National Library of Energy BETA

Sample records for gas flow summary

  1. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  2. Louisiana Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 159,456 166,570 164,270 166,973 161,280 163,799 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  3. Indiana Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  4. Maryland Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  5. Nevada Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  6. Virginia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  7. Illinois Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  8. Colorado Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 139,822 143,397 138,325 144,845 139,698 141,947 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  9. Kentucky Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  10. Texas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 752,341 754,086 731,049 739,603 714,788 720,593 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  11. Pennsylvania Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 398,737 408,325 396,931 404,431 403,683 429,251 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  12. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 168,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  13. Missouri Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  14. Tennessee Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  15. Alaska Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 221,340 204,073 261,150 279,434 289,770 304,048 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Coalbed Wells ...

  16. Ohio Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals 88,406 87,904 89,371 104,127 104,572 113,096 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA ...

  17. Utah Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals 35,984 33,029 30,933 31,404 30,891 34,204 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA ...

  18. Arkansas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals 85,763 83,954 81,546 83,309 79,278 80,492 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA ...

  19. Missouri Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    1967-1997 Pipeline and Distribution Use 1967-2005 Citygate 6.17 5.85 5.27 4.99 5.76 4.65 1984-2015 Residential 11.66 12.02 12.25 10.88 10.83 11.59 1967-2015 Commercial 10.28 9.99 9.54 9.00 8.96 9.10 1967-2015 Industrial 8.70 8.54 7.85 8.19 8.00 7.75 1997-2015 Vehicle Fuel 6.34 6.11 5.64 1994-2012 Electric Power W W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 0 53 100 26 28 1989-2014 Gross Withdrawals NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA 8 8

  20. Indiana Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    13 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.52 4.97 4.23 4.38 5.63 NA 1984-2015 Residential 8.63 9.46 8.94 8.43 9.02 NA 1967-2015 Commercial 7.55 8.04 7.69 7.59 8.19 NA 1967-2015 Industrial 5.65 6.53 6.19 6.54 7.45 NA 1997-2015 Vehicle Fuel 5.19 13.24 12.29 1990-2012 Electric Power 4.91 W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 620 914 819 921 895 1989-2014 Gross Withdrawals 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 6,802

  1. Arizona Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.55 4.53 4.48 4.25 4.42 NA 1989-2015 Residential 23.59 24.01 23.01 20.77 14.57 12.75 1989-2015 Commercial 10.67 10.52 10.40 10.14 9.36 9.17 1989-2015 Industrial 6.80 NA 6.62 6.36 6.35 6.43 2001-2015 Electric Power 3.54 3.47 W W W W 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA

  2. Mississippi Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    81 3.82 3.64 3.68 NA 4.29 1989-2015 Residential 14.87 15.82 15.39 13.96 12.13 9.71 1989-2015 Commercial 7.79 NA NA 7.81 7.98 8.06 1989-2015 Industrial 4.49 3.95 4.46 4.21 4.26 4.12 2001-2015 Electric Power W W W W W W 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring

  3. Montana Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    43 3.36 3.10 3.28 2.87 3.25 1989-2015 Residential 11.68 11.78 11.04 9.01 7.34 NA 1989-2015 Commercial 9.42 9.44 9.37 8.22 7.05 6.59 1989-2015 Industrial 6.33 5.86 6.91 5.79 6.09 5.47 2001-2015 Electric Power -- -- -- -- -- -- 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 4,941 4,756 4,573 4,827 4,568 4,681 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA

  4. Oklahoma Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5.17 5.43 5.45 5.28 4.22 3.86 1989-2015 Residential 23.13 26.66 25.23 23.39 14.41 7.35 1989-2015 Commercial 13.62 15.18 14.85 14.21 10.78 6.14 1989-2015 Industrial NA 8.56 NA 9.67 7.72 6.04 2001-2015 Electric Power W W W W W W 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 217,883 213,529 204,298 209,342 200,704 206,487 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells

  5. Oregon Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    6.30 5.84 5.19 5.15 3.92 3.72 1989-2015 Residential 16.60 17.52 14.81 13.88 10.10 NA 1989-2015 Commercial 10.76 11.12 10.13 10.18 8.39 9.09 1989-2015 Industrial 6.39 6.49 6.47 6.51 5.67 5.59 2001-2015 Electric Power W W W W W W 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1996-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015

  6. Oregon Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    92 1979-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.78 5.84 5.21 4.82 5.40 4.65 1984-2015 Residential 12.49 11.76 11.22 10.84 11.72 NA 1967-2015 Commercial 10.10 9.60 8.91 8.60 9.44 NA 1967-2015 Industrial 7.05 6.84 5.87 5.79 6.20 6.38 1997-2015 Vehicle Fuel 5.61 4.23 4.57 1992-2012 Electric Power 4.57 W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 26 24 27 26 28 1989-2014 Gross Withdrawals 1,407 1,344 770 770 950 1979-2014 From Gas Wells 1,407

  7. Minnesota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.68 4.52 4.49 3.51 4.06 3.65 1989-2015 Residential 13.30 13.01 12.75 9.33 7.71 7.16 1989-2015 Commercial 8.17 8.03 7.72 6.43 6.20 6.10 1989-2015 Industrial 4.59 4.76 4.23 4.31 4.20 4.31 2001-2015 Electric Power W W W W W W 2002-2015 Underground Storage (Million Cubic Feet) Total Capacity 7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Gas in Storage 6,153 6,355 6,573 6,835 6,984 6,973 1990-2015 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2015 Working Gas 1,305 1,507 1,725 1,987 2,136 2,125

  8. Washington Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    29 5.84 5.08 4.25 3.51 3.46 1989-2015 Residential 12.37 12.57 11.71 11.24 9.71 9.15 1989-2015 Commercial 9.80 10.04 9.42 9.32 8.35 7.80 1989-2015 Industrial 9.45 8.94 8.87 8.48 7.87 7.27 2001-2015 Electric Power W W W W W W 2002-2015 Underground Storage (Million Cubic Feet) Total Capacity 46,900 46,900 46,900 46,900 46,900 46,900 2002-2015 Gas in Storage 37,248 41,994 45,053 45,877 42,090 39,380 1990-2015 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2015 Working Gas 14,948 19,694

  9. Nebraska Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    8 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.62 5.11 4.31 4.61 5.58 NA 1984-2015 Residential 8.95 8.84 8.68 8.39 8.77 8.94 1967-2015 Commercial 7.08 6.69 6.19 6.49 7.27 6.54 1967-2015 Industrial 5.85 5.61 4.34 4.72 5.69 4.61 1997-2015 Vehicle Fuel 15.10 15.29 1994-2012 Electric Power W 5.74 3.93 4.96 5.84 3.97 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 276 322 270 357 310 1989-2014 Gross Withdrawals 2,255 1,980 1,328 1,032 402 1967-2014 From Gas

  10. Nevada Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    NA 2006-2010 Pipeline and Distribution Use 1967-2005 Citygate 7.19 6.77 5.13 5.16 5.90 4.06 1984-2015 Residential 12.25 10.66 10.14 9.42 11.44 11.82 1967-2015 Commercial 9.77 8.07 7.43 6.61 8.21 8.66 1967-2015 Industrial 10.53 8.99 7.34 6.66 7.83 NA 1997-2015 Vehicle Fuel 8.13 4.76 8.97 1991-2012 Electric Power 5.75 5.00 3.49 W W 3.34 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 0 0 0 4 4 1996-2014 Gross Withdrawals 4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 3

  11. California Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.56 3.55 3.42 3.32 3.08 3.02 1989-2015 Residential 11.68 11.85 11.91 11.53 10.31 11.37 1989-2015 Commercial 7.68 7.87 7.84 7.69 7.20 8.23 1989-2015 Industrial 6.02 6.07 6.09 5.88 5.77 6.92 2001-2015 Electric Power 3.53 3.52 3.29 3.18 2.94 2.95 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 19,225 19,655 18,928 18,868 18,266 18,868 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From

  12. Florida Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    87 4.44 4.53 4.17 3.92 4.65 1989-2015 Residential 24.58 24.59 24.41 23.37 21.56 19.15 1989-2015 Commercial 10.92 10.91 11.15 10.61 10.69 10.89 1989-2015 Industrial 6.69 6.02 6.08 6.29 6.20 NA 2001-2015 Electric Power 4.43 4.45 4.46 4.31 3.90 3.98 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1996-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA

  13. Iowa Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    54 4.61 4.62 3.58 3.81 3.79 1989-2015 Residential 15.67 17.34 16.40 13.15 8.41 7.29 1989-2015 Commercial 8.45 8.95 8.14 5.99 6.39 5.72 1989-2015 Industrial 5.32 5.00 NA 4.46 5.14 4.50 2001-2015 Electric Power 3.06 3.12 2.98 2.89 5.06 2.60 2002-2015 Underground Storage (Million Cubic Feet) Total Capacity 288,210 288,210 288,210 288,210 288,210 288,210 2002-2015 Gas in Storage 233,287 246,900 263,036 277,160 272,523 255,967 1990-2015 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897

  14. Kansas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5.39 NA NA 5.53 3.94 3.55 1989-2015 Residential 19.38 20.79 19.68 14.37 NA 7.81 1989-2015 Commercial 12.42 11.98 12.47 9.39 7.25 7.08 1989-2015 Industrial 4.12 4.07 4.02 4.31 4.76 5.79 2001-2015 Electric Power 3.52 3.70 3.68 4.88 4.03 4.66 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 24,842 24,864 23,819 23,559 22,371 22,744 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed

  15. Michigan Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.82 3.82 3.60 3.65 3.81 3.95 1989-2015 Residential 13.65 13.52 13.21 8.93 7.84 7.55 1989-2015 Commercial 9.31 9.17 9.05 7.46 6.75 6.59 1989-2015 Industrial 6.44 6.86 6.66 6.33 5.70 5.77 2001-2015 Electric Power 3.30 3.40 3.32 2.91 2.56 2.17 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA

  16. Nebraska Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.11 4.16 4.68 4.04 3.83 3.23 1989-2015 Residential 14.88 15.79 15.70 13.92 9.51 6.88 1989-2015 Commercial 6.03 6.25 6.43 5.91 5.67 5.34 1989-2015 Industrial 4.31 4.38 4.32 4.15 4.09 4.85 2001-2015 Electric Power 3.81 5.08 3.38 3.22 3.37 3.63 2002-2015 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA

  17. Connecticut Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    67-2005 Citygate 6.58 5.92 5.12 5.42 5.61 4.07 1984-2015 Residential 14.93 13.83 14.17 13.32 14.13 NA 1967-2015 Commercial 9.55 8.48 8.40 9.20 10.24 NA 1967-2015 Industrial 9.60 9.16 8.83 6.85 8.07 6.37 1997-2015 Vehicle Fuel 16.31 18.59 13.70 1992-2012 Electric Power 5.70 5.09 3.99 6.23 6.82 4.73 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1973-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 651 655 743 558

  18. Delaware Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    78-2005 Citygate 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Commercial 13.26 13.58 13.31 11.78 11.42 10.70 1967-2015 Industrial 10.18 11.69 11.61 11.24 10.95 NA 1997-2015 Vehicle Fuel 24.55 28.76 30.97 1995-2012 Electric Power W W -- -- W -- 1997-2015 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 73 64 117 63 157 1980-2014

  19. Illinois Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Prices (Dollars per Thousand Cubic Feet) Wellhead NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.52 5.09 4.11 4.43 6.28 3.82 1984-2015 Residential 9.39 8.78 8.26 8.20 9.59 7.95 1967-2015 Commercial 8.76 8.27 7.78 7.57 8.86 7.26 1967-2015 Industrial 7.13 6.84 5.63 6.00 7.75 5.36 1997-2015 Vehicle Fuel 7.22 11.61 11.39 1990-2012 Electric Power 5.14 W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 50 40 40 34 36 1989-2014 Gross Withdrawals 1,702

  20. Wisconsin Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use 1967-2005 Citygate 6.14 5.65 4.88 4.88 6.96 4.71 1984-2015 Residential 10.34 9.77 9.27 8.65 10.52 NA 1967-2015 Commercial 8.53 8.03 7.34 6.94 8.74 NA 1967-2015 Industrial 7.56 7.05 5.81 6.02 8.08 NA 1997-2015 Vehicle Fuel 7.84 6.10 5.71 1989-2012 Electric Power 5.43 4.91 3.27 4.47 5.47 W 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1973 Withdrawals 1974-1975 Net Withdrawals 1973-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions

  1. Maryland Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead NA 1967-2010 Imports 5.37 5.30 13.82 15.29 8.34 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Commercial 9.87 10.29 10.00 10.06 10.52 10.00 1967-2015 Industrial 9.05 8.61 8.01 8.47 9.94 NA 1997-2015 Vehicle Fuel 5.99 5.09 -- 1993-2012 Electric Power 5.77 5.44 W W 5.35 4.06 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 7 8 9 7 7 1989-2014 Gross

  2. Arizona Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    11 1967-2010 Exports 4.57 4.28 3.07 4.17 5.15 1989-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.59 5.91 4.68 4.73 5.20 NA 1984-2015 Residential 15.87 15.04 15.75 13.92 17.20 17.04 1967-2015 Commercial 10.72 9.99 9.35 8.76 10.34 10.53 1967-2015 Industrial 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Vehicle Fuel 12.35 7.73 13.19 1991-2012 Electric Power 4.84 W 3.51 4.60 5.30 3.43 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 5 5 5 5 5 1989-2014 Gross Withdrawals 183

  3. Tennessee Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.35 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.78 5.23 4.35 4.73 5.37 4.06 1984-2015 Residential 10.46 10.21 9.95 9.44 10.13 9.69 1967-2015 Commercial 9.39 9.04 8.36 8.41 9.30 8.46 1967-2015 Industrial 6.64 6.15 4.98 5.62 6.31 4.89 1997-2015 Vehicle Fuel 8.16 12.32 8.18 1990-2012 Electric Power 5.04 4.62 2.90 3.83 4.64 2.74 2001-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 230 210 212 1,089 1,024 1989-2014 Gross Withdrawals 5,144 4,851 5,825 5,400 5,294

  4. SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 | Department

    Energy Savers [EERE]

    of Energy SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 File SUMMARY_GREENHOUSE_GAS_EMISSIONS_DATA_WORKSHEET_JANUARY_2015.xlsx More Documents & Publications Attachment C - Summary GHG Emissions Data FINAL Attachment C Summary GHG Emissions Data FINAL Full Service Leased Space Data Report

  5. South Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  6. New York Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  7. West Virginia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals 115,055 114,871 111,932 108,711 96,802 105,945 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA ...

  8. New Mexico Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.64 3.74 3.57 3.34 NA 2.76 1989-2015 Residential 14.45 14.81 14.74 12.99 8.21 6.71 1989-2015 Commercial 7.52 7.65 7.65 7.67 NA 5.28 1989-2015 Industrial 4.86 4.93 5.03 5.03 4.93 4.56 2001-2015 Electric Power 3.86 3.28 3.13 3.11 2.64 2.46 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 109,430 112,061 109,134 112,013 107,721 102,253 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From

  9. North Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.56 4.32 5.00 4.58 4.16 3.94 1989-2015 Residential 21.07 NA NA 9.60 6.57 5.61 1989-2015 Commercial 8.73 8.86 7.91 NA 5.68 5.23 1989-2015 Industrial 3.12 2.96 2.81 2.76 2.58 2.88 2001-2015 Electric Power 2.87 3.03 3.09 2.67 2.08 2.07 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 51,167 50,537 47,895 50,958 49,559 51,065 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells

  10. New Jersey Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use 1967-2005 Citygate 8.41 7.53 6.74 6.21 6.21 NA 1984-2015 Residential 12.84 11.78 11.09 10.89 9.69 8.37 1967-2015 Commercial 10.11 9.51 8.50 9.55 10.08 8.52 1967-2015 Industrial 9.63 9.23 7.87 8.19 10.45 NA 1997-2015 Vehicle Fuel -- -- -- 1994-2012 Electric Power 5.66 5.24 3.63 4.34 4.83 2.96 1997-2015 Underground Storage (Million Cubic Feet) Injections 1967-1996 Withdrawals 1967-1996 Net Withdrawals 1967-1996 Liquefied Natural Gas Storage (Million Cubic Feet)

  11. North Carolina Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use 1967-2005 Citygate 6.02 5.45 4.00 4.63 5.41 NA 1984-2015 Residential 12.50 12.55 12.19 11.83 11.88 NA 1967-2015 Commercial 10.18 9.64 8.62 8.81 9.12 NA 1967-2015 Industrial 8.24 7.70 6.37 6.87 7.55 NA 1997-2015 Vehicle Fuel 9.77 12.13 6.48 1990-2012 Electric Power W W W W 6.05 W 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1974-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 4,410

  12. Rhode Island Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    10.05 8.22 4.11 4.01 4.03 NA 1984-2015 Residential 16.48 15.33 14.29 14.55 15.14 14.23 1967-2015 Commercial 14.46 13.33 12.31 12.37 12.89 11.97 1967-2015 Industrial 12.13 10.98 9.78 9.04 10.27 9.26 1997-2015 Vehicle Fuel 11.71 8.61 16.32 1990-2012 Electric Power 5.45 5.10 3.98 5.84 W W 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1973-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 468 430 517 624 0 1980-2014

  13. South Carolina Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    6.17 5.67 4.57 5.11 5.22 3.90 1984-2015 Residential 13.01 12.93 13.25 12.61 12.65 NA 1967-2015 Commercial 10.34 9.68 8.67 9.10 9.55 8.37 1967-2015 Industrial 6.12 5.60 4.30 5.27 6.13 4.39 1997-2015 Vehicle Fuel 11.16 8.85 9.77 1994-2012 Electric Power W W W W W W 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1975 Withdrawals 1973-1975 Net Withdrawals 1973-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 1,360 1,386 391 879 1,371 1980-2014 Withdrawals 1,574

  14. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  15. South Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1979-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.54 5.21 4.67 4.83 6.14 4.17 1984-2015 Residential 8.77 8.59 8.39 8.23 9.27 8.21 1967-2015 Commercial 7.13 6.98 6.45 6.59 7.65 6.11 1967-2015 Industrial 5.92 6.25 5.37 5.67 6.88 4.98 1997-2015 Vehicle Fuel -- -- -- 1991-2012 Electric Power 5.50 5.04 3.54 4.35 4.98 3.31 1998-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 102 100 95 65 68 1989-2014 Gross Withdrawals 12,540 12,449 15,085 16,205 15,307 1967-2014 From

  16. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  17. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  18. EFM units monitor gas flow

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This paper describes the radio-controlled pipeline monitoring system established by Transcontinental Gas Pipe Line Corp. which was designed to equip all its natural gas purchasing metering facilities with electronic flow measurement computers. The paper describes the actual radio equipment used and the features and reliability of the equipment.

  19. Flow Cells for Energy Storage Workshop Summary Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summary Report Flow Cells for Energy Storage Workshop Summary Report Workshop summary report from the Flow Cell Workshop held March 7-8, 2012, in Washington, D.C., to investigate how a redow flow cell (RFC) can be a grid-scale electricalenergy-storage system and the associated technological needs. The specific objectives of the workshop were to understand the needs for applied research in RFCs; identify the grand challenges and prioritize R&D needs; and gather input for future

  20. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

  1. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. Natural Gas: A Preliminary Summary 1998

    Reports and Publications (EIA)

    1999-01-01

    This special report provides preliminary natural gas data for 1998 which were reported on monthly surveys of the industry through December.

  3. Natural Gas: A Preliminary Summary 1999

    Reports and Publications (EIA)

    2000-01-01

    This special report provides preliminary natural gas data for 1999 which were reported on monthly surveys of the industry through December.

  4. First AEO2015 Oil and Gas Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    5 August 8, 2014 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group Meeting Summary (presented on August 7, 2014) Attendees: Tien Nguyen (DOE) Joseph Benneche (EIA) Dana Van Wagener (EIA)* Troy Cook (EIA)* Angelina LaRose (EIA) Laura Singer (EIA) Michael

  5. AEO2014 Oil and Gas Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  6. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  7. ,"U.S. Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...10US3","N3020US3","N3035US3","N3045US3" "Date","U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic ...

