13 Air Conditioner with Puron Refrigerant.for new houses with 3.5 ton air-conditioners from a study ofblower use by the air conditioner and stand-by power.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

238

Furnace and Boiler Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel CellStandardsMotors |EnergyFurnace and

239

Furnace Litigation Settled | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartment ofFurnace

240

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)BiofuelsInsulationFurnaces Incentives

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents [OSTI]

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

242

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

SciTech Connect (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

243

Natural Gas Income: Year-end strategies that can reduce the tax bite. Robin L. Kuleck, MSEd, CFCS  

E-Print Network [OSTI]

natural gas bonus payments, lease payments or royalty payments in 2008, this year's tax return payments and or royalty payments do you expect to receive by December 31, 2008? · Did you and/or your did you make? #12;Signing bonuses and lease payments receive different tax treatment from the royalty

Boyer, Elizabeth W.

244

Emissions trading to reduce greenhouse gas emissions in the United States : the McCain-Lieberman Proposal  

E-Print Network [OSTI]

The Climate Stewardship Act of 2003 (S. 139) is the most detailed effort to date to design an economy-wide cap-and-trade system for US greenhouse gas emissions reductions. The Act caps sectors at their 2000 emissions in ...

Paltsev, Sergey.

245

Published in Powder Technology, 2005, 157, 1-3, 2-11. DUST FORMATION IN ELECTRIC ARC FURNACE  

E-Print Network [OSTI]

of electric arc furnace (EAF) dust shows that bubble burst at the liquid steel surface is the principal source the bubble size would therefore represent an effective solution for reducing drastically the EAF dust such as zinc, lead or cadmium which require EAF dust to be stored in specific landfills. In order to propose

Paris-Sud XI, Université de

246

STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE  

E-Print Network [OSTI]

continuously through the furnace, to certain temperatures and then cooling it, resulting in a change, and subsequent coating. The temperature along the furnace is controlled by varying the power supplied to the heating elements and by use of cooling tubes. The cooling tubes are located in the last half

McGuinness, Mark

247

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

248

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

1998-01-01T23:59:59.000Z

249

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

250

E-Print Network 3.0 - arc furnace dust Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Renewable Energy 2 The Effec' of Furnace Design and Operation on Air Pollution Summary: chemical constituents in furnace gases arc very malodorous, or toxic, when...

251

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Space Summary: and electricity. These include boilers and furnaces for heating, air-conditioning systems and heat-pump systems... ) Space Heating Only Furnaces:...

252

Use of sinter in Taranto blast furnaces  

SciTech Connect (OSTI)

Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

1995-12-01T23:59:59.000Z

253

The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation  

SciTech Connect (OSTI)

An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facility to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.

Dibert, W.A.; Duncan, J.H.; Keaton, D.E.; Smith, M.D. [AK Steel Corp., Middletown, OH (United States)

1994-12-31T23:59:59.000Z

254

Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application  

SciTech Connect (OSTI)

Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

2006-07-01T23:59:59.000Z

255

Innovative gas energy systems for use with passive solar residences  

SciTech Connect (OSTI)

The GRI asked Booz, Allen, and Hamilton to analyze the integration of passive solar with gas-fired energy systems for heating and cooling homes. Direct gain, trombe wall, thermosiphon and thermal roof storage heating systems were studied. Solar load control, evaporative cooling, earth coupling, and night radiation cooling systems were investigated. The drawbacks of conventional gas backup systems are discussed. Innovative passive/gas combinations are recommended. These include multizone gas furnace, decentralized gas space heater, gas desiccant dehumidifier, and gas dehumidifier for basement drying. The multizone furnace saves $1500, and is recommended for Pilot Version development.

Hartman, D.; Kosar, D.

1983-06-01T23:59:59.000Z

256

No. 5 blast furnace 1995 reline and upgrade  

SciTech Connect (OSTI)

The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

Kakascik, T.F. Jr.

1996-12-31T23:59:59.000Z

257

A reduced order model for the study of asymmetries in linear gas chromatography for homogeneous tubular columns.  

SciTech Connect (OSTI)

In gas chromatography, a chemical sample separates into its constituent components as it travels along a long thin column. As the component chemicals exit the column they are detected and identified, allowing the chemical makeup of the sample to be determined. For correct identification of the component chemicals, the distribution of the concentration of each chemical along the length of the column must be nearly symmetric. The prediction and control of asymmetries in gas chromatography has been an active research area since the advent of the technique. In this paper, we develop from first principles a general model for isothermal linear chromatography. We use this model to develop closed-form expressions for terms related to the first, second, and third moments of the distribution of the concentration, which determines the velocity, diffusion rate, and asymmetry of the distribution. We show that for all practical experimental situations, only fronting peaks are predicted by this model, suggesting that a nonlinear chromatography model is required to predict tailing peaks. For situations where asymmetries arise, we analyze the rate at which the concentration distribution returns to a normal distribution. Numerical examples are also provided.

Whiting, Joshua J.; Romero, Louis Anthony; Parks, Michael L.

2005-08-01T23:59:59.000Z

258

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

2003-02-01T23:59:59.000Z

259

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

260

VACASULF operation at Citizens Gas and Coke Utility  

SciTech Connect (OSTI)

Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency  

E-Print Network [OSTI]

Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

Platvoet, E.

