Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solid oxide fuel cell having compound cross flow gas patterns  

DOE Patents [OSTI]

A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

Fraioli, A.V.

1983-10-12T23:59:59.000Z

2

Prediction of slug-to-annular flow pattern transition (STA) for reducing the risk of gas-lift instabilities and effective gas/liquid transport from low-pressure reservoirs  

SciTech Connect (OSTI)

Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificial lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.

Toma, P.R.; Vargas, E.; Kuru, E.

2007-08-15T23:59:59.000Z

3

Gasliquid two-phase flow patterns in a miniature square channel with a gas permeable sidewall  

E-Print Network [OSTI]

by a mono small-gas-bubble layer existing adjacent to the surface of the permeable sidewall and industries. Exam- ples include heat transfer systems, distillation processes, steam generators, and numerous of the underlying mechanisms of boiling and condensation heat transfer in channels. Early studies of gas­liquid two

Zhao, Tianshou

4

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

1996-05-07T23:59:59.000Z

5

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

6

Zonal Flow as Pattern Formation  

E-Print Network [OSTI]

In this section, we examine the transition from statistically homogeneous turbulence to inhomogeneous turbulence with zonal flows. Statistical equations of motion can be derived from the quasilinear approximation to the Hasegawa-Mima equation. We review recent work that finds a bifurcation of these equations and shows that the emergence of zonal flows mathematically follows a standard type of pattern formation. We also show that the dispersion relation of modulational instability can be extracted from the statistical equations of motion in a certain limit. The statistical formulation can thus be thought to offer a more general perspective on growth of coherent structures, namely through instability of a full turbulent spectrum. Finally, we offer a physical perspective on the growth of large-scale structures.

Parker, Jeffrey B

2015-01-01T23:59:59.000Z

7

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

8

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

9

Anisotropic collective flow of a Lorentz gas  

E-Print Network [OSTI]

Analytical results for the anisotropic collective flow of a Lorentz gas of massless particles scattering on fixed centres are presented.

Nicolas Borghini; Clement Gombeaud

2011-06-30T23:59:59.000Z

10

Gas flow in barred potentials  

E-Print Network [OSTI]

We use a Cartesian grid to simulate the flow of gas in a barred Galactic potential and investigate the effects of varying the sound speed in the gas and the resolution of the grid. For all sound speeds and resolutions, streamlines closely follow closed orbits at large and small radii. At intermediate radii shocks arise and the streamlines shift between two families of closed orbits. The point at which the shocks appear and the streamlines shift between orbit families depends strongly on sound speed and resolution. For sufficiently large values of these two parameters, the transfer happens at the cusped orbit as hypothesised by Binney et al. over two decades ago. For sufficiently high resolutions the flow downstream of the shocks becomes unsteady. If this unsteadiness is physical, as appears to be the case, it provides a promising explanation for the asymmetry in the observed distribution of CO.

Sormani, Mattia C; Magorrian, John

2015-01-01T23:59:59.000Z

11

Analysis of flow patterns and flow mechanisms in soils  

E-Print Network [OSTI]

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University of paths, varying flow mechanism or changing soil physical properties (stratification). Thus, in stratified-28Jan2010 #12;This doctoral thesis was prepared at the Department of Soil Physics, University

Paris-Sud XI, Université de

12

Analysis of flow patterns and flow mechanisms in soils  

E-Print Network [OSTI]

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University mechanism or changing soil physical properties (stratification). Thus, in stratified soil, we restricted was prepared at the Department of Soil Physics, University of Bayreuth, and at the Hydrogeological Laboratory

Avignon et des Pays de Vaucluse, Université de

13

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

Henderson, Gideon

14

Classification of Two-Phase Flow Patterns by Ultrasonic Sensing  

E-Print Network [OSTI]

in addition to several other factors such as the bulk flow rate, fluid properties, and flow boundary conditions [1]. Characterization of flow patterns and identification of the associ- ated flow regimes instrumentation, both for void fraction identification and flow pattern classification. High-speed photog- raphy

Ray, Asok

15

Gas flow characterization of restrictive flow orifice devices  

SciTech Connect (OSTI)

A restrictive flow orifice (RFO) can be used to limit the uncontrolled release of system media upon component or line failure in a gas handling system and can thereby enhance the system safety. This report describes a new RFO product available from the Swagelok Companies and specifies the gas flow characteristics of this device. A family of four different sizes of RFO devices is documented.

Shrouf, R.G. [Sandia National Labs., Albuquerque, NM (United States). Safety Engineering Dept.; Page, S.R. [Albuquerque Valve and Fitting Co., NM (United States)

1997-07-01T23:59:59.000Z

16

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network [OSTI]

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

17

Microgravity flow pattern identification using void fraction signals  

E-Print Network [OSTI]

Knowledge of the two-phase flow state is fundamental for two-phase flow system design and operation. In traditional two-phase flow studies, the flow regime refers to the physical location of the gas and liquid in a conduit. Flow configuration...

Valota, Luca

2005-08-29T23:59:59.000Z

18

A study of grout flow pattern analysis  

SciTech Connect (OSTI)

A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

Lee, S. Y. [Savannah River National Lab., Aiken, SC (United States); Hyun, S. [Mercer Univ., Macon, GA (United States)

2013-01-10T23:59:59.000Z

19

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS)  

E-Print Network [OSTI]

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS) NIST Special Publication of Standards and Technology #12;i Table of Contents for the Natural Gas Flowmeter Calibration Service (NGFCS;1 Abstract This document describes NIST's high pressure natural gas flow calibration service (NGFCS). Flow

20

Radial Inflow Gas Turbine Flow Path Design  

E-Print Network [OSTI]

Abstract:- A new method for radial inflow gas turbine flow paths design based on a unique integrated conceptual design environment AxSTREAM is presented in this paper. This integrated environment is a seamless and swift processing scheme that incorporates stages aerodynamic analysis and preliminary design/sizing based on the one dimensional method. The environment makes possible to find number of different designs with inverse task solver, basing on initially specified boundary conditions, closing conditions and design variables. Design space explorer provides easy and visual comparison for range of obtained design in customizable coordinate axes. Solution filtering on different parameters, such as meridional and axial dimensions, maximal blades weight, saving the time to choose from thousands obtained solutions the only one right design. Flexibility of presented approach allows to built-up complete gas turbine flow path from consequence of individual elements: stationary and rotating elements, ducts, heat exchangers, and analyze it in common environment. Complete control of all aspects of aerodynamic flow path quality, structural reliability, and integral performances on design and offdesign conditions is performing throughout all design process. This gives full interaction between user and system for immediate correction and enhancement of current design data using various optimization capabilities to feel the impact of changes on each design step. Integrated system AxSTREAM significantly shortening the design cycle time from initial machine concept to finalized design with all offdesign performances details. The design process is demonstrated for a 25kW radial inflow gas turbine. Keywords:- Radial Inflow Turbine, Performance Maps, AxSTREAM I.

Samip Shah; Gaurang Chaudhri; Digvijay Kulshreshtha; S. A. Channiwalla

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Prediction of annular liquid-gas flow with entrainment: cocurrent vertical pipe flow with no gravity  

SciTech Connect (OSTI)

A fully developed and adiabatic two-phase annular model with liquid entrainment is derived for flow in a pipe with negligible gravity effects. The model subdivides the flow cross section into three regions: a liquid film, a gas core of constant density, and a transition wavy layer between them. The combination of a constant velocity and a density varying exponentially with distance from the wall is employed in the transition layer. Extensive comparisons of the model are made with air-water and steam-water test data, and the results generally are satisfactory over a wide range of conditions and for all the important characteristics of this flow pattern. A simplified model is developed to permit rapid and approximate calculations.

Levy, S.; Healzer, J.M.

1980-05-01T23:59:59.000Z

22

Evolution of flow disturbances in cocurrent gas-liquid flows  

SciTech Connect (OSTI)

Studies of interfacial waves in horizontal gas-liquid flows, close to neutral stability, suggest that the rate of evolution of the interface may be linked to nonlinear interactions between the fundamental mode and the subharmonic -- even if the subharmonic is linearly stable. The rate of evolution increases as the subharmonic becomes more unstable. A comparison of linear stability techniques used to predict the initial behavior of waves reveals similar predictions of growth rates and almost identical speeds between a two layer laminar Orr-Sommerfeld theory and an Orr-Sommerfeld theory when the effect of the (turbulent) gas flow enters as boundary conditions on the liquid layer. However, there is disagreement at small wavenumbers as to the point at which the growth curve crosses 0. This is a significant problem because longwave disturbances, in our case roll waves, form by growth of (initially) small amplitude waves that have frequencies which are 0.5 to 1 Hz, which is in the range where the two theories disagree about the sign of the growth rate. While nonlinear effects are probably involved in the formation of the peak (at least while its amplitude is small), the linear growth rate must play an important role when the amplitude is small.

McCready, M.J.

1992-10-01T23:59:59.000Z

23

Modification of plasma flows with gas puff in the scrape-off layer of ADITYA tokamak  

SciTech Connect (OSTI)

The parallel Mach numbers are measured at three locations in the scrape-off layer (SOL) plasma of ADITYA tokamak by using Mach probes. The flow pattern is constructed from these measurements and the modification of flow pattern is observed by introducing a small puff of working gas. In the normal discharge, there is an indication of shell structure in the SOL plasma flows, which is removed during the gas puff. The plasma parameters, particle flux and Reynolds stress are also measured in the normal discharge and in the discharge with gas puff. It is observed that Reynolds stress and Mach number are coupled in the near SOL region and decoupled in the far SOL region. The coupling in the near SOL region gets washed away during the gas puff.

Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V. [Institute for Plasma Research, Gandhinagar 382428 (India)] [Institute for Plasma Research, Gandhinagar 382428 (India)

2013-06-15T23:59:59.000Z

24

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80  

E-Print Network [OSTI]

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80 John of Standards and Technology U. S. Department of Commerce #12;ii Table of Contents Gas Flowmeter Calibrations with the Working Gas Flow Standard .......................... i Abstract

25

Visualizing flow patterns in coupled geomechanical simulation using streamlines  

E-Print Network [OSTI]

the benefits and power of streamline tracing in visualizing flow patterns through work on two cases; first, a synthetic case for studying water injection in a five spot pattern and second, a SPE 9th comparative study. The research gives encouraging results...

Parihar, Prannay

2009-05-15T23:59:59.000Z

26

Gas flow means for improving efficiency of exhaust hoods  

DOE Patents [OSTI]

Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

Gadgil, A.J.

1994-01-11T23:59:59.000Z

27

Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR  

SciTech Connect (OSTI)

Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

2005-10-03T23:59:59.000Z

28

Tritium flow through a non-symmetrical source. Simulation of gas flow through an injection hole  

E-Print Network [OSTI]

Tritium flow through a non-symmetrical source. Simulation of gas flow through an injection hole of source in injection rarefaction parameter µ0 viscosity of tritium at T0 Pa s 2 #12;Ll = 5074.5 Lr = 5007

Sharipov, Felix

29

Gas flow driven by thermal creep in dusty plasma  

SciTech Connect (OSTI)

Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

Flanagan, T. M.; Goree, J. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2009-10-15T23:59:59.000Z

30

Turbulent patterns in wall-bounded flows: a Turing instability?  

E-Print Network [OSTI]

In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An {\\it intrinsic} status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.

Manneville, Paul

2012-01-01T23:59:59.000Z

31

Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows  

E-Print Network [OSTI]

Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows Vladimir V. Riabov Rivier College, Nashua, New Hampshire, USA ABSTRACT Hypersonic rarefied-gas flows near two side of Hypersonic Rarefied Gas Flows n

Riabov, Vladimir V.

32

Gas Bubble Formation in Stagnant and Flowing Mercury  

SciTech Connect (OSTI)

Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant and flowing mercury have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX, was used to simulate the unsteady two-phase flow of gas injection into stagnant mercury. Bubbles produced at the upwards-oriented vertical gas injector were measured with proton radiography at the Los Alamos Neutron Science Center. The comparison of the CFD results to the radiographic images shows good agreement for bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. Although several gas flows were measured, this paper focuses on the case with a gas flow rate of 8 cc/min through the 100-micron-diameter injector needle. The acoustic waves emitted due to the detachment of the bubble and during subsequent bubble oscillations were recorded with a microphone, providing a precise measurement of the bubble sizes. As the mercury flow rate increases, the drag force causes earlier bubble detachment and therefore smaller bubbles.

Wendel, Mark W [ORNL] [ORNL; Abdou, Ashraf A [ORNL] [ORNL; Riemer, Bernie [ORNL] [ORNL; Felde, David K [ORNL] [ORNL

2007-01-01T23:59:59.000Z

33

HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal  

E-Print Network [OSTI]

HERA-B Gas Systems The gas mixture, the gas volume of the corresponding detector and the required gas flow are given. All detectors are operating at nominal pressure within a given tolerance p. The pipes connecting the external gas hut with the third floor of the electronics trailer are listed on page

34

Micromachined thin-film gas flow sensor for microchemical reactors  

E-Print Network [OSTI]

Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

Besser, Ronald S.

35

E-Print Network 3.0 - analyzing flow patterns Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASME Early Career Technical Conference Summary: March 31-April 02, 2011, Fayetteville, AR FLOW PATTERNS AND VOID FRACTION IN DOWNWARD TWO PHASE FLOW... of this study was to...

36

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

37

Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.

Wendel, Mark W [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL; D'Urso, Brian R [ORNL; West, David L [ORNL

2009-01-01T23:59:59.000Z

38

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network [OSTI]

study, heat flow simulations use a 3-D thermal model grid (model grid, which is used for gas flow and ambient heat-flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

39

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network [OSTI]

heat flow simulations use the 3-D thermal model grid (Figuremodel grid, which is used for gas flow and ambient heat flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

40

Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners  

SciTech Connect (OSTI)

This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

Jennifer Sinclair Curtis

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network [OSTI]

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

42

Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree  

E-Print Network [OSTI]

Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree Department of Physics 2009 Thermal creep flow TCF is a flow of gas driven by a temperature gradient along a solid boundary to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result

Goree, John

43

Hot gas cross flow filtering module  

DOE Patents [OSTI]

A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.

Lippert, Thomas E. (Murrysville Boro, PA); Ciliberti, David F. (Murrysville Boro, PA)

1988-01-01T23:59:59.000Z

44

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect (OSTI)

It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-09-04T23:59:59.000Z

45

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network [OSTI]

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

46

Device for measuring the flow of a gas containing particulates  

SciTech Connect (OSTI)

This patent describes an apparatus for continuously measuring the flow of a gas containing entrained particulates. It comprises: a flow channel, through which the gas flows; an orifice disposed within the flow channel, including at least a first surface and a second surface; means for causing the first surface and second surface independently to move in directions perpendicular to lines normal to the surfaces; scraping means, for intimately contacting at least a portion of the first surface and of the second surface, at all times while the surfaces are moving, whereby particulates which adhere to the first and second surfaces are removed by the movement of the surfaces past the scraping means; pressure taps, positioned so as to communicate with the flow channel upstream and downstream from the orifice, the pressure taps additionally in communication with pressure-measuring means, for measuring the pressure differential in the flow channel resulting from the passage of the gas through the orifice; and thermophoretic heaters, positioned so as to heat the gas within the pressure taps, and thereby excluding particulates therefrom.

Gordon, R.G.; Hofer, P.H.

1991-01-08T23:59:59.000Z

47

Numerical studies of hypersonic binary gas-mixture flows near a sphere  

E-Print Network [OSTI]

Numerical studies of hypersonic binary gas-mixture flows near a sphere V.V. Riabov 1 Diffusive] to study the flow. In the present study, diffusive effects in hypersonic flows of binary gas-mixtures near

Riabov, Vladimir V.

48

Interaction of a surface glow discharge with a gas flow  

SciTech Connect (OSTI)

A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow's influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

Aleksandrov, A. L., E-mail: a_alex@itam.nsc.ru; Schweigert, I. V. [Russian Academy of Sciences, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch (Russian Federation)

2010-05-15T23:59:59.000Z

49

Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow  

DOE Patents [OSTI]

An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

Orosa, John

2014-03-11T23:59:59.000Z

50

Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data  

E-Print Network [OSTI]

Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data Jin Yu, Jim Hunter, Ehud analogue channels are sampled once per second and archived by the Tiger system for monitoring gas turbines that it is very important to identify such patterns in any attempt at summarisation. In the gas turbine domain

Reiter, Ehud

51

Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas  

E-Print Network [OSTI]

Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional 3D Darcy flow #12 analysis K, Brenner1 , R. Masson1 , L. Trenty2 , Y. Zhang1 Coupling of a two phase gas liquid compositional

Ribot, Magali

52

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

53

Microfluidic gas flow profiling using remote detection NMR  

SciTech Connect (OSTI)

Miniaturized fluid handling devices have recently attracted considerable interest in many areas of science1. Such microfluidic chips perform a variety of functions, ranging from analysis of biological macromolecules2,3 to catalysis of reactions and sensing in the gas phase4,5. To enable precise fluid handling, accurate knowledge of the flow properties within these devices is important. Due to low Reynolds numbers, laminar flow is usually assumed. However, either by design or unintentionally, the flow characteristic in small channels is often altered, for example by surface interactions, viscous and diffusional effects, or electrical potentials. Therefore, its prediction is not always straight-forward6-8. Currently, most microfluidic flow measurements rely on optical detection of markers9,10, requiring the injection of tracers and transparent devices. Here, we show profiles of microfluidic gas flow in capillaries and chip devices obtained by NMR in the remote detection modality11,12. Through the transient measurement of dispersion13, NMR is well adaptable for non-invasive, yet sensitive determination of the flow field and provides a novel and potentially more powerful tool to profile flow in capillaries and miniaturized flow devices.

Hilty, Christian; McDonnell, Erin; Granwehr, Josef; Pierce,Kimberly; Han, Song-I Han; Pines, Alexander

2005-05-06T23:59:59.000Z

54

Turbulent flow of gas in fractures  

E-Print Network [OSTI]

sises of 40 - 60, 20 - 40 and 10 - 20 mesh and with varying concentration of proppants . The confining pressure was varied for each core up to $, 000 psi step by step. The proppant concentration in each fracture was varied up to a complete monolayer... an ovex'bux'den pressure of 4, 000 psi, the reduction in flow capaoity would vary from 86 $ to 76 4 with corresponding change of pressure dxop from 2, 000 psi to 7, 000 psi across a 320 ft long fractuxe. ACKHOWLEDGENEN% The author wishes to extend...