  8. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  9. U.S. Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Prices (Dollars per Thousand Cubic Feet) Wellhead NA NA NA NA NA NA 1973-2015 Imports 2.66 2.74 2.75 3.23 2.40 2.28 1989-2015 By Pipeline 2.44 2.51 2.49 2.37 2.19 2.13 1997-2015 As Liquefied Natural Gas 4.53 3.45 6.03 12.38 4.20 4.02 1997-2015 Exports 3.06 3.09 2.92 2.73 2.63 2.57 1989-2015 By Pipeline 2.96 2.99 2.84 2.66 2.35 2.30 1997-2015 As Liquefied Natural Gas 8.10 7.91 7.17 6.53 16.67 15.95 1997-2015 Citygate 4.65 4.58 4.54 4.00 3.68

  10. U.S. Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    48 3.95 2.66 NA NA NA 1922-2015 Imports 4.52 4.24 2.88 3.83 5.30 3.24 1985-2015 By Pipeline 4.46 4.09 2.79 3.73 5.21 2.84 1985-2015 As Liquefied Natural Gas 4.94 5.63 4.27 6.80 8.85 7.37 1985-2015 Exports 5.02 4.64 3.25 4.08 5.51 3.07 1985-2015 By Pipeline 4.75 4.35 3.08 4.06 5.40 2.94 1985-2015 As Liquefied Natural Gas 9.53 10.54 12.82 13.36 15.66 10.92 1985-2015 Pipeline and Distribution Use 1967-2005 Citygate 6.18 5.63 4.73 4.88 5.71 4.25 1973-2015 Residential 11.39 11.03 10.65 10.32 10.97

  11. Spark gap switch with spiral gas flow

    DOE Patents [OSTI]

    Brucker, John P. (Espanola, NM)

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  12. Apparatus for focusing flowing gas streams

    DOE Patents [OSTI]

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  13. Flowing effects in gas lasers

    SciTech Connect (OSTI)

    Zhi, G.

    1984-05-01

    Currently accepted theory states that saturation intensity and gain (or optical power density) increase without limit with the increase of the flow speed. These conclusions are not true. It is shown instead that they tend to be limiting values with the increase of flow speed. The variations of the parameters mentioned above with flow speed are presented.

  14. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (OSTI)

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore »main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  15. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (OSTI)

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore »main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  16. Flowmeter for gas-entrained solids flow

    DOE Patents [OSTI]

    Porges, Karl G. (Evanston, IL)

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  17. 201X EIA-23S Annual Report of Domestic Oil and Gas Reserves, Summary Level

    Gasoline and Diesel Fuel Update (EIA)

    1X EIA-23S Annual Report of Domestic Oil and Gas Reserves, Summary Level 1 U.S. DEPARTMENT OF ENERGY Energy Information Administration Office of Oil and Gas Washington, DC 20585 OMB Number: 1905-0057 Expiration Date: xx/xx/xxxx Version No.: xxxx.xx Burden: 8 hours ANNUAL REPORT OF DOMESTIC OIL AND GAS RESERVES FORM EIA-23S Summary Level Report Instructions SURVEY YEAR 201X Table of Contents Page General Instructions

  18. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    gas is heavily used for power generation. Such conditions could cause a mid-year spike in prices to above 6 per MMBtu. With high natural gas prices, natural gas demand is...

  19. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    2002). Natural gas prices were higher than expected in October as storms in the Gulf of Mexico in late September temporarily shut in some gas production, causing spot prices at...

  20. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    economy. In 2003, natural gas demand growth is expected across all sectors. Short-Term Natural Gas Market Outlook, July 2002 History Projections Apr-02 Ma May-02 Jun-02...

  1. New York Natural Gas Reserves Summary as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    196 281 253 184 144 143 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 196 271 245 178 138 138 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease...

  2. Miscellaneous Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    349 363 393 233 188 185 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 271 353 270 219 169 167 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 78 10 104 7 19 18 1979-2014 Dry Natural Gas 349 350 379 222 179 17

  3. Mississippi Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    22 858 868 612 600 563 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 884 822 806 550 557 505 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 38 36 62 62 43 58 1979-2014 Dry Natural Gas 917 853 860 607 595 558

  4. Montana Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    93 959 792 616 590 686 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 681 657 522 327 286 361 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 312 302 270 289 304 325 1979-2014 Dry Natural Gas 976 944 778 602 575 667

  5. Federal Offshore, Pacific (California) Natural Gas Reserves Summary as of

    U.S. Energy Information Administration (EIA) Indexed Site

    Dec. 31 740 725 711 652 264 243 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 9 3 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 731 722 711 652 264 243 1979-2014 Dry Natural Gas 739 724 710 651 261 240

  6. Florida Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7 56 6 16 15 0 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 0 26 4 16 14 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 7 30 2 0 1 0 1979-2014 Dry Natural Gas 7 56 6 16 15 0

  7. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect (OSTI)

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  8. Ohio Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    896 832 758 1,235 3,201 7,193 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 799 742 684 1,012 2,887 6,985 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 97 90 74 223 314 208 1979-2014 Dry Natural Gas 896 832 758 1,233 3,161 6,72

  9. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    change the pattern of annual demand shifts reported in earlier Outlooks. Short-Term Natural Gas Market Outlook, December 2002 History Projections Sep-02 Oct-02 Nov-02...

  10. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    to increase because of accelerated economic growth and generally lower prices. Short-Term Natural Gas Market Outlook, October 2003 History Projections Jul-03 Aug-03 Sep-03...

  11. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    to increase because of accelerated economic growth and generally lower prices. Short-Term Natural Gas Market Outlook, November 2003 History Projections Aug-03 Sep-03 Oct-03...

  12. Oklahoma Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    24,207 28,182 29,937 28,714 28,900 34,319 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 23,115 26,873 27,683 25,018 24,370 27,358 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,092 1,309 2,254 3,696 4,530 6,961 1979-2014 Dry Natural Gas 22,769 26,345 27,830 26,599 26,873 31,778 1977-2014 Natural Gas Liquids (Million Barrels) 1979-2008

  13. Pennsylvania Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,018 14,068 26,719 36,543 50,078 60,443 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,885 13,924 26,585 36,418 49,809 60,144 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 133 144 134 125 269 299 1979-2014 Dry Natural Gas 6,985 13,960 26,529 36,348 49,674 59,873 1977-2014 Natural Gas Liquids (Million Barrels) 1979-1981

  14. Texas Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    85,034 94,287 104,454 93,475 97,921 105,955 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 76,272 84,157 90,947 74,442 75,754 79,027 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 8,762 10,130 13,507 19,033 22,167 26,928 1981-2014 Dry Natural Gas 80,424 88,997 98,165 86,924 90,349 97,154 1981-2014 Natural Gas Liquids (Million Barrels) 1981

  15. Utah Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,411 7,146 8,108 7,775 7,057 6,970 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,810 6,515 7,199 6,774 6,162 6,098 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 601 631 909 1,001 895 872 1979-2014 Dry Natural Gas 7,257 6,981 7,857 7,548 6,829 6,685 1977-2014 Natural Gas Liquids (Million Barrels) 1979

  16. Louisiana Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    0,970 29,517 30,545 22,135 20,389 23,258 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 19,898 28,838 29,906 21,362 19,519 22,350 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,072 679 639 773 870 908 1981-2014 Dry Natural Gas 20,688 29,277 30,358 21,949 20,164 22,975 1981-2014 Natural Gas Liquids (Million Barrels) 1981

  17. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  18. Gas flow means for improving efficiency of exhaust hoods

    DOE Patents [OSTI]

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  19. Gas flow means for improving efficiency of exhaust hoods

    DOE Patents [OSTI]

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  20. NM, West Natural Gas Reserves Summary as of Dec. 31

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,086 11,809 11,254 9,720 9,459 9,992 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,004 11,704 11,111 9,578 9,322 9,766 1979-2014 Natural Gas...

  1. New Mexico Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    6,644 16,529 16,138 14,553 14,567 16,426 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 14,662 14,316 13,586 11,734 11,154 11,743 1979-2014 Natural Gas...

  2. Alabama Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,948 2,724 2,570 2,304 1,670 2,121 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,919 2,686 2,522 2,204 1,624 1,980 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 29 38 48 100 46 141 1979-2014 Dry Natural Gas 2,871 2,629 2,475 2,228 1,597 2,036

  3. Alaska Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    9,183 8,917 9,511 9,667 7,383 6,805 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,090 1,021 976 995 955 954 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 8,093 7,896 8,535 8,672 6,428 5,851 1979-2014 Dry Natural Gas 9,101 8,838 9,424 9,579 7,316 6,745

  4. Arkansas Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    10,872 14,181 16,374 11,039 13,524 12,795 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 10,852 14,152 16,328 10,957 13,389 12,606 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 20 29 46 82 135 189 1979-2014 Dry Natural Gas 10,869 14,178 16,370 11,035 13,518 12,789

  5. Michigan Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,805 2,975 2,549 1,781 1,839 1,873 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,728 2,903 2,472 1,687 1,714 1,765 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 77 72 77 94 125 108 1979-2014 Dry Natural Gas 2,763 2,919 2,505 1,750 1,807 1,845

  6. NM, East Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    4,558 4,720 4,884 4,833 5,108 6,434 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,658 2,612 2,475 2,156 1,832 1,977 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,900 2,108 2,409 2,677 3,276 4,457 1979-2014 Dry Natural Gas 4,141 4,226 4,379 4,386 4,633 5,799

  7. North Dakota Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    ,213 1,869 2,652 3,974 6,081 6,787 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 143 152 141 105 91 45 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,070 1,717 2,511 3,869 5,990 6,742 1979-2014 Dry Natural Gas 1,079 1,667 2,381 3,569 5,420 6,034

  8. North Louisiana Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    17,273 26,136 27,411 18,467 17,112 19,837 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 73 98 82 179 192 1979-2014 Dry Natural Gas 17,143 26,030 27,337 18,418 17,044 19,722

  9. Virginia Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    3,091 3,215 2,832 2,579 2,373 2,800 1982-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,091 3,215 2,832 2,579 2,373 2,800 1982-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 0 0 0 1982-2014 Dry Natural Gas 3,091 3,215 2,832 2,579 2,373 2,800 1982-2014

  10. California Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    ,926 2,785 3,042 2,119 2,023 2,260 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 612 503 510 272 247 273 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 2,314 2,282 2,532 1,847 1,776 1,987 1979-2014 Dry Natural Gas 2,773 2,647 2,934 1,999 1,887 2,107

  11. Colorado Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    4,081 25,372 26,151 21,674 23,533 21,992 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,199 23,001 23,633 18,226 19,253 16,510 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,882 2,371 2,518 3,448 4,280 5,482 1979-2014 Dry Natural Gas 23,058 24,119 24,821 20,666 22,381 20,851

  12. Kansas Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    3,500 3,937 3,747 3,557 3,772 4,606 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,417 3,858 3,620 3,231 3,339 3,949 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 83 79 127 326 433 657 1979-2014 Dry Natural Gas 3,279 3,673 3,486 3,308 3,592 4,359

  13. Kentucky Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,919 2,785 2,128 1,515 1,794 1,753 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,887 2,674 2,030 1,422 1,750 1,704 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 32 111 98 93 44 49 1979-2014 Dry Natural Gas 2,782 2,613 2,006 1,408 1,663 1,611

  14. West Virginia Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    6,090 7,163 10,532 14,881 23,209 31,153 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,066 7,134 10,480 14,860 23,139 31,121 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 24 29 52 21 70 32 1979-2014 Dry Natural Gas 5,946 7,000 10,345 14,611 22,765 29,432

  15. Wyoming Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    36,748 36,526 36,930 31,636 34,576 28,787 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 36,386 36,192 36,612 30,930 33,774 27,507 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 362 334 318 706 802 1,280 1979-2014 Dry Natural Gas 35,283 35,074 35,290 30,094 33,618 27,553

  16. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and...

  17. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    3.20 per MMBtu, which is about 0.84 higher than last winter's price. Domestic dry natural gas production is projected to fall by about 1.7 percent in 2002 compared with the...

  18. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    this winter is expected to be almost 9 percent higher than last winter, as estimated gas consumption weighted heating degree days during the fourth quarter of 2002 and first...

  19. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    and continued increases in demand over 2002 levels. Cold temperatures this past winter led to a record drawdown of storage stocks. By the end of March, estimated working gas...

  20. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    price trend reflects a number of influences, such as unusual weather patterns that have led to increased gas consumption, and tensions in the Middle East and rising crude oil...

  1. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    commercial sector demand are offset by lower demand in the electric power sector. Short-Term Natural Gas Market Outlook, September 2003 History Projections Jun-03 Jul-03 Aug-03...

  2. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    by 1.8 percent as the economy continues to expand and prices ease slightly. Short-Term Natural Gas Market Outlook, January 2004 History Projections Oct-03 Nov-03 Dec-03...

  3. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of 2005 relative to the first quarter of 2004 and relatively lower fuel oil prices. Short-Term Natural Gas Market Outlook, April 2004 History Projections Jan-04 Feb-04 Mar-04...

  4. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    should relieve some of the potential upward price pressure on the domestic market Short-Term Natural Gas Market Outlook, January 2003 History Projections Oct-02 Nov-02 Dec-02...

  5. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    because of somewhat weaker prices and higher demand in the electric power sector. Short-Term Natural Gas Market Outlook, July 2003 History Projections Apr-03 May-03 Jun-03 Jul-03...

  6. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    than those of 2003, when stocks after the winter of 2002-2003 were at record lows. Short-Term Natural Gas Market Outlook, December 2003 History Projections Sep-03 Oct-03 Nov-03...

  7. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    power sector eases and relative coal and fuel oil spot prices decline somewhat. Short-Term Natural Gas Market Outlook, May 2004 History Projections Feb-04 Mar-04 Apr-04 May-04...

  8. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    demand in the first quarter of 2005 relative to the first quarter of 2004. Short-Term Natural Gas Market Outlook, March 2004 History Projections Dec-03 Jan-04 Feb-04...

  9. Net Withdrawals of Natural Gas from Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  10. ,"Illinois Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Prices",5,"Monthly","12/2015","1/15/1989" ,"Data 2","Production",10,"Monthly","12/2015","1/15/1991" ,"Data 3","Underground

  11. ,"Iowa Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Prices",5,"Monthly","12/2015","1/15/1989" ,"Data 2","Underground Storage",7,"Monthly","12/2015","1/15/1990" ,"Data

  12. Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    [ 6450-01-P ] DEPARTMENT OF ENERGY Notice of Intent to Prepare an Environmental Impact Statement for Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana AGENCY: Department of Energy ACTION: Notice of Intent to Prepare an Environmental Impact Statement and Notice of Proposed Floodplain and Wetlands Involvement SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy

  13. Summary of gas release events detected by hydrogen monitoring

    SciTech Connect (OSTI)

    MCCAIN, D.J.

    1999-05-18

    This paper summarizes the results of monitoring tank headspace for flammable gas release events. In over 40 tank years of monitoring the largest detected release in a single-shell tank is 2.4 cubic meters of Hydrogen. In the double-shell tanks the largest release is 19.3 cubic meters except in SY-101 pre mixer pump installation condition.

  14. Federal Offshore Gulf of Mexico Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production 1992-2007 Production (Million Cubic Feet) Number of Producing Gas Wells 1,984 1,852 1,559 1,474 1,146 1,400 1998-2014 Gross Withdrawals 2,444,102 2,259,144...

  15. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY Beaudoin, Y. C., Boswell, R., Dallimore, S. R., and Waite, W. (eds), 2014. Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates. United Nations Environment Programme, GRID-Arendal. © United Nations Environment Programme, 2014 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the

  16. ,"Nevada Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",11,"Annual",2014,"6/30/1991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1982" ,"Data 4","Consumption",10,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"New Hampshire Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Annual",2015,"6/30/1977" ,"Data 2","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1973" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1980" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"New Jersey Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"New Mexico Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2014,"6/30/1980" ,"Data

  20. ,"North Carolina Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Pennsylvania Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",15,"Annual",2015,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  2. ,"Rhode Island Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",9,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"South Carolina Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"South Dakota Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",13,"Annual",2014,"6/30/1967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1984" ,"Data 4","Consumption",11,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Virginia Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1982" ,"Data 3","Production",11,"Annual",2014,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  6. ,"Wisconsin Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Alabama Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2014,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  8. ,"Arkansas Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  9. ,"Colorado Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2014,"6/30/1980" ,"Data

  10. ,"Connecticut Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"Delaware Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6/30/1967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",9,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Maine Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1981" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Maryland Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Annual",2015,"6/30/1967" ,"Data 2","Production",11,"Annual",2014,"6/30/1967" ,"Data 3","Imports and Exports",1,"Annual",2014,"6/30/1999" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data

  14. ,"Nebraska Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",13,"Annual",2014,"6/30/1967" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",11,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  15. ,"New York Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    10,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",11,"Annual",2014,"6/30/1967" ,"Data 4","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 6","Liquefied Natural Gas

  16. ,"Oregon Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",11,"Annual",2014,"6/30/1979" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",10,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  17. ,"Tennessee Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",13,"Annual",2014,"6/30/1967" ,"Data 3","Underground Storage",4,"Annual",2014,"6/30/1968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",11,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  18. ,"Texas Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    10,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1981" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 6","Liquefied Natural Gas

  19. ,"U.S. Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Annual",2015,"6/30/1922" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1925" ,"Data 3","Production",13,"Annual",2015,"6/30/1900" ,"Data 4","Imports and Exports",6,"Annual",2015,"6/30/1973" ,"Data 5","Underground Storage",4,"Annual",2015,"6/30/1935" ,"Data 6","Liquefied Natural Gas

  20. ,"Washington Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",9,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  1. ,"Alaska Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",12,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",1,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",6,"Annual",2015,"6/30/1973" ,"Data 6","Liquefied Natural Gas

  2. ,"California Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    10,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 6","Liquefied Natural Gas

  3. ,"Georgia Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",1,"Annual",2014,"6/30/1999" ,"Data 3","Underground Storage",3,"Annual",1975,"6/30/1974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  4. ,"Idaho Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 3","Underground Storage",2,"Annual",1975,"6/30/1974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1981" ,"Data 5","Consumption",9,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  5. ,"Indiana Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",13,"Annual",2014,"6/30/1967" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",10,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  6. ,"Louisiana Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    10,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1981" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 5","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 6","Liquefied Natural Gas

  7. ,"Massachusetts Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",1,"Annual",2014,"6/30/1982" ,"Data 3","Underground Storage",3,"Annual",1975,"6/30/1967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  8. ,"Minnesota Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Annual",2015,"6/30/1967" ,"Data 2","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  9. ,"Missouri Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Production",11,"Annual",2014,"6/30/1967" ,"Data 3","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 5","Consumption",10,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016"

  10. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  11. Canada Mexico Figure 11. Flow of natural gas exports, 2014

    Gasoline and Diesel Fuel Update (EIA)

    8 Canada Mexico Figure 11. Flow of natural gas exports, 2014 (billion cubic feet) Source: Energy Information Administration, based on data from the Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports. United States 205 555 5 54 65 120 4 13 Japan Brazil

  12. System for controlling the flow of gas into and out of a gas laser

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA); Uhlich, Dennis M. (Livermore, CA); Benett, William J. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  13. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

  14. Hot gas cross flow filtering module

    DOE Patents [OSTI]

    Lippert, Thomas E. (Murrysville Boro, PA); Ciliberti, David F. (Murrysville Boro, PA)

    1988-01-01

    A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.

  15. Gas-Dynamic Transients Flow Networks

    Energy Science and Technology Software Center (OSTI)

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used formore »constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.« less

  16. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  17. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-06-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

  18. Gas mass transfer for stratified flows

    SciTech Connect (OSTI)

    Duffey, R.B.; Hughes, E.D.

    1995-07-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

  19. Table 1. Summary statistics for natural gas in the United States, 2010-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Summary statistics for natural gas in the United States, 2010-2014 See footnotes at end of table. Number of Wells Producing at End of Year 487,627 514,637 482,822 R 484,994 514,786 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,247,498 12,291,070 12,504,227 R 10,759,545 10,384,119 From Oil Wells 5,834,703 5,907,919 4,965,833 R 5,404,699 5,922,088 From Coalbed Wells 1,916,762 1,779,055 1,539,395 R 1,425,783 1,285,189 From Shale Gas Wells 5,817,122 8,500,983

  20. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  1. Microfluidic gas flow profiling using remote detection NMR

    SciTech Connect (OSTI)

    Hilty, Christian; McDonnell, Erin; Granwehr, Josef; Pierce,Kimberly; Han, Song-I Han; Pines, Alexander

    2005-05-06

    Miniaturized fluid handling devices have recently attracted considerable interest in many areas of science1. Such microfluidic chips perform a variety of functions, ranging from analysis of biological macromolecules2,3 to catalysis of reactions and sensing in the gas phase4,5. To enable precise fluid handling, accurate knowledge of the flow properties within these devices is important. Due to low Reynolds numbers, laminar flow is usually assumed. However, either by design or unintentionally, the flow characteristic in small channels is often altered, for example by surface interactions, viscous and diffusional effects, or electrical potentials. Therefore, its prediction is not always straight-forward6-8. Currently, most microfluidic flow measurements rely on optical detection of markers9,10, requiring the injection of tracers and transparent devices. Here, we show profiles of microfluidic gas flow in capillaries and chip devices obtained by NMR in the remote detection modality11,12. Through the transient measurement of dispersion13, NMR is well adaptable for non-invasive, yet sensitive determination of the flow field and provides a novel and potentially more powerful tool to profile flow in capillaries and miniaturized flow devices.