2011-01-01T23:59:59.000Z

262

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect (OSTI)

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

263

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network [OSTI]

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

264

Legendary West Virginia Senior Citizen Stays Warm With New Furnace...  

Broader source: Energy.gov (indexed) [DOE]

concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I...

265

Voltage flicker prediction for two simultaneously operated ac arc furnaces  

SciTech Connect (OSTI)

An EMTP-based arc furnace model was developed for evaluation of flicker concerns associated with supplying a large integrated steel mill as they go from one to two furnace operation and as system changes are implemented that will affect the short circuit capacity at the 230 kV power supply substation. The model includes a dynamic arc representation which is designed to be characteristic of the initial portions of the melt cycle when the arc characteristics are the most variable (worst flicker conditions). The flicker calculations are verified using previous measurements with one furnace operation. Flicker simulations were then performed to evaluate a variety of different possible system strengths with both one and two furnaces in operation. The primary flicker measure used for this study is the unweighted rms value of the fluctuation envelope, expressed as a percentage of the rms line-to-ground voltage magnitude.

Tang, L. [ABB Power T and D Co., Inc., Raleigh, NC (United States)] [ABB Power T and D Co., Inc., Raleigh, NC (United States); Kolluri, S. [Entergy Services, New Orleans, LA (United States)] [Entergy Services, New Orleans, LA (United States); McGranaghan, M.F. [Electrotek Concepts, Inc., Knoxville, TN (United States)] [Electrotek Concepts, Inc., Knoxville, TN (United States)

1997-04-01T23:59:59.000Z

266

Effect of furnace atmosphere on E-glass foaming  

E-Print Network [OSTI]

oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-01-01T23:59:59.000Z

267

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect (OSTI)

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

268

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network [OSTI]

heating with various electric and gas systems. The gas requirements for the electric systems shows that forced-air electric heating systems require about twice as much gas as a gas-fired forced-air system. Zonal electric heating systems, where rooms are independently heated without central furnace

269

Automatic thermocouple positioner for use in vacuum furnaces  

DOE Patents [OSTI]

The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

Mee, D.K.; Stephens, A.E.

1980-06-06T23:59:59.000Z

270

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

271

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect (OSTI)

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

272

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect (OSTI)

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

273

Burden distribution tests of Siderar`s No. 2 blast furnace  

SciTech Connect (OSTI)

Siderar is a company which was created through the merger of Propulsora Siderurgica and the privatized Aceros Parana (the former Somisa, a state-owned steel company). This plant manufacturers flat steel products: hot and cold rolled coils, as well as tin plate coils. After the privatization of the former Somisa in 1992, the new owners decided to modernize the Blast Furnace 2. The relining involved the following: complete furnace with bell less top; cast house with dust collection; INBA granulation system; gas cleaning system; cooling system; modern control system; and revamping of the stock house and the stoves. Burden distribution tests allowed the staff to familiarize themselves with the operation of the top under the three operation modes (manual, semiautomatic and automatic), and also to make adjustments to the top control system. In addition, the tests allowed them to see how materials behave during discharge and building up of ore and coke layers. All this information, together with the available instrumentation, such as fixed probes and heat flux monitoring system, proved to be of use for the gas flow control.

Lingiardi, O.; Partemio, C.; Burrai, O.; Etchevarne, P.

1997-12-31T23:59:59.000Z

274

Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

SciTech Connect (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

None

1998-09-01T23:59:59.000Z

275

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

SciTech Connect (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

None

1998-06-01T23:59:59.000Z

276

Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)  

SciTech Connect (OSTI)

Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

2003-12-31T23:59:59.000Z

277

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

278

Recent developments in blast furnace process control within British Steel  

SciTech Connect (OSTI)

British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

1995-12-01T23:59:59.000Z

279

The 1994 intermediate reline of H-3 furnace  

SciTech Connect (OSTI)

LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

1995-12-01T23:59:59.000Z

280

Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace  

SciTech Connect (OSTI)

During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

SciTech Connect (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

282

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network [OSTI]

Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 FIGURE 6 TYPICAL SEAL ARRANGEMENT FIGURE 1 TYPICAL CHANGEOVER PATTERN 50 GAS TURBlNEICRACKlNO FOONACE SYSTEM GTE/AIR FLOW VI nME O...-_T.,.;'..;.;,M;,;;;E;.:"? .;;.S...

Kenney, W. F.

1983-01-01T23:59:59.000Z

283

Semicoke production and quality at Chinese vertical SJ furnaces  

SciTech Connect (OSTI)

In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

2007-05-15T23:59:59.000Z

284

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

285

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations  

SciTech Connect (OSTI)

The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

Sarah Allendorf; David Ottesen; Donald Hardesty

2002-01-31T23:59:59.000Z

286

Mineral matter transformations in a pressurized drop-tube furnace  

SciTech Connect (OSTI)

To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal`s unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

Swanson, M.L.; Tibbetts, J.E.

1992-12-31T23:59:59.000Z

287

Mineral matter transformations in a pressurized drop-tube furnace  

SciTech Connect (OSTI)

To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal's unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

Swanson, M.L.; Tibbetts, J.E.