Koh, Wong In

1974-01-01T23:59:59.000Z

55

Energy policy act transportation study: Interim report on natural gas flows and rates  

SciTech Connect (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

56

Enhanced thermal and gas flow performance in a three-way catalytic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way...

57

Effects of flow paths on tight gas well performance  

E-Print Network [OSTI]

, r? (3-10) Derivative is then defined as, ~PwD d(inr. ) (3-1 I) The late radial flow regime will develop when the pressure transient reaches the top and bottom boundaries. At that time the pressure transient will stop moving in vertical... 2001 Major Subject: Petroleum Engineering EFFECTS OF FLOW PATHS ON TIGHT GAS WELL PERFORMANCE A Thesis by SAMEER VASANT GANPULE Submitted to Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Ganpule, Sameer Vasant

2001-01-01T23:59:59.000Z

58

The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels  

SciTech Connect (OSTI)

Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-05-15T23:59:59.000Z

59

MODELLING OF SUPERSONIC GAS FLOW OF NOZZLES FOR LASER CUTTING SYSTEMS  

E-Print Network [OSTI]

MODELLING OF SUPERSONIC GAS FLOW OF NOZZLES FOR LASER CUTTING SYSTEMS I. Dohnke1 , D. Peter1 , J. The supersonic gas flow of nozzles for laser cutting systems has been modelled with CFD simulations% and maintaining the cutting quality compared to our standard product. Keywords: modelling of gas flow behaviour

60

Analysis of models for induced gas flow in the unsaturated zone Kehua You,1  

E-Print Network [OSTI]

Analysis of models for induced gas flow in the unsaturated zone Kehua You,1 Hongbin Zhan,1 term are frequently employed in modeling the induced gas flow in an unsaturated zone underlying a leaky 2011. [1] Accurate description of induced gas flow in an unsaturated zone is indispensable

Zhan, Hongbin

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Liquid and liquidgas flows at all speeds  

SciTech Connect (OSTI)

All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquidgas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup ?3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

LeMartelot, S., E-mail: sebastien.lemartelot@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); Nkonga, B., E-mail: boniface.nkonga@unice.fr [RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University of Nice, LJAD UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex (France); Saurel, R., E-mail: richard.saurel@polytech.univ-mrs.fr [Polytech'Marseille, Aix-Marseille University, UMR CNRS 7343 IUSTI, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France); RS2N, Bastidon de la Caou, 13360 Roquevaire (France); University Institute of France, 5 rue E. Fermi, 13453 Marseille Cedex 13 (France)

2013-12-15T23:59:59.000Z

62

Gas Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows  

E-Print Network [OSTI]

Gas Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows Wei Liao and Li-Shi Luo Old for the near-continuum flows. The gas-kinetic schemes are validated with simulations of the hypersonic flow thickness, modeling and simulation of complex hypersonic flows become very challenging for computational

Luo, Li-Shi

63

A multiple temperature kinetic model and its application to micro-scale gas flow simulations  

E-Print Network [OSTI]

A multiple temperature kinetic model and its application to micro-scale gas flow simulations model, micro-scale flows. 1. Introduction Gas flows can be classified according to the flow regimes_pku@yahoo.com.cn Abstract This paper presents a numerical approach to solve the multiple temperature kinetic model (MTKM

Xu, Kun

64

Flammable gas interlock spoolpiece flow response test report  

SciTech Connect (OSTI)

The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

Schneider, T.C., Fluor Daniel Hanford

1997-03-24T23:59:59.000Z

65

Lattice gas automata for flow and transport in geochemical systems  

SciTech Connect (OSTI)

Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

1992-05-01T23:59:59.000Z

66

Lattice gas automata for flow and transport in geochemical systems  

SciTech Connect (OSTI)

Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

1992-01-01T23:59:59.000Z

67

Acoustic cross-correlation flowmeter for solid-gas flow  

DOE Patents [OSTI]

Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

Sheen, S.H.; Raptis, A.C.

1984-05-14T23:59:59.000Z

68

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations  

E-Print Network [OSTI]

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate-kinetic method; Hypersonic and rarefied flows 1. Introduction The development of aerospace technology has

Xu, Kun

69

Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury  

SciTech Connect (OSTI)

ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

Wendel, Mark W [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL

2012-01-01T23:59:59.000Z

70

Gas flow to a barometric pumping well in a multilayer unsaturated Kehua You,1  

E-Print Network [OSTI]

Gas flow to a barometric pumping well in a multilayer unsaturated zone Kehua You,1 Hongbin Zhan,1. [1] When an open well is installed in an unsaturated zone, gas can flow between the subsurface and the well depending on the gas pressure gradient near the well. This well is called a barometric pumping

Zhan, Hongbin

71

The McCormack model for gas mixtures: Plane Couette flow R. D. M. Garcia  

E-Print Network [OSTI]

The McCormack model for gas mixtures: Plane Couette flow R. D. M. Garcia HSH Scientific Computing flow for a binary gas mixture described by the McCormack kinetic model. The solution yields, defined for binary gas mixtures in terms of the McCormack model, for semi-infinite media14 Kramers

Siewert, Charles E.

72

Use of exhaust gas as sweep flow to enhance air separation membrane performance  

DOE Patents [OSTI]

An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

Dutart, Charles H. (Washington, IL); Choi, Cathy Y. (Morton, IL)

2003-01-01T23:59:59.000Z

73

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows  

E-Print Network [OSTI]

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows Wei Liao and Li-Shi Luo Old. The gas-kinetic schemes are validated with simulations of the hypersonic flow past a hollow flare at Mach and simulation of complex hypersonic flows become very challenging for computa- tional fluid dynamics (CFD) [1

Xu, Kun

74

A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow  

E-Print Network [OSTI]

A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow Kun Xu a,*, Meiliang Mao b for the Navier­Stokes equations in the study of hypersonic viscous flow. Firstly, we extend the gas. In the numerical parts, we concentrate on the computation of heat flux in laminar hypersonic viscous flows, where

Xu, Kun

75

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect (OSTI)

The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-08-20T23:59:59.000Z

76

Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma  

SciTech Connect (OSTI)

We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

2014-04-15T23:59:59.000Z

77

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery  

E-Print Network [OSTI]

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

Lambers, James

78

Study of gas flow dynamics in porous and granular media with laser-polarized ?Xe NMR  

E-Print Network [OSTI]

This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous and granular media by using laser-polarized ?Xe . Two different physical processes, the gas transport in porous rock cores and ...

Wang, Ruopeng, 1972-

2005-01-01T23:59:59.000Z

79

Oil and Gas Flow Data from the Top Hat and from the Choke Line...  

Broader source: Energy.gov (indexed) [DOE]

Flow Data from the Top Hat and from the Choke Line - XLS Oil and Gas Flow Data from the Top Hat and from the Choke Line - XLS Updated through 12:00 AM on July 10, 2010...

80

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect (OSTI)

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

air flow pattern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the modeling and analysis of workflows. Most workflow manage van der Aalst, Wil 110 Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation...

82

air flow patterns: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the modeling and analysis of workflows. Most workflow manage van der Aalst, Wil 110 Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation...

83

A simple model of gas flow in a porous powder compact  

SciTech Connect (OSTI)

This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.

Shugard, Andrew D.; Robinson, David B.

2014-04-01T23:59:59.000Z

84

The last Scandinavian Ice Sheet in northwestern Russia: ice flow patterns and decay dynamics  

E-Print Network [OSTI]

U N C O R R EC TED PR O O F The last Scandinavian Ice Sheet in northwestern Russia: ice flow Sheet in northwestern Russia: ice flow patterns and decay dynamics. Boreas, Vol. 35, pp. xxxÁxxx. Oslo) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till

Ingólfsson, ?lafur

85

A CFD study of gas-solid jet in a CFB riser flow  

SciTech Connect (OSTI)

Three-dimensional high-resolution numerical simulations of a gassolid jet in a high-density riser flow were conducted. The impact of gassolid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gassolid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gassolid jet were reasonably predicted compared with the experimental measurements made at NETL.

Li, Tingwen; Guenther, Chris

2012-03-01T23:59:59.000Z

86

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER  

E-Print Network [OSTI]

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER P. Gajan , Q, 64018 Pau cedex, France pierre.gajan@onera.fr Abstract This work deals with the flow metering of wet gas on the CEESI facilities are presented. They are performed at 75 bars with 0.6 beta ratio Venturi meter

87

Collisionless Gas Flows over a Cylindrical or Spherical Object Chunpei Cai,  

E-Print Network [OSTI]

.2514/1.44071 This paper presents exact density, velocity components, and temperature solutions for collisionless gas flows over a cylinder or a sphere. Possible real applications may include collisionless gas flows over a hot T = macroscopic temperature U, V, W = macroscopic average velocity u, v, w = microscopic molecular velocity X, Y

Wei, Mingjun

88

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network [OSTI]

............................................................................................ 41 xii FIGURE Page 3.15 Matching the linear flow interval to evaluate Acm using the Shale Gas VBA... .................................................................................................... 42 3.16 After resetting the time to zero and matching the interval with gas lift effect, the same calculations were cared to evaluate Acm using the Shale Gas VBA...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

89

Numerical simulations of gas-particle flows with combustion Julien NUSSBAUM  

E-Print Network [OSTI]

Numerical simulations of gas-particle flows with combustion Julien NUSSBAUM French-german Research. At the initial time, the mixture of gas-powder grains is contained in the combustion chamber, limited gas species. The pressure increases in the combustion chamber, while the front flame propagates

Paris-Sud XI, Université de

90

Preliminary Design Procedure for Gas TurbineTopping Reverse-Flow Wave Rotors  

E-Print Network [OSTI]

1 Preliminary Design Procedure for Gas TurbineTopping Reverse-Flow Wave Rotors Pezhman AKBARI1 for implementation in gas turbine applications. First, a thermodynamic cycle analysis evaluates the performance engine. Then, a one-dimensional analytical gas dynamic model of the high-pressure phase (charging zone

Müller, Norbert

91

Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)  

SciTech Connect (OSTI)

Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

2005-06-04T23:59:59.000Z

92

Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows  

SciTech Connect (OSTI)

Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

S.M. Ghiaasiaan and Seppo Karrila

2006-03-20T23:59:59.000Z

93

Numerical Study of Hypersonic Rarefied-Gas Flows About a Toroidal Ballute  

E-Print Network [OSTI]

Numerical Study of Hypersonic Rarefied-Gas Flows About a Toroidal Ballute Vladimir V. Riabov. Hypersonic flows of nitrogen, oxygen, argon, and carbon dioxide near a toroidal ballute have been of aerothermodynamics of simple-shape bodies have provided valuable information related to physics of hypersonic flows

Riabov, Vladimir V.

94

Linear stability of the sub-to-super inviscid transonic stationary wave for gas flow  

E-Print Network [OSTI]

-dimensional model of isentropic compressible flow through a narrow nozzle with variable cross-section area (see [2-dimensional model of isentropic compressible flows through a nozzle of varying area. This sub-to-super inviscid.P. Liu then focused on transonic waves of gas flow in a nozzle of varying area via the model (1.1) or (1

Liu, Weishi

95

Steam generators two phase flows numerical simulation with liquid and gas momentum equations  

E-Print Network [OSTI]

Steam generators two phase flows numerical simulation with liquid and gas momentum equations M Abstract This work takes place in steam generators flow studies and we consider here steady state three words: Steam Generator, Two-phase Flow, Finite element Email address: Marc.Grandotto@cea.fr (M

Paris-Sud XI, Université de

96

ARC-HEATED GAS FLOW EXPERIMENTS FOR HYPERSONIC PROPULSION  

E-Print Network [OSTI]

was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow

Texas at Arlington, University of

97

Vortex patterns and infinite degeneracy in the uniformly frustrated XY models and lattice Coulomb gas  

E-Print Network [OSTI]

Vortex patterns and infinite degeneracy in the uniformly frustrated XY models and lattice Coulomb gas Myoung Kwan Ko,1 Sung Jong Lee,2 Jooyoung Lee,3 and Bongsoo Kim4 1 Department of Physics, Konkuk state vortex con- figurations of a uniformly frustrated XY model on a square lattice for cases

Lee, Jooyoung

98

Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow  

SciTech Connect (OSTI)

Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)

2014-04-11T23:59:59.000Z

99

Cocurrent gas - liquid flow at high rates in small particle beds  

SciTech Connect (OSTI)

Gas liquid cocurrent flow at high pressure drop often occurs near the well bore and in grabel filled perforations during production of oil and geothermal energy. Available studies have, however, emphasized large particles and low pressure drops. Here, results for air-water flows to high fluxes in beds of small glass spheres and in 0.44 mm sand, show the influence of particle size, and flow composition and rate, on pressure drop enhancement and flow regime extent.

Wilemon, M.; Torrest, R.S. (Dept. of Chemical Engineering, Arizona State Univ., Tempe, AZ (US))

1988-01-01T23:59:59.000Z

100

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Iran seeking help in regaining prerevolution oil and gas flow  

SciTech Connect (OSTI)

This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

Tippee, B.

1996-02-19T23:59:59.000Z

102

Wastewater treatment and flow patterns in an onsite subsurface flow constructed wetland  

E-Print Network [OSTI]

Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common as a secondary treatment of onsite domestic wastewater. Even though SFCWs are being used widely, sufficient data has not been collected to determine how parameters...

Stecher, Matthew C

2001-01-01T23:59:59.000Z

103

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy  

E-Print Network [OSTI]

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy Seung Abstract In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single in the uniaxial tension of polycrystalline aluminum alloys with periodic stress relaxations depends

Tong, Wei

104

On the application of MHD-gas acceleration wind tunnels to investigate hypersonic gas flows over bodies  

SciTech Connect (OSTI)

The paper contains the results of applying a hypervelocity MHD-gas acceleration wind tunnel to investigations of flows over bodies. Consideration is given to the conditions of re producing gas dynamic and thermochemical flow parameters as applied to different types of tests: pressure and heat flux distributions, determination of shock wave positions and shapes. The measured heat fluxes towards the leading edge of swept wings are presented for sweep angles ranging from 0{degrees} to 60{degrees} at a flow velocity of U{approximately}6000 m/s. An appreciable influence of the surface nonequilibrium and catalyticity on their values is indicated. Possible investigations of flows over bodies at ultra high heat fluxes, q {approximately} 10 kW/m{sup 2} are discussed. The results of applying the facility to the verification of calculation codes and thermodynamic gas models are analyzed for flows over a hemisphere, a cone and a wedge. The calculated and measured surface pressure distributions are in good agreement for a hemisphere and satisfactory for a cone and a wedge. The shock wave positions and shapes are compared. It is shown that respective gas glow is impossible to use for this purpose.

Alfyorov, V.I.; Yegorov, I.V.; Shcherbakov, G.I. [Central Aerodrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

1995-12-31T23:59:59.000Z

105

A phenomenological model for rarefied gas flows in thin film slider bearings  

E-Print Network [OSTI]

We analyze rarefied gas flows in lubricating films that form between the read/write head and rotating recording medium in computer hard drives. A modified slip-corrected Reynolds lubrication equation is derived for arbitrary Knudsen numbers using...

Bahukudumbi, Pradipkumar

2002-01-01T23:59:59.000Z

106

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network [OSTI]

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

Yan, Bicheng

2013-07-15T23:59:59.000Z

107

Visualization of Flow Patterns in the Bonneville 2nd Powerhouse Forebay  

SciTech Connect (OSTI)

Three-dimensional (3D) computational fluid dynamics (CFD) models are increasingly being used to study forebay and tailrace flow systems associated with hydroelectric projects. This paper describes the fundamentals of creating effective 3D data visualizations from CFD model results using a case study from the Bonneville Dam. These visualizations enhance the utility of CFD models by helping the researcher and end user better understand the model results. To develop visualizations for the Bonneville Dam forebay model, we used specialized, but commonly available software and a standard high-end microprocessor workstation. With these tools we were able to compare flow patterns among several operational scenarios by producing a variety of contour, vector, stream-trace, and vortex-core plots. The differences in flow patterns we observed could impact efforts to divert downstream-migrating fish around powerhouse turbines.

Serkowski, John A.; Rakowski, Cynthia L.; Ebner, Laurie L.

2002-12-31T23:59:59.000Z

108

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

Solution for Uniform Influx................................. 28 2.5 Effect of Stress on Non-Darcy Flow with Uniform Influx............................. 40 2.6 Hydraulically Fractured Reservoir with Two-Phase Flow ............................. 45 2... ............................................................................................................... 21 2.6 Gas expansion factor divided by gas viscosity Eg/g = 1/(B), which is roughly constant at or above pressures of 6,000 psi. .................................... 22 2.7 Relative permeability functions from Table 2.1 normalized...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

109

A field example of a gas orifice meter with debris-ridden liquid in mist flow  

SciTech Connect (OSTI)

A field example of debris-ridden liquids in an orifice meter is presented in this paper. Flow conditions in gas pipelines containing hydrocarbon liquids and particulate matter are discussed. Known effects on measurement of the presence of these materials in orifice meters is presented. By definition, gas measurement is accurate if performed on a clean and dry flow stream. This paper demonstrates the importance of removing as much liquid and debris as possible prior to measurement.

Chisholm, J.L.; Mooney, C.V. [Texas A and M Univ., Kingsville, TX (United States); Datta-Barua, L.; Feldmann, R.J.

1995-12-31T23:59:59.000Z

110

Upward Gas-Liquid Flow in Concentric and Eccentric Annular Spaces  

E-Print Network [OSTI]

UPWARD GAS-LIQUID FLOW IN CONCENTRIC AND ECCENTRIC ANNULAR SPACES A Thesis by PEDRO CAVALCANTI DE SOUSA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... Copyright 2013 Pedro Cavalcanti de Sousa ii ABSTRACT A limited amount of work exists on upward gas-liquid flow in annular spaces. This is a common scenario in drilling operations, especially in underbalanced drilling, and in high-production wells...

Cavalcanti de Sousa, Pedro

2013-12-09T23:59:59.000Z

111

Interference pattern of Bose-condensed gas in a 2D optical lattice  

E-Print Network [OSTI]

For the Bose-condensed gas confined in a magnetic trap and in a two-dimensional optical lattice, the non-uniform distribution of atoms in different lattice sites is considered based on Gross-Pitaevskii equation. A propagator method is used to investigate the time evolution of 2D interference patterns after (i)only the optical lattice is swithed off, and (ii)both the optical lattice and the magnetic trap are swithed off. An analytical description on the motion of side peaks in the interference patterns is presented by using the density distribution in a momentum space.