  2. A Two-Dimensional Compressible Gas Flow Code

    Energy Science and Technology Software Center (OSTI)

    1995-03-17

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicabilitymore »of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.« less

  3. Fiber-optic interferometric sensor for gas flow measurements

    SciTech Connect (OSTI)

    Kaminski, W.R. ); Griffin, J.W.; Bates, J.M. )

    1991-12-01

    This paper presents the results of an investigation to determine the feasibility of a novel approach to measuring gas flow in a pipe. An optical fiber is stretched across a pipe and serves as a sensor which is based upon the well-established principle of vortex shedding of a cylinder in cross-flow. The resulting time varying optical signal produces a frequency component proportional to the average velocity in the pipe which is in turn proportional to volumetric flow. A Mach-Zehnder interferometer is used to enhance the accuracy of the vortex shedding frequency signal. The analytical and experimental effort discussed herein shows that the concept is feasible and holds promise for a sensitive and accurate flow measuring technique.

  4. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  5. An improved multiscale model for dilute turbulent gas particle flows based

    Office of Scientific and Technical Information (OSTI)

    on the equilibration of energy concept (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: An improved multiscale model for dilute turbulent gas particle flows based on the equilibration of energy concept Citation Details In-Document Search Title: An improved multiscale model for dilute turbulent gas particle flows based on the equilibration of energy concept Many particle-laden flows in engineering applications involve turbulent gas flows. Modeling multiphase turbulent flows is an

  6. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOE Patents [OSTI]

    Doehler, Joachim (Union Lake, MI)

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  7. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  8. Acoustic cross-correlation flowmeter for solid-gas flow

    DOE Patents [OSTI]

    Sheen, S.H.; Raptis, A.C.

    1984-05-14

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

  9. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  10. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  11. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOE Patents [OSTI]

    Dutart, Charles H. (Washington, IL); Choi, Cathy Y. (Morton, IL)

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  12. Executive Summary

    Office of Environmental Management (EM)

    Executive Summary September 2015 Quadrennial Technology Review ES Executive Summary ES Executive Summary Introduction The United States is in the midst of an energy revolution. Over the last decade, the United States has slashed net petroleum imports, dramatically increased shale gas production, scaled up wind and solar power, and cut the growth in electricity consumption to nearly zero through widespread efficiency measures. Emerging advanced energy technologies provide a rich set of options to

  13. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  14. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  15. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  16. A simple model of gas flow in a porous powder compact

    SciTech Connect (OSTI)

    Shugard, Andrew D.; Robinson, David B.

    2014-04-01

    This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.

  17. A CFD study of gas-solid jet in a CFB riser flow

    SciTech Connect (OSTI)

    Li, Tingwen; Guenther, Chris

    2012-03-01

    Three-dimensional high-resolution numerical simulations of a gassolid jet in a high-density riser flow were conducted. The impact of gassolid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gassolid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gassolid jet were reasonably predicted compared with the experimental measurements made at NETL.

  18. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  19. Analytical model for transient gas flow in nuclear fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Rowe, D.S.; Oehlberg, R.N.

    1981-08-01

    An analytical model for calculating gas flow and pressure inside a nuclear fuel rod is presented. Such a model is required to calculate the pressure loading of cladding during ballooning that could occur for postulated reactor accidents. The mathematical model uses a porous media (permeability) concept to define the resistance to gas flow along the fuel rod. 7 refs.

  20. LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    728 386 519 519 420 341 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 215 279 468 391 332 273 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 513 107 51 128 88 68 1981-2014 Dry Natural Gas 701 371 502 502 402 327 1981-2014 Natural Gas Liquids (Million Barrels) 1981

  1. Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2010-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2010-2014 See footnotes at end of table. Number of Wells Producing at End of Year 487,627 514,637 482,822 R 484,994 514,786 Production (million cubic meters) Gross Withdrawals From Gas Wells 375,127 348,044 354,080 R 304,676 294,045 From Oil Wells 165,220 167,294 140,617 R 153,044 167,695 From Coalbed Wells 54,277 50,377 43,591 R 40,374 36,392 From Shale Gas Wells 164,723 240,721 298,257 R 337,891 389,474

  2. Falling microbead counter-flow process for separating gas mixtures

    DOE Patents [OSTI]

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-07-07

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  3. Falling microbead counter-flow process for separating gas mixtures

    DOE Patents [OSTI]

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2015-10-27

    A method and reactor for removing a component from a gas stream is provided. In one embodiment, the method includes providing the gas stream containing the component that is to be removed and adsorbing the component out of the gas stream as the gas stream rises via microbeads of a sorbent falling down an adsorber section of a reactor.

  4. Summary of Recent Flow Testing of the Fenton Hill HDR Reservoir...

    Open Energy Info (EERE)

    a viable commercial reality. Of most significance is the demonstrated self-regulating nature of the flow through such a reservoir. Both temperature and tracer data indicate that...

  5. Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary

    Reports and Publications (EIA)

    2000-01-01

    The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

  6. TX, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    64 131 118 94 59 42 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 161 128 113 88 56 42 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3 3 5 6 3 0 1981-2014 Dry Natural Gas 164 131 118 94 59 42 1981

  7. CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    169 180 173 305 284 277 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1 2 1 2 2 8 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 168 178 172 303 282 269 1979-2014 Dry Natural Gas 163 173 165 290 266 261

  8. CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    91 92 102 98 90 84 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 91 92 102 98 90 84 1979-2014 Dry Natural Gas 84 87 97 93 86 8

  9. CA, State Offshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    57 66 82 66 75 76 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 4 3 3 1 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 63 79 65 75 76 1979-2014 Dry Natural Gas 57 66 82 66 75 76

  10. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    Gasoline and Diesel Fuel Update (EIA)

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process

  11. Iran seeking help in regaining prerevolution oil and gas flow

    SciTech Connect (OSTI)

    Tippee, B.

    1996-02-19

    This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

  12. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  13. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    SciTech Connect (OSTI)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  14. Federal Offshore, Gulf of Mexico Natural Gas Reserves Summary as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    2 2003 2004 2005 2006 2007 View History Natural Gas, Wet After Lease Separation 25,347 22,522 19,288 17,427 14,938 14,008 1992-2007 Dry Natural Gas 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Natural Gas Liquids (Million Barrels) 965 717 713 688 649 620 1992-2007

  15. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  16. U.S. Natural Gas Reserves Summary as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    283,879 317,647 348,809 322,670 353,994 388,841 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 250,496 281,901 305,986 269,514 295,504 319,724 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 33,383 35,746 42,823 53,156 58,490 69,117 1979-2014 Dry Natural Gas 272,509 304,625 334,067 308,036 338,264 368,704 1925-2014 Natural Gas Liquids (Million Barrels) 1979

  17. U.S. Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    283,879 317,647 348,809 322,670 353,994 388,841 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 250,496 281,901 305,986 269,514 295,504 319,724 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 33,383 35,746 42,823 53,156 58,490 69,117 1979-2014 Dry Natural Gas 272,509 304,625 334,067 308,036 338,264 368,704 1925-2014 Natural Gas Liquids (Million Barrels) 1979

  18. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    SciTech Connect (OSTI)

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  19. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    Provide an initial summary description of the design and its main attributes: Summarize the main Test Reactor attributes: reactor type, power, coolant, irradiation conditions (fast and thermal flux levels, number of test loops, positions and volumes), costs (project, operational), schedule and availability factor. Identify secondary missions and power conversion options, if applicable. Include statements on the envisioned attractiveness of the reactor type in relation to anticipated domestic and global irradiation services needs, citing past and current trends in reactor development and deployment. Include statements on Test Reactor scalability (e.g. trade-off between size, power/flux levels and costs), prototypical conditions, overall technology maturity of the specific design and the general technology type. The intention is that this summary must be readable as a stand-alone section.

  20. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOE Patents [OSTI]

    Lawson, Robert N. (Albuquerque, NM); O'Malley, Martin W. (Albuquerque, NM); Rohwein, Gerald J. (Albuquerque, NM)

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  1. Enhanced thermal and gas flow performance in a three-way catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    converter through use of insulation within the ceramic monolith | Department of Energy thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Emissions performance comparison of conventional catalytic converter with multi-channel catalytic converter (ceramic fiber insulation layers introduced into

  2. TX, RRC District 1 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    523 2,599 6,127 9,141 8,118 12,431 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,456 2,332 5,227 6,516 4,442 7,733 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 67 267 900 2,625 3,676 4,698 1979-2014 Dry Natural Gas 1,398 2,399 5,910 8,868 7,784 11,945

  3. TX, RRC District 10 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,594 8,484 8,373 8,007 7,744 8,354 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,984 7,915 7,475 7,073 6,660 7,140 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 610 569 898 934 1,084 1,214 1979-2014 Dry Natural Gas 6,882 7,663 7,513 7,253 7,034 7,454

  4. TX, RRC District 2 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    909 2,235 3,690 5,985 6,640 7,524 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,837 2,101 2,766 3,986 4,348 4,802 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 72 134 924 1,999 2,292 2,722 1979-2014 Dry Natural Gas 1,800 2,090 3,423 5,462 5,910 6,559

  5. TX, RRC District 3 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,802 2,774 2,490 2,429 2,592 2,483 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,326 2,308 2,091 1,965 1,795 1,760 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 476 466 399 464 797 723 1979-2014 Dry Natural Gas 2,616 2,588 2,260 2,154 2,307 2,19

  6. TX, RRC District 4 Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,057 7,392 10,054 9,566 11,101 12,482 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 6,961 7,301 9,993 9,467 11,038 12,291 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 96 91 61 99 63 191 1979-2014 Dry Natural Gas 6,728 7,014 9,458 8,743 9,640 11,057

  7. TX, RRC District 5 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    22,623 24,694 28,187 17,640 19,531 18,155 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 22,602 24,686 28,147 17,587 19,354 17,970 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 21 8 40 53 177 185 1979-2014 Dry Natural Gas 22,343 24,363 27,843 17,331 19,280 17,880

  8. TX, RRC District 6 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    13,257 15,416 15,995 11,726 12,192 12,023 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 12,806 14,958 15,524 11,204 11,553 11,640 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 451 458 471 522 639 383 1979-2014 Dry Natural Gas 12,795 14,886 15,480 11,340 11,655 11,516

  9. TX, RRC District 7B Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,424 2,625 3,887 3,363 3,267 2,695 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,322 2,504 3,754 3,183 3,040 2,418 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 102 121 133 180 227 277 1979-2014 Dry Natural Gas 2,077 2,242 3,305 2,943 2,787 2,290

  10. TX, RRC District 7C Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    5,430 5,432 5,236 5,599 5,584 7,103 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,724 3,502 2,857 2,523 2,183 2,444 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,706 1,930 2,379 3,076 3,401 4,659 1979-2014 Dry Natural Gas 4,827 4,787 4,475 4,890 4,800 6,422

  11. TX, RRC District 8 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    7,440 8,105 8,088 8,963 9,715 11,575 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 3,950 3,777 3,006 2,309 2,315 2,480 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3,490 4,328 5,082 6,654 7,400 9,095 1979-2014 Dry Natural Gas 6,672 7,206 7,039 7,738 8,629 9,742

  12. TX, RRC District 8A Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    1,289 1,228 1,289 1,280 1,338 1,328 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 43 58 31 20 23 24 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,246 1,170 1,258 1,260 1,315 1,304 1979-2014 Dry Natural Gas 1,218 1,164 1,226 1,214 1,269 1,257

  13. TX, RRC District 9 Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    11,522 13,172 10,920 9,682 10,040 9,760 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 11,100 12,587 9,963 8,521 8,947 8,283 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 422 585 957 1,161 1,093 1,477 1979-2014 Dry Natural Gas 10,904 12,464 10,115 8,894 9,195 8,791

  14. CA, San Joaquin Basin Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,609 2,447 2,685 1,650 1,574 1,823 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 607 498 506 269 245 265 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 2,002 1,949 2,179 1,381 1,329 1,558 1979-2014 Dry Natural Gas 2,469 2,321 2,590 1,550 1,460 1,69

  15. Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,856 12,120 10,820 9,853 8,567 8,968 1990-2014 Natural Gas Nonassociated, Wet After Lease Separation 7,633 6,916 5,374 3,989 3,037 3,634 1990-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 5,223 5,204 5,446 5,864 5,530 5,334 1990-2014 Dry Natural Gas 12,552 11,765 10,420 9,392 8,193 8,527 1990

  16. Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves Summary as of

    U.S. Energy Information Administration (EIA) Indexed Site

    Dec. 31 2,451 2,145 1,554 1,497 1,508 1,445 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 1,822 1,456 1,015 643 535 607 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 629 689 539 854 973 838 1981-2014 Dry Natural Gas 2,451 2,145 1,554 1,450 1,450 1,397

  17. LA, South Onshore Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,969 2,995 2,615 3,149 2,857 3,080 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,463 2,496 2,125 2,586 2,254 2,432 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 506 499 490 563 603 648 1979-2014 Dry Natural Gas 2,844 2,876 2,519 3,029 2,718 2,92

  18. Lower 48 States Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    274,696 308,730 339,298 313,003 346,611 382,036 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 249,406 280,880 305,010 268,519 294,549 318,770 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 25,290 27,850 34,288 44,484 52,062 63,266 1979-2014 Dry Natural Gas 263,408 295,787 324,643 298,457 330,948 361,959

  19. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  20. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.

  1. Rock matrix and fracture analysis of flow in western tight gas sands: Annual report, Phase 3

    SciTech Connect (OSTI)

    Dandge, V.; Graham, M.; Gonzales, B.; Coker, D.

    1987-12-01

    Tight gas sands are a vast future source of natural gas. These sands are characterized as having very low porosity and permeability. The main resource development problem is efficiently extracting the gas from the reservoir. Future production depends on a combination of gas price and technological advances. Gas production can be enhanced by fracturing. Studies have shown that many aspects of fracture design and gas production are influenced by properties of the rock matrix. Computer models for stimulation procedures require accurate knowledge of flow properties of both the rock matrix and the fractured regions. In the proposed work, these properties will be measured along with advanced core analysis procedure aimed at understanding the relationship between pore structure and properties. The objective of this project is to develop reliable core analysis techniques for measuring the petrophysical properties of tight gas sands. Recent research has indicated that the flow conditions in the reservoir can be greatly enhanced by the presence of natural fractures, which serve as a transport path for gas from the less permeable matrix. The study is mainly concerned with the dependence of flow in tight gas matrix and healed tectonic fractures on water saturation and confining pressure. This dependency is to be related to the detailed pore structure of tight sands as typified by cores recovered in the Multi-Well experiment. 22 refs., 34 figs., 9 tabs.

  2. Miscellaneous: Uruguay energy supply options study assessing the market for natural gas - executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Veselka, T.; Decision and Information Sciences

    2008-03-04

    Uruguay is in the midst of making critical decisions affecting the design of its future energy supply system. Momentum for change is expected to come from several directions, including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country's membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay. The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay's energy supply system. The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries. The Government of Uruguay has contracted with Argonne National Laboratory (ANL) to study several energy development scenarios with the support of several Uruguayan institutions. Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios.

  3. Table 9. Summary of U.S. natural gas imports by point of entry, 2010-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 9. Summary of U.S. natural gas imports by point of entry, 2010-2014 (volumes in million cubic feet, prices in dollars per thousand cubic feet) See footnotes at end of table. Pipeline (Canada) Eastport, ID 708,806 4.19 606,099 3.90 634,194 2.59 686,449 3.34 608,147 4.14 Calais, ME 131,035 4.94 149,736 4.40 76,540 3.44 55,248 4.86 79,590 9.70 Detroit, MI 79 8.37 19 5.17 0 -- 165 4.44 188 5.26 Marysville, MI 5,694 4.44 9,946 4.42 8,099 2.99 2,337 4.15 4,650 6.86 St. Clair, MI 5,591 4.97

  4. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  5. Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak

    SciTech Connect (OSTI)

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V. [Institute for Plasma Research, Gandhinagar 382428 (India)] [Institute for Plasma Research, Gandhinagar 382428 (India)

    2013-06-15

    The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

  6. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect (OSTI)

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  7. R and D opportunities in gas-side fouling. Executive summary

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Moore, N.L.; Fassbender, L.L.

    1984-02-01

    This report provides an overview of five research reports that were generated for the Fouling and Corrosion Program. In addition, a listing of research and development opportunities in gas-side fouling is provided. R and D opportunities are designated as technology transfer, basic research, or applied research opportunities.

  8. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  9. Computation of the nonequilibrium flow in a gas dynamic laser

    SciTech Connect (OSTI)

    Yen, H.H.; Chen, L.Y.

    1984-04-01

    A three-modes-four temperatures vibrational relaxation model for a CO2-N2-H2O laser system is presented, and a set of fairly rigorous relaxation equations given. A series of problems related to computations of pseudo-one-dimensional nonequilibrium flows was analyzed and massive numerical computations using data obtained, were carried out for the rate of relaxation.

  10. Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Mahoney, Lenna A.; Rassat, Scot D.; Wells, Beric E.; Bao, Jie; Boeringa, Gregory K.; Buchmiller, William C.; Burns, Carolyn A.; Chun, Jaehun; Karri, Naveen K.; Li, Huidong; Tran, Diana N.

    2015-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”

  11. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOE Patents [OSTI]

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  12. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorn Woods, IL)

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  13. Solid oxide fuel cell having compound cross flow gas patterns

    DOE Patents [OSTI]

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  14. Institutional project summary University of Redlands direct fired gas absorption chiller system

    SciTech Connect (OSTI)

    Tanner, G.R.

    1996-05-01

    The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

  15. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  16. Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls

    SciTech Connect (OSTI)

    Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris; Stefanov, Stefan

    2014-05-15

    The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical interpretation of the flow configuration, including the hot-to-cold flow close to the side walls, in the whole range of the Knudsen number is provided.

  17. Table 11. Summary of U.S. natural gas exports by point of exit, 2010-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 11. Summary of U.S. natural gas exports by point of exit, 2010-2014 (volumes in million cubic feet, prices in dollars per thousand cubic feet) See footnotes at end of table. Pipeline (Canada) Eastport, ID 12 5.85 10 4.74 0 -- 6 3.27 0 -- Calais, ME 452 4.53 1,028 4.46 6,952 4.30 13,425 8.45 2,694 6.22 Detroit, MI 44,275 4.69 43,690 4.26 50,347 3.10 50,439 4.04 46,981 5.36 Marysville, MI 22,198 4.87 41,964 4.48 42,866 3.18 35,273 3.98 24,583 5.45 Sault Ste. Marie, MI 4,011 5.27 9,555 4.23

  18. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  19. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  20. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  1. Pore-scale mechanisms of gas flow in tight sand reservoirs

    SciTech Connect (OSTI)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

  2. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  3. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    SciTech Connect (OSTI)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used to measure the inferential variables, which can then be applied (through the data correlations) to convert existing flow meters (ultrasonic, orifice, turbine, rotary, Coriolis, diaphragm, etc.) for on-line energy measurement. The practical issues for field development were evaluated using two transducers extracted from a $100 ultrasonic domestic gas meter, and a $400 infrared sensor.

  4. Outer continental shelf oil and gas activities in the South Atlantic (US) and their onshore impacts. South Atlantic summary report update

    SciTech Connect (OSTI)

    Havran, K.J.

    1983-01-01

    An update of the South Atlantic Summary Report 2, this report provides current information about Outer Continental Shelf (OCS) oil- and gas-related activities and their onshore impacts for the period June 1982 to February, 1983. The geographical area covered by the report extends from north of Cape Hatteras, North Carolina to Cape Canaveral, Florida. The information is designed to assist in planning for the onshore effects associated with offshore oil and gas development. It covers lease and transportation strategies and the nature and location of onshore facilities. An appendix summarizes related state and federal studies. 11 references, 2 tables.