1992-01-01T23:59:59.000Z

288

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

289

Overview of Energy Efficiency for Glass Furnace  

E-Print Network [OSTI]

,Particulates (Environmental norms) Global competitiveness #12;3 April, 2006 4Source: www.oilnergy.com Crude Oil Price #12;3 April, 2006 5 Natural Gas Price Source: www.oilnergy.com #12;3 April, 2006 6 Carbon Dioxide Endothermic heat of reaction Glass enthalpy at outlet of tank 1886 From temperature of 20 oC to 1500 oC Batch

Banerjee, Rangan

290

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...  

Energy Savers [EERE]

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed...

291

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

292

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Broader source: Energy.gov [DOE]

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

293

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network [OSTI]

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

294

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

SciTech Connect (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

295

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

296

Single taphole blast furnace casthouse performance optimizing cost and availability  

SciTech Connect (OSTI)

The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

Fowles, R.D.; Searls, J.B.; Peay, W.R. [Geneva Steel, Provo, UT (United States); Brenneman, R.G.

1995-12-01T23:59:59.000Z

297

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network [OSTI]

led to an optimized iron recovery of 78.5 % corresponding to an elemental iron content of 51 %, close to the ore grade required in a blast furnace. At the global scale of ELV recycling, these results entail an increase by 4 % of the fluff recycling rate, thus helping to meet the European requirements for 2015

Boyer, Edmond

298

AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking  

SciTech Connect (OSTI)

Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

2001-10-05T23:59:59.000Z

299

Field measurements of interactions between furnaces and forced air distribution systems  

E-Print Network [OSTI]

of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method usedLBNL 40587 Field measurements of interactions between furnaces and forced air distribution systems Vol. 104 Part 1 Field measurements of interactions between furnaces and forced air distribution

300

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.  

DOE Patents [OSTI]

The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

2005-12-27T23:59:59.000Z

302

Method and apparatus for off-gas composition sensing  

DOE Patents [OSTI]

An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

1999-01-01T23:59:59.000Z

303

Coal combustion under conditions of blast furnace injection  

SciTech Connect (OSTI)

Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1995-12-01T23:59:59.000Z

304

Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification  

SciTech Connect (OSTI)

A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-08-15T23:59:59.000Z

305

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

federal minimum energy conservation standards. Thus, someEnergy Conservation Act (NAECA) legislation of 1987 established the initial minimum standards

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

306

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

of Energy-Energy Information Administration, A Look atof Energy-Energy Information Administration. Annual Energyof Energy - Energy Information Administration, Annual Energy

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

307

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

Administration. Annual Energy Outlook 2003: With ProjectionsAdministration, Annual Energy Outlook 2002: With Projectionschanges in EIA’s Annual Energy Outlook 2003 (AEO2003) [4] to

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

308

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

309

Furnace Pressure Controllers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety,of Energy FundingReduceDepartment

310

HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

1999-12-01T23:59:59.000Z

311

Technical support document: Energy conservation standards for consumer products: Refrigerators and furnaces including: environmental impacts regulatory impact analysis  

SciTech Connect (OSTI)

The National Appliance Energy Conversation Act (NAECA) of 1987 (P.L. 100-12) establishes energy efficiency standards for 13 types of consumer products. The legislation requires the Department of Energy (DOE) to consider new or amended standards on these and other types of products at specified times. DOE is currently selecting standards for two types of products: refrigerators, refrigerator-freezers, and freezers; and small gas furnaces. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of the proposed standards. 8 refs., 39 figs., 135 tabs.

Not Available

1989-11-01T23:59:59.000Z

312

Opportunities for market-based programs worldwide that reduce greenhouse gas emissions: Initial Observations from Missions to the Philippines, South Africa, and Mexico  

SciTech Connect (OSTI)

Globally, governments and industries are implementing innovative voluntary programs to reduce greenhouse gas emissions. Often these programs encourage groups to use cost effective technologies that capture market-based forces. These programs are successful because they capitalize on existing opportunities where both the environment and the participants can benefit (i.e., win-win opportunities). This paper documents efforts to investigate these kinds of win-win opportunities in three developing countries: the Philippines, South Africa, and Mexico. Initial observations are provided as fresh information from the field, drawing on six missions during the last nine months. Utility costs, interest rates, and overall economic health appear to critically affect opportunities in each country. By contrast, details of heating, ventilating and air-conditioning (HVAC) design and local climate were often important differences between countries. These affect opportunities, for example, to achieve significant savings from cooling systems or not. Looking at the success of ESCOs was somewhat surprising. One might expect to see the most successful ESCO activity where utility costs are high and upgrade opportunities are plentiful (such as in the Philippines). This was not the case, however, as research in the Philippines did not reveal even one active ESCO contract yet. Design practices for new construction were in need of the same thing that helps US design teams do a better job of energy-efficient design, better communications between design team members. Finally, industrial firms were doing a variety of EE upgrades in each country, but this level of activity was relatively small compared to what should be cost effective.

Stanton-Hoyle, D.R.