Shujuan Liu; Hongwei Xiong; Zhijun Xu; Guoxiang Huang

2003-04-25T23:59:59.000Z

112

The Gas Flow from the Gas Attenuator to the Beam Line  

SciTech Connect (OSTI)

The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

Ryutov, D.D.

2010-12-03T23:59:59.000Z

113

Capacitance-based prover for gas flow meters  

E-Print Network [OSTI]

) Sunday . . . Stability Measurement: /tC vs. Time (21 Feb 95). . . . Capacitance vs. Time for Mass Flow Rate of 124. 7 g/s. . . . 41 41 42 23 Capacitance vs. Time for Mass Flow Rate of 124. 7 g/s (06 Apr 95). . . . . . . . . . . 43 24 25 Pressure... vs. Time for Mass Flow Rate of 124. 7 g/s (06 Apr 95). . . . Capacitance vs. Time for Mass Flow Rate of 209. 1 g/s. . . . 43 44 FIGURE 26 Capacitance vs. Time for Loading Phase 27 Pressure vs. Time for Loading Phase. 28 T; vs. Time...

Pipkins, Sean Patrick

1995-01-01T23:59:59.000Z

114

THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

115

Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows  

E-Print Network [OSTI]

Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows Vladimir V and numerical studies [1-4] of aerodynamics of simple shape bodies have provided valuable information related not be used to define the aerodynamics of side-by-side bodies. Flow about two side-by-side cylinders

Riabov, Vladimir V.

116

Instability of low density supersonic waves of a viscous isentropic gas flow through a nozzle  

E-Print Network [OSTI]

of isentropic compressible fluid through a narrow nozzle with variable cross-section area (see [1, 2, 3, 10, 11 flows through a nozzle with varying cross-section areas. The main result in this paper is, for small-section area a(x) is sufficiently small. T. P. Liu then focused on transonic waves of gas flow in a nozzle

Liu, Weishi

117

Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs  

E-Print Network [OSTI]

-Darcy flow in the hydraulic fracture and its effects on pressure buildup analysis of hydraulically fractured gas reservoirs. A reservoir simulator was used to generate pressure drawdown and buildup data both with and without the effects of non-Darcy flow...

Alvarez Vera, Cesar

2001-01-01T23:59:59.000Z

118

Preliminary tests using magnetic resonance imaging of two-phase flow patterns and transitions  

SciTech Connect (OSTI)

This paper presents the results of preliminary tests used to establish the feasibility of using magnetic resonance imaging (MRI) to examine and quantitatively characterize two-phase flow patterns and flow transitions. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). Special scanning sequences designed by UCSF for flow imaging were implemented in the tests. UCSF operated the MRI facility, and OSU constructed and operated a cocurrent air-water flow loop consisting of a 1-in.-diam test section capable of producing air superficial velocities j[sub g] ranging from 0.3 to 14 m/s, and water superficial velocities j[sub l] ranging from 0.08 to 1.3 m/s.

Reyes, J.N. Jr.; Lafi, A.Y. (Oregon State Univ., Corvallis, OR (United States)); Saloner, D. (Univ. of California, San Francisco, CA (United States))

1993-01-01T23:59:59.000Z

119

New Albany shale gas flow starts in western Indiana  

SciTech Connect (OSTI)

This paper briefly describes the stratigraphy and lithology of the New Albany shale and how this affects the placement of gas recovery wells in the Greene County, Indiana area. It reviews the project planning aspects including salt water reinjection and well spacing for optimum gas recovery. It also briefly touches on how the wells were completed and brought on-line for production and distribution.

NONE

1996-04-29T23:59:59.000Z

120

Flow through shares for Natural Gas exploration (Quebec, Canada)  

Broader source: Energy.gov [DOE]

A flow-through share is a security issued by an exploration company that waives its exploration deduction in favor of the investor. The Qubec Taxation Act enables a private individual to benefit...

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL).The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) can be used as a diagnostic tool to see inside the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL target test facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The simulations show that the helium gas is trapped inside the grooves. The predicted time-averaged gas coverage is in good qualitative agreement with the measured gas coverage.

Abdou, Ashraf A [ORNL; Wendel, Mark W [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL

2009-01-01T23:59:59.000Z

122

An analysis of an application of radioactive ionization for gas flow metering  

E-Print Network [OSTI]

fulfillment of the requirements for ths legree of MASTER OF SC1ENCE May 1959 Major Subject: Electrical Engines x ing AN ANALYSIS OF AN APPLICATION OF RADIOACTIVE IONIZATION FOR l 1 '~, '1 1 ', '1 ' 1 1 "1 g 1 n \\ '& \\ GAS FLOW METERING A...'s Apparatus Z. An Ezperimental Flow Meter . 3. Mark I Meter and Test Equipment 4. Electrical Circuit 5. Current vs. Flow Rate Curve for Mark I Meter. . . . . . . . . . . . . 6. Current vs. Flow Rate for DifferentSource Spacings. . . . . . . . . . 7...

Lam, Carroll Frank

2012-06-07T23:59:59.000Z

123

Modeling gas flow through microchannels and nanopores Subrata Roya)  

E-Print Network [OSTI]

Plasma Dynamics Laboratory, Department of Mechanical Engineering Kettering University, Flint, Michigan microchannels and nanopores. Presented two-dimensional numerical results for Poiseuille flow of a simple fluid extensively used in our everyday life. Some MEMS devices have also been designed in the field of fluid applica

Roy, Subrata

124

DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS  

SciTech Connect (OSTI)

The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.

Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen

2009-07-01T23:59:59.000Z

125

Planarization of amorphous carbon films on patterned substrates using gas cluster ion beams  

SciTech Connect (OSTI)

Surface planarization and modification of a patterned surface were demonstrated using gas cluster ion beam (GCIB). Grooves with 100-400 nm intervals were formed on amorphous carbon films using focused ion beams to study the special frequency dependence of the planarization. Also, line and space patterns were fabricated on Si substrates, and amorphous carbons were deposited as a model structure of discrete track media. Subsequently, surface planarization using Ar-GCIB was carried out. After GCIB irradiations, all of the grooves were completely removed, and a flat surface was realized. And it showed that GCIB irradiation planarized grooves without huge thickness loss. From the power spectrum density of an atomic force microscope, GCIB preferentially removed grooves with small intervals. It was found from energy dispersive x-ray spectroscopy that surface planarization without severe damage in the amorphous carbon and magnetic layers was carried out with GCIB.

Toyoda, Noriaki; Yamada, Isao [Incubation Center, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Nagato, Keisuke; Nakao, Masayuki; Hamaguchi, Tetsuya [Department of Engineering Synthesis, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tani, Hiroshi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Sakane, Yasuo [Western Digital Media Operations, 1710 Automation Parkway, San Jose, CA 95131 (United States)

2009-04-01T23:59:59.000Z

126

Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas  

E-Print Network [OSTI]

?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

Stegemeier, Richard Joseph

1952-01-01T23:59:59.000Z

127

Couette flow regimes with heat transfer in rarefied gas  

SciTech Connect (OSTI)

Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

2013-06-15T23:59:59.000Z

128

Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect  

SciTech Connect (OSTI)

A theoretical analysis of cyclostrophic adjustment is presented; i.e., adjustment to balance between pressure gradient and centrifugal force in axisymmetric flow of an inviscid gas is examined. The solution to the problem is represented as the sum of a time-independent (balanced) and time-dependent (wave) components. It is shown that the wave component of the flow in an unbounded domain decays with time, and the corresponding solution reduces to the balanced component. In a bounded domain, the balanced flow component exists against the background of undamped acoustic waves. It is found that the balanced flow is thermally stratified at Mach numbers close to unity, with a substantial decrease in gas temperature (to between -50 and -100 deg. C) in the axial region. This finding, combined with the results of special experiments, is used to explain the Ranque-Hilsch vortex tube effect.

Kalashnik, M. V., E-mail: lingel@obninsk.com; Visheratin, K. N. [SPA Typhoon (Russian Federation)], E-mail: kvisher@typhoon.obninsk.ru

2008-04-15T23:59:59.000Z

129

Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots  

SciTech Connect (OSTI)

A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the phenomenon of frozen conductivity for recombined plasma which appears for noble gas at T{sub e} > 4,000 K. At the inlet of the MHD channel in supersonic flow of noble gas (He or Ar) the plasma clots with electron density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beam with energy about 300 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with the load by Faraday scheme. The gas flow pushes plasma layers and produces electric power at the expense of enthalpy extraction. The numerical simulation has shown that a supersonic gas flow, containing about 4 plasma layers in the MHD channel simultaneously, is braked without shock waves creation. This type of the MHD generator can provide more than 30% enthalpy extraction ratio and about 80% isentropic efficiency. The advantages of the new concept are the following: (a) possibility of working at higher pressure and lower temperature, (b) operation with alkali seed.

Slavin, V.S. [Krasnoyarsk State Technical Univ. (Russian Federation); Danilov, V.V.; Sokolov, V.S. [Krasnoyarsk State Univ. (Russian Federation)

1996-12-31T23:59:59.000Z

130

A system for the real time, direct measurement of natural gas flow  

SciTech Connect (OSTI)

PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.

Sowell, T. [PMI, Badger Meter, Inc., Tulsa, OK (United States)

1995-12-31T23:59:59.000Z

131

Prediction of annular liquid-gas flow with entrainment: cocurrent vertical pipe flow with gravity. [PWR; BWR  

SciTech Connect (OSTI)

A simplified semi-empirical model is developed for annular two-phase (gas-liquid) flow with liquid entrainment in a vertical pipe. Gravity effects are included. Model predictions are compared to test data obtained with air-water, air-trichloroethane, and steam-water mixtures. The agreement is generally good between model and test results for pressure drop, liquid film thickness and wavyness, and liquid entrainment.

Levy, S.; Healzer, J.M.

1980-09-01T23:59:59.000Z

132

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

133

Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model  

E-Print Network [OSTI]

The Lattice Gas Model was extended to incorporate the effect of radial flow. Contrary to popular belief, radial flow has little effect on the clusterization process in intermediate energy heavy-ion collisions except adding an ordered motion to the particles in the fragmentation source. We compared the results from the lattice gas model with and without radial flow to experimental data. We found that charge yields from central collisions are not significantly affected by inclusion of any reasonable radial flow.

C. B. Das; L. Shi; S. Das Gupta

2004-07-20T23:59:59.000Z

134

Manufacturability of lab on chip devices : reagent-filled reservoirs bonding process and its effect on reagents flow pattern  

E-Print Network [OSTI]

In its lab-on-a-chip product, Daktari Diagnostics utilizes "reagent-filled reservoirs" as a means of storing and delivering the liquid reagent. During the clinical trials of the product, undesired reagent flow patterns ...

Saber, Aabed (Aabed Saud)

2013-01-01T23:59:59.000Z

135

Method For Enhanced Gas Monitoring In High Density Flow Streams  

DOE Patents [OSTI]

A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

Von Drasek, William A. (Oak Forest, IL); Mulderink, Kenneth A. (Countryside, IL); Marin, Ovidiu (Lisle, IL)

2005-09-13T23:59:59.000Z

136

Using multi-layer models to forecast gas flow rates in tight gas reservoirs  

E-Print Network [OSTI]

pressure at the inner boundary. He combined a back-pressure gas rate equation (Eq 2.9) with the materials balance equation Eq 2.10 onto a rate-time equation for gas wells as described in Eq 2.11, and then he generated the new set of type curves as shown.......................................................................................... 10 2.1 Introduction ...................................................................................................10 2.2 Decline Curve Analysis...

Jerez Vera, Sergio Armando

2007-04-25T23:59:59.000Z

137

Creating Small Gas Bubbles in Flowing Mercury Using Turbulence at an Orifice  

SciTech Connect (OSTI)

Pressure waves created in liquid mercury pulsed spallation targets have been shown to create cavitation damage to the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating such a population in mercury is difficult due to the high surface tension and particularly the non-wetting behavior of mercury on gas-injection hardware. If the larger injected gas bubbles can be broken down into small bubbles after they are introduced to the flow, then the material interface problem is avoided. Research at the Oak Ridge National Labarotory is underway to develop a technique that has shown potential to provide an adequate population of small-enough bubbles to a flowing spallation target. This technique involves gas injection at an orifice of a geometry that is optimized to the turbulence intensity and pressure distribution of the flow, while avoiding coalescence of gas at injection sites. The most successful geometry thus far can be described as a square-toothed orifice having a 2.5 bar pressure drop in the nominal flow of 12 L/s for one of the target inlet legs. High-speed video and high-resolution photography have been used to quantify the bubble population on the surface of the mercury downstream of the gas injection sight. Also, computational fluid dynamics has been used to optimize the dimensions of the toothed orifice based on a RANS computed mean flow including turbulent energies such that the turbulent dissipation and pressure field are best suited for turbulent break-up of the gas bubbles.

Wendel, Mark W [ORNL; Abdou, Ashraf A [ORNL; Paquit, Vincent C [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL

2010-01-01T23:59:59.000Z

138

Stress-induced patterns in ion-irradiated Silicon: a model based on anisotropic plastic flow  

E-Print Network [OSTI]

We present a model for the effect of stress on thin amorphous films that develop atop ion-irradiated silicon, based on the mechanism of ion-induced anisotropic plastic flow. Using only parameters directly measured or known to high accuracy, the model exhibits remarkably good agreement with the wavelengths of experimentally-observed patterns, and agrees qualitatively with limited data on ripple propagation speed. The predictions of the model are discussed in the context of other mechanisms recently theorized to explain the wavelengths, including extensive comparison with an alternate model of stress.

Scott A. Norris

2012-07-24T23:59:59.000Z

139

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect (OSTI)

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

140

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect (OSTI)

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The mechanical analogy for the flow of gas  

E-Print Network [OSTI]

the pointer to aery Thus~ ~p ia related. to p by the expression & & =pAp5, where 'the dista1icea are shown be]pw. . Pressure Panel Assembly, P= jap~, nd 2 = f&, Ib, For this flow channel, Q =, OIZ65 oZ, 5 = 4 7Z =~. G8 ID. , so that p p=. ODS5 2 The ea...'~ Y !. '" ~i, ~j l P $ '*'A P: ' 7'l $" " 6' ~ ~:r*. ;~~;, '? r, ". ~ pr~, ~?r~, yi, c;mg g~l'1 II!LT" j, ' I . ". v N1". a$ A; *W, M" f 't "w gltg x""Ri% 7 vH p '4, "2 WYt'. ?C Q ' $ ?:f' fl $ "p". & 'I pl' p-lp QQSf'; jQWg~ ig& !ply &P[ 'ggg...

Flanagan, Lindley Eric

1953-01-01T23:59:59.000Z

142

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

143

Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface  

E-Print Network [OSTI]

of geothermal, gas- condensate, and steam injection reservoirs. From this work, the main conclusions are: (1 which reflect the interactions among fluids and the rough fracture surface; (2) the steam-water flow Transformation and Surface Roughness Chih-Ying Chen June 2005 Financial support was provided through the Stanford

Stanford University

144

Study of Gas Flow Dynamics in Porous and Granular Media with Laser-Polarized 129  

E-Print Network [OSTI]

Abstract This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous in porous rock cores and the mass exchanges between different phases in fluidized granular systems, were-emulsion exchange and emulsion-adsorption exchange in a fluidized bed are two processes crucial to the efficiency

Walsworth, Ronald L.

145

Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process  

E-Print Network [OSTI]

Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process M Grujicic1*, W, maximizes the acceleration of the particles. Furthermore, it is found that if the cold-spray nozzle, a significant increase in the average velocity of the particles at the nozzle exit can be obtained

Grujicic, Mica

146

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

147

Study of liquid retention in fixed-bed reactors with upward flow of gas and liquid  

SciTech Connect (OSTI)

A literature survey of the measurement techniques for the determination of liquid retention in cocurrent upward gas and liquid flow in fixed-bed reactors is presented. A number of these techniques were used in this work in columns of different diameters (Dc = 0.05 m, 0.10 m, and 0.15 m). Porous alumina particles of two different diameters (dp = 0.002 m and 0.0028 m) with both nonfoaming (water, cyclohexane, heptane, and propanol) and foaming liquids (kerosene, LCO, and diesel fuel) have been investigated. The gas used was either air or N[sub 2]. The methods investigated include volumetry, gravimetry, gammametry, and determination of residence-time distribution by tracer technique. A simple correlation for the prediction of total gas and liquid retention for bubble and pulsed flow is proposed and verified.

Yang, X.L.; Euzen, J.P. (Inst. Francais du Petrole, Vernaison (France)); Wild, G. (Lab. des Sciences du Genie Chimique, Nancy (France))

1993-01-01T23:59:59.000Z

148

Pore-scale mechanisms of gas flow in tight sand reservoirs  

SciTech Connect (OSTI)

Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

2010-11-30T23:59:59.000Z

149

Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations  

E-Print Network [OSTI]

and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the timeLattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann

Xu, Kun

150

Turbine exhaust diffuser with a gas jet producing a coanda effect flow control  

DOE Patents [OSTI]

An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

Orosa, John; Montgomery, Matthew

2014-02-11T23:59:59.000Z

151

Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flow  

E-Print Network [OSTI]

character of the solution), each of the existing approximate solutions does have disadvantages. The purpose of this work is to provide a solution mechanism for the case of timedependent real gas flow which contains as few "limitations" as possible...

Zhakupov, Mansur

2006-08-16T23:59:59.000Z

152

Using DSMC to compute the force on a particle in a rarefied gas flow.  

SciTech Connect (OSTI)

An approach is presented to compute the force on a spherical particle in a rarefied flow of a monatomic gas. This approach relies on the development of a Green's function that describes the force on a spherical particle in a delta-function molecular velocity distribution function. The gas-surface interaction model in this development allows incomplete accommodation of energy and tangential momentum. The force from an arbitrary molecular velocity distribution is calculated by computing the moment of the force Green's function in the same way that other macroscopic variables are determined. Since the molecular velocity distribution function is directly determined in the DSMC method, the force Green's function approach can be implemented straightforwardly in DSMC codes. A similar approach yields the heat transfer to a spherical particle in a rarefied gas flow. The force Green's function is demonstrated by application to two problems. First, the drag force on a spherical particle at arbitrary temperature and moving at arbitrary velocity through an equilibrium motionless gas is found analytically and numerically. Second, the thermophoretic force on a motionless particle in a motionless gas with a heat flux is found analytically and numerically. Good agreement is observed in both situations.