  5. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOE Patents [OSTI]

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  6. Natural Gas Imports (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10 2011 2012 2013 2014 2015 View History U.S. 3,740,757 3,468,693 3,137,789 2,883,355 2,695,378 2,718,239 1973-2015 California 22,503 2,171 0 23 0 2007-2014 Georgia 106,454 75,641 59,266 15,575 7,155 1999-2014 Idaho 708,806 606,099 634,194 686,449 608,147 1982-2014 Louisiana 90,867 60,554 20,132 5,750 5,880 1982-2014 Maine 131,035 149,736 76,540 55,248 79,892 1982-2014 Maryland 43,431 13,981 2,790 5,366 11,585 1999-2014 Massachusetts 164,984 135,278 86,609 63,987 28,825 1982-2014 Michigan 11,365

  7. Natural Gas Processed (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History U.S. 15,904,517 16,267,757 16,566,883 17,538,026 17,884,427 19,754,802 1967-2014 Federal Offshore Gulf of Mexico 1,317,031 1,002,608 1,000,964 2012-2014 Alabama 248,232 242,444 230,546 87,269 89,258 80,590 1969-2014 Alaska 2,830,034 2,731,803 2,721,396 2,788,997 2,811,384 2,735,783 1969-2014 Arkansas

  8. Minnesota Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.49 4.15 2.87 3.87 5.60 1989-2014 Exports -- 3.90 3.46 3.83 11.05 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.48 5.04 4.26 4.58 6.56 4.40 1984-2015 Residential 8.76 8.85 7.99 8.19 9.89 8.84 1967-2015 Commercial 7.60 7.46 6.36 6.86 8.66 7.30 1967-2015 Industrial 5.58 5.55 4.28 4.94 6.57 4.95 1997-2015 Vehicle Fuel 16.49 10.55 10.56 1993-2012 Electric Power W W W W W W 1997-2015 Imports and Exports (Million Cubic Feet) Imports 451,405 548,686 406,327 243,805 328,610

  9. Mississippi Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    4.17 1967-2010 Imports -- 12.93 -- -- -- 2007-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.73 5.29 3.97 4.44 5.29 NA 1984-2015 Residential 10.19 9.47 9.60 9.00 9.49 9.71 1967-2015 Commercial 8.75 7.99 7.37 7.61 8.36 NA 1967-2015 Industrial 6.19 5.83 4.85 5.82 6.15 4.69 1997-2015 Vehicle Fuel -- -- -- 1994-2012 Electric Power W W W W W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 853 860 607 595 558 1977-2014 Adjustments 1 109 65 29 -15 1977-2014

  10. Montana Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    3.64 1967-2010 Imports 4.13 3.75 2.45 3.23 4.39 1989-2014 Exports 4.05 3.82 2.40 3.43 5.38 1989-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.17 5.11 4.23 4.21 5.03 3.71 1984-2015 Residential 8.64 8.80 8.05 8.19 9.11 NA 1967-2015 Commercial 8.54 8.66 7.98 8.09 8.77 7.82 1967-2015 Industrial 8.07 8.13 7.54 7.33 7.99 6.45 1997-2015 Vehicle Fuel 9.60 8.20 6.48 1990-2012 Electric Power W W W -- W -- 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 944 778 602

  11. Colorado Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    3.96 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.26 4.94 4.26 4.76 5.42 3.96 1984-2015 Residential 8.13 8.25 8.28 7.85 8.89 NA 1967-2015 Commercial 7.58 7.84 7.58 7.26 8.15 NA 1967-2015 Industrial 5.84 6.42 5.79 5.90 6.84 NA 1997-2015 Vehicle Fuel 10.79 9.56 11.65 1990-2012 Electric Power 5.16 4.98 W 4.91 5.49 3.81 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 24,119 24,821 20,666 22,381 20,851 1977-2014 Adjustments 449 801 -363 -272 627

  12. Florida Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.49 5.07 3.93 4.44 5.05 NA 1984-2015 Residential 17.89 18.16 18.34 18.46 19.02 19.29 1967-2015 Commercial 10.60 11.14 10.41 10.87 11.38 10.74 1967-2015 Industrial 8.33 8.07 6.96 6.77 6.89 NA 1997-2015 Vehicle Fuel 17.98 5.56 9.83 1989-2012 Electric Power 6.54 5.86 4.80 5.08 5.58 4.41 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 56 6 16 15 0 1977-2014 Adjustments 64 -54 -2 1 -2 1977-2014

  13. Georgia Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.39 4.20 2.78 3.36 4.33 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.93 5.19 4.35 4.66 5.19 3.82 1984-2015 Residential 15.17 15.72 16.23 14.60 14.45 15.06 1967-2015 Commercial 10.95 10.51 9.75 9.38 9.86 8.49 1967-2015 Industrial 6.25 5.90 4.61 5.38 6.07 NA 1997-2015 Vehicle Fuel 5.17 5.57 14.51 1993-2012 Electric Power 5.21 4.72 3.40 4.45 4.98 3.27 1997-2015 Imports and Exports (Million Cubic Feet) Imports 106,454 75,641 59,266 15,575 7,155 1999-2014 Underground Storage

  14. Hawaii Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Citygate 22.94 31.58 32.39 28.45 26.94 18.11 1984-2015 Residential 44.50 55.28 52.86 49.13 47.51 40.00 1980-2015 Commercial 36.55 45.58 47.03 41.92 40.42 31.17 1980-2015 Industrial 24.10 29.80 30.89 27.56 26.75 18.81 1997-2015 Electric Power -- -- -- -- -- -- 2001-2015 Consumption (Million Cubic Feet) Total Consumption 2,627 2,619 2,689 2,855 2,928 1997-2014 Pipeline & Distribution Use 2 2 3 1 1 2004-2014 Delivered to Consumers 2,625 2,616 2,687 2,853 2,927 2,929 1997-2015 Residential 509

  15. Idaho Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.19 3.90 2.59 3.34 4.14 1989-2014 Exports 5.85 4.74 -- 3.27 -- 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 4.82 4.65 4.07 3.93 4.29 NA 1984-2015 Residential 8.95 8.80 8.26 8.12 8.54 8.62 1967-2015 Commercial 8.21 8.09 7.35 7.29 7.70 7.61 1967-2015 Industrial 6.39 6.36 5.73 5.47 5.96 NA 1997-2015 Vehicle Fuel 7.51 5.10 9.27 1994-2012 Electric Power W W W W W 2.89 2001-2015 Imports and Exports (Million Cubic Feet) Imports 708,806 606,099 634,194 686,449 608,147 1982-2014

  16. Kansas Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    23 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.08 5.53 4.74 4.98 6.10 NA 1984-2015 Residential 10.61 9.93 10.12 10.19 10.59 NA 1967-2015 Commercial 9.65 8.89 8.82 9.07 9.53 8.83 1967-2015 Industrial 5.49 5.28 3.87 4.86 5.70 4.37 1997-2015 Vehicle Fuel -- 9.87 9.00 1994-2012 Electric Power 5.05 4.79 3.28 4.57 5.65 3.95 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 3,673 3,486 3,308 3,592 4,359 1977-2014 Adjustments 140 125 -236 -20 94 1977-2014

  17. Kentucky Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    47 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Commercial 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Industrial 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015 Vehicle Fuel -- -- -- 1992-2012 Electric Power W W W W W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,613 2,006 1,408 1,663 1,611 1977-2014 Adjustments -58 -34 -282 103 -9 1977-2014 Revision Increases

  18. Louisiana Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    23 1967-2010 Imports 4.84 7.57 7.98 14.40 14.59 1989-2014 Exports 7.07 9.63 11.80 -- -- 2007-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.43 5.67 3.48 4.12 4.90 3.32 1984-2015 Residential 11.73 11.37 11.54 10.80 10.89 10.71 1967-2015 Commercial 9.88 9.36 8.44 8.59 9.01 7.93 1967-2015 Industrial 4.68 4.25 2.96 3.86 4.68 2.90 1997-2015 Vehicle Fuel 11.14 10.58 10.53 1990-2012 Electric Power 4.79 W 2.99 3.95 4.74 W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of

  19. Maine Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.94 4.40 3.45 4.86 9.71 1999-2014 Exports 4.53 4.46 4.30 8.43 6.68 2007-2014 Pipeline and Distribution Use 1967-2005 Citygate 8.19 8.14 7.73 7.35 10.33 NA 1984-2015 Residential 14.14 14.20 15.94 15.21 16.90 NA 1967-2015 Commercial 11.71 11.69 12.22 12.79 15.13 14.40 1967-2015 Industrial 11.23 10.89 10.35 10.32 11.93 NA 1997-2015 Electric Power W W W W W W 2001-2015 Imports and Exports (Million Cubic Feet) Imports 131,035 149,736 76,540 55,248 79,892 1982-2014 Exports 452 1,028 6,952

  20. Massachusetts Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.86 4.77 3.69 5.49 8.00 1989-2014 Pipeline and Distribution Use 1967-2005 Citygate 7.74 7.04 6.03 6.20 6.96 NA 1984-2015 Residential 14.53 13.81 13.22 13.49 14.50 NA 1967-2015 Commercial 12.00 11.68 10.68 11.25 12.48 NA 1967-2015 Industrial 10.41 10.14 9.82 10.15 11.53 9.34 1997-2015 Vehicle Fuel 12.48 4.28 14.63 1990-2012 Electric Power 5.44 5.07 3.68 5.96 6.66 4.38 1997-2015 Imports and Exports (Million Cubic Feet) Imports 164,984 135,278 86,609 63,987 28,825 1982-2014 Underground

  1. Michigan Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead 3.79 1967-2010 Imports 4.73 4.38 2.88 4.02 8.34 1989-2014 Exports 4.85 4.44 3.12 4.07 6.26 1989-2014 Pipeline and Distribution Use 1967-2005 Citygate 7.07 6.18 5.50 4.91 5.54 4.22 1984-2015 Residential 11.32 10.47 9.95 9.09 9.33 8.78 1967-2015 Commercial 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Industrial 9.25 8.27 7.38 6.97 7.84 6.59 1997-2015 Vehicle Fuel -- -- -- 1990-2012 Electric Power 4.97 4.76 3.21 4.58 6.78 3.21 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves

  2. Alabama Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  3. Alaska Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    3.17 1967-2010 Exports 12.19 12.88 15.71 -- 15.74 1989-2014 Pipeline and Distribution Use 1970-2005 Citygate 6.67 6.53 6.14 6.02 6.34 6.57 1988-2015 Residential 8.89 8.77 8.47 8.85 9.11 9.68 1967-2015 Commercial 8.78 8.09 8.09 8.34 8.30 7.80 1967-2015 Industrial 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Electric Power W 5.04 4.32 4.73 5.06 5.40 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 8,838 9,424 9,579 7,316 6,745 1977-2014 Adjustments 1 -1 -2 -5 -21 1977-2014

  4. Arkansas Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    3.84 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.76 6.27 5.36 4.99 5.84 4.76 1984-2015 Residential 11.53 11.46 11.82 10.46 10.39 11.20 1967-2015 Commercial 8.89 8.90 7.99 7.68 7.88 8.08 1967-2015 Industrial 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 Vehicle Fuel -- -- 9.04 1994-2012 Electric Power 5.11 W 3.19 4.32 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 14,178 16,370 11,035 13,518 12,789 1977-2014 Adjustments -34 728 -743 -78 -3 1977-2014

  5. California Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    87 1967-2010 Imports 4.76 3.57 -- 3.59 -- 2007-2014 Exports 4.51 4.18 2.90 3.89 4.56 1997-2014 Pipeline and Distribution Use 1967-2005 Citygate 4.86 4.47 3.46 4.18 4.88 3.27 1984-2015 Residential 9.92 9.93 9.14 9.92 11.51 11.38 1967-2015 Commercial 8.30 8.29 7.05 7.81 9.05 7.98 1967-2015 Industrial 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Vehicle Fuel 5.55 7.32 7.01 1990-2012 Electric Power 4.99 4.71 3.68 4.53 5.23 3.39 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of

  6. Connecticut Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.58 4.45 4.59 3.58 3.36 3.80 1989-2015 Residential 18.22 19.33 NA 15.30 12.50 11.82 1989-2015 Commercial 9.29 9.52 NA 9.53 8.48 8.18 1989-2015 Industrial 5.88 5.66 6.59 5.76 5.87 6.60 2001-2015 Electric Power 2.48 2.69 3.08 3.17 5.14 5.06 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 16,880 17,528 15,795 17,525 19,928 23,268 2001-2015 Residential 1,120 997 975 2,158 3,952 4,884 1989-2015 Commercial 2,379 2,512 2,577 3,155 4,122 5,038 1989-2015 Industrial 1,758 1,826 1,734

  7. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    10.56 10.03 10.35 6.54 5.14 4.98 1989-2015 Residential 21.80 23.75 23.22 NA 14.03 11.09 1989-2015 Commercial 13.35 13.86 13.93 12.54 10.82 9.15 1989-2015 Industrial 8.82 11.38 11.40 11.15 9.62 8.32 2001-2015 Electric Power -- -- -- -- -- -- 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 8,917 8,330 7,939 6,849 6,797 7,386 2001-2015 Residential 163 166 157 378 720 978 1989-2015 Commercial 375 409 432 812 1,065 1,177 1989-2015 Industrial 2,669 2,636 2,448 2,590 2,682 3,040

  8. Georgia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    16 4.16 4.14 3.80 3.37 3.51 1989-2015 Residential 25.45 24.78 25.75 20.43 15.20 14.41 1989-2015 Commercial 9.08 9.07 9.38 8.65 9.72 7.80 1989-2015 Industrial 4.06 4.25 4.15 4.02 3.65 3.74 2001-2015 Electric Power 3.40 3.36 3.31 2.85 2.64 W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 58,820 54,742 49,172 52,445 55,858 56,505 2001-2015 Residential 3,662 3,731 3,794 5,873 10,248 11,943 1989-2015 Commercial 2,164 2,274 2,417 3,159 4,695 5,185 1989-2015 Industrial 12,955 12,710

  9. Hawaii Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    22.97 17.72 15.38 14.59 14.92 14.81 1989-2015 Residential 45.12 37.43 36.33 37.38 38.46 38.20 1989-2015 Commercial 36.02 30.45 28.60 27.06 28.13 28.72 1989-2015 Industrial 21.32 19.06 18.87 17.77 17.47 14.88 2001-2015 Electric Power -- -- -- -- -- -- 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 243 240 233 240 228 251 2001-2015 Residential 45 43 41 44 44 47 1989-2015 Commercial 159 156 153 152 148 167 1989-2015 Industrial 38 41 37 43 36 36 2001-2015 Vehicle Fuel 1 1 1 1 1 1

  10. Idaho Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    65 4.50 NA 3.75 3.52 3.34 1989-2015 Residential 10.72 10.96 9.56 8.93 7.74 7.89 1989-2015 Commercial 8.41 8.12 8.00 7.65 6.93 7.12 1989-2015 Industrial 6.09 6.08 5.93 5.77 NA 5.39 2001-2015 Electric Power 2.85 2.92 3.01 2.92 2.72 2.41 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 6,426 NA 6,838 NA NA 13,715 2001-2015 Residential 464 359 638 995 3,624 4,740 1989-2015 Commercial 625 583 694 1,066 2,068 2,719 1989-2015 Industrial 2,094 NA 2,564 NA NA 3,403 2001-2015 Vehicle Fuel

  11. Maine Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    9.76 NA 5.52 4.38 7.52 8.01 1989-2015 Residential 20.79 22.87 21.79 NA 13.49 13.63 1989-2015 Commercial 12.17 12.29 11.47 8.63 10.48 11.30 1989-2015 Industrial 4.68 4.81 4.72 4.56 8.20 8.50 2001-2015 Electric Power W W W W W W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers NA NA NA NA NA NA 2001-2015 Residential 46 45 46 136 232 298 1989-2015 Commercial 409 425 415 569 779 961 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power

  12. Massachusetts Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    0 7.15 7.59 4.62 4.42 5.42 1989-2015 Residential 13.26 13.78 13.23 NA 11.15 12.66 1989-2015 Commercial 8.94 9.00 8.52 NA 8.57 10.00 1989-2015 Industrial 6.64 7.08 6.34 5.59 7.41 9.02 2001-2015 Electric Power 2.57 3.08 4.14 4.31 3.62 2.53 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 31,404 31,673 25,692 29,699 31,148 36,395 2001-2015 Residential 2,619 2,442 2,465 5,784 9,387 12,553 1989-2015 Commercial 3,912 3,873 4,066 7,399 9,210 10,044 1989-2015 Industrial 2,219 2,286

  13. Vermont Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    6.39 6.34 5.96 4.59 5.08 5.93 1989-2015 Residential 21.69 23.04 23.16 18.41 14.89 13.84 1989-2015 Commercial 6.10 NA 6.97 6.20 6.65 7.37 1989-2015 Industrial 5.90 4.53 4.65 5.58 5.42 5.81 2001-2015 Electric Power -- -- -- -- -- -- 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers NA 544 566 NA 1,024 1,168 2001-2015 Residential 87 73 79 164 288 393 1989-2015 Commercial NA 318 336 522 557 586 1989-2015 Industrial NA 153 150 NA 178 188 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015

  14. Wisconsin Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    68 5.95 5.61 4.25 4.21 3.96 1989-2015 Residential 13.27 14.05 12.80 8.42 7.89 7.38 1989-2015 Commercial 6.42 6.44 6.18 5.37 6.34 6.12 1989-2015 Industrial 4.54 4.91 4.56 4.69 5.37 5.43 2001-2015 Electric Power W W W W W W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 25,107 23,388 23,582 29,272 38,845 49,528 2001-2015 Residential 2,475 2,308 2,498 6,080 11,070 16,428 1989-2015 Commercial 2,782 2,964 2,867 4,985 7,776 10,352 1989-2015 Industrial 8,824 9,124 9,103 10,742 12,289

  15. ,"Indiana Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"Production",10,"Monthly","122015","1151991" ,"Data 3","Underground ... 37817,111095,98938,79019,19919,3042,180,-2862 37848,111095,101835,79019,...

  16. ,"Maryland Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"Production",10,"Monthly","122015","1151991" ,"Data 3","Underground ... 40283,11027,3761,4025,1991,17,1233 40313,9569,2493,3208,1909,17,1942 ...

  17. Texas Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    70 1967-2010 Imports 6.72 6.78 10.09 12.94 11.79 1993-2014 Exports 4.68 4.44 3.14 3.94 4.67 1989-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.89 5.39 4.30 4.89 5.77 4.20 1984-2015 Residential 10.82 10.21 10.55 10.50 11.16 10.65 1967-2015 Commercial 7.90 7.07 6.63 7.25 8.26 NA 1967-2015 Industrial 4.61 4.21 3.02 3.92 4.71 2.90 1997-2015 Vehicle Fuel 5.38 7.03 10.14 1990-2012 Electric Power 4.66 4.36 2.99 3.94 4.62 2.88 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves

  18. Ohio Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.87 5.51 4.47 4.51 4.91 4.49 1984-2015 Residential 11.13 10.78 9.91 9.46 10.16 9.49 1967-2015 Commercial 9.25 8.55 7.11 6.21 7.82 6.62 1967-2015 Industrial 7.40 6.77 5.48 6.03 7.06 NA 1997-2015 Vehicle Fuel -- -- -- 1990-2012 Electric Power 5.01 W 3.05 3.95 4.31 2.42 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 832 758 1,233 3,161 6,723 1977-2014 Adjustments 127 -99 -41 -328 -426 1977-2014 Revision

  19. Oklahoma Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    71 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.18 5.67 5.00 4.75 5.35 4.59 1984-2015 Residential 11.12 10.32 11.10 9.71 10.10 10.26 1967-2015 Commercial 9.77 8.94 8.95 8.05 8.26 8.22 1967-2015 Industrial 8.23 7.37 7.65 7.16 8.27 NA 1997-2015 Vehicle Fuel 8.18 10.98 9.13 1991-2012 Electric Power 4.84 W 3.04 4.13 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 26,345 27,830 26,599 26,873 31,778 1977-2014 Adjustments -394 -368 -686 -622 816

  20. Pennsylvania Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 7.04 6.28 5.52 5.26 5.59 NA 1984-2015 Residential 12.90 12.46 11.99 11.63 11.77 NA 1967-2015 Commercial 10.47 10.42 10.24 10.11 10.13 NA 1967-2015 Industrial 8.23 9.86 9.58 9.13 9.95 NA 1997-2015 Vehicle Fuel 3.76 3.40 7.96 1990-2012 Electric Power 5.27 4.85 3.15 4.17 5.04 2.52 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 13,960 26,529 36,348 49,674 59,873 1977-2014 Adjustments -373 -224 -240 664

  1. Wyoming Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.30 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.04 4.65 4.03 4.51 5.27 4.36 1984-2015 Residential 8.58 8.72 8.42 8.27 9.34 9.19 1967-2015 Commercial 7.13 7.29 6.72 6.81 7.69 NA 1967-2015 Industrial 4.91 5.57 4.87 4.62 5.89 NA 1997-2015 Vehicle Fuel 10.08 11.96 14.15 1991-2012 Electric Power W W W W W 5.18 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 35,074 35,290 30,094 33,618 27,553 1977-2014 Adjustments 521 -209 692 2,058 -1,877 1977-2014

  2. Utah Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    23 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.53 5.68 5.50 5.70 5.74 5.70 1984-2015 Residential 8.22 8.44 8.70 8.55 9.48 9.72 1967-2015 Commercial 6.83 7.05 7.00 7.13 7.71 7.97 1967-2015 Industrial 5.57 5.50 4.69 5.22 5.83 5.89 1997-2015 Vehicle Fuel 11.61 13.01 15.02 1990-2012 Electric Power W W 3.04 4.10 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 6,981 7,857 7,548 6,829 6,685 1977-2014 Adjustments -80 134 289 -582 -20 1977-2014 Revision

  3. Vermont Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    6.54 5.81 4.90 5.72 6.61 1989-2014 Pipeline and Distribution Use 1982-2005 Citygate 8.29 7.98 6.63 6.16 7.08 NA 1984-2015 Residential 16.14 16.17 16.73 15.87 14.68 14.56 1980-2015 Commercial 11.82 11.90 12.09 7.57 9.13 NA 1980-2015 Industrial 6.57 6.09 4.89 8.59 6.63 5.50 1997-2015 Electric Power 5.73 5.26 4.14 -- W -- 1997-2015 Imports and Exports (Million Cubic Feet) Imports 8,895 10,319 8,247 10,324 10,621 1982-2014 Consumption (Million Cubic Feet) Total Consumption 8,443 8,611 8,191 9,602

  4. Virginia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.88 6.64 5.64 5.54 5.98 NA 1984-2015 Residential 12.73 12.72 12.42 11.68 12.07 NA 1967-2015 Commercial 9.55 9.69 8.77 8.83 9.17 8.11 1967-2015 Industrial 6.68 6.44 5.29 6.02 6.43 NA 1997-2015 Vehicle Fuel 4.31 4.55 15.16 1993-2012 Electric Power 5.72 W 3.38 4.29 6.12 3.55 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 3,215 2,832 2,579 2,373 2,800 1982-2014 Adjustments 59 -413 66 -9 89 1982-2014

  5. Washington Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.22 3.96 2.72 3.62 4.32 1989-2014 Exports 4.81 4.47 3.87 4.02 5.05 1998-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.29 5.55 4.48 4.89 5.82 4.42 1984-2015 Residential 12.24 12.30 11.87 11.37 10.59 10.61 1967-2015 Commercial 10.49 10.40 9.82 9.21 9.03 9.14 1967-2015 Industrial 9.37 9.47 8.77 8.37 8.55 NA 1997-2015 Vehicle Fuel 12.89 9.88 11.06 1990-2012 Electric Power 5.52 W W W W W 1998-2015 Imports and Exports (Million Cubic Feet) Imports 332,358 313,922 312,236 333,050 359,348

  6. ,"Alaska Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2015","1152013" ,"Data 4","Consumption",6,"Monthly","122015","1151989" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File ...

  7. ,"Michigan Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...5,987563,399102,588461,53249,995,-52254 39005,1021583,998690,399102,599588,20602,9459,-11144 39036,1021583,991977,399102,592875,11217,17912,6694 39066,1021583,942457,396874,545584,...

  8. ,"Wyoming Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 37695,159737,143763,15974,,0,10880,13536,1965,133356 37726,151054,135949,15105,,0,11144,12903,1639,125368 37756,143494,129144,14349,,0,10300,5571,1461,126161 ...

  9. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  10. Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow

    SciTech Connect (OSTI)

    Tu, X.; Yu, L.; Yan, J. H.; Cen, K. F.; Cheron, B. G.

    2009-11-15

    In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309 nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.

  11. Executive Summary: Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Summary United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Executive Summary Table of Contents EXECSUM-1.0 Overview EXECSUM-1.1 Contents of the CRA-2014 EXECSUM-1.2 Programmatic Changes Since the CRA-2009 EXECSUM-1.3 PA Results EXECSUM-1.4 Summary of Changes to the Application List of Figures Figure EXECSUM- 1. CRA-2014 PA and CRA-2009 PABC Overall Mean CCDFs for Total Normalized Releases

  12. Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Hugh M. McIlroy, Jr.; Donald M. McEligot; Robert J. Pink

    2008-05-01

    Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. This paper reviews the experimental apparatus and procedures, presents a sample of the data set, and reviews the INL Standard Problem. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3-D) Particle Image Velocimetry (PIV) system was used to collect the data. Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. Uncertainty analysis and a discussion of the standard problem are included. The measurements reveal undeveloped, non-uniform, turbulent flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and presentations that describe the component flows at specific regions in the model. Information on inlet conditions are also presented.

  13. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect (OSTI)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas composition changes during production.

  14. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with ?{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 10{sup 9} M {sub ?}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ? 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 10{sup 3} M {sub ?} yr{sup 1}. We find a shallow density profile n?r {sup ?} with ? ? 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ? 1'', and (4) the outflow at r ? 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  15. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  16. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  17. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect (OSTI)

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  18. An efficient particle FokkerPlanck algorithm for rarefied gas flows

    SciTech Connect (OSTI)

    Gorji, M. Hossein; Jenny, Patrick

    2014-04-01

    This paper is devoted to the algorithmic improvement and careful analysis of the FokkerPlanck kinetic model derived by Jenny et al. [1] and Gorji et al. [2]. The motivation behind the FokkerPlanck based particle methods is to gain efficiency in low Knudsen rarefied gas flow simulations, where conventional direct simulation Monte Carlo (DSMC) becomes expensive. This can be achieved due to the fact that the resulting model equations are continuous stochastic differential equations in velocity space. Accordingly, the computational particles evolve along independent stochastic paths and thus no collision needs to be calculated. Therefore the computational cost of the solution algorithm becomes independent of the Knudsen number. In the present study, different computational improvements were persuaded in order to augment the method, including an accurate time integration scheme, local time stepping and noise reduction. For assessment of the performance, gas flow around a cylinder and lid driven cavity flow were studied. Convergence rates, accuracy and computational costs were compared with respect to DSMC for a range of Knudsen numbers (from hydrodynamic regime up to above one). In all the considered cases, the model together with the proposed scheme give rise to very efficient yet accurate solution algorithms.

  19. ACCRETION OF GAS ONTO GAP-OPENING PLANETS AND CIRCUMPLANETARY FLOW STRUCTURE IN MAGNETIZED TURBULENT DISKS

    SciTech Connect (OSTI)

    Uribe, A. L. [University of Chicago, Chicago, IL 60637 (United States); Klahr, H.; Henning, Th., E-mail: uribe@oddjob.uchicago.edu [Max-Planck-Institut fuer Astronomie, Heidelberg (Germany)

    2013-06-01

    We have performed three-dimensional magnetohydrodynamical simulations of stellar accretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-mass planet and the structure of the circumplanetary gas flow after opening a gap in the disk. We compare our results with simulations of laminar, yet viscous disks with different levels of an {alpha}-type viscosity. In all cases, we find that the accretion flow across the surface of the Hill sphere of the planet is not spherically or azimuthally symmetric, and is predominantly restricted to the mid-plane region of the disk. Even in the turbulent case, we find no significant vertical flow of mass into the Hill sphere. The outer parts of the circumplanetary disk are shown to rotate significantly below Keplerian speed, independent of viscosity, while the circumplanetary disk density (therefore the angular momentum) increases with viscosity. For a simulation of a magnetized turbulent disk, where the global averaged alpha stress is {alpha}{sub MHD} = 10{sup -3}, we find the accretion rate onto the planet to be M-dot {approx}2 Multiplication-Sign 10{sup -6}M{sub J} yr{sup -1} for a gap surface density of 12 g cm{sup -2}. This is about a third of the accretion rate obtained in a laminar viscous simulation with equivalent {alpha} parameter.

  20. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  1. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  2. CO/sub 2/ gas dynamic laser with flow rate of 10 Kg/sec

    SciTech Connect (OSTI)

    Haitao, C.

    1982-08-01

    Using a supersonic technique in a 10 Kg/sec flow rate carbon dioxide gas dynamic laser unit to create a population inversion of the carbon dioxide particles, a 33,000 watt multiple mode continuous output was obtained. The power ratio reached 3000 watt sec/Kg. Single mode output was the P(20) branch with power of 11,200 watts and a beam diffuse angle of 4 seconds of radian. After eliminating the effect of stock wave, the diffuse angle can be reduced to 3 seconds of a radian. The results were below standards compared to those in foreign countries.

  3. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  4. Galactic scale gas flows in colliding galaxies: 3-Dimensional, N-body/hydrodynamics experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic Scale Gas Flows in Colliding Galaxies: a-Dimensional, N-bodyjHydrodynamics Experiments Susan A. Lamb* NORDITA and Neils Bohr Institute, Blegdamsvej 17, DK-2100, Kpbenhaven 0, Danmark. Richard A. Gerber University of Illinois at Urbana-Champaign, Departments of Physics and Astronomy, 1110 W. Green Street, Urbana, IL 61801, U.S.A. and Dinshaw S. Balsara t Johns Hopkins University, Department of Physics and Astronomy, Homewood Campu.s, Baltimore, MD 21218, U.S.A. Abstract. We present some

  5. Mathematical Simulation of the Gas-Particles Reaction Flows in Incineration of Metal-Containing Waste

    SciTech Connect (OSTI)

    Ojovan, M. I.; Klimov, V. L.; Karlina, O. K.

    2002-02-26

    A ''quasi-equilibrium'' approach for thermodynamic calculation of chemical composition and properties of metal-containing fuel combustion products has been developed and used as a part of the mathematical model of heterogeneous reacting flow which carry burning and/or evaporating particles. By using of this approach, the applicable mathematical model has been devised, which allows defining the change in chemical composition and thermal characteristics of combustion products along the incineration chamber. As an example, the simulation results of the reacting flow of magnesium-sodium nitrate-organic mixture are presented. The simulation results on the gas phase temperature in the flow of combustion products are in good agreement with those obtained experimentally. The proposed method of ''quasi-equilibrium'' thermodynamic calculation and mathematical model provide a real possibility for performing of numerical experiments on the basis of mathematical simulation of nonequilibrium flows of combustion products. Numerical experiments help correctly to estimate the work characteristics in the process of treatment devices design saving time and costs.

  6. Conversion of forest residues to a methane-rich gas in a high-throughput gasifier. Summary report

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.; Folsom, D.W.; Kim, B.C.

    1981-10-31

    Results of the experimental work conducted thus far have shown that wood can be readily gasified in a steam environment into a hydrocarbon rich fuel gas that can be used as a replacement for petroleum-based fuels or natural gas with minimal boiler retrofit. Further, this conversion can be achieved in a compact gasification reactor with heat supplied by a circulating entrained phase, thereby eliminating the need for an oxygen plant. Tars have not been found except at the lowest gasifier temperatures employed, and therefore heat recovery from the product gas should be much simpler than that from commercially available fixed-bed gasification systems where product gas contains significant quantities of tar. The data generated have been used in a preliminary conceptual design. Evaluation of this design has shown that a medium-Btu gas can be produced from wood at a cost competitive with natural gas or petroleum-based fuels.

  7. Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation - Applications to Safety and Sea Floor Instability

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2006-09-30

    Semi-analytical computational models for natural gas flow in hydrate reservoirs were developed and the effects of variations in porosity and permeability on pressure and temperature profiles and the movement of a dissociation front were studied. Experimental data for variations of gas pressure and temperature during propane hydrate formation and dissociation for crushed ice and mixture of crushed ice and glass beads under laboratory environment were obtained. A thermodynamically consistent model for multiphase liquid-gas flows trough porous media was developed. Numerical models for hydrate dissociation process in one dimensional and axisymmetric reservoir were performed. The computational model solved the general governing equations without the need for linearization. A detail module for multidimensional analysis of hydrate dissociation which make use of the FLUENT code was developed. The new model accounts for gas and liquid water flow and uses the Kim-Boshnoi model for hydrate dissociation.

  8. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    SciTech Connect (OSTI)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

    2005-06-04

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

  9. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  10. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    SciTech Connect (OSTI)

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.; Kabius, Bernd C.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarily be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.

  11. State policies affecting natural gas consumption (Notice of inquiry issued on August 14, 1992). Summary of comments

    SciTech Connect (OSTI)

    Lemon, R.; Kamphuis-Zatopa, W.

    1993-03-25

    On August 14, 1992, the United States Department of Energy issued a Request for Comments Concerning State Policies Affecting Natural Gas Consumption. This Notice of (NOI) noted the increasing significance of the role played by states and sought to gain better understanding of how state policies impact the gas industry. The general trend toward a. more competitive marketplace for natural gas, as well as recent regulatory and legislative changes at the Federal level, are driving State regulatory agencies to reevaluate how they regulate natural gas. State action is having a significant impact on the use of natural gas for generating electricity, as well as affecting the cost-effective trade-off between conservation expenditures and gas use. Additionally, fuel choice has an impact upon the environment and national energy security. In light of these dimensions, the Department of Energy initiated this study of State regulation. The goals of this NOI are: (1) help DOE better understand the impact of State policies on the efficient use of gas; (2) increase the awareness of the natural gas industry and Federal and State officials to the important role of State policies and regulations; (3) create an improved forum for dialogue on State and Federal natural gas issues; and, (4) develop a consensus on an analytical agenda that would be most helpful in addressing the regulatory challenges faced by the States. Ninety-seven parties filed comments, and of these ninety-seven, fifteen parties filed reply comments. Appendix One lists these parties. This report briefly syntheses the comments received. The goal is to assist parties to judging the extent of consensus on the problems posed and the remedies suggested, aid in identifying future analytical analyses, and assist parties in assessing differences in strategies and regulatory philosophies which shape these issues and their resolution.

  12. Outer Continental Shelf Oil and Gas Information Program. Update 2, August 1981, Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: a summary report, July 1980

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    In July 1980, the Office of Outer Continental Shelf (OCS) Information issued an initial report called Outer Continental Shelf Oil and Gas Activities in the South Atlantic (US) and their Onshore Impacts: A Summary Report, July 1980. The purpose of this report was to provide State and local governments with current information about offshore oil and gas resources and onshore activity in the area extending from Cape Hatteras, North Carolina, to Cape Canaveral, Florida. This information was designed to assist in socioeconomic planning for the onshore impacts of oil and gas development in the affected areas. This report, Update 2, discusses Outer Continental Shelf oil and gas activities and their onshore impacts for the period of February 1981 to August 1981. Because of the minimal offshore oil- and gas-related activity in the South Atlantic Region, the onshore impacts are also minimal. Very little, if any, development has occurred as a result of exploration or development. Even though the South Atlantic OCS does contain large areas with hydrocarbon potential, little optimism has been generated by exploration associated with Lease Sale 43. Lease Sale 56 included tracts with geologic conditions more favorable to the generation, migration, and accumulation of hydrocarbons, especially the deepwatr tracts, but industry showed moderate interest in the first deepwater lease sale. The level of nearshore and onshore activity may increase with exploration associated with Lease Sale 56. More permanent onshore development will be contingent on the outcome of exploration efforts.

  13. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    SciTech Connect (OSTI)

    Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice BhatnagarGrossKrook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  14. Open source development experience with a computational gas-solids flow code

    SciTech Connect (OSTI)

    Syamlal, M; O'Brien, T. J.; Benyahia, Sofiane; Gel, Aytekin; Pannala, Sreekanth

    2008-01-01

    A case study on the use of open source (OS) software development in chemical engineering research and education is presented here. The multiphase computational fluid dynamics software MFIX is the object of the case study. The verification and validation steps required for constructing modern computational software and the advantages of OS development in those steps are discussed. The infrastructure used for enabling the OS development of MFIX is described. The impact of OS development on computational research and education in gas-solids flow and the dissemination of information to other areas such as geotechnical and volcanology research are demonstrated. It is shown that the advantages of OS development methodology were realized: verification by many users, which enhances software quality; the use of software as a means for accumulating and exchanging information; and the facilitation of peer review of the results of computational research.

  15. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  16. Business Case for Compressed Natural Gas in Municipal Fleets | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas. PDF icon 47919.pdf More Documents & Publications QER - Comment of American Gas Association 3 Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

  17. Natural Gas and Hydrogen Infrastructure Opportunities Workshop, October 18-19, 2011, Argonne National Laboratory, Argonne, IL : Summary Report.

    SciTech Connect (OSTI)

    Kumar, R. comp.; Ahmed, S. comp.

    2012-02-21

    The overall objective of the Workshop was to identify opportunities for accelerating the use of both natural gas (NG) and hydrogen (H{sub 2}) as motor fuels and in stationary power applications. Specific objectives of the Workshop were to: (1) Convene industry and other stakeholders to share current status/state-of-the-art of NG and H{sub 2} infrastructure; (2) Identify key challenges (including non-technical challenges, such as permitting, installation, codes, and standards) preventing or delaying the widespread deployment of NG and H{sub 2} infrastructure. Identify synergies between NG and H{sub 2} fuels; and (3) Identify and prioritize opportunities for addressing the challenges identified above, and determine roles and opportunities for both the government and industry stakeholders. Plenary speakers and panel discussions summarized the current status of the NG and H{sub 2} infrastructure, technology for their use in transportation and stationary applications, and some of the major challenges and opportunities to more widespread use of these fuels. Two break-out sessions of three groups each addressed focus questions on: (1) infrastructure development needs; (2) deployment synergies; (3) natural gas and fuel cell vehicles (NGVs, FCVs), specialty vehicles, and heavy-duty trucks; (4) CHP (combined heat and power), CHHP (combined hydrogen, heat, and power), and synergistic approaches; and (5) alternative uses of natural gas.

  18. A Finite-Difference Numerical Method for Onsager's Pancake Approximation for Fluid Flow in a Gas Centrifuge

    SciTech Connect (OSTI)

    de Stadler, M; Chand, K

    2007-11-12

    Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.

  19. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M.

    1995-12-01

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  20. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveals the Assembly and Evolution of Complex Metalloenzymes summary written by Raven Hanna The potential for using biological enzymes to make hydrogen to use as a...

  1. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Costs by Changing the Structure and Reactivity of Platinum summary written by Raven Hanna Hydrogen fuel cells are a green alternative to fossil fuels for powering...

  2. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Effects of Aerosol Source on Ocean Photosynthesis summary written by Raven ... Soluble iron can reach oceans by water currents carrying dusts or by air currents carrying ...

  3. Program Summaries

    Office of Science (SC) Website

    Program Summaries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee ...

  4. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect (OSTI)

    Gunning, John E; Laughter, Mark D; March-Leuba, Jose A

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  5. Experimental investigation on impingement heat transfer of gas-solid suspension flow

    SciTech Connect (OSTI)

    Yokomine, Takenhiko; Shimizu, Akihiko

    1999-07-01

    This paper aims to demonstrate experimentally the heat transfer performance of dense gas-solid suspension impinging jet for diverter cooling of the fusion power reactor. Prior to the experimental study, a tentative goal of 20 kW/m{sup 2}K was set as the heat transfer coefficient based on the expected temperature level of both coolant and diverter plate materials. Figure A-1 summarizes the results of experiments, where H/D is non-dimensional space between nozzle exit and impingement plate. The ranges of examined nozzle Reynolds number Re{sub N} and thermal loading ratio {Gamma}{sub th} were 5.5 x 10{sup 4} {<=} Re{sub N} {<=} 2.4 x 10{sup 5} and 0 {<=} {Gamma}{sub th} {<=} 8.55, respectively. When the glassy-carbon (G-C) particles with 26{micro}m in diameter were used, the maximum heat transfer coefficient could not reach the target value because the solid flow rate was restricted by the crucial erosion damage of test plate and a strong vibration observed in the test line. On the other hand, in the case that the fine graphite particles (10{micro}m in diameter) were used, the maximum heat transfer coefficient of 20 kW/m{sup 2}K was obtained at relatively dilute condition of solid loading ratio, which is considered to be due to the additive production of turbulence by particles' wake. Furthermore, the following consideration can be obtained. (1) Changing the particle from hard glassy carbon to soft and fine graphite is effective not only for anti-erosion but also for heat transfer enhancement by increasing heat capacity. (2) Turbulence augmentation by particles is also important for heat transfer enhancement in addition to the increased heat capacity. However, increasing the solid loading is likely to lead to the saturation of heat transfer enhancement effect, on the contrary, to the attenuation of turbulence. (3) If soft and fine particle, like graphite of 10{micro}m diameter employed in present study, is used as suspended particle in coolant for anti-erosion, the cooling by the gas-solid suspension impinging jet will be able to correspond to the thermal heat flux on the diverter plate when the nozzle Reynolds number is 1.5 x 10{sup 5} and thermal loading ratio is only 3. Provided that fine particles is used, however, some additional difficulties may be occurred, such as handling of powder and thermophoresis adhesion on the heat transfer surface.

  6. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LabSpaces New Research Puts Theory of Water Structure on Thin Ice summary written by Raven Hanna Water has unusual and complex properties that make it especially well suited to...

  7. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ologeez SciLink LabSpaces Finding the Crystal Structure of P-gp: A Protein that Makes Cancer Cells Resistant to Chemotherapy summary written by Raven Hanna Medications can be...

  8. Practical application of large eddy simulation to film cooling flow analysis on gas turbine airfoils

    SciTech Connect (OSTI)

    Takata, T.; Takeishi, K.; Kawata, Y.; Tsuge, A.

    1999-07-01

    Large eddy simulation (LES) using body-fitted coordinates is applied to solve film cooling flow on turbine blades. The turbulent model was tuned using the experimental flow field and adiabatic film cooling effectiveness measurements for a single row of holes on a flat plate surface. The results show the interaction between the main stream boundary layer and injected film cooling air generates kidney and horseshoe shaped vortices. Comparison of the temperature distribution between experimental results and present analysis has been conducted. The non-dimensional temperature distribution at x/d = 1 is dome style and quantitatively agrees with experimental results. LES was also applied to solve film cooling on a turbine airfoil. If LES was applied to solve whole flow field domain large CPU time would make the solution impractical. LES, using body-fitted coordinates, is applied to solve the non-isotropic film cooling flow near the turbine blade. The cascade flow domain, with a pitch equal to one film cooling hole spacing, is solved using {kappa}-{epsilon} model. By using such a hybrid numerical method, CPU time is reduced and numerical accuracy is insured. The analytical results show the interaction between the flow blowing through film cooling holes and mainstream on the suction and pressure surfaces of the turbine airfoil. They also show the fundamental structure of the film cooling air flow is governed by arch internal secondary flow and horseshoe vortices which have a similar structure to film cooling air flow blowing through a cooling hole on a flat plate. In the flow field, the effect of turbulent structure on curvature (relaminarization) and flow pattern, involving the interaction between main flow and the cooling jet, are clearly shown. Film cooling effectiveness on the blade surface is predicted from the results of the thermal field calculation and is compared with the test result.

  9. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOE Patents [OSTI]

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  10. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  11. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  12. New Hampshire Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 5.48 5.45 4.08 6.63 10.55 1999-2014 Exports -- 7.54 2.62 6.65 4.06 2007-2014 Pipeline and Distribution Use 1980-2005 Citygate 8.83 8.07 7.15 7.60 9.28 NA 1984-2015 Residential 14.46 14.67 13.74 13.84 16.27 NA 1980-2015 Commercial 12.72 11.46 11.95 12.13 14.96 13.63 1977-2015 Industrial 11.59 11.57 10.48 10.68 9.46 8.10 1997-2015 Vehicle Fuel 1994-1995 Electric Power W W W W W W 1997-2015 Imports and Exports (Million Cubic Feet) Imports 18,297 19,826 47,451 63,446 52,160 1982-2014 Exports

  13. ,"West Virginia Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"Production",10,"Monthly","122015","1151991" ,"Data 3","Underground ... 35292,,435487,304592,130895,20814,900,19913 35323,,463642,304592,159050,28469,460,280...

  14. New Hampshire Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7.87 7.17 5.90 NA 4.34 6.40 1989-2015 Residential 19.32 22.79 23.02 17.97 14.18 15.13 1989-2015 Commercial 13.74 14.78 14.76 12.30 11.15 12.39 1989-2015 Industrial 4.81 4.75 4.00 4.30 5.91 7.74 2001-2015 Electric Power W W W W W W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers NA NA NA NA NA NA 2001-2015 Residential 146 147 148 242 657 854 1989-2015 Commercial 221 226 232 377 823 1,017 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 6 6 6 6 6 6 2010-2015 Electric

  15. New Jersey Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.67 4.84 5.00 4.37 4.30 4.27 1989-2015 Residential 12.03 12.98 12.38 10.30 9.08 7.85 1989-2015 Commercial 8.66 8.78 8.03 8.10 8.66 8.24 1989-2015 Industrial 8.62 8.41 8.63 7.57 7.11 7.92 2001-2015 Electric Power 2.07 2.20 2.08 2.00 1.80 1.71 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 47,857 46,260 NA NA 56,469 63,409 2001-2015 Residential 5,478 4,422 4,498 9,214 16,149 22,163 1989-2015 Commercial 7,486 8,431 NA NA 11,186 13,623 1989-2015 Industrial 4,256 4,032 4,128 4,370

  16. North Carolina Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.64 4.68 4.46 3.88 NA 3.10 1989-2015 Residential 21.31 NA 21.72 14.57 12.12 12.84 1989-2015 Commercial 9.38 NA 9.30 8.01 8.45 NA 1989-2015 Industrial 5.78 5.70 5.96 5.86 5.57 5.70 2001-2015 Electric Power W W W W W W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 37,432 NA 35,685 35,342 43,008 NA 2001-2015 Residential 1,090 NA 1,121 2,814 6,342 7,028 1989-2015 Commercial 2,535 NA 3,004 4,282 5,548 NA 1989-2015 Industrial 7,854 8,154 7,974 9,044 8,911 9,049 2001-2015 Vehicle

  17. Rhode Island Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    2.52 2.41 2.31 2.24 2.22 2.22 1989-2015 Residential 19.72 20.92 20.98 19.02 15.46 13.47 1989-2015 Commercial 16.62 17.00 17.11 15.74 12.87 10.96 1989-2015 Industrial 9.61 10.09 9.79 9.92 9.48 8.22 2001-2015 Electric Power 2.40 2.42 2.78 3.74 3.50 W 2002-2015 Underground Storage (Million Cubic Feet) Injections 1994-1996 Consumption (Million Cubic Feet) Delivered to Consumers 8,254 8,371 4,837 6,216 7,643 6,847 2001-2015 Residential 430 397 385 1,038 1,591 1,903 1989-2015 Commercial 258 249 244

  18. South Carolina Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.97 3.96 4.01 3.56 3.20 3.48 1989-2015 Residential 24.86 22.97 24.15 16.51 NA NA 1989-2015 Commercial 8.33 8.04 8.28 7.97 8.35 10.06 1989-2015 Industrial 4.22 4.46 4.13 4.03 3.86 4.01 2001-2015 Electric Power W W W W W W 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 23,407 22,303 20,307 22,863 25,780 NA 2001-2015 Residential 496 521 542 1,020 2,345 2,982 1989-2015 Commercial 1,324 1,399 1,380 1,827 2,136 NA 1989-2015 Industrial 6,642 6,718 6,616 7,238 7,342 NA 2001-2015

  19. New Mexico Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5.32 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 4.84 4.52 3.70 4.08 4.99 NA 1984-2015 Residential 9.63 9.14 8.69 8.92 10.13 8.58 1967-2015 Commercial 7.47 6.98 6.31 6.77 7.87 NA 1967-2015 Industrial 6.17 6.22 4.96 5.58 6.45 4.95 1997-2015 Vehicle Fuel 4.46 9.43 10.05 1994-2012 Electric Power W W W 4.35 4.93 3.21 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 15,412 15,005 13,586 13,576 15,283 1977-2014 Adjustments -89 73 153 -202 555 1977-2014

  20. New York Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5 1967-2010 Imports 5.43 4.96 3.83 5.59 8.60 1989-2014 Exports -- 4.69 3.61 4.29 5.56 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.86 6.04 5.35 5.02 5.47 4.14 1984-2015 Residential 14.04 13.71 12.97 12.49 12.54 11.20 1967-2015 Commercial 10.88 9.32 7.84 8.00 8.31 6.89 1967-2015 Industrial 8.55 8.18 6.92 7.44 8.13 NA 1997-2015 Vehicle Fuel 8.32 9.81 21.00 1990-2012 Electric Power 5.73 5.56 3.95 5.26 5.46 3.51 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of

  1. North Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1967-2010 Imports 4.41 4.04 2.72 3.59 5.00 1994-2014 Exports -- -- -- -- 14.71 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.50 5.06 4.43 4.99 6.37 NA 1984-2015 Residential 8.08 8.10 7.43 7.43 8.86 NA 1967-2015 Commercial 7.03 7.00 6.04 6.32 7.74 NA 1967-2015 Industrial 5.22 5.10 4.48 4.14 5.61 3.14 1997-2015 Vehicle Fuel 8.84 8.08 6.17 1990-2012 Electric Power 6.51 8.66 6.44 -- 4.08 2.89 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 1,667 2,381

  2. West Virginia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.31 5.91 4.99 4.65 5.07 4.00 1984-2015 Residential 11.39 10.91 10.77 9.98 10.21 10.46 1967-2015 Commercial 10.27 9.65 9.35 8.61 8.92 9.15 1967-2015 Industrial 5.40 4.89 3.60 4.30 5.00 NA 1997-2015 Vehicle Fuel -- -- -- 1992-2012 Electric Power 5.14 W 3.33 4.29 W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 7,000 10,345 14,611 22,765 29,432 1977-2014 Adjustments -359 -1 251 -565 -559 1977-2014

  3. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H.; Grisse, H.J.; Speranza, B.E.

    1995-12-01

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  4. Design Calculations for Gas Flow & Diffusion Behavior in the large Diameter Container & Cask

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2003-10-21

    This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen is kept below 5% in both the Cask and the LDC. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is intentionally not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lines hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included.

  5. Executive Summary | Department of Energy

    Office of Environmental Management (EM)

    Executive Summary Executive Summary Introduction The United States is in the midst of an energy revolution. Over the last decade, the United States has slashed net petroleum imports, dramatically increased shale gas production, scaled up wind and solar power, and cut the growth in electricity consumption to nearly zero through widespread efficiency measures. Emerging advanced energy technologies provide a rich set of options to address our energy challenges, but their large-scale deployment

  6. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    SciTech Connect (OSTI)

    Cleveland, J.C.

    1988-01-01

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  7. Design Calculations for Gas Flow & Diffusion Behavior in the Large Diameter Container & Cask

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2003-11-06

    This report describes the calculations for the gas behavior in the void volumes or gas spaces of the sludge Large Diameter Container (LDC) and Cask. The objective is to prevent flammable gas conditions in the LDC and Cask gas spaces. This is achieved by the Active Inert Ventilation System (AIVS), which uses argon gas for dilution purposes. With AIVS, the oxygen content is kept below 4 to 5 vol% in the LDC, and the hydrogen content is kept below 4 vol% in the Cask before its purge at the KE Basin. After the Cask sweep-through purge with argon at the KE Basin, oxygen stays below 4 to 5% in the LDC until two LDC ports are opened at T Plant. The oxygen content stays below 4% in the Cask until the Cask lid is opened at T Plant. The analysis here assumes that any oxygen generated in the sludge is consumed by the uranium and uranium dioxide (SNF-18133, ''Gas Behavior in Large Diameter Containers (LDCs) During and Following Loading with 105K East Sludge''). Thus, oxygen production from radiolysis is not included in this report, but hydrogen from radiolysis and from chemical reactions between uranium and water are considered, depending on the scenario being analyzed. The analysis starts immediately after the final decant at K Basin, when argon is assumed to be the only gas in the LDC gas space, except for the normal water vapor. The oxygen ingress is calculated during the disconnecting of the lined hoses from the LDC, during the time that air is surrounding the LDC with two NucFil-type filters in place after the disconnect, before the Cask is sealed, and, finally, during the sweep-through Cask purge at the KE Basin. Dissolution of oxygen from water due to increasing sludge temperatures (mainly during hot transport to the T Plant) is also included. The analysis includes the gas behavior during the T-Plant operations, which include the venting after the LDC/Cask are received at T Plant, the Cask sweep-through purge, the LDC purge with forced argon delivery into the LDC with 1 open port, followed by the natural sweep-through purge with two open LDC ports.

  8. EXECUTIVE SUMMARY

    National Nuclear Security Administration (NNSA)

    FUSION ENERGY SCIENCE ADVISORY COMMITTEE Panel on High Energy Density Laboratory Plasmas ADVANCING THE SCIENCE OF HIGH ENERGY DENSITY LABORATORY PLASMAS January 2009 UNITED STATES DEPARTMENT OF ENERGY 1 TABLE OF CONTENTS EXECUTIVE SUMMARY.......................................................................................... 5 1 HIGH ENERGY DENSITY LABORATORY PLASMA SCIENCE .................................... 15 2 THE CHARGE TO FESAC

  9. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    SciTech Connect (OSTI)

    Trehu, Anne; Kannberg, Peter

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

  10. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    SciTech Connect (OSTI)

    Anne Trehu; Peter Kannberg

    2011-06-30

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

  11. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    SciTech Connect (OSTI)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.

  12. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    SciTech Connect (OSTI)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  13. Usage Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Summaries PDSF Group Batch Summary Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 SGE62 SGE62 SGE62 Partial SGE62 2015 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2014 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2013 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2012 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2011 SGE62 SGE62 SGE62 SGE62 SGE62

  14. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 image Outside view of the T=4 subunit arrangement. » Links Scientific Highlight Johnson Lab » Share this Article Laboratree Ologeez SciLink LabSpaces Following the pH-dependent Conformational Changes of a Maturing Viral Capsid summary written by Raven Hanna The capsid that surrounds viruses is formed from subunit proteins that interact in specific ways to form a tight shell. The processes of coming together and forming interactions are multistep and complex and are fundamental events to

  15. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 25, 2010 seafloor_biofilms Image of pillow basalts from inside the Pisces Submersible. » Links Scientific Highlight Templeton Lab EMSL News Imaging at SSRL » Share this Article Laboratree Ologeez SciLink LabSpaces Researchers Discover an Unexpected Source of Energy for Deep-sea Microbial Communities summary written by Raven Hanna New rock formed by deep undersea volcanoes does not stay bare long. Microbes quickly move onto these basalts to form communities in the form of biofilms. As

  16. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hasan Research Princeton News Release » Share this Article Laboratree Ologeez SciLink LabSpaces Macroscopic Quantum Insulator State Observed summary written by Raven Hanna One of the strangest consequences of quantum mechanics is the seemingly instantaneous communication of subatomic particles over long distances. Known as quantum entanglement, pairs or groups of particles can become linked so that any changes made to one will cause the others to respond quicker than the time it takes for light

  17. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    03, 2008 » Links Scientific Highlight Tainer Website Scripps Press Release » Share this Article Laboratree Ologeez SciLink LabSpaces Role of Specific Protein Mutations in Causing Human Disease Revealed summary written by Brad Plummer, SLAC Communication Office Scientists are one step closer to understanding a piece of the machinery involved in DNA transcription and repair, thanks to work done in part at the SSRL macromolecular crystallography Beam Line 11-1. The team, led by The Scripps

  18. EFRC Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Center Alex Zunger (NREL) Summary statement: We will focus on material discovery via an "Inverse Band Structure" (IBS) methodology to theoretically identify promising structures and compositions and then apply a combination of high-throughput and targeted materials synthesis to experimentally converge on the optimum properties. RESEARCH PLAN AND DIRECTIONS Rather than use the conventional approach "given the structure, find the electronic properties,"

  19. Eastern Gas Shales Project: Pennsylvania No. 1 well, McKean County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-10-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 1 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 741 feet of core retrieved from a well drilled in MeKean County of north-central Pennsylvania.

  20. Cliff Minerals, Inc. Eastern Gas Shales Project, Ohio No. 6 wells - Gallia County. Phase III report. Summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-07-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Ohio No. 6 wells. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. This data presented were obtained from a study of approximately 1522 feet of core retrieved from five wells drilled in Gallia County in southeastern Ohio.

  1. Eastern Gas Shales Project: Michigan No. 2 well, Otsego County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-11-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Michigan No. 2 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data was obtained from the study of approximately 249 feet of core retrived from a well drilled in Otsego County of north-central Michigan (lower peninsula).

  2. Eastern Gas Shales Project: West Virginia No. 7 well, Wetzel County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-12-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-West Virginia No. 7 well. Information provided includes a stratigraphic summary and lithiology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 533 feet of core retrieved from a well drilled in Wetzel county of north-central West Virginia.

  3. Weekly Natural Gas Storage Report - EIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See All Natural Gas Reports Weekly Natural Gas Storage Report for week ending March 4, 2016 | Released: March 10, 2016 at 10:30 a.m. | Next Release: March 17, 2016 Working gas in underground storage, Lower 48 states Summary text CSV JSN Historical Comparisons Stocks billion cubic feet (Bcf) Year ago (03/04/15) 5-year average (2011-15) Region 03/04/16 02/26/16 net change implied flow Bcf % change Bcf % change East 464 495 -31 -31 322 44.1 363 27.8 Midwest 587 621 -34 -34 320 83.4 400 46.8

  4. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOE Patents [OSTI]

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  5. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hg Methylation » Links Scientific Highlight BL2-3 BL6-2C BL9-3 BL10-2 » Share this Article Laboratree Ologeez SciLink LabSpaces Imaging Mercury in the Rhizosphere of Wetland Plants summary written by Raven Hanna High levels of mercury in our diets can have adverse effects on our health, and fish are a major source of dietary mercury. Because of a process called biomagnification, mercury levels in fish can build up to be at a much higher concentration than in the surrounding water. The mercury

  6. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2008 » Links Scientific Highlight Harbury Website » Share this Article Laboratree Ologeez SciLink LabSpaces A Golden Ruler Used to Measure the Stretching Rigidity of Short-length Scale DNA summary written by Brad Plummer, SLAC Communication Office DNA is softer and stretchier than previously believed, at least on the short length scales of up to 20 base pairs. This finding is the result of a recent study conducted in part at SSRL's biological small-angle x-ray scattering Beam Line 4-2 by a

  7. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2008 » Links Scientific Highlight Saphire Website Scripps Press Release Tracking Ebola, Scripps At the Forefront » Share this Article Laboratree Ologeez SciLink LabSpaces Revealing a Structural Weakness of the Deadly Ebolavirus summary written by Brad Plummer, SLAC Communication Office Scientists are one step closer to conquering the deadly Ebolavirus, thanks to research conducted at SSRL structural biology Beam Lines 9-2 and 11-1 and ALS Beam Line 5.02 by a team of researchers led by

  8. Chair Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chair Summaries from the 2006 Innovative Confinement Concepts (ICC) Workshop D. Craig, 1 R. Goldston, 2 T. R. Jarboe, 3 B. A. Nelson, 3 C. R. Sovinec, 1 S. Woodruff, 3, *and G. Wurden 4 The goal of the ICC program within the DOE Office of Fusion Energy Sciences (OFES) is to improve magnetic and inertial fusion concepts and to advance plasma science. ICC2006 is a continuation of the ICC series, which last year met in Madison, Wisconsin. It provides a forum for an exchange of ideas through

  9. Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/RL-2011-50, REV. 1 iii DOE/RL-2011-50, REV. 1 iv This page intentionally left blank. DOE/RL-2011-50, REV. 1 v Executive Summary The evaluation of potential impacts to groundwater from contaminants in the vadose zone at the Hanford Site is important for making final remedial action decisions for waste sites. The potential impacts or risk associated with groundwater protection pertains to soil contamination throughout the entire vadose zone, and is the principal exposure pathway for

  10. Integral manifolding structure for fuel cell core having parallel gas flow

    DOE Patents [OSTI]

    Herceg, J.E.

    1983-10-12

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  11. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  12. Application of gas-liquid two-phase cross-flow filtration to pilot-scale methane fermentation

    SciTech Connect (OSTI)

    Imasaka, Takuo; So, Hiroyuki; Matsushita, Kohnosuke; Furukawa, Tomoya; Kanekuni, Nobuhiko )

    1993-01-01

    As part of a national project, Aqua-Renaissance '90,' by the MITI, a pilot-scale evaluation of membrane-enhanced anaerobic fermentation, has progressed for the wastewater from a pulp and paper mill. A novel membrane filtration system was newly proposed with the aim of saving energy. That is, a gas-liquid two-phase cross-flow filtration which was generated with liquid circulation by an air-lift pump effect, was combined in the anaerobic bioreactor. It was confirmed that the membrane filtration not only offered very stable and large permeate flux, but enhanced the processing efficiency by retaining the microorganisms in the bioreactor. Furthermore, the power consumption per unit permeate volume in the membrane system of 1.78 kWh/m[sup 3] was achieved, which was a very high-performance result from the viewpoint of saving energy, as compared with 3-5 kWh/m[sup 3] of conventional liquid single-phase cross-flow filtration.

  13. A Fast Network Flow Model is used in conjunction with Measurements of Filter Permeability to calculate the Performance of Hot Gas Filters

    SciTech Connect (OSTI)

    VanOsdol, J.G.; Chiang, T-K.

    2002-09-19

    Two different technologies that are being considered for generating electric power on a large scale by burning coal are Pressurized Fluid Bed Combustion (PFBC) systems and Integrated Gasification and Combined Cycle (IGCC) systems. Particulate emission regulations that have been proposed for future systems may require that these systems be fitted with large scale Hot Gas Clean-Up (HGCU) filtration systems that would remove the fine particulate matter from the hot gas streams that are generated by PFBC and IGCC systems. These hot gas filtration systems are geometrically and aerodynamically complex. They typically are constructed with large arrays of ceramic candle filter elements (CFE). The successful design of these systems require an accurate assessment of the rate at which mechanical energy of the gas flow is dissipated as it passes through the filter containment vessel and the individual candle filter elements that make up the system. Because the filtration medium is typically made of a porous ceramic material having open pore sizes that are much smaller than the dimensions of the containment vessel, the filtration medium is usually considered to be a permeable medium that follows Darcy's law. The permeability constant that is measured in the lab is considered to be a function of the filtration medium only and is usually assumed to apply equally to all the filters in the vessel as if the flow were divided evenly among all the filter elements. In general, the flow of gas through each individual CFE will depend not only on the geometrical characteristics of the filtration medium, but also on the local mean flows in the filter containment vessel that a particular filter element sees. The flow inside the CFE core, through the system manifolds, and inside the containment vessel itself will be coupled to the flow in the filter medium by various Reynolds number effects. For any given filter containment vessel, since the mean flows are different in different locations inside the vessel, the flow of gas through an individual CFE will adjust itself to accommodate the local mean flows that prevail in its general location. In some locations this adjustment will take place at High Reynolds numbers and in other locations this will occur at low Reynolds numbers. The analysis done here investigates the nature of this coupling.

  14. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOE Patents [OSTI]

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  15. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    SciTech Connect (OSTI)

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  16. Continuous flow PCB radiolysis with real time assessment by gas chromatography

    SciTech Connect (OSTI)

    Bruce J. Mincher; Aaron Ruhter; Rene' Rodriguez; Richard Brey

    2006-05-01

    Recently, the treatment of environmentally recalcitrant pollutants such as PCBs has been studied using a number of so-called, advanced oxidation technologies (AOTs). As a group, the AOTs are ultimate treatment technologies that seek to mineralize the hazardous compounds to be treated (Cooper et al., 2004). One of the most versatile of the AOTs is radiolysis, usually practiced using machine-generated sources of radiation (Cooper et al., 2004, Mincher and Cooper, 2003). The radiolytic decomposition of PCBs has been reviewed (Curry and Mincher, 1999). While earlier experiments have been performed in alkaline isopropanol (Singh et al., 1985, Mucka et al., 1997), recent literature has begun to examine the radiolysis of PCBs in more real-world solvents, such as transformer oil (Arbon and Mincher, 1996, Mincher et al., 2000, Chaychian et al., 1999). These experiments have generally been performed in batch fashion, with small volumes of PCB-contaminated solvents placed in front of a gamma-ray source or the bremmstrahlung or e-beam of an accelerator for predetermined periods of time, to give a desired absorbed dose. These samples were then retrieved to analyze the post-irradiation PCB concentration. We report here what we believe is the first example of the radiolysis of PCBs in a process, continuous flow stream, as opposed to typical batch irradiations. The PCB-containing transformer oil was recirculated through an irradiation cell located in the path of an e-beam. Multiple passes through the cell allowed for the delivery of any desired radiation dose. This system required the development of an on-line analytical system that could provide PCB concentration values in real time. In the current experiment, a pulsed plasma electron capture detector (PDECD) was used in conjunction with a new sample preparation scheme. The new sampling scheme bypasses the need for removal or powering down of the radiation source, which would be undesirable during process PCB treatment. Dilution of the samples using volumetric glassware or balances at a site remote to the irradiation, and manual injection of the diluted samples in a remote GC is not required. Thus, the error and time delays associated with stopping and restarting the accelerator are eliminated and kinetic investigations are more easily performed. The PCB levels can be determined within a few minutes of delivering a specified dose to the sample while the process stream continues to be irradiated. Additionally, any possible chemical species in the oil with reactive lifetimes on the order of just a few minutes could be observed with this method. It has previously been reported that the addition of alkaline isopropanol spikes to PCB oils has a catalytic effect on PCB decomposition by radiolysis (Mincher et al., 2000, Mincher et al., 2002). Here we report the results of process irradiation of transformer oil contaminated with PCBs for unadulterated oils, and for oils spiked with alkaline isopropanol to decrease the time and dose required for treatment.

  17. Fischer-Tropsch synthesis from a low HH/sub 2/:CO gas in a dry fluidized-bed system. Volume 1. Project summary. Final technical report, October 1, 1986. [Heat tray

    SciTech Connect (OSTI)

    Liu, Y.A.; Squires, A.M.

    1986-10-01

    The objective of this project is to experimentally develop and demonstrate a dry fluidized-bed reactor system (called ''heat tray'') for Fischer-Tropsch synthesis from a low H/sub 2/:CO gas. The reactor involves conducting catalytic synthesis reactions primarily in a horizontal conveying zone, in which fine particles of an iron catalyst are carried in a relatively dilute suspension by a large flow of reacting gas. A secondary reaction zone, in the form of a shallow fluidized bed of catalyst particles, is situated beneath the primary reaction zone. This shallow bed also has immersed horizontal heat-transfer tubes for removing reaction heat. A major thrust of the new reactor development is to prevent carbon deposits from forming on the iron catalyst, which cause deactivation and physical degradation. This is to be achieved by conducting the Fischer-Tropsch synthesis in an unsteady-state mode, particularly by alternately exposing the iron catalyst to a large flow of low H/sub 2/:CO gas for a short period of time and to a small flow of H/sub 2/-rich gas for a long period of time. The project has been carried out in two key tasks: (1) development of a microreactor system for unsteady-state Fischer-Tropsch synthesis, simulating the life history of an iron catalyst particle in a ''heat-tray'' reactor; and (2) supporting fluidization studies. The present Volume I summarizes the key conclusions and recommendations from this project, and the accompanying Volumes II and III describes the details of experimental investigations and results. 12 refs., 8 figs., 2 tabs.

  18. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  19. Prices for Natural Gas | Open Energy Information

    Open Energy Info (EERE)

    Prices for Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prices for Natural Gas AgencyCompany Organization: Google Sector: Energy Focus Area: Economic...

  20. Idaho National Laboratory Experimental Program to Measure the Flow Phenomena in a Scaled Model of a Prismatic Gas-Cooled Reactor Lower Plenum for Validation of CFD Codes

    SciTech Connect (OSTI)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that will be presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal developing, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet velocity profiles is also presented.

  1. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats; Appendix A

    SciTech Connect (OSTI)

    1992-12-31

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems.

  2. Untitled Page -- Other Sites Summary

    Office of Legacy Management (LM)

    Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites 11 E (2) Disposal Cell - 037 ANC Gas Hills Site - 040 Argonne National Laboratory - West - 014 Bodo Canyon Cell - 006 Burro Canyon Disposal Cell - 007 Cheney Disposal Cell - 008 Chevron Panna Maria Site - 030 Clive Disposal Cell - 036 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 Conoco Conquista Site - 031 Cotter Canon City Site - 009 Dawn Ford Site - 038 EFB White Mesa

  3. STEP Financial Incentives Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    STEP Financial Incentives Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. HST-COS SPECTROSCOPY OF THE COOLING FLOW IN A1795EVIDENCE FOR INEFFICIENT STAR FORMATION IN CONDENSING INTRACLUSTER GAS

    SciTech Connect (OSTI)

    McDonald, Michael; Ehlert, Steven; Roediger, Joel; Veilleux, Sylvain

    2014-08-20

    We present far-UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope of a cool, star-forming filament in the core of A1795. These data, which span 1025 < ?{sub rest} < 1700, allow for the simultaneous modeling of the young stellar populations and the intermediate-temperature (10{sup 5.5}K) gas in this filament, which is far removed (?30kpc) from the direct influence of the central active galactic nucleus. Using a combination of UV absorption line indices and stellar population synthesis modeling, we find evidence for ongoing star formation, with the youngest stars having ages of 7.5{sub ?2.0}{sup +2.5}Myr and metallicities of 0.4{sub ?0.1}{sup +0.2} Z {sub ?}. The latter is consistent with the local metallicity of the intracluster medium. We detect the O VI?1038 line, measuring a flux of f {sub O} {sub VI,} {sub 1038} = 4.0 0.9 10{sup 17} erg s{sup 1} cm{sup 2}. The O VI?1032 line is redshifted such that it is coincident with a strong Galactic H{sub 2} absorption feature, and is not detected. The measured O VI?1038 flux corresponds to a cooling rate of 0.85 0.2 (stat) 0.15 (sys) M {sub ?} yr{sup 1} at ?10{sup 5.5}K, assuming that the cooling proceeds isochorically, which is consistent with the classical X-ray luminosity-derived cooling rate in the same region. We measure a star formation rate of 0.11 0.02 M {sub ?} yr{sup 1} from the UV continuum, suggesting that star formation is proceeding at 13{sub ?2}{sup +3}% efficiency in this filament. We propose that this inefficient star formation represents a significant contribution to the larger-scale cooling flow problem.

  5. Outer Continental Shelf oil and gas activities in the Mid-Atlantic and their onshore impacts: a summary report, November 1979. Update 3, August 1981

    SciTech Connect (OSTI)

    McCord, C.A.

    1981-01-01

    At the present, there are no operators drilling in the Mid-Atlantic Region. The prime targets for future exploration will be in areas of 3000 to 6000 feet (914 to 1829 m) depth of water, seaward of previously leased tracts. No commercial discoveries have been found during the 4-year drilling history of the area. Because of the minimal offshore oil- and gas-related activity in the Mid-Atlantic Region, the onshore impacts are also minimal. Little development has occurred as a result of exploration or development. The level of nearshore and onshore activity may increase with exploration associated with upcoming Lease Sale 59. More permanent onshore development will be contingent on the outcome of future exploration efforts. After Lease Sale 59, the next sale is Lease Sale 76, which is tentatively scheduled for March 1983.

  6. Investigation of cold fusion phenomena in deuterated metals. Final report, Volume 1. Overview, executive summary, chemistry, physics, gas reactions, metallurgy. Technical information series

    SciTech Connect (OSTI)

    Anderson, L.; Barrowes, S.C.; Bergeson, H.E.; Bourgeois, F.; Cedzynska, K.

    1991-06-01

    The March 1989 announcement by Pons and Fleischmann stimulated worldwide interest in the cold fusion phenomenon. In Utah the legislature appropriated $5 million to support cold fusion research and development. As cold fusion inquiries continue worldwide, this interim report has been written to document the scientific and legal work that has been funded by the Utah legislature. Partial contents include these titles of papers: Cold Fusion Studies in a High-Pressure Sealed Cell; Tritium and Neutron Generation in Palladium Cathodes with High Deuterium Loading; Deuterium-Gas Phase Reactions on Palladium; Excess Heat Estimation with the Kalman Filter; Ultrasonic Energy Effects on Palladium Electrodes in Cold Fusion Cells; Nuclear Measurements on Deuterium-Loaded Palladium and Titanium.

  7. South Atlantic summary report 2. Revision of Outer Continental Shelf oil and gas activities in the South Atlantic (US) and their onshore impacts

    SciTech Connect (OSTI)

    Deis, J.L.; Kurz, F.N.; Porter, E.O.

    1982-05-01

    The search for oil and gas on the Outer Continental Shelf (OCS) in the South Atlantic Region began in 1960, when geophysical surveys of the area were initiated. In 1977, a Continental Offshore Stratigraphic Test (COST) well was drilled in the Southeast Georgia Embayment. In March 1978, the first lease sale, Sale 43, was held, resulting in the leasing of 43 tracts. Approximately a year later, in May 1979, the first exploratory drilling began, and by February 1980, six exploratory wells had been drilled by four companies. Hydrocarbons were not found in any of these wells. Lease Sale 56, the second lease sale in the South Atlantic Region, was held in August 1981. The sale resulted in the leasing of 47 tracts. Most of the leased tracts are in deep water along the Continental Slope off North Carolina. To date, no drilling has occurred on these tracts, but it is likely that two wells will be drilled or will be in the process of being drilled by the end of 1982. Reoffering Sale RS-2 is scheduled for July 1982, and it will include tracts offered in Lease Sale 56 that were not awarded leases. Lease Sale 78 is scheduled to be held in July 1983. The most recent (March 1982) estimates of risked resources for leased lands in the South Atlantic OCS are 27 million barrels of oil and 120 billion cubic feet of gas. To date, onshore impacts resulting from OCS exploration have been minimal, and they were associated with Lease Sale 43 exploratory activities. In June 1981, the South Atlantic Regional Technical Working Group prepared a Regional Transportation Management Plan for the South Atlantic OCS. The plan is principally an integration of regulatory frameworks, policies, and plans that are applicable to pipeline siting from each of the South Atlantic coastal States and Federal agencies with jurisdiction in the area.

  8. Outer Continental Shelf oil and gas activities in the Atlantic and their onshore impacts. Atlantic summary report, July 1, 1983-December 31, 1984

    SciTech Connect (OSTI)

    Rudolph, R.W.; Havran, K.J.

    1984-12-01

    The search for oil and gas on the Outer Continental Shelf in the Atlantic continues. Hydrocarbon exploration efforts have been and probably will continue to be concentrated on four major sedimentary basins: the Georges Bank Basin, the Baltimore Canyon Trough, the Carolina Trough, and the Blake Plateau Basin. To date, 46 exploratory wells have been drilled in these areas, most of them in the Mid-Atlantic Planning Area where resource estimates indicate the hydrocarbon potential is the greatest of the three Atlantic Outer Continental Shelf planning areas. Currently, no operators are involved in exploration efforts in the Atlantic. No commercial discoveries have been announced. Since the first and most successful sale of Atlantic Outer Continental Shelf blocks in Lease Sale 40 in August 1976, there have been eight other sales bringing total revenues of almost $3 billion to the Federal Treasury. The current tentative milestone chart for the 5-year offshore leasing schedule calls for four additional lease sales to be held in the Atlantic Outer Continental Shelf. Although no firm plans have been made for the transportation of potential offshore hydrocarbons to onshore processing facilities, it is believed that oil would be transported by tanker or tug-barge system to existing refineries on the Raritan and Delaware Bays. Gas probably would be transported by pipeline to one of several onshore landfalls identifed by Atlantic Coast States and in Federal environmental impact documents. Recent onshore support for Atlantic Outer Continental Shelf exploration came from Davisville, Rhode Island, the only shore support base for the Atlantic that was active during 1984. Three maps are provided in the back pocket of this report for the North Atlantic, Mid-Atlantic and South Atlantic planning areas. 29 refs., 8 figs., 6 tabs.

  9. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The ...

  10. BETTER BUILDINGS PARTNER SUMMARIES

    Broader source: Energy.gov [DOE]

    In addition to Better Buildings Neighborhood Program Summary of Reported Data From July 1, 2010 – September 30, 2013, the following table presents summaries of data reported by an organization...

  11. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  12. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  13. Albuquerque Roundtable Summary

    Broader source: Energy.gov [DOE]

    Summary from the DOE Office of Indian Energy roundtable session on April 6, 2011, in Albuquerque, New Mexico.

  14. University Research Summaries

    Broader source: Energy.gov [DOE]

    The Idaho National Laboratory published the U.S. Department of Energy's (DOE) Geothermal Technologies Office 2001 University Research Summaries.

  15. ARM - Research Highlights Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsResearch Highlights Summaries Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  16. Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2013-05-22

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  17. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  18. Summary of Findings: Peer Review of the FY2003 GPRA Assumptions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 GPRA Assumptions Summary of Findings: Peer Review of the FY2003 GPRA Assumptions Summary of Findings: Peer Review of the FY '03 GPRA Assumptions, Report to National Renewable Energy Laboratory, Washington, D.C., April 3, 2002. PDF icon Summary of Findings More Documents & Publications Summary of Findings: Peer Review of the FY2001 GPRA Assumptions Summary of Findings: Peer Review of the FY2000 GPRA Assumptions Opportunities for Micropower and Fuel Cell/Gas Turbine

  19. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  20. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis...

  1. Development of finite local perturbations of electrical conductivity in the flow of a weakly-conducting gas when a magnetic field is present

    SciTech Connect (OSTI)

    Zaklyaz'minskiy, L.; Sokolov, V.; Degtyarev, L.; Kurdyusov, S.; Samarskiy, A.

    1988-08-08

    A study has been made of the possibility of development of a T-layer from local finite perturbation of electrical conductivity, introduced artificially into a steady-state flow of a weakly conducting gas. The analysis is made with the help of a numerical solution of equations of magnetic hydrodynamics, formulated in the assumption that the electron, ion and neutral components of the medium are found in thermodynamic equilibrium; the viscosity, Hall effect and transfer of energy by radiation are not taken into account.

  2. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  4. IPCC Guidelines for National Greenhouse Gas Inventories | Open...

    Open Energy Info (EERE)

    Guidelines for National Greenhouse Gas Inventories Jump to: navigation, search Tool Summary Name: IPCC Guidelines for National Greenhouse Gas Inventories AgencyCompany...

  5. Managing the National Greenhouse Gas Inventory Process | Open...

    Open Energy Info (EERE)

    Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Managing the National Greenhouse Gas Inventory Process Agency...

  6. Business Case for Compressed Natural Gas in Municipal Fleets...

    Open Energy Info (EERE)

    Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets...

  7. Natural Gas Vehicle Incentive Program | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Incentive Program Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Natural Gas Vehicle Incentive Program AgencyCompany Organization: Natural Gas Vehicles for...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price, West Texas Intermediate Crude Oil Spot Price, and Henry Hub Natural Gas Spot Price Graph More Summary Data Prices Prices increased at all trading locations during the week,...

  9. ARM - Mission Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Summary Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements

  10. Microsoft Word - FINAL_RAP_Oct07_ summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16, 2007 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVE AND PLATEAU COMMITTEE MEETING October 16, 2007 Richland, WA Topics in this Meeting Summary Welcome and Introductions ................................................................................................ 1 Draft Advice on Clarity and Readability of Department of Energy (DOE) Reports.......... 1 Response to Hanford Advisory Board (HAB) Advice #197 Groundwater Values and Flow Chart

  11. CBECS 1995 - Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Executive Summary The Commercial Buildings Energy Consumption Survey (CBECS) collects information on physical characteristics of commercial buildings, building use and occupancy...

  12. Operating Experience Summaries

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (AU) Office of Analysis publishes the Operating Experience Summary to exchange lessons-learned information between DOE facilities.

  13. Pinellas Remediation Agreement Summary

    Office of Environmental Management (EM)

    Legal Driver(s) CERCLA Atomic Energy Act of 1954, as amended Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former ...

  14. HELM(tm) Flow - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patent 7979239B (172 KB) Technology Marketing Summary HELM(tm) Flow is a simulation and analysis tool for transmission and distribution power systems. It provides the analyst...

  15. Total Natural Gas Gross Withdrawals (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 1231 Reserves...

  16. U.S. Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 View History Prices (Dollars per Thousand Cubic Feet) Wellhead NA NA NA NA NA NA 1973-2015 Imports 2.56 2.66 2.74 2.75 3.23 2.48 1989-2015...

  17. Number of Producing Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries

  18. Natural Gas Delivered to Consumers (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    1,889,299 1,872,951 1,727,152 1,805,864 2,056,648 2,382,574 2001-2015 Alabama 56,930 54,897 50,117 49,292 50,501 54,716 2001-2015 Alaska 3,931 3,785 4,473 5,317 6,929 7,958 2001-2015 Arizona 38,296 42,499 35,461 29,557 25,804 30,415 2001-2015 Arkansas 22,018 21,854 17,958 14,702 18,552 22,561 2001-2015 California 192,918 199,015 189,292 186,757 195,837 235,282 2001-2015 Colorado 18,936 19,060 19,128 22,856 40,791 49,929 2001-2015 Connecticut 16,880 17,528 15,795 17,525 19,928 23,268 2001-2015

  19. Commercial Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    133,543 135,676 138,118 192,966 280,282 350,577 1973-2015 Alabama 1,088 1,131 1,174 1,513 2,317 2,366 1989-2015 Alaska 713 766 1,253 1,451 2,103 2,558 1989-2015 Arizona 1,758 1,654 1,714 1,918 3,014 4,130 1989-2015 Arkansas 2,308 2,444 2,571 3,048 3,863 4,724 1989-2015 California 15,962 16,537 15,250 16,321 26,389 29,820 1989-2015 Colorado 1,568 1,456 1,694 2,859 6,789 9,397 1989-2015 Connecticut 2,379 2,512 2,577 3,155 4,122 5,038 1989-2015 Delaware 375 409 432 812 1,065 1,177 1989-2015

  20. District of Columbia Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    82-2005 Citygate -- -- -- -- -- -- 1989-2015 Residential 13.53 13.06 12.10 12.45 13.05 12.52 1980-2015 Commercial 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Industrial -- -- -- -- -- -- 2001-2015 Vehicle Fuel 4.87 4.17 9.38 1995-2012 Electric Power -- 4.96 -- -- -- -- 2001-2015 Consumption (Million Cubic Feet) Total Consumption 33,251 32,862 28,561 32,743 34,057 1997-2014 Pipeline & Distribution Use 213 1,703 1,068 1,434 1,305 1997-2014 Delivered to Consumers 33,038 31,159 27,493 31,309

  1. Electric Power Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    ,053,747 1,034,595 901,839 797,631 737,310 771,355 2001-2015 Alabama 39,373 37,742 33,356 31,534 31,034 33,249 2001-2015 Alaska 2,365 2,116 1,863 2,096 2,164 2,336 2001-2015 Arizona 33,842 38,244 31,091 24,561 17,672 17,515 2001-2015 Arkansas 12,805 12,523 8,552 4,130 5,434 6,754 2001-2015 California 86,319 91,733 89,295 84,917 59,484 63,111 2001-2015 Colorado 9,620 10,114 9,582 8,172 9,658 8,346 2001-2015 Connecticut 11,619 12,188 10,504 10,291 9,814 11,119 2001-2015 Delaware 5,710 5,119 4,903

  2. District of Columbia Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    -- -- -- -- -- -- 1989-2015 Residential 17.68 18.15 18.17 16.21 12.60 10.70 1989-2015 Commercial 11.15 11.17 11.50 11.68 11.28 10.01 1989-2015 Industrial -- -- -- -- -- -- 2001-2015 Electric Power -- -- -- -- -- -- 2002-2015 Consumption (Million Cubic Feet) Delivered to Consumers 984 1,037 1,072 1,740 2,437 2,907 2001-2015 Residential 242 240 253 520 911 1,335 1989-2015 Commercial 657 711 736 1,135 1,443 1,487 1989-2015 Industrial 0 0 0 0 0 0 2001-2015 Vehicle Fuel 86 86 83 86 83 86 2010-2015

  3. Residential Consumption of Natural Gas (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    477,931 481,773 397,489 1967-2014 Colorado 128,993 131,224 130,116 115,695 134,936 132,106 1967-2014 Connecticut 43,995 42,729 44,719 41,050 46,802 51,193 1967-2014 Delaware...

  4. Natural Gas In Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 7,306,429 7,615,688 7,988,797 8,317,848 8,305,034 8,039,759 1973-2015 Alabama 31,141 30,084 32,501 32,916 34,133 34,382 1995-2015 Alaska 38,725 38,832 38,740 38,792 38,658 38,516 2013-2015 Arkansas 11,798 12,201 12,342 13,063 13,345 13,472 1990-2015 California 540,076 538,318 544,899

  5. Dry Natural Gas Proved Reserves Acquisitions (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    3,968 12,748 46,241 7,518 10,810 26,675 2000-2014 Alabama 0 148 383 21 183 0 2000-2014 Alaska 0 0 221 0 272 193 2000-2014 Arkansas 36 807 6,880 6 9 80 2000-2014 California 78 0 52 92 60 1,144 2000-2014 Colorado 437 229 1,218 445 953 567 2000-2014 Florida 0 0 0 0 0 0 2000-2014 Kansas 1 23 122 644 31 1,409 2000-2014 Kentucky 0 39 84 0 1 0 2000-2014 Louisiana 103 847 5,552 285 1,425 4,523 2000-2014 Michigan 16 711 403 0 11 8 2000-2014 Mississippi 2 13 10 109 90 82 2000-2014 Montana 3 30 44 4 4 1

  6. Dry Natural Gas Proved Reserves Adjustments (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    5,098 509 1,731 -1,588 543 2,256 1977-2014 Alabama 46 32 -49 112 -274 502 1977-2014 Alaska 3 1 -1 -2 -5 -21 1977-2014 Arkansas 5 -34 728 -743 -78 -3 1977-2014 California 11 10 923 -563 -72 34 1977-2014 Colorado 306 449 801 -363 -272 627 1977-2014 Florida 6 64 -54 -2 1 -2 1977-2014 Kansas 224 140 125 -236 -20 94 1977-2014 Kentucky 97 -58 -34 -282 103 -9 1977-2014 Louisiana 319 -612 178 605 -42 487 1981-2014 Michigan -279 243 8 -104 -62 -47 1977-2014 Mississippi 26 1 109 65 29 -15 1977-2014

  7. Dry Natural Gas Proved Reserves Extensions (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    42,139 44,783 45,909 45,167 49,131 44,599 1977-2014 Alabama 20 28 3 0 0 2 1977-2014 Alaska 2 14 4 45 92 145 1977-2014 Arkansas 4,627 3,082 2,093 1,399 3,419 1,505 1977-2014 California 450 12 73 8 3 0 1977-2014 Colorado 3,346 2,838 2,015 1,563 1,352 1,070 1977-2014 Florida 0 0 0 0 0 0 1977-2014 Kansas 24 27 62 310 375 271 1977-2014 Kentucky 713 383 4 0 132 0 1977-2014 Louisiana 9,807 10,989 5,793 3,151 1,023 2,740 1981-2014 Michigan 16 1 0 0 0 1 1977-2014 Mississippi 132 33 24 4 5 9 1977-2014

  8. Dry Natural Gas Proved Reserves Sales (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    4,109 10,153 43,186 9,318 9,558 20,373 2000-2014 Alabama 2 263 573 11 357 2 2000-2014 Alaska 5 131 36 2 91 165 2000-2014 Arkansas 54 393 6,760 1 4 248 2000-2014 California 4 3 47 284 70 1,155 2000-2014 Colorado 374 242 1,244 1,667 584 693 2000-2014 Florida 0 0 0 0 0 0 2000-2014 Kansas 2 17 124 887 31 1,092 2000-2014 Kentucky 0 0 100 0 1 0 2000-2014 Louisiana 127 738 5,583 352 1,049 2,478 2000-2014 Michigan 0 529 643 0 11 1 2000-2014 Mississippi 17 31 11 159 39 115 2000-2014 Montana 3 40 44 30 72

  9. Vehicle Fuel Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    28,664 29,974 29,970 30,044 35,280 34,459 1997-2015 Alabama 105 192 193 190 224 220 1988-2015 Alaska 20 11 11 9 10 11 1997-2015 Arizona 2,015 1,712 1,707 1,730 2,032 1,976 1988-2015 Arkansas 16 21 21 27 31 28 1988-2015 California 13,572 14,660 14,671 14,121 16,581 16,467 1988-2015 Colorado 249 282 281 269 316 314 1988-2015 Connecticut 41 27 27 46 54 44 1988-2015 Delaware 1 1 1 1 1 1 1988-2015 District of Columbia 883 879 870 861 1,011 993 1988-2015 Florida 60 84 84 175 206 159 1988-2015 Georgia

  10. Residential Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    108,125 102,264 107,571 200,678 399,624 588,560 1973-2015 Alabama 702 694 671 934 2,031 3,411 1989-2015 Alaska 493 527 1,033 1,422 2,306 2,670 1989-2015 Arizona 1,056 971 1,072 1,334 3,107 6,609 1989-2015 Arkansas 557 514 546 731 2,155 3,933 1989-2015 California 19,107 17,560 17,188 19,412 44,802 73,730 1989-2015 Colorado 2,725 2,476 3,036 5,976 16,679 23,229 1989-2015 Connecticut 1,120 997 975 2,158 3,952 4,884 1989-2015 Delaware 163 166 157 378 720 978 1989-2015 District of Columbia 242 240

  11. Base Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 4,371,340 4,363,455 4,364,233 4,364,778 4,367,380 4,362,559 1973-2015 Alabama 9,640 9,640 9,640 9,640 9,640 9,640 1995-2015 Alaska 14,197 14,197 14,197 14,197 14,197 14,197 2013-2015 Arkansas 9,648 9,648 9,648 10,841 11,213 11,664 1990-2015 California 225,550 225,550 225,550 225,845

  12. Commercial Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    3,102,593 3,155,319 2,894,926 3,295,301 3,466,600 3,205,756 1930-2015 Alabama 27,071 25,144 21,551 25,324 27,515 24,519 1967-2015 Alaska 15,920 19,399 19,898 18,694 17,925 19,281 1967-2015 Arizona 31,945 32,633 31,530 32,890 30,456 30,537 1967-2015 Arkansas 40,232 39,986 41,435 47,636 50,673 46,160 1967-2015 California 247,997 246,141 253,148 254,845 237,675 238,477 1967-2015 Colorado 57,658 55,843 51,795 58,787 58,008 NA 1967-2015 Connecticut 40,656 44,832 42,346 46,418 51,221 53,378 1967-2015

  13. Vehicle Fuel Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    2,996 2,996 2,900 2,996 2,900 2,996 1997-2015 Alabama 19 19 18 19 18 19 2010-2015 Alaska 1 1 1 1 1 1 2010-2015 Arizona 173 173 167 173 167 173 2010-2015 Arkansas 3 3 3 3 3 3 2010-2015 California 1,408 1,408 1,363 1,408 1,363 1,408 2010-2015 Colorado 27 27 26 27 26 27 2010-2015 Connecticut 5 5 4 5 4 5 2010-2015 Delaware 0 0 0 0 0 0 2010-2015 District of Columbia 86 86 83 86 83 86 2010-2015 Florida 18 18 17 18 17 18 2010-2015 Georgia 99 99 96 99 96 99 2010-2015 Hawaii 1 1 1 1 1 1 2010-2015 Idaho

  14. Industrial Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    6,167,371 6,826,192 6,994,120 7,226,215 7,425,452 7,623,826 1997-2014 Alabama 131,228 144,938 153,358 171,729 179,511 187,661 1997-2014 Alaska 6,635 6,408 6,769 6,357 4,065 4,847...

  15. Industrial Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    574,422 590,889 597,420 576,698 611,594 636,533 2001-2015 Alabama 14,619 15,749 15,311 14,897 15,292 15,100 2001-2015 Alaska 352 359 375 323 348 354 2001-2015 Arizona 1,481 1,468...

  16. Working Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 2,935,089 3,252,232 3,624,564 3,953,070 3,937,654 3,677,200 1973-2015 Alabama 21,501 20,444 22,861 23,276 24,493 24,742 1995-2015 Alaska 24,528 24,635 24,543 24,595 24,461 24,319 2013-2015 Arkansas 2,151 2,553 2,694 2,222 2,132 1,808 1990-2015 California 314,527 312,769 319,349 337,762

  17. Electric Power Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    6,872,533 7,387,184 7,573,863 9,110,793 8,190,756 8,149,111 1997-2014 Alabama 227,015 281,722 342,841 401,306 333,897 345,102 1997-2014 Alaska 38,078 39,732 41,738 39,758 33,944...

  18. Dry Natural Gas Estimated Production (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore Gulf of Mexico 1992-2007 Alabama 254 223 218 214 175 176 1977-2014 Alaska 358 317 327 299 285 304 1977-2014...

  19. Natural Gas Delivered to Consumers (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    20,964,665 22,127,046 22,467,053 23,411,423 23,838,925 24,362,131 1997-2014 Alabama 418,677 496,051 558,116 622,359 573,981 599,473 1997-2014 Alaska 81,335 80,794 88,178 87,404...

  20. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  1. Reliability of excess-flow check-valves in turbine lubrication systems

    SciTech Connect (OSTI)

    Dundas, R.E.

    1996-12-31

    Reliability studies on excess-flow check valves installed in a gas turbine lubrication system for prevention of spray fires subsequent to fracture or separation of lube lines were conducted. Fault-tree analyses are presented for the case of failure of a valve to close when called upon by separation of a downstream line, as well as for the case of accidental closure during normal operation, leading to interruption of lubricating oil flow to a bearing. The probabilities of either of these occurrences are evaluated. The results of a statistical analysis of accidental closure of excess-flow check valves in commercial airplanes in the period 1986--91 are also given, as well as a summary of reliability studies on the use of these valves in residential gas installations, conducted under the sponsorship of the Gas Research Institute.

  2. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  3. PPO Benefit Summary | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary Download a summary of benefits offered in our PPO health insurance option. PDF icon 2015 PPO Summary...

  4. Draft Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting Summary Page 1 Public Involvement and Communication Committee June 9, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT AND COMMUNICATIONS COMMITTEE June 9, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 TPA Public Involvement

  5. 2006 EMAB Recommendation Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMAB Recommendation Summary 2006 EMAB Recommendation Summary This document is a summary of the 2006 EMAB Recommendations. PDF icon 2006 EMAB Recommendation Summary More Documents &...

  6. 2011 NTSF Meeting Summary | Department of Energy

    Office of Environmental Management (EM)

    NTSF Meeting Summary 2011 NTSF Meeting Summary PDF icon 2011 NTSF Meeting Summary More Documents & Publications NTSF Spring 2011 Agenda Meeting Summary Notes Overview for Newcomers

  7. Major Contracts Summary | Department of Energy

    Energy Savers [EERE]

    Contracts Summary Major Contracts Summary PDF icon Major Contracts Summary More Documents & Publications Energy Savings Performance Contracts Summary Chapter 16 - Types of Contracts

  8. Wakefield Municipal Gas & Light Department - Residential Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats: 25 Water Heater: 100 Summary The Wakefield Municipal Gas & Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric...

  9. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  10. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  11. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  12. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE August 9, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Committee Business ...................................................................................................................................... 4 Attachments

  14. Determination of filter-cake thicknesses from on-line flow measurements and gas/particle transport modeling

    SciTech Connect (OSTI)

    Smith, D.H.; Powell, V.; Ibrahim, E.; Ferer, M.; Ahmadi, G.

    1996-12-31

    The use of cylindrical candle filters to remove fine ({approx}0.005 mm) particles from hot ({approx}500- 900{degrees}C) gas streams currently is being developed for applications in advanced pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies. Successfully deployed with hot-gas filtration, PFBC and IGCC technologies will allow the conversion of coal to electrical energy by direct passage of the filtered gases into non-ruggedized turbines and thus provide substantially greater conversion efficiencies with reduced environmental impacts. In the usual approach, one or more clusters of candle filters are suspended from a tubesheet in a pressurized (P {approx_lt}1 MPa) vessel into which hot gases and suspended particles enter, the gases pass through the walls of the cylindrical filters, and the filtered particles form a cake on the outside of each filter. The cake is then removed periodically by a backpulse of compressed air from inside the filter, which passes through the filter wall and filter cake. In various development or demonstration systems the thickness of the filter cake has proved to be an important, but unknown, process parameter. This paper describes a physical model for cake and pressure buildups between cleaning backpulses, and for longer term buildups of the ``baseline`` pressure drop, as caused by incomplete filter cleaning and/or re-entrainment. When combined with operating data and laboratory measurements of the cake porosity, the model may be used to calculate the (average) filter permeability, the filter-cake thickness and permeability, and the fraction of filter-cake left on the filter by the cleaning backpulse or re-entrained after the backpulse. When used for a variety of operating conditions (e.g., different coals, sorbents, temperatures, etc.), the model eventually may provide useful information on how the filter-cake properties depend on the various operating parameters.

  15. The megasecond Chandra X-ray visionary project observation of NGC 3115: Witnessing the flow of hot gas within the Bondi radius

    SciTech Connect (OSTI)

    Wong, Ka-Wah; Irwin, Jimmy A.; Yukita, Mihoko; Million, Evan T.; Shcherbakov, Roman V.; Bregman, Joel N.

    2014-01-01

    Observational confirmation of hot accretion model predictions has been hindered by the challenge to resolve spatially the Bondi radii of black holes with X-ray telescopes. Here, we use the Megasecond Chandra X-ray Visionary Project observation of the NGC 3115 supermassive black hole to place the first direct observational constraints on the spatially and spectroscopically resolved structures of the X-ray emitting gas inside the Bondi radius of a black hole. We measured temperature and density profiles of the hot gas from a fraction out to tens of the Bondi radius (R{sub B} = 2.''4-4.''8 = 112-224 pc). The projected temperature jumps significantly from ?0.3 keV beyond 5'' to ?0.7 keV within ?4''-5'', but then abruptly drops back to ?0.3 keV within ?3''. This is contrary to the expectation that the temperature should rise toward the center for a radiatively inefficient accretion flow. A hotter thermal component of ?1 keV inside 3'' (?150 pc) is revealed using a two-component thermal model, with the cooler ?0.3 keV thermal component dominating the spectra. We argue that the softer emission comes from diffuse gas physically located within ?150 pc of the black hole. The density profile is broadly consistent with ??r {sup 1} within the Bondi radius for either the single temperature or the two-temperature model. The X-ray data alone with physical reasoning argue against the absence of a black hole, supporting that we are witnessing the onset of the gravitational influence of the supermassive black hole.

  16. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  17. Conference summary: Experimnetal

    SciTech Connect (OSTI)

    Thommpson, J.D.

    1995-12-31

    The conference is the 1995 International Conference on Strongly Correlated Electron Systems. The summary highlights research on the ``extended`` Doniach model, Kondo insulators, borocarbide superconductors, oxides (including cuprates), other phase transitions, and new materials.

  18. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    SciTech Connect (OSTI)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations

  19. Compilation of ETR Summaries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Technical Review Summaries Office of Technology Innovation and Development Office of Environmental Management November 2011 External Technical Review Summaries Number Title Report Date ETR-1 Flowsheet for the Hanford Waste Treatment Plant (WTP) March 2006 ETR-2 Tank 48 at the Savannah River Site (SRS) August 2006 ETR-3 Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford September 2006 ETR-4 Salt Waste Processing Facility Design at the Savannah River

  20. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect (OSTI)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.

  1. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,869,960 3,958,315 5,817,122 8,500,983 10,532,858 11,896,204 2007-2013 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2007-2013 Alabama 0 0 0 0 0 0 2007-2013 Arizona 0 0 0 0 0 0...

  2. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Alabama NA NA NA NA NA NA 2007-2015 Arizona NA NA NA NA NA NA 2007-2015 Arkansas NA NA NA NA NA NA 2007-2015...

  3. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  4. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  5. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  6. STEP Participant Survey Executive Summary

    Broader source: Energy.gov [DOE]

    STEP Participant Survey Executive Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  7. ICEIWG Meeting Agendas and Summaries

    Broader source: Energy.gov [DOE]

    Download meeting agendas and summaries from the Indian Country Energy and Infrastructure Working Group (ICEIWG).

  8. Microsoft Word - Summary.doc

    National Nuclear Security Administration (NNSA)

    Summary v TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... v List of Figures .............................................................................................................................................................. vi List of Tables

  9. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    2, 2013 Next Release: October 9, 2013 New production sources change domestic propane flows Increasing domestic oil and gas production is changing the flow of propane in the United...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Gas Company, for example, on Tuesday, October 21, issued a system overrun limitation (SOL) that allows for penalties on variances between flows and nominations. The SOL is in...

  11. Decision Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » Decision Summaries Decision Summaries January 1, 2016 Summary of Decisions - December 28, 2015 - January 1, 2016 Decisions were issued on: - Whistleblower Protection (10 CFR Part 708) December 25, 2015 Summary of Decisions - December 21, 2015 - December 25, 2015 Decisions were issued on: - Personnel Security (10 CFR Part 710) - Freedom of Information Act Appeal December 18, 2015 Summary of Decisions - December 14, 2015 - December 18, 2015 Decisions were issued on: -

  12. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

  13. Biomass Cookstoves Technical Meeting: Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cookstoves Technical Meeting: Summary Report Biomass Cookstoves Technical Meeting: Summary Report In regions where biomass is a traditional fuel for cooking, improved cookstoves can enhance indoor air quality, personal health, livelihoods, and the environment-while substantially reducing greenhouse gas (GHG) emissions. Although ongoing efforts have successfully disseminated improved stoves that achieve many of these benefits, substantially greater emissions reductions are needed to comply with

  14. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * Supply vs. Capacity * Sources * Consumption * Pipeline system * Gas Interruptions - Operational Flow Orders * Pricing Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL Sources of Natural Gas * Mine * Import * Remove from storage Federal Utility Partnership Working Group November 5-6,

  15. Tribal Roundable Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roundable Executive Summary Tribal Roundable Executive Summary Executive summary of the DOE Office of Indian Energy tribal roundtables held between March 16 and April 14, 2011. PDF icon TribalRoundtableExecutiveSummary.pdf More Documents & Publications Pala Roundtable Summary Las Vegas Roundtable Summary Washington, D.C. Roundtable Summary

  16. "U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2014" "Contents" "Table 1: U.S. proved reserves, and reserves changes, 2013-14" "Table 2: U.S. tight ...

  17. Decision Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 16, 2014 Summary of Decisions - December 30, 2013 - January 3, 2014 Decisions were issued on: - Privacy Act Appeal January 10, 2014 Summary of Decisions - MM DD YYYY - MM...

  18. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 12, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE November 12, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 100 F-Area Record of Decision .................................................................................................................... 1 Central Plateau Inner Area Cleanup

  19. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 13, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE November 13, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tank Farm Vapor Issues (joint w/ HSEP) .................................................................................................... 1 Direct Feed Low-Activity Waste Treatment

  20. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE January 7, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Risk-Based Retrieval, Treatment, and Closure ............................................................................................. 1 Waste Management Area C Performance Assessment