1998-07-01T23:59:59.000Z

313

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect (OSTI)

The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

Albert Calderon

2005-10-14T23:59:59.000Z

314

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

315

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

316

Raceway behaviors in blast furnace with pulverized coal injection  

SciTech Connect (OSTI)

The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

Chung, J.K.; Han, J.W.; Cho, B.R. [POSCO, Cheollanamdo (Korea, Republic of)

1995-12-01T23:59:59.000Z

317

Plasma-supported coal combustion in boiler furnace  

SciTech Connect (OSTI)

Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

2007-12-15T23:59:59.000Z

318

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

319

Vehicle Electrification is Key to Reducing Petroleum Dependency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas...

320

Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs  

SciTech Connect (OSTI)

Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificial lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.

Toma, P.R.; Vargas, E.; Kuru, E.

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DEVELOPMENT AND DEPLOYMENT OF SHOTCRETE REFRACTORIES FOR ALUMINUM ROTARY FURNACE APPLICATION  

SciTech Connect (OSTI)

Work was performed by Oak Ridge National Laboratory (ORNL) in the United States, in collaboration with the industrial refractory manufacturer Minteq International, Inc. (MINTEQ), academic research partner Missouri University of Science and Technology (MS&T) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in the aluminum industry. The project aim was to address factors that limit the applicability of currently available refractory materials such as chemical attack, mechanical degradation, use temperature, and installation or repair issues. To this end, as part of the overall project, shotcretable refractory compositions were developed based on alumino-silicate based structures utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques for use in rotary dross furnaces. Additionally a shotcretable high strength insulating back-up lining material was also developed for use in this and other applications. Development efforts, materials validation, and results from industrial validation trials are discussed.

Hemrick, James Gordon [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

322

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

Gary M. Blythe

2002-04-29T23:59:59.000Z

323

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

324

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect (OSTI)

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

325

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

326

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network [OSTI]

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators...

Lawrence, Benjamin Daniel

2009-05-15T23:59:59.000Z

327

Reducing NOx in Fired Heaters and Boilers  

E-Print Network [OSTI]

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

328

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |MillionNextNick Sinai About Us1Fines

329

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network [OSTI]

the demand for cooling energy, urban trees indirectly reducesurfaces and shade trees to reduce energy use and improvethe energy savings and GHG benefits of cool roofs and tree

Akbari, Hashem

2011-01-01T23:59:59.000Z

330

Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications  

SciTech Connect (OSTI)

A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

2009-03-15T23:59:59.000Z

331

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

332

E-Print Network 3.0 - arc furnace steel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TID electric arc furnaces for MSW ash are ... Source: Columbia University - Waste-to-Energy Research and Technology Council (WTERT) Collection: Renewable Energy Page: << < 1 2...

333

E-Print Network 3.0 - arc plasma furnace Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLASMA PHYSICS AND ENGINEERING Summary: replace costly traditional technologies as incineration and conventional plasma arc furnaces, and provide... ASSOCIATED LABORATORY ON...

334

E-Print Network 3.0 - arc furnace steelmaking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the furnace cavity. This special ... Source: Oak Ridge National Laboratory Fossil Energy Program; Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge...

335

E-Print Network 3.0 - air furnace design Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN MUNICIPAL INCINERATOR Summary: cal to good furnace performance and to mainten ance of air pollution control. Early in 1967 the writer... of the grate roughly equivalent to...

336

Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses  

SciTech Connect (OSTI)

Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glasses quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.

Matyas, Josef; Hrma, Pavel R.

2005-05-13T23:59:59.000Z

337

Active radiometer for self-calibrated furnace temperature measurements  

DOE Patents [OSTI]

Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnut Hill, MA); Titus, Charles H. (Newtown Square, PA); Wittle, J. Kenneth (Chester Springs, PA); Surma, Jeffrey E. (Kennewick, WA)

1996-01-01T23:59:59.000Z

338

The limitation of hearth sidewall wear at Redcar blast furnace  

SciTech Connect (OSTI)

The Redcar blast furnace with 14m hearth diameter was blown-in for its second campaign in August 1996. It is currently in its 10th year of operation and to date has produced just over 30 million tonnes. Current plans are to continue the second campaign to the year 2000 and beyond, producing over 40 million tonnes. In order to achieve this objective, any further wear on the lining, and in particular the hearth sidewall, needs to be minimized. This paper describes the present hearth design, the monitoring of hearth wear, the predicted wear profile, and the protection measures that have been taken or are being considered.

Parratt, J.E.

1996-12-31T23:59:59.000Z

339

A system for interpretation of blast furnace stockrod measurements  

SciTech Connect (OSTI)

A system for intelligent monitoring and interpretation of signals from blast furnace stockrods is presented. The system visualizes the measurements and estimates the local burden layer thickness (under the rods) after every dump. Furthermore, it analyzes the burden descent rate to distinguish between slips, hangings, normal descent and peaks, etc., and also combines the stockrod information with findings of temperature measurements from an above-burden probe. The preprocessing of the signals and some features of the system, which is under development, are treated in this paper.