Gallis, Michail A.; Rader, Daniel John; Torczynski, John Robert

2002-06-01T23:59:59.000Z

153

New U. S. gas lines will restructure North American grid flows  

SciTech Connect (OSTI)

This paper reports that completion of several major U.S. natural-gas pipeline projects will significantly change relationships among suppliers, buyers, and transporters; alter pipeline flows and tariffs; and affect producer economics. The competitive and regulatory environment of the natural-gas industry continues to change under great uncertainty. Within this rapidly changing environment, many long-discussed but often-delayed pipeline projects are nearing or have entered the construction phase. These projects represent more than 5 bcf/day (bcfd) of capacity targeting three major markets that now consume an average of 23 bcfd.

Spiegel, E.; Johnson, E. Jr. (Booz-Allen and Hamilton Inc., Dallas, TX (US)); Viscio, A.

1990-12-10T23:59:59.000Z

154

Output-power fluctuations of flowing-gas CO/sub 2/ lasers with unstable resonators  

SciTech Connect (OSTI)

An experimental study was made of the influence of different factors on the stability of the output intensity of a flowing-gas CO/sub 2/ laser with an unstable resonator. The measured amplitude--frequency characteristics of the intensity fluctuation spectrum had resonance peaks at multiples of the frequency corresponding to the transit time of the gas to the optic axis of the resonator. A rise in the efficiency of the laser system was found to be accompanied by an increase in the amplitude of the fluctuations of the radiation intensity.

Artamonov, A.V.; Konev, V.A.; Likhanskii, V.V.; Napartovich, A.P.

1984-06-01T23:59:59.000Z

155

Verification of using a single void fraction sensor to identify two-phase flow patterns  

SciTech Connect (OSTI)

This paper investigates methods using the signals detected by a single void fraction sensor to identify four kinds of typical vertical, cocurrent, upward, two-phase tube flow patterns. By analyzing 100 sets of time-varying void fraction signals acquired from an impedance device in an air-water two-phase loop, the results of the various methods are evaluated and demonstrated. With the high-frequency contribution fraction (HFCF) criteria, the success rate is 81%. An auxiliary criterion (the void fraction criterion) is proposed to increase the success rate to 92%. The results and the criteria from this study are compared with earlier studies. From the comparison, the applicability of the HFCF criterion to a system in which void fraction can be measured directly is verified.

Wang, Y.W.; Pei, B.S.; Lin, W.K. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu 30043 (TW))

1991-07-01T23:59:59.000Z

156

Evolution of flow disturbances in cocurrent gas-liquid flows. Progress report, November 1, 1992--October 31, 1992  

SciTech Connect (OSTI)

Studies of interfacial waves in horizontal gas-liquid flows, close to neutral stability, suggest that the rate of evolution of the interface may be linked to nonlinear interactions between the fundamental mode and the subharmonic -- even if the subharmonic is linearly stable. The rate of evolution increases as the subharmonic becomes more unstable. A comparison of linear stability techniques used to predict the initial behavior of waves reveals similar predictions of growth rates and almost identical speeds between a two layer laminar Orr-Sommerfeld theory and an Orr-Sommerfeld theory when the effect of the (turbulent) gas flow enters as boundary conditions on the liquid layer. However, there is disagreement at small wavenumbers as to the point at which the growth curve crosses 0. This is a significant problem because longwave disturbances, in our case roll waves, form by growth of (initially) small amplitude waves that have frequencies which are 0.5 to 1 Hz, which is in the range where the two theories disagree about the sign of the growth rate. While nonlinear effects are probably involved in the formation of the peak (at least while its amplitude is small), the linear growth rate must play an important role when the amplitude is small.

McCready, M.J.

1992-10-01T23:59:59.000Z

157

Application of convolution theory for solving non-linear flow problems: gas flow systems  

E-Print Network [OSTI]

of the pressure-squared approach) appears to be from zero to 2, 000 psi. 0. 10 yr = 1. 0 0. 08 0. 06 y, = 0. 6 0. 04 0. 02 0. 00 0 2, 000 4, 000 6, 000 8, 000 10, 000 Pressure, psi Fig. 2. 1 ? Range of Applicability for the Pressure-Squared Method (T... with lighter gas gravities. Regardless, we still recommend using pseudopressure for general applications. 250, 000 200, 000 yr = O. 6 ta. 150, 000 yr ?? 0. s r 100, 000 50, 000 0 0 2, 000 4, 000 6, 000 8, 000 10, 000 Pressure, psi Fig. 2. 2 - Range...

Mireles, Thomas Joseph

2012-06-07T23:59:59.000Z

158

Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

159

Hybrid Particle-Continuum Methods for Nonequilibrium Gas and Plasma Flows  

SciTech Connect (OSTI)

Two different hybrid particle-continuum methods are described for simulation of nonequilibrium gas and plasma dynamics. The first technique, used for nonequilibrium hypersonic gas flows, uses either a continuum description or a particle method throughout a flow domain based on local conditions. This technique is successful in reproducing the results of full particle simulations at a small fraction of the cost. The second method uses a continuum model of the electrons combined with a particle description of the ions and atoms for simulating plasma jets. The physical accuracy of the method is assessed through comparisons with plasma plume measurements obtained in space. These examples illustrate that the complex physical phenomena associated with nonequilibrium conditions can be simulated with physical accuracy and numerical efficiency using such hybrid approaches.

Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI (United States)

2011-05-20T23:59:59.000Z

160

Numerical analysis of hypersonic continuum and rarefied gas flows near blunt probes is presented under conditions of intensive gas blowing from the surface.  

E-Print Network [OSTI]

1 Abstract Numerical analysis of hypersonic continuum and rarefied gas flows near blunt probes injection, hydrogen combustion, hypersonic flow, exponential box-scheme, direct-simulation Monte-Carlo method. 1 Introduction Numerical and experimental studies [1, 2] of aerothermodynamics of hypersonic

Riabov, Vladimir V.

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect (OSTI)

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

162

E-Print Network 3.0 - automatic preparative gas-liquid Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Engineering, West Virginia University Collection: Fossil Fuels 72 Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined...

163

characterization and visualization of two-phase flow properties of gas diffusion layers used in a PEM fuel cell  

E-Print Network [OSTI]

Due to the low-temperature operation of Polymer Electrolyte Membrane fuel cell (PEMFC), liquid water can build up in either flow channels or gas diffusion layers (GDL). Better understanding of the effect of two-phase ...

Gao, Yan

2011-04-26T23:59:59.000Z

164

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network [OSTI]

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

165

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

166

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

167

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

Anne Trehu; Peter Kannberg

2011-06-30T23:59:59.000Z

168

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

Trehu, Anne; Kannberg, Peter

2011-06-30T23:59:59.000Z

169

Spatial patterns of flow and their modification within and around a giant kelp forest Brian Gaylord1  

E-Print Network [OSTI]

Spatial patterns of flow and their modification within and around a giant kelp forest Brian Gaylord and over the full extent of a giant kelp (Macrocystis pyrifera) forest located at Mohawk Reef, Santa reported for larger (kilometer-scale) kelp beds, suggesting that alongshore currents may play a greater

California at Santa Cruz, University of

170

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

171

Determination of the permeability of carbon aerogels by gas flow measurements  

SciTech Connect (OSTI)

Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

1992-04-01T23:59:59.000Z

172

Determination of the permeability of carbon aerogels by gas flow measurements  

SciTech Connect (OSTI)

Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

1992-04-01T23:59:59.000Z

173

Gas-powder flow in blast furnace with different shapes of cohesive zone  

SciTech Connect (OSTI)

With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia)

2006-11-15T23:59:59.000Z

174

Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode  

E-Print Network [OSTI]

The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

Lopez, David M

2007-01-01T23:59:59.000Z

175

DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE  

SciTech Connect (OSTI)

In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

2005-05-01T23:59:59.000Z

176

Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV  

E-Print Network [OSTI]

The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

Barbosa, Sverine; Ducruix, Sbastien

2008-01-01T23:59:59.000Z

177

A numerical investigation of high-rate gas flow for gravel-packed completions  

E-Print Network [OSTI]

OF SCIENCE December 1983 Major Subject: Petroleum Engineering A NUMERICAL INVESTIGATION OF HIGH-RATE GAS FLOW FOR GRAVEL-PACKED COMPLETIONS A Thesis by JAMES KENYON FORREST Approved as to style and content by: C. . WU ( Chairman of Coamittee) R... used a radius of 30rw. In order to investigate this, several runs were made with various model radii. Three runs were made to determine the effect of radial discretization and model radius on the simulation results. One run used a radius of 30r...

Forrest, James Kenyon

1983-01-01T23:59:59.000Z

178

Efficient boron nitride nanotube formation via combined laser-gas flow levitation  

DOE Patents [OSTI]

A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

Whitney, R. Roy; Jordan, Kevin; Smith, Michael

2014-03-18T23:59:59.000Z

179

CFD evaluation of pipeline gas stratification at low fluid flow due to temperature effects  

E-Print Network [OSTI]

variance in chord averaged velocities is apparent at these conditions. CFD analysis was performed. Low flow velocities of 0.1524 m/sec, 0.3048 m/sec and 0.6096 m/sec and temperature differences of 5.5 o K, 13.8 o K and 27.7 o K were considered. When... with gas velocity below 0.6096 m/sec. v DEDICATION To my family for their love and support. vi ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Gerald Morrison for his valuable guidance and support. I...

Brar, Pardeep Singh

2005-02-17T23:59:59.000Z

180

Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation - Applications to Safety and Sea Floor Instability  

SciTech Connect (OSTI)

Semi-analytical computational models for natural gas flow in hydrate reservoirs were developed and the effects of variations in porosity and permeability on pressure and temperature profiles and the movement of a dissociation front were studied. Experimental data for variations of gas pressure and temperature during propane hydrate formation and dissociation for crushed ice and mixture of crushed ice and glass beads under laboratory environment were obtained. A thermodynamically consistent model for multiphase liquid-gas flows trough porous media was developed. Numerical models for hydrate dissociation process in one dimensional and axisymmetric reservoir were performed. The computational model solved the general governing equations without the need for linearization. A detail module for multidimensional analysis of hydrate dissociation which make use of the FLUENT code was developed. The new model accounts for gas and liquid water flow and uses the Kim-Boshnoi model for hydrate dissociation.

Goodarz Ahmadi

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using the Lattice-Boltzmann Method  

E-Print Network [OSTI]

In fuel cells, a homogeneous distribution of gas flow is desirable for optimal performance. The gas3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using: Fuel Cells, 52425 Jülich, Germany b Institute of Stochastics, Ulm University, 89069 Ulm, Germany

Schmidt, Volker

182

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Sma

2008-02-29T23:59:59.000Z

183

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Bourgeat, Alain; Sma, Farid

2008-01-01T23:59:59.000Z

184

Heat flow patterns of the North American continent: A discussion of the DNAG Geothermal Map of North America  

SciTech Connect (OSTI)

The large and small-scale geothermal features of the North American continent and surrounding ocean areas illustrated on the new 1:5,000,000 DNAG Geothermal Map of North America are summarized. Sources for the data included on the map are given. The types of data included are heat flow sites coded by value, contours of heat flow with a color fill, areas of major groundwater effects on regional heat flow, the top-of-geopressure in the Gulf Coast region, temperature on the Dakota aquifer in the midcontinent, location of major hot springs and geothermal systems, and major center of Quaternary and Holocene volcanism. The large scale heat flow pattern that is well known for the conterminous United States and Canada of normal heat flow east of the Cordillera and generally high heat flow west of the front of the Cordillera dominates the continental portion of the map. However, details of the heat flow variations are also seen and are discussed briefly in this and the accompanying papers.

Blackwell, David D.; Steele, John L.; Carter, Larry C.

1990-01-01T23:59:59.000Z

185

Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect  

E-Print Network [OSTI]

Mallants, D. , 2002. Gas generation and migration in Boomof Post-Disposal Gas Generation in a Repository for SpentCorrosion-Induced Gas Generation in a Nuclear Waste

Xu, T.

2009-01-01T23:59:59.000Z

186

Stellar Gas Flows Into A Dark Cluster Potential At The Galactic Center  

E-Print Network [OSTI]

The evidence for the presence of a concentration of dark matter at the Galactic center is now very compelling. There is no question that the stellar and gas kinematics within 0.01 pc is dominated by under-luminous matter in the form of either a massive black hole, a highly condensed distribution of stellar remnants, or a more exotic source of gravity. The unique, compact radio source Sgr A* appears to be coincident with the center of this region, but its size (less than 3x10^14 cm at lambda=1.35cm) is still significantly smaller than the current limiting volume enclosing this mass. Sgr A* may be the black hole, if the dark matter distribution is point-like. If not, we are left with a puzzle regarding its nature, and a question of why this source should be so unique and lie only at the Galactic center. Here, we examine an alternative to the black hole paradigm---that the gravitating matter is a condensed cluster of stellar remnants---and study the properties of the Galactic center wind flowing through this region. Some of this gas is trapped in the cluster potential, and we study in detail whether this hot, magnetized gas is in the proper physical state to produce Sgr A*'s spectrum. We find that at least for the Galactic center environment, the temperature of the trapped gas never attains the value required for significant GHz emission. In addition, continuum (mostly bremsstrahlung) emission at higher frequencies is below the current measurements and upper limits for this source. We conclude that the cluster potential is too shallow for the trapped Galactic center wind to account for Sgr A*'s spectrum, which instead appears to be produced only within an environment that has a steep-gradient potential like that generated by a black hole.

Fulvio Melia; Robert Coker

1998-06-14T23:59:59.000Z

187

Flow Patterns, Void Fraction and Pressure Drop in Gas-Liquid Two  

E-Print Network [OSTI]

phase change is often encountered in industrial applications such as artificial lift systems sys System t Total 158 A. J. Ghajar and S. M. Bhagwat #12;tp Two phase tt Turbulent-turbulent w Water

Ghajar, Afshin J.

188

Pattern of shallow ground water flow at Mount Princeton Hot Springs...  

Open Energy Info (EERE)

deposits (including glacial and fluvial deposits), we use DC electrical resistivity tomography and self-potential mapping to identify preferential fluid flow pathways. The...

189

Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture  

SciTech Connect (OSTI)

The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis was established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)

Bhuwakietkumjohn, N.; Rittidech, S. [Heat Pipe and Thermal Tools Design Research Laboratory (HTDR), Faculty of Engineering, Mahasarakham University, Mahasarakham 44150 (Thailand)

2010-11-15T23:59:59.000Z

190

Model simulation and experiments of flow and mass transport through a nano-material gas filter  

SciTech Connect (OSTI)

A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

2013-11-01T23:59:59.000Z

191

DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.

Dr. Ram S. Mohan; Dr. Ovadia Shoham

2003-06-25T23:59:59.000Z

192

COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS  

SciTech Connect (OSTI)

The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

Sankaran Sundaresan

2004-03-01T23:59:59.000Z

193

A Finite-Difference Numerical Method for Onsager's Pancake Approximation for Fluid Flow in a Gas Centrifuge  

SciTech Connect (OSTI)

Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.

de Stadler, M; Chand, K

2007-11-12T23:59:59.000Z

194

A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern  

E-Print Network [OSTI]

and hydrogen storage in salt caverns. Compressed Air Energy Storage (CAES) is experiencing a rise in interest-form solutions of the blow-out problem. These solutions are applied to the cases of compressed air storageA Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern Pierre Bérest

Boyer, Edmond

195

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

196

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

197

Rotordynamic evaluation of frequency dependent impedances of hole-pattern gas damper seals  

E-Print Network [OSTI]

with an exit-to-inlet pressure ratio of 40 % and 54 %. Results of the tests show that the 3.18 mm hole-pattern seal has the highest average effective stiffness and lowest effective damping of all three seals. Results show that as cell depth increases, leakage...

Holt, Christopher George

2000-01-01T23:59:59.000Z

198

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network [OSTI]

Potential e?ects of gas hydrate on human welfare, Proc Natlproduction from natural gas hydrates, Energy Economics 31 (Global estimates of hydrate-bound gas in marine sediments:

Silin, D.

2011-01-01T23:59:59.000Z

199

The static and dynamic characteristics of divergent tapered-bore hole-pattern gas seals  

E-Print Network [OSTI]

and at exit-to-inlet pressure ratios of 40% and approximately 53%. Comparisons are given between the three seals for direct and cross-coupled impedances; mass flow rate and effective stiffness and damping coefficients. Results show that an optimum effective...

Carter, Jeremy John

2001-01-01T23:59:59.000Z

200

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computational Fluid Dynamics Modeling of the Bonneville Project: Tailrace Spill Patterns for Low Flows and Corner Collector Smolt Egress  

SciTech Connect (OSTI)

In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is concern for egress issues for smolt passing through the spillway, the spill pattern and volume need to be revisited.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

2010-12-01T23:59:59.000Z

202

A coupled model for ring dynamics, gas flow, and oil flow through the ring grooves in IC engines  

E-Print Network [OSTI]

Oil flows through ring/groove interface play a critical role in oil transport among different regions the piston ring pack of internal combustion engines. This thesis work is intended to improve the understanding and ...

Jia, Ke, S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

203

FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY  

SciTech Connect (OSTI)

A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

Gunning, John E [ORNL; Laughter, Mark D [ORNL; March-Leuba, Jose A [ORNL

2008-01-01T23:59:59.000Z

204

IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES  

SciTech Connect (OSTI)

The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented.

Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

2008-09-01T23:59:59.000Z

205

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

206

E-Print Network 3.0 - axial-flow gas turbine-propeller Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for a substantial portion of aerodynamic losses in axial flow fans... of the major energy loss sources for axial flow fan systems. Despite the close relation between the tip...

207

EVALUATION OF TEMPORAL VARIATIONS IN HYDRAULIC CAPTURE DUE TO CHANGING FLOW PATTERNS USING MAPPING AND MODELING TECHNIQUES  

SciTech Connect (OSTI)

Robust performance evaluation represents one of the most challenging aspects of groundwater pump-and-treat (P&T) remedy implementation. In most cases, the primary goal of the P&T system is hydraulic containment, and ultimately recovery, of contaminants to protect downgradient receptors. Estimating the extent of hydraulic containment is particularly challenging under changing flow patterns due to variable pumping, boundaries and/or other conditions. We present a systematic approach to estimate hydraulic containment using multiple lines of evidence based on (a) water-level mapping and (b) groundwater modeling. Capture Frequency Maps (CFMs) are developed by particle tracking on water-level maps developed for each available water level data set using universal kriging. In a similar manner, Capture Efficiency Maps (CEMs) are developed by particle tracking on water-levels calculated using a transient groundwater flow model: tracking is undertaken independently for each stress period using a very low effective porosity, depicting the 'instantaneous' fate of each particle each stress period. Although conceptually similar, the two methods differ in their underlying assumptions and their limitations: their use together identifies areas where containment may be reliable (i.e., where the methods are in agreement) and where containment is uncertain (typically, where the methods disagree). A field-scale example is presented to illustrate these concepts.

SPILIOTOPOULOS AA; SWANSON LC; SHANNON R; TONKIN MJ

2011-04-07T23:59:59.000Z

208

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network [OSTI]

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

209

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network [OSTI]

.2 Drive end GFB: Predicted bearing static parameters ................................. 157 M.3 Free end GFB: Predicted bearing static parameters ................................... 158 1 CHAPTER I INTRODUCTION Micro gas turbine engines (<400... kW) are light-weight compact units operating at extreme temperatures and at high rotor speeds to achieve the desired power with reduced emissions [1]. Employing gas foil bearings (GFBs) in micro gas turbines increases system efficiency...

Ryu, Keun

2012-02-14T23:59:59.000Z

210

STEADY STATE FLOW STUDIES OF SECTIONS IN NATURAL GAS PIPELINE NETWORKS.  

E-Print Network [OSTI]

??Efficient transportation of natural gas is vital to the success of the economy of the US and the world, because of the various uses of (more)

Ken-Worgu, Kenneth

2008-01-01T23:59:59.000Z

211

Injection, flow, and mixing of CO2 in porous media with residual gas.  

SciTech Connect (OSTI)

Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

Oldenburg, C.M.; Doughty, C.A.

2010-09-01T23:59:59.000Z

212

Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace  

SciTech Connect (OSTI)

Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

1995-12-01T23:59:59.000Z

213

Purged window apparatus. [On-line spectroscopic analysis of gas flow systems  

DOE Patents [OSTI]

A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

Ballard, E.O.

1982-04-05T23:59:59.000Z

214

Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation  

SciTech Connect (OSTI)

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2013-02-15T23:59:59.000Z

215

Virtual Measurement in Pipes, Part 2: Liquid Holdup and Flow Pattern Correlations J. Ternyik, IV, SPE, H.I. Bilgesu, SPE, S. Mohaghegh, SPE, West Virginia U.  

E-Print Network [OSTI]

the design of the system. Other important areas of application can be cited as gas lift operations for the engineer to use in the design process for a variety of conditions. Artificial neural networks (ANN) were multiphase flow systems using readily available data. The VMP methodology was tested for validity

Mohaghegh, Shahab

216

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect (OSTI)

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

217

Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments  

E-Print Network [OSTI]

Toward Production from Gas Hydrates: Current Status,Facing Gas Production From Gas-Hydrate Deposits. Society ofConference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland,

Rutqvist, J.

2014-01-01T23:59:59.000Z

218

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. C10, PAGES 18,081-18,094,OCTOBER 15, 1990 Surface Patterns in Temperature, Flow, Phytoplankton Biomass, and Species  

E-Print Network [OSTI]

Patterns in Temperature, Flow, Phytoplankton Biomass, and Species Composition in the Coastal Transition enriched in phytoplankton biomass, due to the presence of large diatoms. On the seaward side of the front (jet) we observed relatively warm water where the phytoplankton biomass was low and the diatoms were

Kurapov, Alexander

219

Low-density real gas flows about hypersonic vehicles. Interim report, 25 September 1986-25 September 1987  

SciTech Connect (OSTI)

Phase I results include selection of the three components of the computational of the computational algorithm (a Navier-Stokes solution algorithm, a chemistry solution algorithm, and vectorization and parallel-processing requirements for both algorithms). Development of a nonequilibrium air-chemistry reaction model is included, as well as studies of leeside models, turbulence models, and wall catalysis effects appropriate to the hypersonic flows to be considered. Mach 20 test cases were performed using the Navier-Stokes and chemistry algorithms, and a comprehensive sensitivity study was completed for the selection of an air-chemistry model. Transport property calculations are also discussed. The components of the computational algorithm developed during Phase I will be assembled during Phase II into a unified computer code capable of accurately and efficiently calculating low-density real gas flows about hypersonic vehicles.

Hoffman, J.J.; Wong, R.S.; Bussing, T.R.; Birch, S.F.

1988-03-01T23:59:59.000Z

220

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect (OSTI)

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The development of a curb valve flow meter for gas theft detection  

E-Print Network [OSTI]

As the supply of natural gas continues to dwindle, and government decontrol of pricing progresses, the rising cost of this essential natural resource will drive more individuals to consider various forms of pilferage as a ...

Fitzgerald, Kevin Francis

1984-01-01T23:59:59.000Z

222

INTERNAL FORCED iquid or gas flow through pipes or ducts is commonly used in heating and  

E-Print Network [OSTI]

to flow by a fan or pump through a flow section that is sufficiently long to accomplish the desired heat. Then the logarithmic mean temperature difference and the rate of heat loss from the air become Tln 15.2°C Q · hAs Tln (13.5 W/m2 °C)(6.4 m2 )( 15.2°C) 1313 W Therefore, air will lose heat at a rate of 1313 W as it flows

Ghajar, Afshin J.

223

Two dimensional flow of a compressible gas in a thin passage  

E-Print Network [OSTI]

with Experimental Results Nasa Flow Rates at 2 atm. Nasa Flow Rates at 3 atm. Temperature Profiles at 2 atm. Temperature Profiles at 3 atm. Pressure Profiles at U=+300 ft/sec. Pressure Profiles at U -300 ft/sec. Page 12 14 16 17 18 19 21 22 Various... Non-Isentropic -300 -200 -100 0 100 200 300 U ft/sec. FIGURE 4 MASS FLOW RATES AT 3 atm. 18 85o O T R 800 P ~ 2atm 1 T % 700' 1 U ft/sec. -300 T'R 750 700 -100 -10 650 +10 +300 600 10 Diatance x in 10 ft. -3 FIGURE 5 TEMPERATURE...

Desai, Anantkumar Ratanji

1971-01-01T23:59:59.000Z

224

Investigation of flow modifying tools for the continuous unloading of wet-gas wells  

E-Print Network [OSTI]

decreasing backpressure on wells and increasing production. This thesis evaluates this technology for use in the wellbore, where a tool is introduced at the bottom of the tubing string. Laboratory experiments were conducted using a 125-ft vertical flow...

Ali, Ahsan Jawaid

2012-06-07T23:59:59.000Z

225

2007 Estimated International Energy Flows  

SciTech Connect (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

226

The effect of distributors on two-phase and three-phase flows in vertical columns  

E-Print Network [OSTI]

and spray-annular flow patterns were observed for the cocurrent vertical upward flow of air and water in a 5. 40 cm. I. D. tube. This could, be explained by the high gas-liquid flux ratio. Taitel et al. (48) developed some flow pattern transi- tion... criterion for vertical gas-liquid flows (bubble, slug, churn and annular flows) based on physical mechanisms suggested f' or each transition. They claimed that these models were free from the limitations of empirically based transition maps...

Ouyang, Chie-Jan Paul

1982-01-01T23:59:59.000Z

227

Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites  

SciTech Connect (OSTI)

In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.

Torres, Marta

2014-01-31T23:59:59.000Z

228

Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell  

SciTech Connect (OSTI)

Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -? 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to simulate flow through porous GDL materials. We will present an overview of the methods as implemented, verification studies for both microstructure reconstruction and transport simulations, and application to single- and two-phase transport in GDL structures. The applications studies are designed to both improve understanding of transport within a given structure, and to investigate possible routes for improving material properties through microstructure design.

Shiladitya Mukherjeea; J. Vernon Cole; Kunal Jainb; Ashok Gidwania

2008-11-01T23:59:59.000Z

229

Review of automated custody transfer equipment for large-volume gas flow measurement. Final report, August 1, 1987-February 28, 1988  

SciTech Connect (OSTI)

The influence of electronic automation on the accuracy of gas custody transfer measurements was investigated. The term Electronic Flow Measurement (EFM) denotes both electronic flow correctors (for positive displacement meters) and flow computers (for orifice plate measurements). Electronic devices have potential to be slightly more accurate than their mechanical counterparts. Electronic systems have the additional benefits of greater application flexibility, reduced flow corrector inventory, reduced maintenance and calibration requirements, and data storage and communication capability. The primary concerns with EFM equipment are compatibility between units made by different manufacturers and their ability to function under extreme environmental conditions.

Rush, W.F.; Tamosaitis, V.

1989-06-01T23:59:59.000Z

230

Stability of hypersonic reacting stagnation flow of a detonatable gas mixture by dynamical systems analysis  

SciTech Connect (OSTI)

The stability characteristics of the reacting hypersonic flow of the fuel/oxidizer mixture in the stagnation region of a blunt body are studied. The conditions for oscillations of the combustion front are assumed to be determined mainly by the flow conditions at the stagnation region. The density at the stagnation region is assumed to be constant at hypersonic flow conditions. By assuming a simplified flow model, the time dependent flow equations, including the heat addition due to the chemical reactions, are reduced to a second-order nonlinear differential equation for the instantaneous temperature. The solutions are analyzed assuming a one-step chemical reaction with zero-order and first-order processes using dynamical systems methods. These methods are used to determine the stability boundaries in terms of the flow and chemical reaction parameters. It is shown that the zero-order reaction has nonperiodic solutions that may lead to explosion whereas the first-order and higher-order reactions may have periodic solutions indicating oscillations. The zero-order analysis also reaffirms the requirements for a minimum size blunt body for the establishment of a detonation (in agreement with classical detonation theory) and the first-order analysis indicates a minimum body size for establishment of oscillations. The oscillation frequencies are calculated using the small perturbation approximation for the temperature oscillations. These frequencies are compared with results from published data on spheres and hemisphere cylindrical bodies fired into hydrogen-oxygen and acetylene oxygen mixtures. Very good agreement is found between the measured and calculated results.

Tivanov, G.; Rom, J. [Technion-Israel Inst. of Tech., Haifa (Israel)] [Technion-Israel Inst. of Tech., Haifa (Israel)

1995-12-01T23:59:59.000Z

231

Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline  

E-Print Network [OSTI]

,9 was about an early failure owing to insufficient strength caused by hydrogen embrittlement or agingSurface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas. The contact angle test with water and glycerol droplets shows a smaller angle (though >90 ) of NC-Fe than

Zheng, Yufeng

232

Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow  

E-Print Network [OSTI]

stream entering the gap from the pressure side of the blade separates at the tip, due to the sharp corner, and contracts into a jet. Wear and tear of the sharp corners of the blade is inevitable with time, and as the tip corners get eroded the flow... displacements. Plus, over the engine life span the gap increases due to the metal wear and tear. One practiced method of mitigating the over the tip leakage flow is achieved by introducing a shroud to the rotor blade. In Figure 2.13, two high pressure...

Blanco, Rafael Rodriguez

2013-12-31T23:59:59.000Z

233

On the full lagrangian approach and thermophoretic deposition in gas-particle flows  

E-Print Network [OSTI]

to impose a radial temperature difference in pipe flow experiments, but have not yet succeeded in attaining a constant thermophoretic force along the length of the pipe. This limits the accuracy and usefulness of the data for the validation of theoretical...

Healy, David Patrick

2003-11-25T23:59:59.000Z

234

Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska  

E-Print Network [OSTI]

2009. Toward Production From Gas Hydrates: Current Status,Geologic Controls on Gas Hydrate Occurrence in the MountCollett T.S. 1993. Natural Gas Hydrates of the Prudhoe Bay

Kim, J.

2014-01-01T23:59:59.000Z

235

Hydrodynamic flow in lower Cretaceous Muddy sandstone, Gas Draw Field, Powder River Basin, Wyoming  

E-Print Network [OSTI]

control readily available for analysis of rock properties and fluid pressures. The nine-township area surrounding the Gas Draw field is well-suited for study of hydrodynamic effects on oil accumulation. Regional Geology Structure The citations... of southeastern Montana. It is bounded by the Miles City arch and Black Hills uplift on the east, the Hartville uplift on the southeast, and Bighorn Mountains and Casper arch on the west. Muddy stratigraphic oil fields are located on the east flank...

Lin, Joseph Tien-Chin

1978-01-01T23:59:59.000Z

236

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

237

Investigation of Swirl Flows Applied to the Oil and Gas Industry  

E-Print Network [OSTI]

................................................................................................... 24 3.7 Wear hot spots and settling of slurries ...................................................... 26 3.8 Visualization of erosion rate on pipe wall .................................................. 27 3.9 Pipe bends which... This is the principle used in many flow meters, for instance pitot tubes and venturi meters. This interdependence between static and dynamic pressure gains significant importance when dealing with swirling s The second term is unimportant relative to the two others...

Ravuri Venkata Krish, Meher Surendra

2010-01-16T23:59:59.000Z

238

Hydrodynamic flow in lower cretaceous muddy sandstone, Gas Draw field, Powder River basin, Wyoming  

SciTech Connect (OSTI)

Lower Cretaceous Muddy sandstones form a simple stratigraphic trap at Gas Draw field, northeast Power River Basin. The Muddy at Gas Draw can be subdivided into six zones. The lowest, sixth Muddy sandstone is fluvial in origin, and the overlying fifth sandstone is a transgressive marine deposit. The fourth zone represents a fluvial origin below to shallow marine above. The third zone is interpreted to be of fluvial-overbank origin with possibly a bay-lagoonal association. The second sandstone is suggested to be a deposit of a fluvial or deltaic environment. The first zone was deposited in a lagoonal and poorly-drained marsh environment. At Gas Draw, the second Muddy sandstone is the major producing zone and has the highest average porosity and permeability of 22.6% and 209 md. It had high initial production rates of up to 1200 BOPD (191 m/sup 3//day). From correlation of well logs, the Muddy reservoirs appear to be separated by thin shales, but analysis of drill stem tests show that these reservoirs are connected at some points within the area. Analysis of drill-stem test pressures provides the basis for interpreting fluid potential relationships. The average potentiometric gradient of 32 ft/mi across the field results in a hydrodynamic oil column of 210 feet, whereas capillary-pressure differences due to permeability changes can account for only 38 feet of oil column. The observed oil column over most of the field has a height somewhat greater than 250 feet which agrees well with total calculated oil column of about 248 feet. Furthermore, local decrease in permeability to oil may be responsible for water production at any place within the field, even updip from the producing area.

Lin, J.T.C.

1981-10-01T23:59:59.000Z

239

Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect (OSTI)

A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

240

Galaxy gas flows inferred from a detailed, spatially resolved metal budget  

E-Print Network [OSTI]

We use the most extensive integral field spectroscopic map of a local galaxy, NGC 628, combined with gas and stellar mass surface density maps, to study the distribution of metals in this galaxy out to 3 effective radii ($\\rm R_e$). At each galactocentric distance, we compute the metal budget and thus constrain the mass of metals lost. We find that in the disc about half of the metals have been lost throughout the lifetime of the galaxy. The fraction of metals lost is higher in the bulge ($\\sim$70%) and decreases towards the outer disc ($\\rm \\sim 3 \\ R_e$). In contrast to studies based on the gas kinematics, which are only sensitive to ongoing outflow events, our metal budget analysis enables us to infer the average outflow rate during the galaxy lifetime. By using simple physically motivated models of chemical evolution we can fit the observed metal budget at most radii with an average outflow loading factor of order unity, thus clearly demonstrating the importance of outflows in the evolution of disc galaxi...

Belfiore, F; Bothwell, M

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A new technique to analyze simultaneous sandface flow rate and pressure measurements of gas wells with turbulence and damage  

SciTech Connect (OSTI)

Most of the problems associated with conventional gas well test are related to the nonlinearity of the equations describing real gas flow, the presence of the rate dependent (non-Darcy) skin, and the long shut-in time periods required to collect the data for the analysis in tight reservoirs in which the wellbore storage period can be excessively long. This paper presents a new pressure buildup technique that reduces the wellbore storage effects, eliminates the long shut-in periods experienced with conventional tests by using afterflow rate and pressure data, and most importantly provides a direct method to estimate non-Darcy skin. The proposed technique uses normalized pseudofunctions to avoid the nonlinearities of the governing equations and involves using two different plots. The formation permeability is obtained from the slope of the first plot. The mechanical and non-Darcy skin factors are obtained respectively from the slope and intercept of the second plot. A field example and two simulated cases are presented to illustrate the application of the new technique.

Nashawi, I.S. [Kuwait Univ. (Kuwait); Al-Mehaideb, R.A.

1995-10-01T23:59:59.000Z

242

127 Natural Gas Transmission and Distribution Module  

E-Print Network [OSTI]

and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of the supply options available to bring gas to market centers within each of the NGTDM regions (Figure 9). The major assumptions used within the NGTDM are grouped into four general categories. They relate to (1) structural components of the model, (2) capacity expansion and pricing of transmission and distribution services, (3) Arctic pipelines, and (4) imports and exports. A complete listing of NGTDM assumptions and in-depth

Key Assumptions

243

Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation  

SciTech Connect (OSTI)

The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away from the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.

Perin, A.; Casas-Cubillos, J.; Pezzetti, M. [CERN, CH-1211 Geneva 23 (Switzerland); Almeida, M. [Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte (Brazil)

2014-01-29T23:59:59.000Z

244

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

245

Charged particle's $p_T$ spectra and elliptic flow in $\\sqrt{s_{NN}}$=200 GeV Au+Au collisions: QGP vs. hadronic resonance gas  

E-Print Network [OSTI]

We show that if the hadronic resonance gas (HRG), with viscosity to entropy ratio $\\eta/s\\approx$0.24, is physical at temperature $T\\approx$220 MeV, charged particles $p_T$ spectra and elliptic flow in Au+Au collisions at RHIC, over a wide range of collision centrality do not distinguish between initial QGP fluid and initial hadronic resonance gas. Unambiguous identification of bulk of the matter produced in Au+Au collisions require clear demonstration that HRG is unphysical at temperature $T<$200 MeV. It calls for precise lattice simulations with realistic boundary conditions.