Hinnelae, J.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1997-12-31T23:59:59.000Z

340

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect (OSTI)

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

342

Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers  

SciTech Connect (OSTI)

This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

Evans, Meredydd; Roshchanka, Volha

2014-08-04T23:59:59.000Z

343

Process control techniques at the blast furnaces of Thyssen Stahl AG  

SciTech Connect (OSTI)

Process improvements, capacity increases and the use of modern measuring and process control techniques have helped to ensure that the blast furnace will remain an indispensable means of supplying steelworks with hot metal until well into the next century. The survival of a future-oriented company such as Thyssen Stahl AG depends on long-term improvements in economic viability. Today, Thyssen Stahl AG operates two blast furnace plants comprising a total of five blast furnaces with hearth diameters ranging from 9.3 to 14.9m. This choice of furnaces permits flexible adjustment to changing workload situations and enables about ten million tons of hot metal to be produced each year. The wide range of measuring devices specially fitted on Schwelgern blast furnace No. 1 made a vital contribution to the development of blast furnace models. The purpose of these models was to make a general assessment of the state of the furnace and so create an objective basis for furnace operation. The paper describes the development of these measuring techniques and process model and the application of the model.

Kowalski, W.; Bachhofen, H.J.; Beppler, E.; Kreibich, K.; Muelheims, K.; Peters, M.; Wieters, C.U. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

344

Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals  

SciTech Connect (OSTI)

The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

1997-12-31T23:59:59.000Z

345

Evaluation of PFP Furnace Systems for Thermal Stabilization of Washed High Chloride Plutonium Oxide Items  

SciTech Connect (OSTI)

High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. A high-temperature furnace (same make and model as used at the RMC at Plutonium Finishing Plant) and the associated offgas system were set up at PNNL to identify system vulnerabilities and to investigate alternative materials and operating conditions that would mitigate any corrosion and plugging of furnace and offgas components. The key areas of interest for this testing were the furnace heating elements, the offgas line located inside the furnace, the offgas line between the furnace and the filter/knockout pot, the filter/knockout pot, the sample boat, and corrosion coupons to evaluate alternative materials of construction. The evaluation was conducted by charging the furnace with CeO2 that had been impregnated with a mixture of chloride salts (selected to represent the expected residual chloride salt level in washed high chloride items) and heated in the furnace in accordance with the temperature ramp rates and hold times used at PFP.

Fischer, Christopher M.; Elmore, Monte R.; Schmidt, Andrew J.; Gerber, Mark A.; Muzatko, Danielle S.; Gano, Susan R.; Thornton, Brenda M.

2002-12-17T23:59:59.000Z

346

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network [OSTI]

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

347

Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel  

SciTech Connect (OSTI)

The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

Bergstrand, R.

1996-12-31T23:59:59.000Z

348

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect (OSTI)

This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO[sub x] and SO[sub x] emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO[sub x] to molecular nitrogen (N[sub 2]) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO[sub x] emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO[sub x]. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO[sub 4], an injection temperature of about 1230[degrees]C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H[sub 2]0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO[sub x] and SO[sub x] emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-11-16T23:59:59.000Z

349

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect (OSTI)

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (sox) and oxides of nitrogen (NO[sub x]). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO[sub x] and SO[sub x] emissions. Gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO[sub x] to molecular nitrogen (N[sub 2]) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO[sub x] emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO[sub x]. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO[sub 4], an injection temperature of about 1230[degrees]C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H[sub 2]O added for humidification. The specific goal of this project is to demonstrate NO[sub x] and SO[sub x] emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-07-27T23:59:59.000Z

350

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect (OSTI)

This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1991-04-26T23:59:59.000Z

351

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report No. 5, October 1--December 31, 1991  

SciTech Connect (OSTI)

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

352

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

353

Quantification of Liquid Holdup in the Dropping Zone of a Blast Furnace--A Cold Model Study  

E-Print Network [OSTI]

.S. GUPTA and K. NAVEEN A two-dimensional cold model study, replicating an ironmaking blast furnace dropping

354

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-09-29T23:59:59.000Z

355

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-08-18T23:59:59.000Z

356

Processing electric arc furnace dust into saleable chemical products  

SciTech Connect (OSTI)

The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

NONE

1998-04-01T23:59:59.000Z

357

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b  

E-Print Network [OSTI]

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b , Pavel R in revised form 21 August 2006 Abstract The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E-glass

Pilon, Laurent

358

Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

Quisenberry, P.; Grant, M.; Carter, W.

1997-12-31T23:59:59.000Z

359

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

360

Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator  

SciTech Connect (OSTI)

A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Earthquake Home Hazard Hunt Recommendations for reducing earthquake hazards in your home  

E-Print Network [OSTI]

sources and appliances, particularly your water heater and furnace. n Secure gas lines by installing flexible connectors to appliances. n Is your water heater secured? Metal straps can be used to fasten your water heater to the wood studs of the nearest wall. What would happen to the house itself? n Look

Wilcock, William

362

Conservation in a Gulf Coast Chemical Plant  

E-Print Network [OSTI]

change in stack opacity. ~ : EXCESS 02 + TARGETS' 2% BOILER 3% PROCESS FURNACES o FUEL GAS TEMPERATURE stack gas exit temperatures and reduced the gas requirement...

Murray, F.

1983-01-01T23:59:59.000Z

363

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.  

SciTech Connect (OSTI)

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

2006-02-01T23:59:59.000Z

364

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

365

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

366

Introduction The Sun is a mass of incandescent gas  

E-Print Network [OSTI]

Chapter 1 Introduction The Sun is a mass of incandescent gas A gigantic nuclear furnace Building that our bodies contain atoms that, like most elements and their isotopes in the Solar System, were part of the molecular cloud from which the Solar System condensed, and were trapped in primitive

Nittler, Larry R.