Chaudhuri, A K

2010-01-01T23:59:59.000Z

246

A unified gas-kinetic scheme for continuum and rarefied flows Kun Xu a,*, Juan-Chen Huang b  

E-Print Network [OSTI]

a Mathematics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong b makes these methods useless in the continuum flow regime, especially in the high Reynolds number flow

Xu, Kun

247

Investigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell in the Presence of Gas Flow  

E-Print Network [OSTI]

forms of hydrogen powered technologies exist and have been well-researched, fuel cells is considered efficiently in the fuel cells (4). Inefficient water removal results in flooding of the catalyst layerInvestigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell

Kandlikar, Satish

248

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

of natural gas in oil) STB Stock Tank Barrel ( one barrel oftank barrel (scf/STB). Gas solubility increases with pressure such that oilgas in oil is given by SGOR which has units of standard cubic feet per stock-tank

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

249

Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver  

SciTech Connect (OSTI)

Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated.

Wilde, Juray de [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium) and Fluid Mechanics Laboratory, Department of Fluid, Heat and Combustion Mechanics, Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent (Belgium)]. E-mail: Guray.Marin@UGent.be; Vierendeels, Jan [Fluid Mechanics Laboratory, Department of Fluid, Heat and Combustion Mechanics, Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Heynderickx, Geraldine J. [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium); Marin, Guy B. [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium)

2005-07-20T23:59:59.000Z

250

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

251

Proceedings of the XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser Conference, Edinburgh, UK 25-30 August 1996, SPIE Vol. 3092, ed. H.J. Baker, pp. 758-763 (1997).  

E-Print Network [OSTI]

Proceedings of the XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser of 20 mm were obtained in aluminum and 41 mm in carbon steel using an N2 gas assist and 5-6 kW of power study of cutting thick aluminum and steel with a chemical oxygen-iodine laser using an N2 or O2 gas

Carroll, David L.

252

Integrated flue gas processing method  

SciTech Connect (OSTI)

A system and process for flue gas processing to remove both gaseous contaminants such as sulfur dioxide and particulate matter such as flyash integrates spray scrubbing apparatus and wet electrostatic precipitation apparatus and provides for the advantageous extraction and utilization of heat present in the flue gas which is being processed. The integrated system and process utilizes a spray scrubbing tower into which the flue gas is introduced and into which aqueous alkali slurry is introduced as spray for sulfur dioxide removal therein. The flue gas leaves the tower moisture laden and enters a wet electrostatic precipitator which includes a heat exchanger where flyash and entrained droplets in the flue gas are removed by electrostatic precipitation and heat is removed from the flue gas. The cleaned flue gas exits from the precipitator and discharges into a stack. The heat removed from the flue gas finds use in the system or otherwise in the steam generation plant. The wet electrostatic precipitator of the integrated system and process includes a portion constructed as a cross flow heat exchanger with flue gas saturated with water vapor moving vertically upwards inside tubes arranged in a staggered pattern and ambient air being pulled horizontally across the outside of those tubes to cool the tube walls and thereby remove heat from the flue gas and cause condensation of water vapor on the inside wall surfaces. The condensate washes the electrostatically collected flyash particles down from the inside tube walls. The heat that is extracted from the saturated flue gas in the wet electrostatic precipitator heat exchanger may be utilized in several different ways, including: (1) for flue gas reheat after the wet electrostatic precipitator; (2) for preheating of combustion air to the steam generator boiler; and, (3) for heating of buildings.

Bakke, E.; Willett, H.P.

1982-12-21T23:59:59.000Z

253

Onset and Subsequent Transient Phenomena of Liquid Loading in Gas Wells: Experimental Investigation Using a Large Scale Flow Loop  

E-Print Network [OSTI]

was carried out to study the onset of liquid loading and the subsequent transient phenomena, using a large scale flow loop to visualize two-phase flow regimes, and to measure pressure and liquid holdup along a 42-m long vertical tube. From this investigation...

Waltrich, Paulo

2012-10-19T23:59:59.000Z

254

ISFV14 -14th International Symposium on Flow Visualization  

E-Print Network [OSTI]

FLOWS: HVAC-BOS Michael J. Hargather and Gary S. Settles Gas Dynamics Laboratory, Mechanical & Nuclear airflow patterns in the heating, ventilation, and air-conditioning (HVAC) field. We propose background-dimensional. Finally, BOS lends itself well to certain HVAC chores such as the diagnosis of commercial kitchen

Settles, Gary S.

255

Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics  

E-Print Network [OSTI]

We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

Jain, Antone Kumar

2009-01-01T23:59:59.000Z

256

An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps  

SciTech Connect (OSTI)

In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

Dalkilic, A.S. [Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, Istanbul 34349 (Turkey); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-09-15T23:59:59.000Z

257

Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow  

SciTech Connect (OSTI)

The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

Schweigert, I. V., E-mail: ischweig@itam.nsc.ru [Russian Academy of Sciences, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch (Russian Federation)

2012-08-15T23:59:59.000Z

258

Multiphase flow calculation software  

DOE Patents [OSTI]

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

259

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

260

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

262

CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor  

E-Print Network [OSTI]

if the large portion of the coolant flows into bypass gaps instead of coolant channels in which the cooling efficiency is much higher. A preliminary three dimensional steady-state CFD analysis was performed with commercial code STARCCM+ 6.04 to investigate...

Wang, Huhu 1985-

2012-12-13T23:59:59.000Z

263

Numerical Simulation of Flow and Heat Transfer in Internal Multi-Pass Cooling Channel within Gas Turbine Blade  

E-Print Network [OSTI]

four-pass channel with two different inlet settings. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh ) equals to 2/3 inch (16.9 mm). The first and fourth channel were set as different aspect ratio (AR=2:1; AR=1...

Chu, Hung-Chieh 1979-

2012-11-16T23:59:59.000Z

264

Development of a Multiscale Ionized Gas (MIG) Flow Code for Plasma Applications Subrata Roy Datta V. Gaitonde  

E-Print Network [OSTI]

Enterprises for developing high-power in-space electric propulsion systems; to the Air Force of Office, USA Air Force Research Laboratory sroy@kettering.edu Wright-Patterson AFB, Ohio 45433, USA Accurate of Scientific Research, Department of Defense, and DARPA for flow control and stability about an air vehicle

Roy, Subrata

265

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

266

Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells  

E-Print Network [OSTI]

2.5 (a) The optical acrylic and (b) inlet mixing section ................................... 16 2.6 (a) Slug catcher at the outlet of the test section and (b) gas/liquid (top) and oil/water separators... loops, the process is accompanied by the installation of major equipment and hardware that may include but is not limited to compressed air systems, water pumps, multiphase pumps and static vessels used as separators. Commercial and non...

Fernandez Alvarez, Juan Jose

2009-05-15T23:59:59.000Z

267

Experimental study of a shock accelerated thin gas layer  

SciTech Connect (OSTI)

Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

Jacobs, J.W. [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F. [Los Alamos National Lab., NM (United States)

1993-08-01T23:59:59.000Z

268

Understanding the dynamics of a two-phase flow (liquid and gas) has been studied quite extensively over the past. This problem is indeed of direct relevance for many areas such  

E-Print Network [OSTI]

be trapped on the ground because of the presence of an obstacle. The studied products were propane, butane set-up, and pressure storage. 1 INTRODUCTION In many chemical and process plants, gas are stored for the understanding of the flow inside the pipe. The net of pipes linking the storage and the nozzle are composed

Paris-Sud XI, Université de

269

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

270

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

271

Polyport atmospheric gas sampler  

DOE Patents [OSTI]

An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

Guggenheim, S. Frederic (Teaneck, NJ)

1995-01-01T23:59:59.000Z

272

A constitutive law for dense granular flows  

E-Print Network [OSTI]

A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

Pierre Jop; Yol Forterre; Olivier Pouliquen

2006-12-05T23:59:59.000Z

273

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network [OSTI]

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery...

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

274

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

275

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.76mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.76 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

276

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.22mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.22 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

277

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.76mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.76 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

278

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 4.4mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 4.4 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

279

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.32mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.32 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

280

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.88mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.88 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.2mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.2 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

282

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.088mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.088 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

283

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.44mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.44 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

284

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.088mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.088 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

285

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.044mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.044 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

286

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.2mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.2 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

287

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.64mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.64 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

288

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.32mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.32 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

289

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.88mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.88 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

290

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.044mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.044 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

291

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.44mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.44 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

292

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.22mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.22 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

293

Pattern formation in crystal growth under parabolic shear flow Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan  

E-Print Network [OSTI]

August 2003 Morphological instability of the solid-liquid interface occurring in a crystal growing from tension is an important factor for stabilization of the solid-liquid interface on long length scales known 4 . In theoretical works, the effect of shear flow on the morphological stability has been studied

Goldstein, Raymond E.

294

E-Print Network 3.0 - abnormally pressured gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering ; Biology and Medicine 48 FLOW BEHAVIOR OF GAS-CONDENSATE WELLS A DISSERTATION Summary: .10 Schematic diagram of the gas-condensate flow system. The...

295

Test versus predictions for rotordynamic coefficients and leakage rates of hole-pattern gas seals at two clearances in choked and unchoked conditions  

E-Print Network [OSTI]

and significantly less effective damping. The inlet pressure of the testing ranged from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He showed that the rotordynamic coefficients are frequency dependent. Holt [7] performed tests on two sets of hole...-pattern seals with different hole depths. The testing was conducted with two different inlet pressures from 6.9 bar-a (100 psi-a) to 17.2 bar-a (250 psi-a). He compared these results to smooth seal test results and also the straight bore honeycomb data from...

Wade, Jonathan Leigh

2004-09-30T23:59:59.000Z

296

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network [OSTI]

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

297

The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

298

Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques  

SciTech Connect (OSTI)

Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste.

Yassin Hassan

2001-11-30T23:59:59.000Z

299

Gas only nozzle  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

2002-01-01T23:59:59.000Z

300

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas cleaning system and method  

SciTech Connect (OSTI)

A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

Newby, Richard Allen

2006-06-06T23:59:59.000Z

302

Experimental Design and Flow Visualization for the Upper Plenum of a Very High Temperature Gas Cooled for Computer Fluid Dynamics Validation  

E-Print Network [OSTI]

The Very High Temperature Reactor (VHTR) is a Generation IV nuclear reactor that is currently under design. It modifies the current high temperature gas reactor (HTGR) design to have a 1000 ^(0)C coolant outlet. This increases fuel efficiency...

Mcvay, Kyle

2014-08-08T23:59:59.000Z

303

Supersonic gas compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

304

Gas-controlled dynamic vacuum insulation with gas gate  

DOE Patents [OSTI]

Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

Benson, D.K.; Potter, T.F.

1994-06-07T23:59:59.000Z

305

Gas-controlled dynamic vacuum insulation with gas gate  

DOE Patents [OSTI]

Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1994-06-07T23:59:59.000Z

306

Foam patterns  

DOE Patents [OSTI]

A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

2013-11-26T23:59:59.000Z

307

Production Trends of Shale Gas Wells  

E-Print Network [OSTI]

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

Khan, Waqar A.

2010-01-14T23:59:59.000Z

308

Direct fired absorption machine flue gas recuperator  

DOE Patents [OSTI]

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

309

Mobile monolithic polymer elements for flow control in microfluidic devices  

DOE Patents [OSTI]

A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

2005-11-11T23:59:59.000Z

310

Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems  

DOE Patents [OSTI]

A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

Hasselbrink, Jr., Ernest F. (Saline, MI); Rehm, Jason E. (Alameda, CA); Shepodd, Timothy J. (Livermore, CA); Kirby, Brian J. (San Francisco, CA)

2006-01-24T23:59:59.000Z

311

9.11.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/44 3. Absorption, gas expansion and  

E-Print Network [OSTI]

Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Kylteknik ("KYL") Refrigeration course # 424503.0 v. 2014 ?A 424503 Refrigeration / Kylteknik 9.11.2014?bo energy, solar energy, biogas fuel, etc. Absorption refrigeration involves absorption of refrigerant

Zevenhoven, Ron

312

Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media  

SciTech Connect (OSTI)

The design of a miniature laser shock tube for the study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and in supersonic flows with large Mach numbers (greater than 10) is discussed. A substance filling a chamber of quadratic cross section, with a characteristic size of several centimetres, is compressed and accelerated due to local absorption of 100 ns, 100 J KrF laser pulses near the entrance window. It is proposed to focus a laser beam by a prism raster, which provides a uniform intensity distribution over the tube cross section. The system can be used to study the hypersonic flow past objects of complex shape and the development of hydrodynamic instabilities in the case of a passage of a shock wave or a compression wave through the interfaces between different media. (laser applications and other topics in quantum electronics)

Zvorykin, V D; Lebo, I G [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2000-06-30T23:59:59.000Z

313

Smokeless Control of Flare Steam Flow Rate  

E-Print Network [OSTI]

measurement of mass flow rate of flare gas, in spite of the hostile environment. Its use for initiating control of flare steam flow rate and the addition of molecular weight compensation, using specific gravity (relative density) measurement to achieve...

Agar, J.; Balls, B. W.

1979-01-01T23:59:59.000Z

314

Multiphase Flow and Cavern Abandonment in Salt  

SciTech Connect (OSTI)

This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

Ehgartner, Brian; Tidwell, Vince

2001-02-13T23:59:59.000Z

315

Sandia National Laboratories: Magnetically Stimulated Flow Patterns...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

said, the technology could be practical in problems ranging from reactor cooling to microfluidics, a multidisciplinary field used, for example, in designing systems that handle...

316

Low flow fume hood  

DOE Patents [OSTI]

A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

2002-01-01T23:59:59.000Z

317

Exhaust gas recirculation apparatus  

SciTech Connect (OSTI)

Apparatus is disclosed for recirculating combustion exhaust gases to the burner region of a Stirling cycle hot-gas engine to lower combustion temperature and reduct NO/sub x/ formation includes a first wall separating the exhaust gas stream from the inlet air stream, a second wall separating the exhaust gas stream from the burner region, and low flow resistance ejectors formed in the first and second walls for admitting the inlet air to the burner region and for entraining and mixing with the inlet air portion of the exhaust gas stream. In a preferred embodiment the ejectors are arranged around the periphery of a cylindrical burner region and oriented to admit the air/exhaust gas mixture tangentially to promote mixing. In another preferred embodiment a single annular ejector surrounds and feeds the air/exhaust gas mixture to a cylindrical burner region. The annular ejector includes an annular plate with radially-directed flow passages to provide an even distribution of the air/exhaust gas mixture to the burner region.

Egnell, R.A.; Hansson, B.L.

1981-07-14T23:59:59.000Z

318

Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids  

E-Print Network [OSTI]

Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

Olorode, Olufemi Morounfopefoluwa

2012-02-14T23:59:59.000Z

319

Two-phase flow characteristics in multiple orifice valves  

SciTech Connect (OSTI)

This work presents an experimental investigation on the characteristics of two-phase flow through multiple orifice valve (MOV), including frictional pressure drop and void fraction. Experiments were carried out using an MOV with three different sets of discs with throat thickness-diameter ratios (s/d) of 1.41, 1.66 and 2.21. Tests were run with air and water flow rates ranging between 1.0 and 3.0 m{sup 3}/h, respectively. The two-phase flow patterns established for the experiment were bubbly and slug. Two-phase frictional multipliers, frictional pressure drop and void fraction were analyzed. The determined two-phase multipliers were compared against existing correlations for gas-liquid flows. None of the correlations tested proved capable of predicting the experimental results. The large discrepancy between predicted and measured values points at the role played by valve throat geometry and thickness-diameter ratio in the hydrodynamics of two-phase flow through MOVs. A modification to the constants in the two-phase multiplier equation used for pipe flow fitted the experimental data. A comparison between computed frictional pressure drop, calculated with the modified two-phase multiplier equation and measured pressure drop yielded better agreement, with less than 20% error. (author)

Alimonti, Claudio [Sapienza University of Rome, Department ICMA, Via Eudossiana 18, 00184 Roma (Italy); Falcone, Gioia; Bello, Oladele [The Harold Vance Department of Petroleum Engineering, Texas A and M University, 3116 TAMU, Richardson Building, College Station, TX 77843 (United States)

2010-11-15T23:59:59.000Z

320

Shroud leakage flow discouragers  

DOE Patents [OSTI]

A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

Bailey, Jeremy Clyde (Middle Grove, NY); Bunker, Ronald Scott (Niskayuna, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

322

The transition from the annular to the slug flow regime in two-phase flow  

E-Print Network [OSTI]

Experiments were conducted to determine the transition from annular to semiannular flow regimes for two-phase, gas-liquid upflow in vertical tubes. The influencesof liquid flow rate, tube diameter, liquid viscosity, surface ...

Haberstroh, Robert D.

1964-01-01T23:59:59.000Z

323

Gas only nozzle fuel tip  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

324

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

325

High Temperature Gas Reactors The Next Generation ?  

E-Print Network [OSTI]

-Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

326

E-Print Network 3.0 - approach mass flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Summary: approaches to eliminate highly oscillating well flow in gas lifted wells: The first approach is to increase... index, PI,...

327

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

328

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.

Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

2011-09-30T23:59:59.000Z

329

Multiphase Turbulent Flow Ken Kiger -UMCP  

E-Print Network [OSTI]

interacting ­ Distinguish multiphase and/or multicomponent · Liquid/Gas or Gas/Liquid · Gas/Solid · Liquid/Liquid ­ Technically, two immiscible liquids are "multi-fluid", but are often referred to as a "multiphase" flow due emulsions Multi-phase Steam bubble in H20 Ice slurry Coal particles in air Sand particle in H20 #12

Gruner, Daniel S.

330

E-Print Network 3.0 - annulus two-phase flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TWO-PHASE FLOW IDENTIFICATION BY CORRELATION TECHNIQUES I. P.ZSIT* Studsvik... void fraction. INTRODUCTION Traditionally, two-phase flow patterns are classifiedby... an...

331

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

332

Gas turbine combustor transition  

DOE Patents [OSTI]

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

333

Deliverability on the interstate natural gas pipeline system  

SciTech Connect (OSTI)

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

NONE

1998-05-01T23:59:59.000Z

334

8 TH INTERNATIONAL SYMPOSIUM ON FLOW VISUALIZATION (1998) V I SUALISAT I ON OF FLOW PHENOMENA I NSIDE  

E-Print Network [OSTI]

of a reactor vessel containing a fixed­bed of solids via a gas distributor. The upward flow of gas causes­solid flow, circulating fluidized bed, cluster Abstract In the present paper an attempt has been made to use the laser sheet method inside a circulating fluidized bed (CFB) which is a highly concentrated gas

335

Gas-cooled nuclear reactor  

DOE Patents [OSTI]

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

336

Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles  

DOE Patents [OSTI]

A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

2005-05-31T23:59:59.000Z

337

System for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

Fincke, James R. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

338

Automated gas chromatography  

DOE Patents [OSTI]

An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

1999-07-13T23:59:59.000Z

339

Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor  

DOE Patents [OSTI]

An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

2013-09-10T23:59:59.000Z

340

Optimization for Design and Operation of Natural Gas Transmission Networks  

E-Print Network [OSTI]

and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission...

Dilaveroglu, Sebnem 1986-

2012-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pattern speed evolution and bar reformation  

E-Print Network [OSTI]

Bars in spiral galaxies can weaken through gas inflow towards the center, and angular momentum transfer. Several bar episodes can follow one another in the life of the galaxy, if sufficient gas is accreted from the intergalactic medium to revive young disks. Pattern speeds of the successive bars are different, due to mass concentration, or increased velocity dispersion of the remaining stellar component. In the same time, the spiral galaxy evolves in morphological type. Numerical simulations are presented, trying to correlate type and bar pattern speeds.

F. Combes

2008-11-05T23:59:59.000Z

342

Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures  

E-Print Network [OSTI]

Modeling the performance of high-pressure, high-temperature (HPHT) natural gas reservoirs requires the understanding of gas behavior at such conditions. In particular, gas viscosity is an important fluid property that directly affects fluid flow...

Davani, Ehsan

2012-02-14T23:59:59.000Z

343

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network [OSTI]

4th International Conference on Gas Hydrates May 19-23, 2002, Yokohama Cold Flow Hydrate Technology an opportunity for flow assurance in deepwater production of oil and gas. Hydrate R&D in the Natural Gas Hydrate exchange and reactor units. Introduction Hydrates form when liquid water and natural gas are in contact

Gudmundsson, Jon Steinar

344

Can We Accurately Model Fluid Flow in Shale?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

345

Section 10: Turbulence and reactive flows 1 Section 10: Turbulence and reactive flows  

E-Print Network [OSTI]

premixed combustion is recently a theme of interest in gas turbines and other industrial applications flames #12;2 Section 10: Turbulence and reactive flows for gas turbine application. In: International Gas combustion LES in- cluding thickened flame model A. Hosseinzadeh, A. Sadiki, J. Janicka (TU Darmstadt) Lean

Kohlenbach, Ulrich

346

U-GAS process  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) has developed an advanced coal gasification process. The U-GAS process has been extensively tested in a pilot plant to firmly establish process feasibility and provide a large data base for scale-up and design of the first commercial plant. The U-GAS process is considered to be one of the more flexible, efficient, and economical coal gasification technologies developed in the US during the last decade. The U-GAS technology is presently available for licensing from GDC, Inc., a wholly-owned subsidiary of IGT. The U-GAS process accomplishes four important functions in a single-stage, fluidized-bed gasifier: It decakes coal, devolatilizes coal, gasifies coal, and agglomerates and separates ash from char. Simultaneously with coal gasification, the ash is agglomerated into spherical particles and separated from the bed. Part of the fluidizing gas enters the gasifier through a sloping grid. The remaining gas flows upward at a high velocity through the ash agglomerating device and forms a hot zone within the fluidized bed. High-ash-content particles agglomerate under these conditions and grow into larger and heavier particles. Agglomerates grow in size until they can be selectively separated and discharged from the bed into water-filled ash hoppers where they are withdrawn as a slurry. In this manner, the fluidized bed achieves the same low level of carbon losses in the discharge ash generally associated with the ash-slagging type of gasifier. Coal fines elutriated from the fluidized bed are collected in two external cyclones. Fines from the first cyclone are returned to the bed and fines from the second cyclone are returned to the ash agglomerating zone, where they are gasified, and the ash agglomerated with bed ash. The raw product gas is virtually free of tar and oils, thus simplifying ensuing heat recovery and purification steps.

Schora, F.C.; Patel, J.G.

1982-01-01T23:59:59.000Z

347

Gas cooled traction drive inverter  

SciTech Connect (OSTI)

The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

Chinthavali, Madhu Sudhan

2013-10-08T23:59:59.000Z

348

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

349

A front-tracking method for the simulation of three-phase flow in porous media  

E-Print Network [OSTI]

, the simultaneous flow of oil, water, and gas in the reservoir. Practical examples include primary production below bubble point and with movable water, waterfloods in the presence of free gas, gas floods, and water

350

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

351

Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions  

DOE Patents [OSTI]

This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

1994-01-01T23:59:59.000Z

352

Gas-Adsorption Processes - An Update  

E-Print Network [OSTI]

points and weak points are delineated. Next, several specific process flow sheets which have been commercialized rather recently and which may be extrapolable to other separations are discussed. Finally, the issue of where gas-adsorption technology...

Keller, G. E., II

1984-01-01T23:59:59.000Z

353

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

354

Design and Fabrication of a Vertical Pump Multiphase Flow Loop  

E-Print Network [OSTI]

is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them...

Kirkland, Klayton 1965-

2012-08-24T23:59:59.000Z

355

Quantitative tomographic measurements of opaque multiphase flows  

SciTech Connect (OSTI)

An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

2000-03-01T23:59:59.000Z

356

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

357

Affording Gas and Electricity: Self Disconnection and  

E-Print Network [OSTI]

Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

Feigon, Brooke

358

Some hydrodynamic characteristics of bubbly mixtures flowing vertically upward in tubes  

E-Print Network [OSTI]

An investigation of bubbly flow has been conducted in vertical plexiglass tubes using air and water at atmospheric pressure. The bubbly flow pattern is an entrance condition or a non-fully developed flow. A spontaneous ...

Rose, Sewell C.

1964-01-01T23:59:59.000Z

359

Natural gas 1995: Issues and trends  

SciTech Connect (OSTI)

Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

NONE

1995-11-01T23:59:59.000Z

360

Multiphase flow in fractured porous media  

SciTech Connect (OSTI)

The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

Firoozabadi, A.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

FLARING PATTERNS IN BLAZARS  

SciTech Connect (OSTI)

Blazars radiate from relativistic jets launched by a supermassive black hole along our line of sight; the subclass of flat spectrum radio quasars exhibits broad emission lines, a telltale sign of a gas-rich environment and high accretion rate, contrary to the other subclass of the BL Lacertae objects. We show that this dichotomy of the sources in physical properties is enhanced in their flaring activity. The BL Lac flares yielded spectral evidence of being driven by further acceleration of highly relativistic electrons in the jet. Here, we discuss spectral fits of multi-{lambda} data concerning strong flares of the two flat spectrum radio quasars 3C 454.3 and 3C 279 recently detected in {gamma}-rays by the AGILE and Fermi satellites. We find that optimal spectral fits are provided by external Compton radiation enhanced by increasing production of thermal seed photons by growing accretion. We find such flares to trace patterns on the jet-power-electron-energy plane that diverge from those followed by flaring BL Lac objects and discuss why these occur.

Paggi, A.; Cavaliere, A.; Tavani, M. [Dipartimento di Fisica, Universita di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Vittorini, V.; D'Ammando, F., E-mail: paggi@roma2.infn.it [INAF/IASF-Roma, Via Fosso del Cavaliere 1, I-00100 Roma (Italy)

2011-08-01T23:59:59.000Z

362

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas...

Reza, Rostami Ravari

2004-11-15T23:59:59.000Z

363

Flammable Gas Detection for the D-Zero Gas System  

SciTech Connect (OSTI)

The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

Spires, L.D.; Foglesong, J.; /Fermilab

1991-02-11T23:59:59.000Z

364

Gas-Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon  

E-Print Network [OSTI]

1 Gas-Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon #12;2 ABSTRACT Since gas flows in micro/nano devices are dominated by the interaction of gas molecules accommodation of gas molecules on surfaces. The scattering of gas molecules on quartz surfaces covered with VA

Maruyama, Shigeo

365

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

1994-01-01T23:59:59.000Z

366

UZ Flow Models and Submodels  

SciTech Connect (OSTI)

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

367

Catalyst and process development for synthesis gas conversion to isobutylene  

SciTech Connect (OSTI)

The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

Anthony, R.G.; Akgerman, A.

1992-05-26T23:59:59.000Z

368

Understanding the evolution of miscible viscous fingering patterns  

E-Print Network [OSTI]

Viscous fingering, the hydrodynamic instability that occurs when a lower viscosity fluid displaces a higher viscosity fluid, creates complex patterns in porous media flows. Fundamental facets of the displacement process, ...

Chui, Jane (Jane Yuen Yung)

2012-01-01T23:59:59.000Z

369

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

370

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network [OSTI]

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

371

Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint  

SciTech Connect (OSTI)

Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-05-01T23:59:59.000Z

372

Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping  

DOE Patents [OSTI]

Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

Rochelle, Gary T. (Austin, TX); Oyenekan, Babatunde A. (Katy, TX)

2011-03-08T23:59:59.000Z

373

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

374

Method and system for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

Fincke, James R. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

375

Quantitative supersonic flow visualization by hydraulic analogy  

E-Print Network [OSTI]

The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

Rani, Sarma Laxminarasimha

1998-01-01T23:59:59.000Z

376

Fission gas release restrictor for breached fuel rod  

DOE Patents [OSTI]

In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

Kadambi, N. Prasad (Gaithersburg, MD); Tilbrook, Roger W. (Monroeville, PA); Spencer, Daniel R. (Unity Twp., PA); Schwallie, Ambrose L. (Greensburg, PA)

1986-01-01T23:59:59.000Z

377

Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps  

DOE Patents [OSTI]

A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

2012-08-21T23:59:59.000Z

378

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

379

Gas Viscosity at High Pressure and High Temperature  

E-Print Network [OSTI]

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes...

Ling, Kegang

2012-02-14T23:59:59.000Z

380

Neutral gas modeling in divertors Charles F. F. Karney  

E-Print Network [OSTI]

Neutral gas modeling in divertors Charles F. F. Karney Princeton University 1. Introduction: for example, in the "gas target" divertor, the plasma flows into a gas cell and a high-Z element radiates away much of the power. In such a divertor, neutrals also play a central role. In order to model a divertor

Karney, Charles

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Inductively coupled plasma torch with laminar flow cooling  

DOE Patents [OSTI]

An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

Rayson, Gary D. (Las Cruces, NM); Shen, Yang (Las Cruces, NM)

1991-04-30T23:59:59.000Z

382

Complex temporal and spatial patterns in nonequilibrium systems  

SciTech Connect (OSTI)

Dynamical systems methods are being developed and used to characterize the formation and evolution of temporal and spatial patterns in systems maintained far from equilibrium. In particular, experiments and analyses are considering electrodeposition of fractal metallic clusters, pattern formation in reaction-diffusion systems, and the primary instabilities of some fluid flows. Novel reactors have been developed to search for chemical patterns (spatial variations in the chemical composition), and sustained patterns have been found in several different one- and two-dimensional geometries. Bifurcations in these patterns are studied by varying control parameters, e.g., the concentrations of the feed chemicals or the temperature. The observed two-dimensional chemical patterns range from the stationary patterns, similar to those predicted by Turing in 1952 but not observed until 1990, to chemical turbulence, which is characterized by large numbers of defects and a rapid decay of spatial correlations. These provide general insights into the formation of spatiotemporal patterns in nonequilibrium systems.

Swinney, H.L.

1991-09-01T23:59:59.000Z

383

Evaluation of a Close Coupled Slotted Orifice, Electrical Impedance, and Swirl Flow Meters for Multiphase Flow  

E-Print Network [OSTI]

homogenized flow for several pipe diameters downstream of the plate. This characteristic provides a homogeneous mixture at the inlet of the swirl meter, and impedance probe for gas volume fraction measurement (GVF). In order to evaluate the performance...

Cevik, Muhammet

2013-09-11T23:59:59.000Z

384

Pressure and flow characteristics of restrictive flow orifice devices.  

SciTech Connect (OSTI)

A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

Shrouf, Roger D.

2003-06-01T23:59:59.000Z

385

Program solves for gas well inflow performance  

SciTech Connect (OSTI)

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

386

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network [OSTI]

of hydrates for transport and storage of natural gas and in cold flow technology. In a continuous stirred tank. The same conditions are relevant in cold flow technology where oil, gas and water are passed through4th International Conference on Gas Hydrates May 19-23, 2002, Yokohama Hydrate Formation Rate

Gudmundsson, Jon Steinar

387

The effect of perforation patterns upon well productivity  

E-Print Network [OSTI]

)ority of reservoirs it has been observed that the oil exists originally at or near its bubble point? llhen che pressure is reduoed at the well bore, oonsiderable quantities of gas are evolved The oreation of a free gas phase in the interstioes of the porous medium... the flow of oil into the well borea The use of a direot eleotrioal analogy beoomes someuhat more diffioult when dealing with sn oil not highly undersaturated, The oreation of a free gas phase oauses severe ohanges in the resistanoe to the flow of oil...

Neale, John William

1955-01-01T23:59:59.000Z

388

Serial cooling of a combustor for a gas turbine engine  

DOE Patents [OSTI]

A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

2001-01-01T23:59:59.000Z

389

Co-flow planar SOFC fuel cell stack  

DOE Patents [OSTI]

A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

2004-11-30T23:59:59.000Z

390

Assessment of coal bed gas prospects  

SciTech Connect (OSTI)

Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

391

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents [OSTI]

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

392

High ratio recirculating gas compressor  

DOE Patents [OSTI]

A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

Weinbrecht, J.F.

1989-08-22T23:59:59.000Z

393

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

394

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

395

Microfluidics Formation of Bubbles in a Multisection Flow-Focusing  

E-Print Network [OSTI]

Microfluidics Formation of Bubbles in a Multisection Flow-Focusing Junction Michinao Hashimoto the stable formation of trains of mono-, bi-, and tri-disperse bubbles in microfluidic flow- focusing (FF-assembly through the patterns of flow created by the bubbles. 1.1 Bubbles and Droplets in Microfluidics

Prentiss, Mara

396

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network [OSTI]

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

397

Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method  

SciTech Connect (OSTI)

Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the numerical model. These parameters include production/destruction of interfacial area as a function of saturation and capillary pressure. Our preliminary results for primary drainage in porous media show that the specific interfacial area increased linearly with increasing gas saturation until breakthrough of the displacing gas into the exit manifold occurred.

Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

2010-01-01T23:59:59.000Z

398

Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1  

E-Print Network [OSTI]

, the Eagle Ford Shale (EFS) play has had a remarkable development in natural gas and oil production. EFSEG39 Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muñoz Torres, J.1 javier (bcf) of natural gas and 8,049 thousand barrels of oil. Up to 2020, it is expected that natural gas

Texas at Austin, University of

399

Method of lift-off patterning thin films in situ employing phase change resists  

DOE Patents [OSTI]

Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

2014-09-23T23:59:59.000Z

400

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Multiple-tracer gas analyzer  

SciTech Connect (OSTI)

A multi-gas tracer system has been designed, built, and used on an explosively fractured oil shale rubble bed. This paper deals exclusively with the hardware, software, and overall operation of the tracer system. This system is a field portable, self-contained unit, which utilizes a mass spectrometer for gas analysis. The unit has a 20 channel sample port capability and is controlled by a desk top computer. The system is configured to provide a dynamic sensitivity range of up to six orders of magnitude. A roots blower is manifolded to the unit to provide continuous flow in all sample lines. The continuous flow process allows representative samples as well as decreasing the time between each measurement. Typical multiplex cycle time to evaluate four unique gases is approximately 12 seconds.

Uhl, J.E.

1982-01-01T23:59:59.000Z

402

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

403

Global Natural Gas Market Trends, 2. edition  

SciTech Connect (OSTI)

The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

NONE

2007-07-15T23:59:59.000Z

404

Turbine blade tip flow discouragers  

DOE Patents [OSTI]

A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

Bunker, Ronald Scott (Niskayuna, NY)

2000-01-01T23:59:59.000Z

405

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

406

Interaction of Turing and flow-induced chemical instabilities  

SciTech Connect (OSTI)

The interaction between the Turing instability and the instability induced by a differential flow is studied in the Selkov model. Both instabilities give rise to the formation of spatial patterns, and for a range of parameter values, these patterns can compete. The effect of anisotropic diffusion on the pattern formation process is investigated. Stripes with different orientations that travel with time and the suppression of patterns due to a competition of both instabilities are observed.

Dawson, S.P. (Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Lawniczak, A. (Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada) Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Kapral, R. (Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A1 (Canada))

1994-04-01T23:59:59.000Z

407

Gas permeability of carbon aerogels  

SciTech Connect (OSTI)

Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1993-12-01T23:59:59.000Z

408

Autothermal production of synthesis gas  

SciTech Connect (OSTI)

An autothermal reactor is described for the production of a synthesis gas in which both primary reforming and secondary reforming are achieved at a high level of efficiency. The method comprises a heat exchange chamber having a first portion and a second portion, a first inlet connected to the heat exchange chamber for the introduction of steam and feed gas to the heat exchange chamber, reaction tubes mounted within the first portion of the heat exchanger chamber at a location spaced longitudinally from the first inlet in communication with the first inlet and in non-concentric relationship therewith so as to provide a flow path for the steam and feed gas from the first inlet through the plurality of reaction tubes.

Lewis, J.L.

1987-05-19T23:59:59.000Z

409

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

410

Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust  

DOE Patents [OSTI]

A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

2012-05-15T23:59:59.000Z

411

Spark gap switch system with condensable dielectric gas  

DOE Patents [OSTI]

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

412

Process and system for removing impurities from a gas  

DOE Patents [OSTI]

A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

2014-04-15T23:59:59.000Z

413

Geodesic Patterns Helmut Pottmann  

E-Print Network [OSTI]

Geodesic Patterns Helmut Pottmann KAUST, TU Wien Qixing Huang Stanford University Bailin Deng TU University Johannes Wallner TU Graz, TU Wien Figure 1: Geodesic patterns on freeform surfaces. Left into parts which can be covered by geodesic strips of roughly constant width. Right: A timber construction

Pottmann, Helmut

414

Landscape pattern Introduction  

E-Print Network [OSTI]

Landscape pattern metrics Introduction Landscape ecology, if not ecology in general, is largely harvest) can disrupt the structural integrity of landscapes and is expected to impede, or in some cases in landscape patterns may therefore compromise its functional integrity by inter- fering with critical

McGarigal, Kevin

415

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

416

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D.; Bourcier, William L.