367

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide space and water heating systems to gas systems.1 That study showed there were many cost- effective fuel. The Council has not promoted conversion of electric space and water heat equipment to natural gas equipment

368

Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces  

SciTech Connect (OSTI)

Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

Boone, A.G.; Jimenez, G.; Castillo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

369

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Broader source: Energy.gov [DOE]

The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

370

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

371

BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

Unknown

1999-10-01T23:59:59.000Z

372

Understanding environmental leachability of electric arc furnace dust  

SciTech Connect (OSTI)

Dust from production of steel in an electric arc furnace (EAF) contains a mixture of elements that pose a challenge for both recovery and disposal. This paper relates the leachability of six Canadian EAF dusts in four leaching tests [distilled water, Ontario Regulation 347 Leachate Extraction Procedure, Amount Available for Leaching (AALT), and pH 5 Stat] to their mineralogy. Chromium and nickel contaminants in EAF dust are largely unleachable (<5% available in AALT and pH 5 Stat), as they are found with the predominant spinel ferrite phase in EAF dust. However, even a small proportion of oxidized chromium can result in significant leachate concentrations of highly toxic chromate. The leachability of zinc (7--50% available), lead (2--17% available), and cadmium (9--55% available) can be significant, as large fractions of these contaminants are found as chlorides and oxides. The leaching of these metals is largely controlled by pH. The acid neutralization capacity of the EAF dusts appeared to be controlled by dissolution of lime and zincite, and results from regulatory leaching tests can be misleading because the variable acid neutralization capacity of EAF dusts can lead to very different final leachate pHs (5--12.4). A more informative approach would be to evaluate the total amounts of contaminants available in the long term, and the acid neutralization capacity.

Stegemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R.

2000-02-01T23:59:59.000Z

373

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

SciTech Connect (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

374

Recycling of electric arc furnace dust: Jorgensen steel facility  

SciTech Connect (OSTI)

This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

Jackson, T.W.; Chapman, J.S.

1995-01-01T23:59:59.000Z

375

Hearth monitoring experiences at Dofasco`s No. 4 blast furnace  

SciTech Connect (OSTI)

As a result of a 1994 taphole breakout at Dofasco`s No. 4 Blast Furnace, extensive effort has gone into monitoring, understanding and controlling hearth wear. This paper reviews the hearth monitoring system developed and the various hearth operating and maintenance techniques used to ensure No. 4 Blast Furnace safely reaches its 1998 reline date. The impact of changes in coke quality, productivity, casting practice and leaking cooling members on hearth refractory temperature fluctuations will also be examined.

Stothart, D.W.; Chaykowski, R.D.; Donaldson, R.J.; Pomeroy, D.H.

1997-12-31T23:59:59.000Z

376

Blast furnace injection of massive quantities of coal with enriched air or pure oxygen  

SciTech Connect (OSTI)

An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

1993-01-01T23:59:59.000Z

377

Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications  

E-Print Network [OSTI]

M. A. Delano Union Carbide Corp. Tarrytown, NY ABSTRACT EVALUATION OF ADVANCED PSA AND OXYGEN COMBUSTION SYSTEM FOR INDUSTRIAL FURNACE APPLICATIONS D. Lagree Union Carbide Corp. Tonawanda, NY The performance of a pilot scale advanced PSA... oxygen generation system and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system...

Delano, M. A.; Lagree, D.; Kwan, Y.

378

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

SciTech Connect (OSTI)

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

379

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect (OSTI)

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

380

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Release. Energy Information Administration, Washington, DC.products. Energy Information Administration, Washington, DC.to 2030. Energy Information Administration, Washington, DC.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

Lekov, Alex

2011-01-01T23:59:59.000Z

382

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

Lekov, Alex B.

2010-01-01T23:59:59.000Z

383

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

384

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

Energy (2009a). Annual energy outlook 2009 with projectionsEnergy (2008). Annual energy outlook 2008 with projectionsfrom the 2008 Annual Energy Outlook (AEO 2008; US Department

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

385

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Energy (2009a). Annual energy outlook 2009 with projectionsEnergy (2008). Annual energy outlook 2008 with projectionsfrom the 2008 Annual Energy Outlook (AEO 2008) (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

386

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading RoomDOE-Wide NEPA9 Volume15 FINAL

387

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003Department ofDepartment of61

388

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch Achieving the Best

389

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

and F. Southworh. (2004). Heat pump water heater technology:a larger market for heat pump water heaters (U.S. Departmentfurnace or heat pump and electric water heater (26%). (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

390

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experienceslarger market for heat pump water heaters (US Department offurnace or heat pump and electric water heater (26%; US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

391

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

392

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect (OSTI)

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

393

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

394

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

395

Oxygen-reducing catalyst layer  

DOE Patents [OSTI]

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

396

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry. Nitrogen Control in...

397

Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works  

SciTech Connect (OSTI)

SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

Braemming, M.; Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden); Zuo, G. [Luleaa Univ. (Sweden). Dept. of Process Metallurgy

1995-12-01T23:59:59.000Z

398

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

399

Enhancing the use of coals by gas reburning-sorbent injection. Environmental monitoring quarterly report No. 9, July 1--September 30, 1992  

SciTech Connect (OSTI)

This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO{sub 4}, an injection temperature of about 1230{degrees}C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H{sub 2}0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-11-16T23:59:59.000Z

400

Enhancing the use of coals by gas reburning-sorbent injection. Environmental monitoring quarterly report No. 8, April 1--June 30, 1992  

SciTech Connect (OSTI)

Clean Coal Technology implies the use of coal in an environmentally acceptable manner. Coal combustion results in the emission of two types of acid rain precursors: oxides of sulfur (sox) and oxides of nitrogen (NO{sub x}). This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions. Gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO{sub 4}, an injection temperature of about 1230{degrees}C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H{sub 2}O added for humidification. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

Not Available

1992-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign  

SciTech Connect (OSTI)

Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

402

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents [OSTI]

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

403

Gas Exploration Software for Reducing Uncertainty in Gas Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-DRMRGammaEstimates - Energy

404

Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard  

SciTech Connect (OSTI)

Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

Gamez, O.; Liceaga, F.; Arredondo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

405

Continuous measurement of blast furnace burden profile at SSAB Tunnplat AB  

SciTech Connect (OSTI)

A unique profile meter system is installed on Blast Furnace No. 2 in SSAB - Swedish Steel AB, Lulea, Sweden. This system measures the charge material burden profile across the furnace top diameter before and after each charge. The system generates real-time data, which is graphically presented by the system on a monitor and includes burden descent speed, layer thickness of the coke and ore (corrected for descent), ore to coke ratio, and burden skewing. The system is described along with operational results.

Virtala, J.; Edberg, N.; Hallin, M. (SSAB Tunnplat AB, Lulea (Sweden). Ironmaking Division)

1993-01-01T23:59:59.000Z

406

Bosh repairs No. 3 blast furnace, Edgar Thomson Plant Mon Valley Works  

SciTech Connect (OSTI)

The paper describes in detail the steps taken from quenching to dry out of the furnace to repair the bosh area of the No.3 blast furnace. Inspection of the area revealed that there was no brick anywhere in the bosh. Brick in the tuyere breast area had been peeled back to reveal the steel plate, and descaling revealed 14 pipes fully exposed. None were leaking, but one seemed badly deteriorated. Conventional repairs could not take place before the scheduled blow-in. Installation of coolers were instead tried.

Stoupis, M.G.

1993-01-01T23:59:59.000Z

407

Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future  

SciTech Connect (OSTI)

Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

Oshnock, T.W.; Colinear, J.A. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

408

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

409

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

410

Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor  

SciTech Connect (OSTI)

A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

1996-05-01T23:59:59.000Z

411

Condensing economizers for small coal-fired boilers and furnaces  

SciTech Connect (OSTI)

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

Butcher, T.A.; Litzke, W.

1994-01-01T23:59:59.000Z

412

Pellet property requirements for future blast-furnace operations and other new ironmaking processes  

SciTech Connect (OSTI)

The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

Agrawal, A.K.; Oshnock, T.W. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

413

Development of quick repairing technique for ceramic burner in hot stove of blast furnace  

SciTech Connect (OSTI)

Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1997-12-31T23:59:59.000Z

414

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect (OSTI)

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

415

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

416

Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, July 1-September 30, 1979  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E

1980-09-01T23:59:59.000Z

417

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1999-01-01T23:59:59.000Z

418

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1998-01-01T23:59:59.000Z

419

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

420

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction  

Broader source: Energy.gov [DOE]

On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

422

Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program  

SciTech Connect (OSTI)

The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

Davis, R.

1989-12-01T23:59:59.000Z

423

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network [OSTI]

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

424

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an  

E-Print Network [OSTI]

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium, for the ® rst time, that solid-state lasers required for analysis (ml or mg) and the technique has direct based

Michel, Robert G.

425

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq  

E-Print Network [OSTI]

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

Birmingham, University of

426

Natural gas ferries in Norway.  

E-Print Network [OSTI]

??This paper studies the emergence of natural gas powered ferries in Norway and their diffusion as a means to reaching the goals of reducing NOx… (more)

Myklebust, Benjamin

2006-01-01T23:59:59.000Z

427

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

428

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

429

Reduce Air Infiltration in Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #5 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining Customer5 *

430

Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates  

E-Print Network [OSTI]

, 37831, E-mail: xiaok@ornl.gov 4 Nanosystem Research Institute, National Institute of Advanced Industrial Information The GaS laminar precursor was obtained by the following method: The method uses a two-zone horizontal furnace with a fused silica tube, into which the sulfur powder and gallium were placed in the low

Geohegan, David B.

431

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

432

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

SciTech Connect (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

433

Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers  

SciTech Connect (OSTI)

A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

Hamid Sarv

2009-02-28T23:59:59.000Z

434

Flue gas desulfurization  

DOE Patents [OSTI]

A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

1985-01-01T23:59:59.000Z

435

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect (OSTI)

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

436

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect (OSTI)

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device. This project is conducted in three phases at each site: (1) Design and Permitting, (2) Construction and Startup, and (3) Operation, Data Collection, Reporting and Disposition. Progress is discussed.

Not Available

1990-10-20T23:59:59.000Z

437

Enhancing the use of coals by gas reburning-sorbent injection  

SciTech Connect (OSTI)

The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on two coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential and cyclone fired. Work on a third unit, wall fired, is on hold'' because of funding limitations. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80{endash}85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

Not Available

1990-07-19T23:59:59.000Z

438

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect (OSTI)

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

439

Determination of the fundamental softening and melting characteristics of blast furnace burden materials  

SciTech Connect (OSTI)

An experimental technique to investigate the fundamental mechanisms taking place on a microscale in the softening and melting zone in the blast furnace, is presented. In the present paper, attention is focused on determination of the softening viscosity of porous wustite. The technique may be potentially useful to investigate more complex samples of ironbearing material, as occurring in the blast furnace. In comparison with the results obtained by other researchers the viscosity of porous wustite found in the present work is substantially higher than reported elsewhere for sinter and pellets. This may be an indication that softening is not merely a reflection of the solid state deformation under load of wustite. An important factor may be local melting of some of the phases present within the sinter and pellet structures.

Bakker, T.; Heerema, R.H. [Delft Univ. of Technology (Netherlands). Faculty of Mining and Petroleum Engineering

1996-12-31T23:59:59.000Z

440

Modulating furnace and zoned-heating system development. Final report, July 1987-December 1989  

SciTech Connect (OSTI)

The report describes an experimental modulating furnace and a zoned warm air heating system for use in residences. The system was installed and tested at the National Association of Home Builders' (NAHB) SMART HOUSE in Bowie, Maryland. The key features of this system include: (1) continuous modulation of firing rate and supply air over a wide range, (2) closed-loop control to maintain a desired supply air flow under varying system resistances, (3) continuous modulation of combustion air to maintain efficiency, (4) a proportional-integral control algorithm operating on measured temperatures and set points in each zone to set the furnace firing rate, (5) low-cost on/off dampers to direct air flow to those zones calling for heat, and (6) a single microprocessor-based controller that integrates all aspects of the system.

Feldman, S.J.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces   

E-Print Network [OSTI]

Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

Cvoro, Valentina

442

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

443

Pressure reducing regulator  

DOE Patents [OSTI]

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

Whitehead, John C. (Davis, CA); Dilgard, Lemoyne W. (Willits, CA)

1995-01-01T23:59:59.000Z

444

Waste form development for a DC arc furnace  

SciTech Connect (OSTI)

A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

1996-09-01T23:59:59.000Z

445

The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry  

E-Print Network [OSTI]

THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

Hillman, Daniel C

1981-01-01T23:59:59.000Z

446

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network [OSTI]

ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT... of process studied, as a result of approach using steel reheating furnaces as a case study. investments in information technology; it is also concluded that The steel industry is a large user of energy: in Sweden it used such investments are cost...

Martensson, A.

447

Gary Works No. 13 blast furnace: A new removable trough design  

SciTech Connect (OSTI)

No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

1995-12-01T23:59:59.000Z

448

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

449

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

450

DOE Launches Natural Gas Infrastructure R&D Program Enhancing...  

Office of Environmental Management (EM)

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

451

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

452

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

453

Gas intrusion into SPR caverns  

SciTech Connect (OSTI)

The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.; Giles, H.N. [Dept. of Energy, Washington, DC (United States). Strategic Petroleum Reserve

1995-12-01T23:59:59.000Z

454

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

455

Dynamic reduced order modeling of entrained flow gasifiers  

E-Print Network [OSTI]

Gasification-based energy systems coupled with carbon dioxide capture and storage technologies have the potential to reduce greenhouse gas emissions from continued use of abundant and secure fossil fuels. Dynamic reduced ...

Monaghan, Rory F. D. (Rory Francis Desmond)

2010-01-01T23:59:59.000Z

456

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect (OSTI)

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

457

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect (OSTI)

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

458

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect (OSTI)

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

459

A method for burden distribution estimation from probe data in the blast furnace  

SciTech Connect (OSTI)

A novel approach for estimation of burden distribution in the blast furnace is presented. The proposed model makes use of only temperature measurements from an above-burden probe, and interprets the changes in temperature at charging in terms of burden distribution. In this study it is demonstrated that the temperature changes can be predicted quite accurately for all dumps in a charging sequence using neural networks., The basic structures of both an on-line and an off-line model are presented.

Nikus, M.; Saxen, H.; Bulsari, A. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1996-12-31T23:59:59.000Z

460

The rule of the stock distribution with large bell in blast furnace  

SciTech Connect (OSTI)

This paper describes in detail, starting from the basic equation of materials falling from a two bell furnace top system, how a number of mathematical expressions which govern the stock distribution of the throat were derived. An analysis was then made by applying these equations on topics, such as stockline levels, charging sequences, stock grain size, large bell angle and batch weight. This demonstrates that a reasonable two bells top charging system and practice could be established theoretically. Furthermore, character numbers for stock distribution, such as E{sub B} and D{sub K}, were developed for a possible computer application.

Liu Yuncai [Shoudu Iron and Steel Co., Beijing (China)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas furnaces reduce" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 ChiefEnergy Furnace NOPR, EERE-2014-BT-STD-0031

462

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

463