2014-08-19T23:59:59.000Z

417

Controlled pilot oxidizer for a gas turbine combustor  

DOE Patents [OSTI]

A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

Laster, Walter R. (Oviedo, FL); Bandaru, Ramarao V. (Greer, SC)

2010-07-13T23:59:59.000Z

418

Flow cytometer  

DOE Patents [OSTI]

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

419

Dynamics of evaporative colloidal patterning  

E-Print Network [OSTI]

Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of the band and film deposition, and the transition in between when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

C. Nadir Kaplan; Ning Wu; Shreyas Mandre; Joanna Aizenberg; L. Mahadevan

2014-12-04T23:59:59.000Z

420

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

422

The regional geothermal heat flow regime of the north-central Gulf of Mexico continental slope.  

E-Print Network [OSTI]

??Eighty-eight oil and gas wells located in the Texas-Louisiana continental slope were analyzed to obtain heat flow and geothermal gradient values. Present-day geothermal heat flow (more)

Jones, Michael S

2003-01-01T23:59:59.000Z

423

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating flow include minimizing combustion air, preheating combustion air, minimizing ventilation air from minimizing combustion air accounts for improvement in efficiency from increased combustion

Kissock, Kelly

424

LARGE EDDY SIMULATION AND MEASUREMENTS IN A TURBULENT ROTOR-STATOR FLOW  

E-Print Network [OSTI]

). The flow has significant industrial applications, such as internal gas- turbine flows and computer hard model is based on Spectral Vanishing Viscosity (SVV). The key particularity of this model

Paris-Sud XI, Université de

425

Consistent modeling of hypersonic nonequilibrium flows using direct simulation Monte Carlo.  

E-Print Network [OSTI]

??Hypersonic flows involve strong thermal and chemical nonequilibrium due to steep gradients in gas properties in the shock layer, wake, and next to vehicle surfaces. (more)

Zhang, Chonglin

2013-01-01T23:59:59.000Z

426

Experimental Investigation of Jet Mixing of a Co-Flow Jet Airfoil  

E-Print Network [OSTI]

engine turbomachinery, wind turbine, propeller, pumps, etc. Airfoil flow control principles can, 5, 6, 7]. Airfoils are fundamental elements of many fluid systems including airplane, gas turbine

Zha, Gecheng

427

E-Print Network 3.0 - astrophysical accretion flows Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: astrophysical accretion flows Page: << < 1 2 3 4 5 > >> 1 Astronomy 202: Astrophysical Gas Dynamics LL Fluid Mechanics by Landau & Lifshitz Summary:...

428

Production of Onshore Lower-48 Oil and Gas-model methodology and data description. [PROLOG  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower-48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. A linear program is used to select drilling activities for conventional oil and gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using an exogenously specified price path, net present values are computed for fixed amounts of drilling activity for oil and gas, and for exploration and development in each of six onshore regions. Forecasts of drilling for enhanced gas recovery (EGR) are exogenously determined, and this drilling is included when considering the constraints on drilling rigs. The report is organized as follows. Chapter 2 is a general overview of the model, describing the major characteristics of the methodology and the logical interaction of the various modules. Chapter 3 specifies the structure of the linear program including the equations for the objective function and the constraints. The details of the methodology used to model exploratory, developmental, and deep gas drilling are presented in Chapters 4-6, respectively. Chapter 7 presents a discussion of the economic evaluation which takes place in each discounted cash flow calculation performed by the model. Cost equations are presented, and various user-specified options as to how to incorporate these costs are discussed. Methodological details and equations used to model finding rates and revisions are given in Chapter 8. Possible areas of future enhancements to the PROLOG model are presented in Chapter 9.

Carlson, M.; Kurator, W.; Mariner-Volpe, B.; O'Neill, R.; Trapmann, W.

1982-06-01T23:59:59.000Z

429

Hydrodynamics and flue gas desulfurization characteristics of a three-phase, gas-continuous, cocurrent semifluidized bed  

SciTech Connect (OSTI)

The hydrodynamic characteristics of a gas-liquid-solid, gas-continuous, cocurrent semifluidized bed were defined. Five different particle types were used to characterize the hydrodynamics. Air and water were used as the gas and liquid streams, respectively. Six flow regimes were observed in the constrained gas-continuous, three-phase bed. These regimes are described in terms of the solids properties and the gas and liquid superficial velocities. The heights of the packed and fluidized beds and the solids holdup in the fluidized section of the semifluidized bed are discussed in terms of the superficial gas and liquid velocities, the solids density and diameter and the initial quantity of particles in the bed. The desulfurization characteristics of the gas-liquid-solid semifluidized bed were determined using a calcium carbonate slurry. Gas side mass transfer coefficients and the ratio of liquid side to gas side mass transfer coefficients were measured and correlated in terms of gas flow rate, liquid flow rate, bed height, calcium carbonate concentration and sulfur dioxide pressure for both the fluidized and packed sections of the semifluidized bed. The hydrodynamic and mass transfer characteristics were used to construct a mathematical model that predicted overall removal of sulfur dioxide from the simulated flue gas.

Beaver, L.E.

1983-01-01T23:59:59.000Z

430

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

431

Interphase transport in horizontal stratified cocurrent flow  

SciTech Connect (OSTI)

The problem of interfacial transport in cocurrent, horizontal stratified gas-liquid systems is considered. Local condensation heat transfer coefficients and interface shear stress were obtained from mass and force balances. Based on cocurrent stratified air-water flow data, the noncondensing interface shear stress was found to be a function of the relative velocity between the phases and the liquid fraction. Incorporated into Linehan's relation for condensing flow shear stress, the correlation was found to estimate the shear velocity for the condensation data considered. Local condensation heat transfer coefficients and gas absorption mass transfer coefficients were found to be directly proportional to the shear velocity.

Jensen, R.J.; Yuen, M.C.

1982-05-01T23:59:59.000Z

432

Geomechanical Development of Fractured Reservoirs During Gas Production  

E-Print Network [OSTI]

is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir...

Huang, Jian

2013-04-05T23:59:59.000Z

433

Parametric Study of Gas Turbine Film-Cooling  

E-Print Network [OSTI]

In this study, the film-cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of three parts: 1) turbine blade span film...

Liu, Kevin

2012-10-19T23:59:59.000Z

434

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect (OSTI)

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

435

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect (OSTI)

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

436

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

437

Development of a Compressed Hydrogen Gas  

E-Print Network [OSTI]

Kpsi "Saran Wrap" Tank Energy Density for Hydrogen Storage Systems " Advance the development of a cost · Satisfying hydrogen gas permeation requirements · Increasing energy density efficiency · Developing cost · Design » T700 carbon fiber overwrap with high interspersed winding pattern with design FOS of 2.45 » NGV

438

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

439

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

440

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Analysis of gas deliverability curves for predicting future well performance  

E-Print Network [OSTI]

is how to use backpressure test data to determine reservoir characteristics and predict fu tu re reservoir p er f orma nc e. The commonly used deliverability equation does not adequately consider the effects of real gas behavior or non-Darcy flow.... These factors cause the gas deliverability curves to deviate from the expected straight line and to shi ft position with time. To investigate these problems, a pseudosteady-state flow model was used to simulate backpressure tests for known reservoirs...

Corbett, Thomas Gary

1985-01-01T23:59:59.000Z

442

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect (OSTI)

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

443

Gas Test Loop Booster Fuel Hydraulic Testing  

SciTech Connect (OSTI)

The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

Gas Test Loop Hydraulic Testing Staff

2006-09-01T23:59:59.000Z

444

A slotted orifice plate used as a flow measurement device  

E-Print Network [OSTI]

The standard orifice plate is used extensively by the natural gas industry for the metering of fuel. Because of the costs associated with errors in flow measurement inherent with the use of a standard orifice plate, any improvements upon...

Macek, Michael Lee

2012-06-07T23:59:59.000Z

445

Using NMR to Validate First-Principles Granular Flow Equations  

E-Print Network [OSTI]

Nuclear magnetic resonance (NMR) experiments are described for two granular-flow systems, the vibrofluidized bed and the gas-fluidized bed. Using pulsed field gradient, magnetic resonance imaging, and hyperpolarized gas NMR, detailed information is obtained for the density and motions of both grains and interstitial gas. For the vibrofluidized bed, the granular temperature profile is measured and compared with a first-principles formulation of granular hydrodynamics. For the gas-fluidized bed, dynamic correlations in the grain density are used to measure the bubble velocity and hyperpolarized xenon gas NMR is used to measure the bubble-emulsion exchange rate. A goal of these measurements is to verify in earth gravity first-principles theories of granular flows, which then can be used to make concrete predictions for granular flows in reduced gravity.

D. Candela; C. Huan; K. Facto; R. Wang; R. W. Mair; R. L. Walsworth

2005-10-23T23:59:59.000Z

446

Sandia National Laboratories: investigate flow patterns before and after  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewables Sandia,internalintrgrateMHK

447

Sandia National Laboratories: Magnetically Stimulated Flow Patterns Offer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos NationalMHKMeeting:Strategy for

448

CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23  

SciTech Connect (OSTI)

We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find that the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.

Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

2010-07-01T23:59:59.000Z

449

Identification of MHF Fracture Planes and Flow Paths- a Correlation...  

Open Energy Info (EERE)

Identification of MHF Fracture Planes and Flow Paths- a Correlation of Well Log Data with Patterns in Locations of Induced Seismicity Jump to: navigation, search OpenEI Reference...

450

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

451

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

SciTech Connect (OSTI)

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

452

Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310  

SciTech Connect (OSTI)

Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2013-07-01T23:59:59.000Z

453

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents [OSTI]

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

454

Dynamics of precipitation pattern formation at geothermal hot springs  

E-Print Network [OSTI]

We formulate and model the dynamics of spatial patterns arising during the precipitation of calcium carbonate from a supersaturated shallow water flow. The model describes the formation of travertine deposits at geothermal hot springs and rimstone dams of calcite in caves. We find explicit solutions for travertine domes at low flow rates, identify the linear instabilities which generate dam and pond formation on sloped substrates, and present simulations of statistical landscape evolution.

Nigel Goldenfeld; Pak Yuen Chan; John Veysey

2006-01-13T23:59:59.000Z

455

Multi-Echelon Supply Chain Design in Natural Gas Industry  

E-Print Network [OSTI]

Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

456

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

Makiel, J.M.

1987-02-03T23:59:59.000Z

457

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

Makiel, Joseph M. (Monroeville, PA)

1987-01-01T23:59:59.000Z

458

Imaging Gas Leaks using Schlieren Optics by Gary S. Settles  

E-Print Network [OSTI]

-intrusive, and capable of remote observation of leaks as small as milliliters/minute. For example, natural gas leaking. The schlieren technique is highly sensitive, non- intrusive, optical, and remote. However, since it needs only with a special schlieren arrangement that visualizes gas flows in color (Settles, International Journal of Heat

Settles, Gary S.

459

ESP/rotary gas separator duo found to optimize production  

SciTech Connect (OSTI)

A field test conducted on a low-volume waterflood well in West Texas equipped with an electric submersible pump (ESP) proved to rotary gas separator (RGS) to be more efficient than conventional reverse flow gas separators, achieving gas separation efficiencies close to 90%. Further, the RGS increased the run time of the ESP, thus lowering the wellbore fluid level and increasing oil production. The one drawback found is that RGSs can be susceptible to fluid erosion.

Jacobs, G.H.

1986-11-01T23:59:59.000Z

460

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Gas Utilities (New York)  

Broader source: Energy.gov [DOE]

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

462

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

463

Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

464

Measurement and analysis of gas turbine blade endwall heat transfer  

E-Print Network [OSTI]

the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

Lee, Joon Ho

2001-01-01T23:59:59.000Z

465

Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates  

E-Print Network [OSTI]

be homogeneous within the condensate we prove by means of an asymptotic analysis in the strongly interactingInhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates M. Correggia , N. Rougerieb, France. May 10, 2012 Abstract We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP

Paris-Sud XI, Université de

466

Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates  

E-Print Network [OSTI]

should be homogeneous within the condensate we prove by means of an asymptotic analysis in the stronglyInhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates M. Correggia , N. Rougerieb, France. September 19, 2012 Abstract We consider a 2D rotating Bose gas described by the Gross

Paris-Sud XI, Université de

467

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network [OSTI]

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

468

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network [OSTI]

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

469

Multi-cylinder hot gas engine  

DOE Patents [OSTI]

A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

Corey, John A. (North Troy, NY)

1985-01-01T23:59:59.000Z

470

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network [OSTI]

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

471

AIAA 20023642 Effect of Rotation on Flow in a  

E-Print Network [OSTI]

AIAA 2002­3642 Effect of Rotation on Flow in a Ribbed Rotating Turbine Blade Cooling Duct Model of aircraft gas turbine engines, thereby in- creasing the resulting thrust. These improvements are extremely to these advancements is the structural integrity of the gas turbine engines themselves. Cur- rently available materials

Jacob, Jamey

472

Gas Production Tax (Texas)  

Broader source: Energy.gov [DOE]

A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

473

Natural gas dehydration apparatus  

DOE Patents [OSTI]

A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

2006-11-07T23:59:59.000Z

474

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

475

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

476

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

477

Fixture for forming evaporative pattern (EPC) process patterns  

DOE Patents [OSTI]

A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

Turner, Paul C. (Albany, OR); Jordan, Ronald R. (Albany, OR); Hansen, Jeffrey S. (Corvallis, OR)

1993-01-01T23:59:59.000Z

478

Entrance effects in a developing slug flow  

E-Print Network [OSTI]

The kinetics of a Taylor bubble, as it rises behind a series of other bubbles in a gas-liquid slug flow, have been determined. The rise velocity of a bubble is expressed as a function of separation distance from the bubble ...

Moissis, Raphael

1960-01-01T23:59:59.000Z

479

Proper Orthogonal Decomposition for Flow Calculations  

E-Print Network [OSTI]

with the energy and the species equa­ tions. In addition, we also examined the feasibility and efficiency of POD that POD can be used to efficiently approximate solutions to the compressible viscous flows coupled a chemical reaction in the gas phase above the surface of the film to deposit desired materials onto

480

Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept  

E-Print Network [OSTI]

307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

Ray, Asok

Note: This page contains sample records for the topic "gas flow patterns" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Pattern Alteration: Shoulder Slope  

E-Print Network [OSTI]

Measurement Chart, for basic instructions. For additional information, refer to E-380, Shoulder Length. Square shoulders are higher than average (Fig. 1). They usually cause a garment to wrinkle and pull from the end of the shoulder toward the center front... the neck for the length of your own shoulder measurement (Fig. 7). Refer to line 8, shoulder length, on your Personal Measurement Chart. 2. Cut the pattern apart along this line, separating the armhole section from the rest of the pattern. To raise...

2006-05-05T23:59:59.000Z

482

Ultrasonic flowmeter offers new approach to large-volume gas measurement  

SciTech Connect (OSTI)

Objective was to provide a measurement tool for performing transmission-pipeline efficiency studies and aid in gas control and intercompany gas transfer. A single path, contrapropagating ultrasonic flowmeter can be calibrated to accurately measure gas flow rates in large-diameter pipelines over a wide range of flows. The agreement between a multiple-run orifice measurement station and the ultrasonic flowmeter is within + 0.5%. Uncertainty in the meter calibration is a function of the ability to predict the flow profile of the gas stream.

Munk, W.D.

1982-09-06T23:59:59.000Z

483

Gas mixing in the wall layer of a CFB boiler  

SciTech Connect (OSTI)

Tracer-gas measurements were carried out in the transport zone of a 12 MW CFB boiler with special emphasis on the wall-layer flow. Helium (He) was used as tracer gas and a mass spectrometer was used to determine the He-concentrations. The primary gas velocity, U{sub 0}, was 1.2, 2.6 and 4.3 m/s (no secondary air) and the bed material was silica sand with an average particle diameter of 0.32 mm. Tracer gas was injected at different distances from one of the furnace walls and sampled above and below the injection level. In the wall layer, tracer-gas concentrations were detected above (C{sub above}) as well as below (C{sub below}) the injection height for all operating conditions, i.e., the gas flows both up and down from the injection point. The data show that the net flow of tracer gas in the wall layer depends on the operating conditions, and the concentration ratio of the down- and up-flowing gas, {psi} = C{sub below}/C{sub above}, decreases with increased gas velocity ({psi} > 1 for U{sub 0} = 1.2 m/s, {psi} {approx} 1 for U{sub 0} = 2.6 m/s and {psi} < 1 for U{sub 0} = 4.3 m/s). There exists a gas exchange between the core region and the wall-layer. A plug flow model applied to the core region gives a radial dispersion coefficient, D{sub r}, in the range of 0.015--0.025 m{sup 2}/s which is higher than the D{sub r} values reported in literature which are below 0.01 m{sup 2}/x. However, the latter values were obtained in tall and narrow risers.

Sterneus, J.; Johnsson, F. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

484

Method of cooling gas only nozzle fuel tip  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

485

Theoretical and experimental studies of churn flow in vertical tubes. Final technical report  

SciTech Connect (OSTI)

The pattern known as churn flow is a highly unsteady pattern with stochastic features and is extremely complex. However, calculations show that for many geothermal wells the condition of churn flow consists over much of the length of the two phase zone. Furthermore, it frequently exists at the surface so that design of separation equipment and surface piping depends on the accurate modelling of this type of flow. It has been the long term purpose of this project to develop physically based models for churn flow which can be used as a basis for predicting holdup, frictional loss and heat transfer rates for this flow pattern in geothermal systems. To achieve this end, it was necessary to develop new methods for measuring the time dependent characteristics of the flow and thus be able to uncover the basic physics of the flow. Models can then be developed based on this understanding which characterizes the flow and equations for holdup, friction and heat transfer evolved.

Not Available

1986-01-27T23:59:59.000Z

486

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas