National Library of Energy BETA

Sample records for gas flare capture

  1. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  2. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  3. DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii

  4. DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    45 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii

  5. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 ArcelorMittal USA, Inc.'s Indiana Harbor steel mill in East Chicago, Indiana, installed an energy recovery boiler system that produces steam from previously wasted blast furnace gas that was flared into the atmosphere during iron making operations. The steam drives existing turbo-generators at the facility to generate 333,000 megawatt hours

  6. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  7. Other States Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590

  8. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  9. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  10. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 27 0 0 297 258 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 NA NA NA 2010's NA NA 0 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  13. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  14. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  15. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 347 367 277 26 47 32 101 1980's 143 106 162 108 182 124 122 125 123 95 1990's 22 56 23 21 8 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  16. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 355 284 837 607 1980's 677 428 435 198 34 13 54 30 166 450 1990's 286 482 245 205 220 28 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  18. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  19. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  20. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 27 0 0 297 258 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 NA NA NA 2010's NA NA 0 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 355 284 837 607 1980's 677 428 435 198 34 13 54 30 166 450 1990's 286 482 245 205 220 28 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126 102 93 1970's 122 3,997 1,806 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  4. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - ...

  6. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  7. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  8. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  9. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  10. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  11. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  12. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  13. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  14. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  15. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  16. CO? Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2011-09-30

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO?, the development of retrofit, post-combustion CO? capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO? from plant flue gas with 95% captured CO? purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO?-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO?, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO? over N? and CO? permeance greater than 300 gas permeation units (GPU) targeted; - Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO? permeance than current commercial polycarbonate membranes; - Development and fabrication of membrane hollow fibers and modules from candidate polymers; - Development of a CO? capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and - Techno-economic evaluation of the "best" integrated CO? capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO? capture with 95% captured CO? purity.

  17. Carbon dioxide capture-related gas adsorption and separation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metal-organic frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu, Hae-Kwon Jeong, Perla B. Balbuena, Hong-Cai Zhou, Coord. Chem. Rev., 255, 1791-1823 (2011) DOI: 10.1016/j.ccr.2011.02.012 Abstract: Reducing anthropogenic CO2 emission and lowering the concentration of

  18. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774

  19. Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas

  20. Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  2. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOE Patents [OSTI]

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  3. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  4. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  5. Hybrid absorption-adsorption carbon capture | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Hybrid absorption-adsorption carbon capture

  6. In Silico Screening of Carbon Capture Materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome In Silico Screening of Carbon Capture Materials

  7. Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual

    Office of Scientific and Technical Information (OSTI)

    Catalytic CH3I Decomposition and I Confinement (Journal Article) | SciTech Connect Journal Article: Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual Catalytic CH3I Decomposition and I Confinement Citation Details In-Document Search Title: Silver-Mordenite for Radiologic Gas Capture from Complex Streams: Dual Catalytic CH3I Decomposition and I Confinement The effective capture and storage of radiological iodine (129I) remains a strong concern for safe nuclear waste

  8. Silver-Mordenite for Radiologic Gas Capture from Complex Streams...

    Office of Scientific and Technical Information (OSTI)

    In nuclear fuel reprocessing scenarios, complex gas streams will be present and the need ... infrared spectroscopy, thermogravimetric analysis with mass spectrometry, Micro-X-ray ...

  9. New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Trucks | Department of Energy Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - 12:00am Addthis WASHINGTON D.C. --- U.S. Energy Secretary Steven Chu today announced more than $300 million worth of investments that will boost a range of clean energy technologies - including carbon capture from coal, solar power, and high efficiency cars and trucks. The move reflects

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  11. In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas

    SciTech Connect (OSTI)

    2008-04-01

    A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

  12. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  13. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and low-cost CO{sub 2} compression equipment, an incremental LCOE of $33/MWh at 90% capture can be achieved (40% lower than the advanced MEA case). Even with lower cost compression, it appears unlikely that a membrane process using high feed compression (>5 bar) can be competitive with amine absorption, due to the capital cost and energy consumption of this equipment. Similarly, low vacuum pressure (<0.2 bar) cannot be used due to poor efficiency and high cost of this equipment. High membrane permeance is important to reduce the capital cost and footprint of the membrane unit. CO{sub 2}/N{sub 2} selectivity is less important because it is too costly to generate a pressure ratio where high selectivity can be useful. A potential cost ?sweet spot? exists for use of membrane-based technology, if 50-70% CO{sub 2} capture is acceptable. There is a minimum in the cost of CO{sub 2} avoided/ton that membranes can deliver at 60% CO{sub 2} capture, which is 20% lower than the cost at 90% capture. Membranes operating with no feed compression are best suited for lower capture rates. Currently, it appears that the biggest hurdle to use of membranes for post-combustion CO{sub 2} capture is compression equipment cost. An alternative approach is to use sweep membranes in parallel with another CO{sub 2} capture technology that does not require feed compression or vacuum equipment. Hybrid designs that utilize sweep membranes for selective CO{sub 2} recycle show potential to significantly reduce the minimum energy of CO{sub 2} separation.

  14. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect (OSTI)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO? separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H? selective glassy polymer membranes are an attractive option for energy efficient H?/CO? separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO? separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H?/CO? separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H?/CO? separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  15. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  16. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  17. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOE Patents [OSTI]

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  18. Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    2008-01-01

    A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.

  19. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Framework mmen-Mg2(dobpdc) | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A. Mason, Brian M. Wiers, Chang Seop Hong, and Jeffrey R. Long, J. Am. Chem. Soc., 2012, 134 (16), pp 7056-7065 DOI: 10.1021/ja300034j Abstract Image Abstract: Two new metal-organic frameworks,

  20. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  1. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    Novel CO 2 Adsorbents for Capture of CO 2 from Flue Gas Extended Abstract # 2007-A-504-AWMA Daniel J. Fauth 1 , Thomas P. Filburn 2 , McMahan L. Gray 1 , Sheila W. Hedges 1 , James S. Hoffman 1 , and Henry W. Pennline 1 1 United States Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236-0940 2 Department of Mechanical Engineering, 200 Bloomfield Avenue, University of Hartford, West Hartford, Connecticut 06117-1599

  2. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  3. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    DOE Patents [OSTI]

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  4. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energys National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of staining upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  5. Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas

    SciTech Connect (OSTI)

    Lee, J.B.; Ryu, C.K.; Baek, J.I.; Lee, J.H.; Eom, T.H.; Kim, S.H.

    2008-07-15

    Dry regenerable sorbent technology is one of the emerging technologies as a cost-effective and energy-efficient technology for CO{sub 2} capture from flue gas. Six sodium-based dry regenerable sorbents were prepared by spray-drying techniques. Their physical properties and reactivities were tested to evaluate their applicability to a fluidized-bed or fast transport-bed CO{sub 2} capture process. Each sorbents contained 20-50 wt% of Na{sub 2}CO{sub 3} or NaHCO{sub 3}. All sorbents except for Sorb NX30 were insufficient with either attrition resistance or reactivity, or both properties. Sorb NX30 sorbent satisfied most of the physical requirements for a commercial fluidized-bed reactor process along with good chemical reactivity. Sorb NX30 sorbent had a spherical shape, an average size of 89 {mu}m, a size distribution of 38-250 {mu}m, and a bulk density of approximately 0.87 g/mL. The attrition index (AI) of Sorb NX30 reached below 5% compared to about 20% for commercial fluidized catalytic cracking (FCC) catalysts. CO{sub 2} sorption capacity of Sorb NX30 was approximately 10 wt% (>80% sorbent utilization) in the simulated flue gas condition compared with 6 of 30 wt% MEA solution (33% sorbent utilization). All sorbents showed almost-complete regeneration at temperatures less than 120{sup o}C.

  6. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  7. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. Commercially available first-generation CO2 capture technologies are currently being used in various industrial applications. However, in their current state of development, these technologies are not ready for implementation on coal-based power plants because they have not been demonstrated at appropriate scale, require approximately one-third of the plant's steam and power to operate,

  8. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect (OSTI)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  9. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH3I decomposition and I confinement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nenoff, Tina M.; Rodriguez, Mark A.; Soelberg, Nick R.; Chapman, Karena W.

    2014-05-09

    The selective capture of radiological iodine (129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent.more » Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.« less

  10. Low-Energy CO2 Capture through Cooperative Adsorption | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Low-Energy CO2 Capture through Cooperative Adsorption

  11. CO2 Capture from Air Using Porous Polymer Networks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Capture from Air Using Porous Polymer Networks

  12. Enhanced CO2 Capture in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Enhanced CO2 Capture in Metal-Organic Frameworks

  13. CO[sub 2] capture from the flue gas of conventional fossil-fuel-fired power plants

    SciTech Connect (OSTI)

    Wolsky, A.M.; Daniels, E.J.; Jody, B.J. )

    1994-08-01

    Research has been conducted at Argonne National Laboratory to identify and evaluate the advantages and deficiencies of several technologies, both commercially available and alternative technologies, for capturing CO[sub 2] from the flue gas of utility boilers that use air as an oxidant (the current universal practice). The technologies include chemical solvent, cryogenic, membrane, physical absorption, and physical adsorption methods. In general, technologies for capturing CO[sub 2] are expensive and energy-intensive. Therefore, they result in a substantial overall increase in the cost of power generation. Research to improve the performance and economics of these technologies is discussed. 20 refs., 6 figs., 1 tab.

  14. Pre-Designed Single-Molecule Traps for CO2 Capture | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Pre-Designed Single-Molecule Traps for CO2 Capture

  15. Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2009-08-15

    When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

  16. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  17. Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

    2010-01-01

    Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

  18. Carbon Capture Course | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Carbon Capture Course Previous Next List textbook Since 2011, Berend Smit and Jeffrey Reimer have taught a course on carbon capture and sequestration (CCS) in collaboration with other researchers and lecturers at UC Berkeley and Lawrence Berkeley National Lab., taking advantage of the large CSS research programs at both these institutions. The joint graduate/ undergraduate course introduces students to sustainable energy conisderations in general and to

  19. CO2-Binding Organic Liquids, an Integrated Acid Gas Capture System

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2011-04-01

    Amine systems are effective for CO2 capture, but they are still inefficient because the solvent regeneration energy is largely defined by the amount of water in the process. Most amines form heat-stable salts with SO2 and COS resulting in parasitic solvent loss and degradation. Stripping the CO2-rich solvent is energy intensive it requires temperatures above 100 ?C due to the high specific heat and heat of vaporization of water. CO2-capture processes could be much more energy efficient in a water free amine process. In addition, if the capture-material is chemically compatible with other acid gases, less solvent would be lost to heat-stable salts and the process economics would be further improved. One such system that can address these concerns is Binding Organic Liquids (BOLs), a class of switchable ionic liquids.

  20. In silico screening of carbon-capture materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome In silico screening of carbon-capture materials Previous Next List L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, Nat Mater 11 (7), 633 (2012) DOI: 10.1038/nmat3336 Abstract: One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from

  1. Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g{sub P}

    SciTech Connect (OSTI)

    Andreev, V. A.; Ganzha, V. A.; Kravtsov, P. A.; Krivshich, A. G.; Maev, E. M.; Maev, O. E.; Petrov, G. E.; Schapkin, G. N.; Semenchuk, G. G.; Soroka, M. A.; Vasilyev, A. A.; Vorobyov, A. A.; Vznuzdaev, M. E.; Banks, T. I.; Case, T. A.; Crowe, K. M.; Freedman, S. J.; Gray, F. E.; Lauss, B.; Chitwood, D. B.

    2007-07-20

    The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S}=725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2}=-0.88m{sub {mu}}{sup 2})=7.3{+-}1.1, is extracted.

  2. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOE Patents [OSTI]

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  3. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun Bae , and Jeffrey R. Long, Chem. Rev., 2012, 112 (2), pp 724-781 DOI: 10.1021/cr2003272 Journal Cover This article is part of the 2012 Metal-Organic Frameworks special issue

  4. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV); Stevens, Robert W. (Morgantown, WV)

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  5. Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  6. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO₂ capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.

  7. Natural Gas Vented and Flared

    Gasoline and Diesel Fuel Update (EIA)

    6-2015 Colorado NA NA NA NA NA NA 1996-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Kansas NA NA NA NA NA NA 1996-2015 Louisiana NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 Oklahoma NA NA NA NA NA NA 1996-2015 Pennsylvania NA NA NA NA NA NA 1991-2015 Texas NA NA NA NA NA NA 1991-2015 Utah NA NA NA NA NA NA 1994-2015 West Virginia NA NA NA NA NA

  8. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 ...

  9. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Alaska State Offshore 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 California Onshore 2,501 2,790 2,424 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 1,411 1,242

  10. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Alaska State Offshore 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 California Onshore 2,501 2,790 2,424 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 1,411 1,242

  11. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700C) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

  12. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  13. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect (OSTI)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  14. Cryogenic Carbon Capture

    SciTech Connect (OSTI)

    2010-07-15

    IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

  15. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH3I decomposition and I confinement

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Rodriguez, Mark A.; Soelberg, Nick R.; Chapman, Karena W.

    2014-05-09

    The selective capture of radiological iodine (129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent. Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.

  16. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect (OSTI)

    Swenson, C. A.; Roming, P. W. A., E-mail: cswenson@astro.psu.edu [Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ?1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ?50% of the detected flares follow the 'classical' definition of ?t/t ? 0.5, with many of the largest flares exceeding this value.

  17. PRECURSOR FLARES IN OJ 287

    SciTech Connect (OSTI)

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L.; Valtonen, M.; Nilsson, K.; Zola, S.; Koziel-Wierzbowska, D.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Provencal, J.; Santangelo, M. M. M.; Salo, H.; Chandra, S.; Ganesh, S.; Baliyan, K. S.; and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  18. Enclosed ground-flare incinerator

    DOE Patents [OSTI]

    Wiseman, Thomas R. (Calgary, CA)

    2000-01-01

    An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

  19. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Research Team Members Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory, in collaboration with researchers from regional

  20. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  1. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated technology development takes materials from molecular design through fabrication to commercialization Project Overview The NETL capture program seeks to create ...

  2. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  3. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  4. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe supercritical PC plant with 90% CO2 capture. This plant has the same boiler firing rate and superheated high pressure steam generation as the DOE/NETL report’s Case 12 PC plant. However, due to the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant may not be exactly at 550 MWe.

  5. EFRC Carbon Capture and Sequestration Activities at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

  6. Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents

    SciTech Connect (OSTI)

    Baltrus, John P.; Granite, Evan J.; Rupp, Erik C.; Stanko, Dennis C.; Howard, Bret; Pennline, Henry W.

    2011-05-01

    The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur, and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide, but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur, resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium.

  7. Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Rupp, E.C.; Stanko, D.C.; Howard, B.; Pennline, H.W.

    2011-01-01

    The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur. and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide. but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur. resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium.

  8. How Carbon Capture Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture Works How Energy Works 34 likes How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost three-fourths of human-caused emissions in the past two decades. Carbon capture, utilization and storage (CCUS) -- also referred to as carbon capture, utilization and sequestration -- is a process that captures carbon dioxide emissions from sources like coal-fired power plants and

  9. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    SciTech Connect (OSTI)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present

  10. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...

  11. Helium (3) Rich Solar Flares

    DOE R&D Accomplishments [OSTI]

    Colgate, S. A.; Audouze, J.; Fowler, W. A.

    1977-05-03

    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  12. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  13. Staff Research Physicist (Experimental Research, FLARE) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Research, FLARE) Department: Research Staff: RM 02 Requisition Number: 1500503 The Princeton Plasma Physics Laboratory seeks to fill a staff research physicist...

  14. Biogas, once flared, fuels cogen plant serving two hosts

    SciTech Connect (OSTI)

    Johnson, J.K.; McRae, C.L.

    1995-04-01

    This article reports that digester gas from a wastewater treatment plant meets up to 40% of the fuel needs of this cogenerator. Steam is exported for heating the treatment plant`s digesters and for ice production by a second steam host. The Carson Ice-Gen Project promises to enhance the reliability of electric service to the Sacramento Regional Waste water Treatment Plant (SRWTP), to prevent effluent discharges to nearby water ways during power disruptions, and to reduce air emissions associated with flaring of digester gas. The project comprises a 95-MW combined-cycle cogeneration powerplant and a 300-ton/day ice-production plant. The powerplant features twin LM 6000 gas turbines (GTs). One, used as a 53-MW base-load unit, is paired with a heat-recovery steam generator (HRSG) feeding an extraction/condensing steam turbine/generator (STG). The other GT is used as a 42-MW, simple-cycle peaking unit. Primary fuel is natural gas, which is supplemented by digester gas that is currently being flared at the wastewater treatment plant. Export steam extracted from the STG is used to heat the digesters and to drive ammonia compressors at the ice plant. Steam is also used on-site to chill water in absorption chillers that cool the GT inlet air for power augmentation.

  15. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  16. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  18. Pi-CO₂ aqueous post-combustion CO₂ capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO₂) capture system (Pi-CO₂) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO₂ has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO₂ from local industrial sources.

  19. Pi-CO? aqueous post-combustion CO? capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    SciTech Connect (OSTI)

    Blount, G.; Gorensek, M.; Hamm, L.; ONeil, K.; Kervvan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO?) capture system (Pi-CO?) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO? has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO? from local industrial sources.

  20. ON THE DURATION OF BLAZAR SYNCHROTRON FLARES

    SciTech Connect (OSTI)

    Eichmann, B.; Schlickeiser, R.; Rhode, W.

    2012-01-10

    A semi-analytical model is presented that describes the temporal development of a blazar synchrotron flare for the case of a broadband synchrotron power spectrum. We examine three different injection scenarios and present its influence on the synchrotron flare. An accurate approximation of the half-life of a synchrotron flare is analytically computed and we give some illustrative examples of the time evolution of the emergent synchrotron intensity by using a numerical integration method. The synchrotron flare starts at all photon energies right after the injection of ultrarelativistic electrons into the spherical emission volume of radius R and its duration exceeds the light travel time 2R/c in the low energy regime. Furthermore, the flare duration extends by the period of injection of relativistic electrons into the emission knot. However, the energetic and spatial distribution of these injected electrons has no significant influence on the flare duration. We obtain a temporal behavior that agrees most favorably with the observations of PKS 2155-304 on 2006 July 29-30 and it differs considerably from the results that were recently achieved by using a monochromatic approximation of the synchrotron power.

  1. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect (OSTI)

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  2. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  3. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Simulation Initiative Fact sheet More Information Research Team Members Key Contacts Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry, and academic institutions that is developing, demonstrating and deploying state-of-the-art computational modeling and simulation tools to accelerate the development of carbon capture technologies from discovery to development, demonstration, and ultimately the

  4. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    States' energy security through reliable, clean, and affordable energy produced from coal. ... of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. ...

  5. World's Largest Post-Combustion Carbon Capture Project Begins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    After compressing and transporting the captured CO2 via pipeline, the greenhouse gas will ... Today, the company is actively considering additional projects at other NRG coal-fired ...

  6. Evaluating different classes of porous materials for carbon capture |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Evaluating different classes of porous materials for carbon capture

  7. Subsurface capture of carbon dioxide

    DOE Patents [OSTI]

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  8. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  9. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  10. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  11. Compensation of flare-induced CD changes EUVL

    DOE Patents [OSTI]

    Bjorkholm, John E. (Pleasanton, CA); Stearns, Daniel G. (Los Altos, CA); Gullikson, Eric M. (Oakland, CA); Tichenor, Daniel A. (Castro Valley, CA); Hector, Scott D. (Oakland, CA)

    2004-11-09

    A method for compensating for flare-induced critical dimensions (CD) changes in photolithography. Changes in the flare level results in undesirable CD changes. The method when used in extreme ultraviolet (EUV) lithography essentially eliminates the unwanted CD changes. The method is based on the recognition that the intrinsic level of flare for an EUV camera (the flare level for an isolated sub-resolution opaque dot in a bright field mask) is essentially constant over the image field. The method involves calculating the flare and its variation over the area of a patterned mask that will be imaged and then using mask biasing to largely eliminate the CD variations that the flare and its variations would otherwise cause. This method would be difficult to apply to optical or DUV lithography since the intrinsic flare for those lithographies is not constant over the image field.

  12. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  13. Pacific Northwest National Laboratory--Capture and Sequestration Support Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest National Laboratory - Capture and Sequestration Support Services Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to reduce green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS)-the capture of CO 2 from large point sources and subsequent injection into deep

  14. Pre-Combustion Carbon Capture Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas

  15. Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of injecting captured carbon dioxide (CO2) into organic-rich rocks, deep underground, to permanently store the greenhouse gas while simultaneously recovering natural gas. ...

  16. EA-1745: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Blast Furnace Gas Flare Capture Project At The Arcelormittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

  17. EA-1745: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc., Indiana Harbor Steel Mill, East Chicago, Indiana

  18. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon capture faqs faq-header-big.jpg CARBON CAPTURE - BASICS Q: Why capture carbon? A: According to the Energy Information Administration (EIA), fossil fuel power plants generated more than two-thirds of the electricity in the United States and they are expected to continue to play a critical role in powering the Nation's electricity generation for the foreseeable future. However, electricity production from these power plants is under scrutiny due to concerns that anthropogenic emission of

  19. CAPTURE DOCUMENT ORAUTEAM

    Office of Legacy Management (LM)

    DATA CAPTURE DOCUMENT ORAUTEAM ---- Dose Reconstruction ~v~:7 DISCOVERY AND REVIEW dA'~ Project for NIOSH The attached document may contain Privacy Act data. This information is protected by the Privacy Act, 5 U.S.C. §552a; disclosure to any third party without written consent of the individual to whom the information pertains is strictly prohibited. Data Capture Team or Other ORAU Team Member Capturing Data: Complete all information that applies to the data/document being submitted lor

  20. Capturing Energy Upgrades

    Broader source: Energy.gov [DOE]

    Provides an overview of how to capture the value of energy efficiency upgrades in the real estate market, from CNT Energy.

  1. Demonstrating carbon capture

    SciTech Connect (OSTI)

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  2. System and process for capture of H.sub.2S from gaseous process streams and process for regeneration of the capture agent

    DOE Patents [OSTI]

    Heldenbrant, David J; Koech, Phillip K; Rainbolt, James E; Bearden, Mark D; Zheng, Feng

    2014-02-18

    A system and process are disclosed for selective removal and recovery of H.sub.2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H.sub.2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H.sub.2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.

  3. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect (OSTI)

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  4. Capturing Waste Gas: Saves Energy, Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricity Generation 38 megawatts of power, equivalent to 333,000 megawatt hours, which ... Job Creation and Retention Approximately 500 jobs (included 200 local trades) were created ...

  5. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 4 5 5 5 1980's 5 52 54 85 165 194 140 0 0 0 1990's 3,648 4,844 5,476 5,732 5,805 7,122 7,636 1,639 1,526 1,555 2000's 1,806 2,043 1,880 2,100 2,135 2,071 1,931 2,177 2,073 2,160 2010's 2,136 2,120 0

  6. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 161,849 166,439 158,852 1970's 154,089 103,564 63,667 102,091 31,572 25,459 31,467 33,251 29,807 26,061 1980's 22,851 23,042 19,781 25,651 25,008 25,013 24,173 25,290 22,835 21,898 1990's 20,660 20,415 20,538 19,580 19,689 18,729 21,705 21,928 19,543 21,509 2000's 20,266 11,750 10,957 9,283 5,015 5,228 6,665 6,496 4,021 4,336 2010's 4,578 6,302 0 3,912 4,143

  7. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  8. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,861 1,120 808 1970's 809 1,032 1,117 1,268 1,612 2,042 2,291 2,736 2,960 1980's 3,433 3,310 3,320 3,324 3,324 3,324 3,324 3,705 3,324 4,070 1990's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2000's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2010's 3,324 3,324 0

  9. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,098 5,910 8,097 1970's 7,233 5,090 3,672 10,767 10,787 11,862 13,599 13,514 36,273 38,417 1980's 16,627 12,188 10,799 8,694 9,862 4,097 4,845 4,112 5,512 4,201 1990's 3,628 2,799 3,076 2,222 1,928 2,234 2,677 2,742 2,798 2,745 2000's 2,477 2,961 3,267 3,501 3,812 3,944 4,575 5,909 7,504 7,875 2010's 8,685 9,593 0

  10. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  11. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,022 12,551 26,458 1970's 5,203 4,917 4,222 3,691 3,901 3,202 2,070 1,095 1,408 1,689 1980's 1,705 1,896 1,667 1,549 1,285 1,460 1,468 1,181 1,146 1,099 1990's 886 772 763 758 551 417 596 1,120 1,274 317 2000's 488 404 349 403 1,071 629 1,173 3,721 6,863 7,001 2010's 5,722 4,878 0

  12. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,000 2,906 2,802 1970's 2,852 2,926 5,506 7,664 5,259 1,806 1,048 691 469 560 1980's 2,439 2,740 3,682 1,572 1,766 1,161 1990's 1,338 1,625 1,284 2,153 3,363 35,069 27,277 16,790 19,365 13,835 2000's 1,941 1,847 955 705 688 595 585 1,005 1,285 1,398 2010's 2,080 1,755 0

  13. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,498 13,038 17,632 1970's 18,419 3,860 8,376 6,618 6,102 3,223 1,916 699 559 1,830 1980's 1,117 983 2,149 5,233 3,271 1,330 2,413 25,107 45,342 47,793 1990's 63,216 82,854 89,736 126,362 126,722 148,721 145,452 140,147 8,711 9,002 2000's 9,945 7,462 12,356 16,685 16,848 31,161 31,661 47,783 42,346 42,530 2010's 42,101 57,711 45,429 34,622 29,641

  14. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 1,558 1,263 834 2,137 1,398 797 60 0 0 1980's 0 194 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 5 12 23 29 17 5 2 9 2010's 24 21 0

  15. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  16. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  17. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  18. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 360 422 795 1970's 656 308 966 1,890 1,492 1,107 1,088 1,180 1,695 1,497 1980's 3,175 2,485 2,806 1,793 1,829 1,426 1,310 1,356 1,824 1,503 1990's 1,933 2,193 1,799 1,798 2,650 2,935 1,853 1,563 1,462 1,085 2000's 1,262 1,039 1,331 1,611 2,316 2,485 3,525 2,372 1,801 2,495 2010's 2,617 3,491 0

  19. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,390 24,258 32,543 1970's 34,808 33,880 21,590 4,979 11,524 10,401 6,554 15,644 8,492 4,526 1980's 4,820 5,630 6,946 5,027 11,670 6,296 8,862 15,603 9,018 9,786 1990's 10,727 10,784 14,097 22,485 13,240 8,736 7,070 8,269 8,171 7,098 2000's 7,546 7,686 7,312 6,345 6,088 6,429 7,125 6,458 10,023 6,481 2010's 10,173 10,966 11,769 7,219 6,554

  20. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 815 672 921 1,101 820 914 1,257 828 750 843 991 873 1992 1,627 880 1,087 827 1,093 902 1,323 1,401 1,859 1,015 1,082 1,001 1993 1,044 2,207 1,408 2,149 2,273 4,052 2,251 1,323 1,734 1,557 906 1,581 1994 615 1,300 829 1,266 1,338 2,386 1,325 779 1,021 917 534 931 1995 858 547 835 883 1,574 874 514 674 605 615 1996 682 532 552 569 588 618 691 545 634 560 528 570 1997 798 623 646 666 687 723 808 637 741 654 618 666 1998 788 615 639 658 679

  1. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 997 895 1,326 1970's 226 1,734 2,649 1,947 1,716 1,318 1,227 1,153 869 471 1980's 394 552 973 973 2,225 824 1,760 1,068 1,110 1,110 1990's 284 208 371 409 313 313 270 134 45 6,005 2000's 206 431 251 354 241 241 12 11 114 141 2010's 425 494 0

  2. New Mexico Natural Gas Vented and Flared (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,992 5,987 4,058 1970's 2,909 2,823 5,696 3,791 1,227 1,642 1,519 5,065 8,163 4,636 1980's...

  3. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91...

  4. California Natural Gas Vented and Flared (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146...

  5. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985

  6. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  7. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277

  8. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325

  9. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0

  10. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87

  11. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 1 0 0 2003 1 1 1 1 1 1 1 1 1 1 1 1 2004 2 1 1 2 2 1 3 2 2 2 2 2 2005 4 3 2 2 2 1 2 3 2 3 3 3 2006 5 2 2 1

  12. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  13. California Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,565 2,780 3,074 1970's 2,499 575 1,999 1,560 1,537 1,288 1,038 960 1,253 1980's 1,386 1,907 1,907 1,135 2,116 2,200 2,750 2,734 2,733 2,731 1990's 1,244 1,429 751 580 830 1,250 1,268 1,590 1,952 1,367 2000's 2,210 1,717 2,690 3,940 3,215 2,120 1,562 1,879 2,127 2,501 2010's 2,790 2,424 0

  14. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796 1,195 1,223 1,360 1,000 1,821 1,577 2,360 4,593 3,961 1990's 4,719 2,890 1,868 2,024 2,476 1,510 1,230 2,178 1,244 802 2000's 805 908 935 1,123 1,158 1,215 1,291 1,333 1,501 1,411 2010's 1,242 1,291 0

  15. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 112 77 78 91 100 89 100 106 97 121 155 102 1997 173 188 180 168 228 187 188 102 189 192 185 199 1998 92 166 98 92 98 115 222 83 82 92 95 10 1999 70 71 70 65 68 66 66 66 63 67 65 64 2000 67 64 68 65 68 66 67 68 65 69 69 70 2001 77 69 75 71 73 74 73 78 76 79 78 83 2002 83 75 84 79 79 77 79 80 72 80 72 75 2003 96 86 95 92 95 92 94 96 94 98 95 90 2004 99 89 98 94 98 95 97 99 97 101 98 93 2005 103 94 103 99 103 99 102 104 102 106 102 98 2006

  16. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  17. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  18. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436 467 514 450 458 578 509 1990's 557 628 642 670 715 723 716 680 605 555 2000's 527 481 456 420 398 378 365 363 373 353 2010's 323 307 0

  19. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31

  20. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  1. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,861 1,120 808 1970's 809 1,032 1,117 1,268 1,612 2,042 2,291 2,736 2,960 1980's 3,433 3,310 3,320 3,324 3,324 3,324 3,324 3,705 3,324 4,070 1990's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2000's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2010's 3,324 3,324 0

  2. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,098 5,910 8,097 1970's 7,233 5,090 3,672 10,767 10,787 11,862 13,599 13,514 36,273 38,417 1980's 16,627 12,188 10,799 8,694 9,862 4,097 4,845 4,112 5,512 4,201 1990's 3,628 2,799 3,076 2,222 1,928 2,234 2,677 2,742 2,798 2,745 2000's 2,477 2,961 3,267 3,501 3,812 3,944 4,575 5,909 7,504 7,875 2010's 8,685 9,593 0

  3. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  4. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,022 12,551 26,458 1970's 5,203 4,917 4,222 3,691 3,901 3,202 2,070 1,095 1,408 1,689 1980's 1,705 1,896 1,667 1,549 1,285 1,460 1,468 1,181 1,146 1,099 1990's 886 772 763 758 551 417 596 1,120 1,274 317 2000's 488 404 349 403 1,071 629 1,173 3,721 6,863 7,001 2010's 5,722 4,878 0

  5. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 1,558 1,263 834 2,137 1,398 797 60 0 0 1980's 0 194 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 5 12 23 29 17 5 2 9 2010's 24 21 0

  6. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  7. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,992 5,987 4,058 1970's 2,909 2,823 5,696 3,791 1,227 1,642 1,519 5,065 8,163 4,636 1980's 5,211 6,877 4,767 6,236 6,335 5,869 4,080 3,811 3,582 4,419 1990's 1,679 1,365 1,626 1,581 1,963 2,144 2,700 2,786 2,673 2,715 2000's 3,130 3,256 2,849 2,347 3,525 3,533 2,869 929 803 481 2010's 1,586 4,360 12,259 21,053 22,143

  8. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 2,926 2,883 3,744 2,400 3,773 3,720 2,802 4,012 5,036 1990's 375 1 13 14 11 0 3 5 5 5 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  9. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  10. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  11. West Virginia Natural Gas Vented and Flared (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0...

  12. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 4 5 5 5 1980's 5 52 54 85 165 194 140 0 0 0 1990's 3,648 4,844 5,476 5,732 5,805 7,122 7,636 1,639 1,526 1,555 2000's 1,806 2,043 1,880 2,100 2,135 2,071 1,931 2,177 2,073 2,160 2010's 2,136 2,120 0

  13. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 129,403 124,584 111,499 1970's 100,305 70,222 59,821 36,133 34,431 31,295 30,402 27,340 25,556 27,350 1980's 28,837 32,907 33,061 28,420 32,256 30,776 26,050 29,325 31,832 29,770 1990's 28,247 30,638 19,689 34,486 42,037 46,183 45,382 47,922 25,949 35,675 2000's 32,010 26,823 27,379 23,781 26,947 38,654 43,169 36,682 42,541 41,234 2010's 39,569 35,248 47,530 76,113 81,755

  14. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,000 2,906 2,802 1970's 2,852 2,926 5,506 7,664 5,259 1,806 1,048 691 469 560 1980's 2,439 2,740 3,682 1,572 1,766 1,161 1990's 1,338 1,625 1,284 2,153 3,363 35,069 27,277 16,790 19,365 13,835 2000's 1,941 1,847 955 705 688 595 585 1,005 1,285 1,398 2010's 2,080 1,755 0

  15. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,478 2,147 2,113 2,353 3,203 2,833 3,175 2,684 2,296 2,457 2,750 2,150 1992 1,337 1,107 1,379 1,254 1,439 1,833 2,083 1,970 2,009 1,630 1,835 1,812 1993 3,276 3,172 2,618 2,863 2,492 2,286 2,563 2,471 2,865 3,708 2,934 3,238 1994 3,225 3,330 3,515 3,403 3,959 4,686 3,429 2,766 3,188 3,543 3,122 3,871 1995 3,543 3,658 3,862 3,738 4,350 5,148 3,768 3,039 3,503 3,893 3,430 4,252 1996 3,461 3,537 3,340 3,922 3,459 4,520 4,339 3,794 3,556

  16. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275

  17. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150

  18. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  19. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 384 350 382 380 382 376 405 418 397 439 445 486 1992 455 445 448 468 497 447 465 459 438 450 440 465 1993 463 417 484 453 478 459 497 500 495 545 507 435 1994 385 324 383 373 409 424 506 590 595 591 601 625 1995 640 570 637 609 617 602 617 637 578 526 540 549 1996 533 516 618 620 662 658 680 685 650 689 657 669 1997 128 123 129 135 139 134 135 145 143 146 140 143 1998 145 134 148 145 129 114 122 121 118 119 114 117 1999 147 136 151 148

  20. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,712 5,109 6,529 6,408 6,948 6,430 7,035 7,792 7,475 7,837 7,649 7,930 1992 7,430 7,009 7,475 7,039 5,797 7,809 8,770 8,218 7,442 7,505 7,662 7,580 1993 10,674 10,789 10,568 10,480 11,572 12,350 10,996 8,163 9,912 10,526 9,870 10,463 1994 11,590 11,569 11,181 10,129 9,324 10,365 10,174 10,394 10,578 10,635 10,629 10,155 1995 13,046 11,867 11,628 12,102 14,419 12,911 12,917 10,472 12,302 12,592 11,896 12,569 1996 13,000 12,042 12,951

  1. California Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,565 2,780 3,074 1970's 2,499 575 1,999 1,560 1,537 1,288 1,038 960 1,253 1980's 1,386 1,907 1,907 1,135 2,116 2,200 2,750 2,734 2,733 2,731 1990's 1,244 1,429 751 580 830 1,250 1,268 1,590 1,952 1,367 2000's 2,210 1,717 2,690 3,940 3,215 2,120 1,562 1,879 2,127 2,501 2010's 2,790 2,424 0

  2. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796 1,195 1,223 1,360 1,000 1,821 1,577 2,360 4,593 3,961 1990's 4,719 2,890 1,868 2,024 2,476 1,510 1,230 2,178 1,244 802 2000's 805 908 935 1,123 1,158 1,215 1,291 1,333 1,501 1,411 2010's 1,242 1,291 0

  3. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  4. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436 467 514 450 458 578 509 1990's 557 628 642 670 715 723 716 680 605 555 2000's 527 481 456 420 398 378 365 363 373 353 2010's 323 307 0

  5. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 161,849 166,439 158,852 1970's 154,089 103,564 63,667 102,091 31,572 25,459 31,467 33,251 29,807 26,061 1980's 22,851 23,042 19,781 25,651 25,008 25,013 24,173 25,290 22,835 21,898 1990's 20,660 20,415 20,538 19,580 19,689 18,729 21,705 21,928 19,543 21,509 2000's 20,266 11,750 10,957 9,283 5,015 5,228 6,665 6,496 4,021 4,336 2010's 4,578 6,302 0 3,912 4,143

  6. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002

  7. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  8. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23 13 12 7 13 28 28 30 36 9 5 5 1992 33 29 32 31 30 29 30 30 30 32 32 33 1993 36 32 35 33 34 32 33 33 33 35 35 37 1994 27...

  9. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  10. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,498 13,038 17,632 1970's 18,419 3,860 8,376 6,618 6,102 3,223 1,916 699 559 1,830 1980's 1,117 983 2,149 5,233 3,271 1,330 2,413 25,107 45,342 47,793 1990's 63,216 82,854 89,736 126,362 126,722 148,721 145,452 140,147 8,711 9,002 2000's 9,945 7,462 12,356 16,685 16,848 31,161 31,661 47,783 42,346 42,530 2010's 42,101 57,711 45,429 34,622 29,641

  11. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 2,926 2,883 3,744 2,400 3,773 3,720 2,802 4,012 5,036...

  12. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 0 0 0 0 0 0 0 0 0 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 0 0 0...

  13. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 129,403 124,584 111,499 1970's 100,305 70,222 59,821 36,133 34,431 31,295 30,402 27,340 25,556...

  14. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  15. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  16. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  17. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  18. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  19. Ionic Liquid Sorbents for Carbon Capture - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquid Sorbents for Carbon Capture Ionic liquids for carbon capture and gas separation National Energy Technology Laboratory Contact NETL About This Technology Ionic liquids Ionic liquids Technology Marketing Summary Research is active on technologies for application of ionic liquids to carbon capture or other separation processes in energy systems. The technologies consist of materials and methods that promise to

  20. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville,...

  1. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  2. Novel Application of Carbonate Fuel Cell for Capturing Carbon...

    Office of Scientific and Technical Information (OSTI)

    flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in ...

  3. Evaluating a new approach to CO2 capture and storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sector to continue generating electricity at coal-fired and natural-gas power plants. The strategy involves capturing and compressing CO2 at large, stationary sources, such as...

  4. Capture and Release of Guest Molecules by Optical Responsive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Polyhedra (MOP) | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Capture and Release of Guest Molecules by Optical Responsive Metal-Organic Polyhedra (MOP)

  5. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect (OSTI)

    Warren, Harry P.; Doschek, George A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mariska, John T. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  6. An X-ray flare from 47 Cas

    SciTech Connect (OSTI)

    Pandey, Jeewan C.; Karmakar, Subhajeet

    2015-02-01

    Using XMM-Newton observations, we investigate properties of a flare from the very active but poorly known stellar system 47 Cas. The luminosity at the peak of the flare is found to be 3.54 10{sup 30} erg s{sup ?1}, which is ?2 times higher than that at a quiescent state. The quiescent state corona of 47 Cas can be represented by two temperature plasma: 3.7 and 11.0 MK. The time-resolved X-ray spectroscopy of the flare show the variable nature of the temperature, the emission measure, and the abundance. The maximum temperature during the flare is derived as 72.8 MK. We infer the length of a flaring loop to be 3.3 10{sup 10} cm using a hydrodynamic loop model. Using the RGS spectra, the density during the flare is estimated as 4.0 10{sup 10} cm{sup ?3}. The loop scaling laws are also applied when deriving physical parameters of the flaring plasma.

  7. CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND RHESSI

    SciTech Connect (OSTI)

    Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); McTiernan, James M. [Space Sciences Laboratory University of California, Berkeley, CA 94720 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-06-20

    Deriving a well-constrained differential emission measure (DEM) distribution for solar flares has historically been difficult, primarily because no single instrument is sensitive to the full range of coronal temperatures observed in flares, from ?2 to ?50MK. We present a new technique, combining extreme ultraviolet (EUV) spectra from the EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory with X-ray spectra from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), to derive, for the first time, a self-consistent, well-constrained DEM for jointly observed solar flares. EVE is sensitive to ?2-25MK thermal plasma emission, and RHESSI to ?10MK; together, the two instruments cover the full range of flare coronal plasma temperatures. We have validated the new technique on artificial test data, and apply it to two X-class flares from solar cycle 24 to determine the flare DEM and its temporal evolution; the constraints on the thermal emission derived from the EVE data also constrain the low energy cutoff of the non-thermal electrons, a crucial parameter for flare energetics. The DEM analysis can also be used to predict the soft X-ray flux in the poorly observed ?0.4-5nm range, with important applications for geospace science.

  8. Carbon Capture Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

  9. Enhanced carbon dioxide capture upon incorporation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri Previous Next List Thomas M. McDonald, Deanna M. D'Alessandro, Rajamani Krishna and Jeffrey R. Long, Chem. Sci., 2011,2, 2022-2028 DOI: 10.1039/C1SC00354B Graphical abstract: Enhanced carbon dioxide capture upon

  10. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  11. Spatial Knowledge Capture Library

    Energy Science and Technology Software Center (OSTI)

    2005-05-16

    The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the expert’s response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents’ actions.« less

  12. Proton capture resonance studies

    SciTech Connect (OSTI)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  13. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  14. Interferometric at-wavelength flare characterization of EUV optical systems

    DOE Patents [OSTI]

    Naulleau, Patrick P. (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA)

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  15. THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES

    SciTech Connect (OSTI)

    Dai, Lixin; Escala, Andres; Coppi, Paolo

    2013-09-20

    We have carried out general relativistic particle simulations of stars tidally disrupted by massive black holes. When a star is disrupted in a bound orbit with moderate eccentricity instead of a parabolic orbit, the temporal behavior of the resulting stellar debris changes qualitatively. The debris is initially all bound, returning to pericenter in a short time about the original stellar orbital timescale. The resulting fallback rate can thus be much higher than the Eddington rate. Furthermore, if the star is disrupted close to the hole, in a regime where general relativity is important, the stellar and debris orbits display general relativistic precession. Apsidal precession can make the debris stream cross itself after several orbits, likely leading to fast debris energy dissipation. If the star is disrupted in an inclined orbit around a spinning hole, nodal precession reduces the probability of self-intersection, and circularization may take many dynamical timescales, delaying the onset of flare activity. An examination of the particle dynamics suggests that quasi-periodic flares with short durations, produced when the center of the tidal stream passes pericenter, may occur in the early-time light curve. The late-time light curve may still show power-law behavior which is generic to disk accretion processes. The detection triggers for future surveys should be extended to capture such 'non-standard' short-term flaring activity before the event enters the asymptotic decay phase, as this activity is likely to be more sensitive to physical parameters such as the black hole spin.

  16. New Materials for Methane Capture from Dilute and Medium-concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Materials for Methane Capture from Dilute and Medium-concentration Sources

  17. Ab initio Carbon Capture in Open-Site Metal Organic Frameworks | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Ab initio Carbon Capture in Open-Site Metal Organic Frameworks

  18. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  19. Solar Flare Activity Closely Monitored | Department of Energy

    Energy Savers [EERE]

    Solar Flare Activity Closely Monitored Solar Flare Activity Closely Monitored September 11, 2014 - 5:30pm Addthis Dr. Ken Friedman Senior Policy Advisor in the Office of Electricity Delivery and Energy Reliability The National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center, which provides important resources to describe the space environment, including geomagnetic storms, solar radiation storms and radio blackouts, is forecasting the possibility of

  20. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  1. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology

    Broader source: Energy.gov [DOE]

    As natural gas travels through infrastructure, from well-head to customer meter, small portions are routinely used as fuel, vented, flared, or inadvertently leaked to the atmosphere. This paper describes the analytical and methodological basis for three diagrams that illustrate the natural gas losses and greenhouse gas emissions that result from these processes. The paper examines these emissions in some detail, focusing in particular on the production, processing, transmission and storage, and distribution segments of natural gas infrastructure.

  2. Product transfer service chosen over LPG flaring

    SciTech Connect (OSTI)

    Horn, J.; Powers, M.

    1994-07-01

    Seadrift Pipeline Corp. recently decommissioned its Ella Pipeline, an 108-mile, 8-in. line between the King Ranch and a Union Carbide plant at Seadrift, Texas. The pipeline company opted for the product transfer services of pipeline Dehydrators Inc. to evacuate the ethane-rich LPG mixture from the pipeline instead of flaring the LPG or displacing it with nitrogen at operating pressures into another pipeline. The product transfer system of Pipeline Dehydrators incorporates the use of highly specialized portable compressors, heat exchangers and interconnected piping. The product transfer process of evacuating a pipeline is an economically viable method that safely recovers a very high percentage of the product while maintaining product purity. Using positive-displacement compressors, PLD transferred the LPG from the idled 8-in. Ella line into an adjacent 12-in. ethane pipeline that remained in service at approximately 800 psig. Approximately 4.3 million lb of LPG (97% ethane, 2.7% methane and 0.3% propane) were transferred into the ethane pipeline, lowering the pressure on the Ella Pipeline from 800 psig to 65 psig.

  3. An unorthodox X-Class Long-Duration Confined Flare

    SciTech Connect (OSTI)

    Liu, Rui; Gou, Tingyu; Wang, Yuming; Liu, Kai; Titov, Viacheslav S.; Wang, Haimin

    2014-07-20

    We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 ), but in the passbands sensitive to flare plasmas (94 and 131 ), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Over the gradual phase, we detect numerous episodes of loop rising, each lasting minutes. A differential emission measure analysis reveals that the temperature is highest at the top of the arcade and becomes cooler at higher altitudes within the cusp-shaped structure, contrary to typical long-duration flares. With a nonlinear force-free model, our analysis shows that the event mainly involves two adjacent sheared arcades separated by a T-type hyperbolic flux tube (HFT). One of the arcades harbors a magnetic flux rope, which is identified with a filament that survives the flare owing to the strong confining field. We conclude that a new emergence of magnetic flux in the other arcade triggers the flare, while the preexisting HFT and flux rope dictate the structure and dynamics of the flare loops and ribbons during the long-lasting decay phase, and that a quasi-separatrix layer high above the HFT could account for the cusp-shaped structure.

  4. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a crucial bridge between our current global energy economy and a cleaner, more diversified energy future. Researchers from Los Alamos, OSU and the NETL have demonstrated that this approach is technically feasible and poised for full-scale roll-out. October 16, 2015 Jumpstarting the carbon capture industry: Science on the

  5. Capturing the Daylight Dividend

    SciTech Connect (OSTI)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  6. OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES

    SciTech Connect (OSTI)

    Van Velzen, Sjoert; Farrar, Glennys R.; Gezari, Suvi; Morrell, Nidia; Zaritsky, Dennis; Oestman, Linda; Smith, Mathew; Gelfand, Joseph; Drake, Andrew J.

    2011-11-10

    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

  7. Statistical properties of super-hot solar flares

    SciTech Connect (OSTI)

    Caspi, Amir; Krucker, Sm; Lin, R. P.

    2014-01-20

    We use Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) high-resolution imaging and spectroscopy observations from ?6 to 100 keV to determine the statistical relationships between measured parameters (temperature, emission measure, etc.) of hot, thermal plasma in 37 intense (GOES M- and X-class) solar flares. The RHESSI data, most sensitive to the hottest flare plasmas, reveal a strong correlation between the maximum achieved temperature and the flare GOES class, such that 'super-hot' temperatures >30 MK are achieved almost exclusively by X-class events; the observed correlation differs significantly from that of GOES-derived temperatures, and from previous studies. A nearly ubiquitous association with high emission measures, electron densities, and instantaneous thermal energies suggests that super-hot plasmas are physically distinct from cooler, ?10-20 MK GOES plasmas, and that they require substantially greater energy input during the flare. High thermal energy densities suggest that super-hot flares require strong coronal magnetic fields, exceeding ?100 G, and that both the plasma ? and volume filling factor f cannot be much less than unity in the super-hot region.

  8. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  9. Annual Report: Carbon Capture (30 September 2012)

    SciTech Connect (OSTI)

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD).

  10. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Control | Department of Energy Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville, Ala. Under a cooperative agreement with the Energy Department's National Energy Technology Laboratory (NETL), Linde LLC is operating a nominal 1-megawatt-electric (MWe) pilot plant expected to capture 30 tons of CO2 per day. Cost-effective carbon capture and storage from fossil-based

  11. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect (OSTI)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  12. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pore Models Track Reactions in Underground Carbon Capture Pore Models Track Reactions in Underground Carbon Capture September 25, 2014 trebotich2 Computed pH on calcite grains at 1 micron resolution. The iridescent grains mimic crushed material geoscientists extract from saline aquifers deep underground to study with microscopes. Researchers want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of

  13. Carbon Capture Turned Upside Down: High-Temperature Adsorption &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature Desorption (HALD) | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van Speybroeck, Veronique; and Smit, Berend. Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD). Energy Environ. Sci., 8, 2480-2491 (2015). DOI:

  14. Robust automated knowledge capture.

    SciTech Connect (OSTI)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  15. Fragment capture device

    DOE Patents [OSTI]

    Payne, Lloyd R. (Los Lunas, NM); Cole, David L. (Albuquerque, NM)

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  16. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect (OSTI)

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

  17. TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE

    SciTech Connect (OSTI)

    Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

    2011-08-01

    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

  18. Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  19. Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    DOE Patents [OSTI]

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  1. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Office of Environmental Management (EM)

    Air Key Points: * Air quality risks from shale oil and gas development are generally the result of: (1) dust and engine exhaust from increased truck traffic; (2) emissions from diesel-powered pumps used to power equipment; (3) intentional flaring or venting of gas for operational reasons; and, (4) unintentional emissions of pollutants from faulty equipment or impoundments. 1 * Natural gas is efficient and clean compared to other fossil fuels, emitting less nitrogen oxide and sulfur dioxide than

  2. Resource capture by single leaves

    SciTech Connect (OSTI)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  3. Solar flare impulsive phase emission observed with SDO/EVE

    SciTech Connect (OSTI)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P., E-mail: mkennedy29@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2013-12-10

    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

  4. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  5. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  6. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from

    Office of Scientific and Technical Information (OSTI)

    Flue Gas Streams (Journal Article) | SciTech Connect Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams Citation Details In-Document Search Title: Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system

  7. Energy Department Invests to Drive Down Costs of Carbon Capture, Support

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductions in Greenhouse Gas Pollution | Department of Energy to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to

  8. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect (OSTI)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy ?-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying ?-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by ?-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the ?-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of ?-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and ?-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  9. Capturing CO2 via reactions in nanopores.

    SciTech Connect (OSTI)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  10. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  11. High-Energy Aspects of Solar Flares: Observations and Models

    SciTech Connect (OSTI)

    Liu, Wei; Guo, Fan

    2015-07-21

    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  12. DISCOVERY OF 6.035 GHz HYDROXYL MASER FLARES IN IRAS 18566+0408

    SciTech Connect (OSTI)

    Al-Marzouk, A. A.; Araya, E. D.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.

    2012-05-10

    We report the discovery of 6.035 GHz hydroxyl (OH) maser flares toward the massive star-forming region IRAS 18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H{sub 2}CO) and methanol (6.7 GHz CH{sub 3}OH) maser flares. The observations were conducted between 2008 October and 2010 January with the 305 m Arecibo Telescope in Puerto Rico. We detected two flare events, one in 2009 March and one in 2009 September to November. The OH maser flares are not simultaneous with the H{sub 2}CO flares, but may be correlated with CH{sub 3}OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH{sub 3}OH masers in IRAS 18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.

  13. HAWC Observatory captures first image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers,

  14. HAWC Observatory captures first image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers,

  15. Capture sunlight with your window

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture sunlight with your window Capture sunlight with your window A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy. August 24, 2015 The luminescent solar concentrator could turn any window into a daytime power source. The luminescent solar concentrator could turn any window into a daytime power source. Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email

  16. solvents-co2-capture-pitt | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability, extremely low vapor pressures, nonflammability, and nontoxicity. Such materials not only have the potential to capture CO2 with minimal solvent loss in the gas stream but are expected to be environmentally benign. NETL's Office of Research and Development is conducting a study involving one general type of

  17. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  18. Global energetics of solar flares. I. Magnetic energies

    SciTech Connect (OSTI)

    Aschwanden, Markus J.; Xu, Yan; Jing, Ju E-mail: yan.xu@njit.edu

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation period and is comparable with the coronal heating rate requirement in active regions.

  19. Gamma-Ray Observations of a Giant Flare From the Magnetar Sgr...

    Office of Scientific and Technical Information (OSTI)

    than the only two previous events, making this flare a once in a century event. This colossal energy release likely occurred during a catastrophic reconfiguration of the...

  20. COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K.; Gray, J.

    2012-03-30

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  1. Injections of Natural Gas into Storage (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    SciTech Connect (OSTI)

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ? 14-16 s is found in the 17GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  3. Evaluating different classes of porous materials for carbon capture |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Evaluating different classes of porous materials for carbon capture Previous Next List Johanna Maria Huck, Li-Chiang Lin, Adam Berger, Mahdi Niknam Shahrak, Richard Luis Martin, Abhoyjit Bhown, Maciej Haranczyk, Karsten Reuter and Berend Smit, Energy Environ. Sci. 7, 4132-4146 (2014) DOI: 10.1039/C4EE02636E image-22_353 Abstract: Carbon Capture and Sequestration (CCS) is one of the promising ways to

  4. Adaptive capture of expert behavior

    SciTech Connect (OSTI)

    Jones, R.D.; Barrett, C.L.; Hand, U.; Gordon, R.C.

    1994-08-01

    The authors smoothed and captured a set of expert rules with adaptive networks. The motivation for doing this is discussed. (1) Smoothing leads to stabler control actions. (2) For some sets of rules, the evaluation of the rules can be sped up. This is important in large-scale simulations where many intelligent elements are present. (3) Variability of the intelligent elements can be achieved by adjusting the weights in an adaptive network. (4) After capture has occurred, the weights can be adjusted based on performance criteria. The authors thus have the capability of learning a new set of rules that lead to better performance. The set of rules the authors chose to capture were based on a set of threat determining rules for tank commanders. The approach in this paper: (1) They smoothed the rules. The rule set was converted into a simple set of arithmetic statements. Continuous, non-binary inputs, are now permitted. (2) An operational measure of capturability was developed. (3) They chose four candidate networks for the rule set capture: (a) multi-linear network, (b) adaptive partial least squares, (c) connectionist normalized local spline (CNLS) network, and (d) CNLS net with a PLS preprocessor. These networks were able to capture the rule set to within a few percent. For the simple tank rule set, the multi-linear network performed the best. When the rules were modified to include more nonlinear behavior, CNLS net performed better than the other three nets which made linear assumptions. (4) The networks were tested for robustness to input noise. Noise levels of plus or minus 10% had no real effect on the network performance. Noise levels in the plus or minus 30% range degraded performance by a factor of two. Some performance enhancement occurred when the networks were trained with noisy data. (5) The scaling of the evaluation time was calculated. (6) Human variation can be mimicked in all the networks by perturbing the weights.

  5. November 30, 2011 | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rating of Post-combustion Gas Permeation Carbon Capture Systems Eric Bloch (Dept. of Chemistry, UC Berkeley) Gas Separations with Redox-Active Metal-Organic Frameworks...

  6. Brightest Fermi-LAT flares of PKS 1222+216: implications on emission and acceleration processes

    SciTech Connect (OSTI)

    Kushwaha, Pankaj; Singh, K. P.; Sahayanathan, Sunder

    2014-11-20

    We present a high time resolution study of the two brightest ?-ray outbursts from a blazar PKS 1222+216 observed by the Fermi Large Area Telescope (LAT) in 2010. The ?-ray light curves obtained in four different energy bands, 0.1-3, 0.1-0.3, 0.3-1, and 1-3 GeV, with time bins of six hours, show asymmetric profiles with similar rise times in all the bands but a rapid decline during the April flare and a gradual one during the June flare. The light curves during the April flare show an ?2 day long plateau in 0.1-0.3 GeV emission, erratic variations in 0.3-1 GeV emission, and a daily recurring feature in 1-3 GeV emission until the rapid rise and decline within a day. The June flare shows a monotonic rise until the peak, followed by a gradual decline powered mainly by the multi-peak 0.1-0.3 GeV emission. The peak fluxes during both the flares are similar except in the 1-3 GeV band in April, which is twice the corresponding flux during the June flare. Hardness ratios during the April flare indicate spectral hardening in the rising phase followed by softening during the decay. We attribute this behavior to the development of a shock associated with an increase in acceleration efficiency followed by its decay leading to spectral softening. The June flare suggests hardening during the rise followed by a complicated energy dependent behavior during the decay. Observed features during the June flare favor multiple emission regions while the overall flaring episode can be related to jet dynamics.

  7. RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE

    SciTech Connect (OSTI)

    Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Feng, Q.; Finley, J. P.; Dumm, J.; Fortson, L.; Errando, M.; Falcone, A.; Federici, S.; Finnegan, G. E-mail: cui@purdue.edu; Collaboration: VERITAS Collaboration; and others

    2013-01-10

    We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

  8. Capture and release of mixed acid gasses with binding organic liquids

    DOE Patents [OSTI]

    Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  9. Amine enriched solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Soong, Yee (Monroeville, PA); Champagne, Kenneth J. (Fredericktown, PA)

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  10. allows researchers to capture high-resolution images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allows researchers to capture high-resolution images - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  11. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imidazolate Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks Previous Next List Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B. Knobler, Michael O'Keeffe and Omar M. Yaghi, Acc. Chem. Res., 2010, 43 (1), pp 58-67 DOI: 10.1021/ar900116g Abstract Zeolites are one of humanity's most important synthetic products. These

  12. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  13. Iran seeking help in regaining prerevolution oil and gas flow

    SciTech Connect (OSTI)

    Tippee, B.

    1996-02-19

    This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

  14. Metazen metadata capture for metagenomes

    SciTech Connect (OSTI)

    Bischof, Jared; Harrison, Travis; Paczian, Tobias; Glass, Elizabeth; Wilke, Andreas; Meyer, Folker

    2014-12-08

    Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.

  15. UNIVERSAL BEHAVIOR OF X-RAY FLARES FROM BLACK HOLE SYSTEMS

    SciTech Connect (OSTI)

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q. E-mail: dzg@nju.edu.cn

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  16. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect (OSTI)

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  17. STUDY OF TWO SUCCESSIVE THREE-RIBBON SOLAR FLARES ON 2012 JULY 6

    SciTech Connect (OSTI)

    Wang, Haimin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Zeng, Zhicheng; Cao, Wenda

    2014-01-20

    This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using H? observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing ''fish-bone-like'' morphology evidenced by both H? images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in H? apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  18. Urinary Symptom Flare in 712 {sup 125}I Prostate Brachytherapy Patients: Long-Term Follow-Up

    SciTech Connect (OSTI)

    Keyes, Mira; Miller, Stacy; Moravan, Veronika; Pickles, Tom; Liu, Mitchell; Spadinger, Ingrid; Lapointe, Vincent; Morris, W. James

    2009-11-01

    Purpose: To describe the late transient worsening of urinary symptoms ('urinary symptom flare') in 712 consecutive prostate brachytherapy patients, associated predictive factors, association with rectal and urinary toxicity, and the development of erectile dysfunction. Methods and Materials: Patients underwent implantation between 1998 and 2003 (median follow-up, 57 months). International Prostate Symptom Score (IPSS), Radiation Therapy Oncology Group (RTOG) toxicity, and erectile function data were prospectively collected. Flare was defined as an increase in IPSS of >=5 and of >=8 points greater than the post-treatment nadir. The relationships between the occurrence of flare and the patient, tumor, and treatment characteristics were examined. The Cox proportional hazards method was used to test individual variables and the multivariate models. Results: The incidence of flare was 52% and 30% using the flare definition of an IPSS of >=5 and >=8 points greater than the postimplant nadir, respectively. Of the patients with symptoms, 65% had resolution of their symptoms within 6 months and 91% within 1 year. Flares most commonly occurred 16-24 months after implantation. On multivariate analysis, a greater baseline IPSS and greater maximal postimplant IPSS were the predictors of flare, regardless of the flare definition used. Androgen suppression was a predictor for fewer flares (IPSS >=5). Diabetes and prostate edema predicted for more frequent flares (IPSS >=8). Patients with flare had a greater incidence of RTOG Grade 3 urinary toxicity and RTOG Grade 2 or greater rectal toxicity. No association was found between erectile dysfunction and the occurrence of flare. Conclusion: Urinary symptom flare is a common, transient phenomenon after prostate brachytherapy. A greater baseline IPSS and maximal postimplant IPSS were the strongest predictive factors. Flare was associated with a greater incidence of late RTOG Grade 3 urinary toxicity and greater rate of late RTOG Grade 2 or greater rectal toxicity.

  19. A NEW CORRELATION BETWEEN GRB X-RAY FLARES AND THE PROMPT EMISSION

    SciTech Connect (OSTI)

    Sonbas, E. [Department of Physics, University of Adiyaman, 02040 Adiyaman (Turkey); MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Parke, W. C., E-mail: edasonbas@yahoo.com [Department of Physics, George Washington University, Washington, DC 20052 (United States)

    2013-04-20

    From a sample of gamma-ray bursts (GRBs) detected by the Fermi and Swift missions, we have extracted the minimum variability timescales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variability timescale with pulse parameters such as rise times, determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function, indicates a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggest a common origin for the production of X-ray flares and the prompt emission in GRBs.

  20. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  1. ABSTRACT Bayarbadrakh, Baramsai. Neutron Capture Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayarbadrakh, Baramsai. Neutron Capture Reactions on Gadolinium Isotopes. (Under the direction of Dr. G. E. Mitchell and U. Agvaanluvsan). The neutron capture reaction on 155 Gd, 156 Gd and 158 Gd isotopes has been studied with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture γ-rays. With this information the spins of the neutron capture resonances have been determined. The new technique

  2. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  3. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  4. Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flue Gas | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas Previous Next List Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, Zhangwen Wei, Hong-Cai Zhou, Angew. Chem. Int. Ed., 51, 7480-7484 (2012) DOI: 10.1002/anie.201202176 Thumbnail image of graphical abstract Abstract: The introduction of polyamines in porous polymer networks results in significant

  5. Recent advances in carbon dioxide capture with metal-organic frameworks |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Recent advances in carbon dioxide capture with metal-organic frameworks Previous Next List Yangyang Liu, Zhiyong U. Wang, Hong-Cai Zhou, Greenhouse Gas Sci Technol, 2: 239-259, 2012 DOI: 10.1002/ghg.1296 Abstract: Uncontrolled massive release of the primary greenhouse gas carbon dioxide (CO2) into atmosphere from anthropogenic activities poses a big threat and adversely affects our global climate and natural

  6. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  7. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. ...

  8. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect (OSTI)

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Wiegelmann, T., E-mail: sjt@bao.ac.cn [Max-Planck-Institut fur Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  9. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  10. Underground muons from the direction of Cygnus X-3 during the January 1991 radio flare

    SciTech Connect (OSTI)

    The Soudan 2 Collaboration

    1991-08-01

    Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cyguns X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0{degrees} of the Cyguns X-3 direction were observed when 11.4 were expected.

  11. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE:

    Office of Scientific and Technical Information (OSTI)

    EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS (Journal Article) | SciTech Connect PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS Citation Details In-Document Search Title: PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS Where particle acceleration

  12. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  13. A very small and super strong zebra pattern burst at the beginning of a solar flare

    SciTech Connect (OSTI)

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua; Mszrosov, Hana; Karlick, Marian

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  14. TIME EVOLUTION OF FLARES IN GRB 130925A: JET PRECESSION IN A BLACK HOLE ACCRETION SYSTEM

    SciTech Connect (OSTI)

    Hou, Shu-Jin; Liu, Tong; Gu, Wei-Min; Sun, Mou-Yuan; Lu, Ju-Fu [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lin, Da-Bin [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning, Guangxi 530004 (China); Wu, Xue-Feng, E-mail: tongliu@xmu.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-01-20

    GRB 130925A, composed of three gamma-ray emission episodes and a series of orderly flares, has been detected by Swift, Fermi, Konus-Wind, and INTEGRAL. If the third weakest gamma-ray episode can be considered a giant flare, we find that after the second gamma-ray episode observed by INTEGRAL located at about 2000s, a positive relation exists between the time intervals of the adjacent flares and the time since the episode. We suggest that the second gamma-ray episode and its flares originate from the resumption of the accretion process due to the fragments from the collapsar falling back; such a relation may be related to a hyperaccretion disk around a precessed black hole (BH). We propose that the origin and time evolution of the flares, and the approximately symmetrical temporal structure and spectral evolution of the single flare can be explained well by a jet precession model. In addition, the mass and spin of the BH can be constrained, which indicates a stellar-mass, fast-rotating BH located in the center of GRB 130925A.

  15. SUCCESSIVE SOLAR FLARES AND CORONAL MASS EJECTIONS ON 2005 SEPTEMBER 13 FROM NOAA AR 10808

    SciTech Connect (OSTI)

    Liu Chang; Wang Haimin; Lee, Jeongwoo; Karlicky, Marian; Choudhary, Debi Prasad; Deng Na E-mail: haimin@flare.njit.ed E-mail: karlicky@asu.cas.c E-mail: na.deng@csun.ed

    2009-09-20

    We present a multiwavelength study of the 2005 September 13 eruption from NOAA AR 10808 that produced total four flares and two fast coronal mass ejections (CMEs) within {approx}1.5 hr. Our primary attention is paid to the fact that these eruptions occurred in close succession in time, and that all of them were located along an S-shaped magnetic polarity inversion line (PIL) of the active region. In our analysis, (1) the disturbance created by the first flare propagated southward along the PIL to cause a major filament eruption that led to the first CME and the associated second flare underneath. (2) The first CME partially removed the overlying magnetic fields over the northern delta spot to allow the third flare and the second CME. (3) The ribbon separation during the fourth flare would indicate reclosing of the overlying field lines opened by the second CME. It is thus concluded that these series of flares and CMEs are interrelated to each other via magnetic reconnections between the expanding magnetic structure and the nearby magnetic fields. These results complement previous works made on this event with the suggested causal relationship among the successive eruptions.

  16. Workshop on neutron capture therapy

    SciTech Connect (OSTI)

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  17. Bad data packet capture device

    DOE Patents [OSTI]

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  18. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  19. Kentucky Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  20. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA NA NA 0 0 2007-2014 Repressuring NA NA NA NA 0 0 2007-2014 Vented and Flared NA NA NA NA 0 0 2007-2014 Nonhydrocarbon Gases Removed NA NA NA NA 0 0 2007-2014 Marketed Production NA NA NA NA 9 9 1967-2014 Dry Production NA NA NA NA 9 9

  1. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  2. Virginia Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA

  3. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1996-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production NA NA NA NA NA NA

  4. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 2006-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 43 43 34 44 32 20 1967-2014 Dry Production 43 43 34 44 32 20

  5. Second Phase of Innovative Technology Project to Capture CO2, Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Launched in Ohio | Department of Energy Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful

  6. Measurement of the rate of stellar tidal disruption flares

    SciTech Connect (OSTI)

    Van Velzen, Sjoert

    2014-09-01

    We report an observational estimate of the rate of stellar tidal disruption flares (TDFs) in inactive galaxies based on a successful search for these events among transients in galaxies using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82). This search yielded 186 nuclear flares in galaxies, 2 of which are excellent TDF candidates. Because of the systematic nature of the search, the very large number of galaxies, the long time of observation, and the fact that non-TDFs were excluded without resorting to assumptions about TDF characteristics, this study provides an unparalleled opportunity to measure the TDF rate. To compute the rate of optical stellar tidal disruption events, we simulate our entire pipeline to obtain the efficiency of detection. The rate depends on the light curves of TDFs, which are presently still poorly constrained. Using only the observed part of the SDSS light curves gives a model-independent upper limit to the optical TDF rate, N-dot <210{sup ?4} yr{sup ?1} galaxy{sup ?1} (90% CL), under the assumption that the SDSS TDFs are representative examples. We develop three empirical models of the light curves based on the two SDSS light curves and two more recent and better-sampled Pan-STARRS TDF light curves, leading to our best estimate of the rate: N-dot {sub TDF}=(1.5--2.0){sub ?1.3}{sup +2.7}10{sup ?5} yr{sup ?1} galaxy{sup ?1}. We explore the modeling uncertainties by considering two theoretically motivated light curve models, as well as two different relationships between black hole mass and galaxy luminosity, and two different treatments of the cutoff in the visibility of TDFs at large M {sub BH}. From this we conclude that these sources of uncertainty are not significantly larger than the statistical ones. Our results are applicable for galaxies hosting black holes with mass in the range of a few 10{sup 6}-10{sup 8} M {sub ?}, and translates to a volumetric TDF rate of (4-8) 10{sup 80.4} yr{sup 1} Mpc{sup 3}, with the statistical uncertainty in the exponent.

  7. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gas Research Portfolio Reports Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)/National Energy Technology Laboratory (NETL) is releasing a series of nine Research Portfolio Reports to provide a snapshot of results and accomplishments completed to-date for active and completed projects under three focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. The reports capture research conducted over the last ten years

  8. Carbon Capture and Storage | Department of Energy

    Energy Savers [EERE]

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. PDF icon Fossil Energy Research Benefits - Carbon Capture and Storage More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 A Legacy of Benefit Fossil Energy FY 2013 Budget-in-Brief

  9. Onset of electron acceleration in a flare loop

    SciTech Connect (OSTI)

    Sharykin, Ivan; Liu, Siming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Fletcher, Lyndsay, E-mail: liusm@pmo.ac.cn [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-09-20

    We carried out a detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 2002 August 12, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keV. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers the central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution, indicating that the electron accelerator is in a quasi-steady state, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region.

  10. Novel CO{sub 2} capture. Final CRADA Report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2009-11-30

    The goal of this work was to use electrochemically driven pH control to develop a second generation, enzyme-based contained liquid membrane (CLM) permeator to extract CO{sub 2} from a variety of coal-based flue gas streams more efficiently than does the CLM current design, while achieving performance coincident with DOE targets of less than 45% Cost of electricity (COE) in 2007 and less than 20% COE in 2012. Central to this goal the CLM would be alkaline (>pH 8) at the feed gas side and acid (capture and release using Argonne's resin-wafer electrode ionization (RW-EDI) system integrated with Carbozyme's carbonic anhydrase (CA) enzyme. Argonne developed RW-EDI for pH controlled desalination of process streams (e.g. Patents 7,452,920 & 7,306,934). In the current work, Argonne captured CO{sub 2} as HCO{sub 3}{sup -} and released it as CO{sub 2}. The goal is to both capture CO{sub 2} from a simulated flue gas stream and release it within the DOE targets for increase in COE. Initial performance results indicate that the 2012 COE targets are achievable with the developed technology. The design is subject to patent-hold. This task was funded in an exploratory phase, so no process optimization was attempted. Argonne believes that with optimization this performance could be significantly improved.

  11. Carbon Capture Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Carbon Capture Corporation Address: 7825 Fay Avenue Place: La Jolla, California Zip: 92037 Region: Southern CA Area Sector: Carbon...

  12. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December...

  13. Breakthrough Industrial Carbon Capture, Utilization and Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... not only can Carbon Capture and Storage (CCS) technology help industry make fossil ... to pursue the environmental benefits of CCS. To learn more about CCUS, watch the short ...

  14. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 January 7, 2016 - 11:34am Addthis Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be hard to understand. This infographic breaks it down for you. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but

  15. Exploring the blazar zone in high-energy flares of FSRQs

    SciTech Connect (OSTI)

    Pacciani, L.; Donnarumma, I.; Tavecchio, F.; Stamerra, A.; Carrasco, L.; Recillas, E.; Porras, A.; Uemura, M.

    2014-07-20

    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SED of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.

  16. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect (OSTI)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup 1}) to a GeV nucleon{sup 1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for ?-particle reactions where only crude estimates were possible. Here we re-evaluate the ?-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but ?-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  17. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    SciTech Connect (OSTI)

    Guidoni, S. E.; Plowman, J. E.

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  18. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect (OSTI)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 to 4550 acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ?0.''5 (10{sup 15}cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  19. CONTINUUM CONTRIBUTIONS TO THE SDO/AIA PASSBANDS DURING SOLAR FLARES

    SciTech Connect (OSTI)

    Milligan, Ryan O.; McElroy, Sarah A.

    2013-11-01

    Data from the Multiple EUV Grating Spectrograph component of the Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) were used to quantify the contribution of continuum emission to each of the extreme ultraviolet (EUV) channels of the Atmospheric Imaging Assembly (AIA), also on SDO, during an X-class solar flare that occurred on 2011 February 15. Both the pre-flare-subtracted EVE spectra and fits to the associated free-free continuum were convolved with the AIA response functions of the seven EUV passbands at 10 s cadence throughout the course of the flare. It was found that 10%-25% of the total emission in the 94 , 131 , 193 , and 335 passbands throughout the main phase of the flare was due to free-free emission. Reliable measurements could not be made for the 171 channel, while the continuum contribution to the 304 channel was negligible due to the presence of the strong He II emission line. Up to 50% of the emission in the 211 channel was found to be due to free-free emission around the peak of the flare, while an additional 20% was due to the recombination continuum of He II. The analysis was extended to a number of M- and X-class flares and it was found that the level of free-free emission contributing to both the 171 and 211 passbands increased with increasing GOES class. These results suggest that the amount of continuum emission that contributes to AIA observations during flares is more significant than stated in previous studies which used synthetic, rather than observed, spectra. These findings highlight the importance of spectroscopic observations carried out in conjunction with those from imaging instruments so that the data are interpreted correctly.

  20. Stable benzimidazole-incorporated porous polymer network for carbon capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with high efficiency and low cost | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost Previous Next List Muwei Zhang, Zachary Perry, Jinhee Park, Hong-Cai Zhou, Polymer 55, 335-339 (2014) DOI: 10.1016/j.polymer.2013.09.029 1-s2.0-S0032386113008951-fx1.jpg Abstract: Porous Polymer Networks (PPNs) are an emerging category of advanced porous materials

  1. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic Frameworks Previous Next List D. Wu, T. M. McDonald, Z. Quan, S. V. Ushakov, P. Zhang, J. R. Long and A. Navrotsky, J. Mater. Chem. A, 3, 4248-4254 (2015) DOI: 10.1039/C4TA06496H GA Abstract: For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as

  2. A hybrid absorption-adsorption method to efficiently capture carbon |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome hybrid absorption-adsorption method to efficiently capture carbon Previous Next List Huang Liu, Bei Liu, Li-Chiang Lin, Guangjin Chen, Yuqing Wu, Jin Wang, Xueteng Gao, Yining Lv, Yong Pan, Xiaoxin Zhang, Xianren Zhang, Lanying Yang, Changyu Sun, Berend Smit & Wenchuan Wang, Nature Communications 5, 5147 (2014) DOI: 10.1038/ncomms6147 ncomms6147-f6 Abstract: Removal of carbon dioxide is an essential step in

  3. Ammonia Capture in Porous Organic Polymers Densely Functionalized with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brønsted Acid Groups | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups Previous Next List Jeffrey F. Van Humbeck, Thomas M. McDonald, Xiaofei Jing, Brian M. Wiers, Guangshan Zhu, and Jeffrey R. Long, J. Am. Chem. Soc., 136, 2432-2440 (2014) DOI: 10.1021/ja4105478 Abstract Image Abstract: The elimination of specific environmental and industrial contaminants, which

  4. Ranking low cost sorbents for mercury capture from simulated flue gases

    SciTech Connect (OSTI)

    H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-12-15

    Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

  5. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect (OSTI)

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Sm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ?11MK in the core. RHESSI images reveal a large (?100 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  6. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect (OSTI)

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  7. Carbon Capture and Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. PDF icon Fossil Energy Research Benefits - Carbon Capture and Storage More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 A Legacy of Benefit Fossil Energy FY 2013 Budget-in-Brief

  8. U.S. Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 12,000 10,000 10,000 10,000 11,000 9,000 9,000 10,000 12,000 10,000 10,000 11,000 1981 10,000 10,000 9,000 8,000 7,000 8,000 9,000 10,000 7,000 7,000 6,000

  9. U.S. Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 392,528 526,159 649,106 677,311 1940's 655,967 630,212 626,782 684,115 1,010,285 896,208 1,102,033 1,067,938 810,178 853,884 1950's 801,044 793,186 848,608 810,276 723,567 773,639 864,334 809,148 633,412 571,048 1960's 562,877 523,533 425,629 383,408 341,853 319,143 375,695 489,877 516,508 525,750 1970's 489,460 284,561 248,119 248,292 169,381 133,913 131,930 136,807 153,350 167,019 1980's 125,451 98,017 93,365

  10. CLUSTERS OF SMALL ERUPTIVE FLARES PRODUCED BY MAGNETIC RECONNECTION IN THE SUN

    SciTech Connect (OSTI)

    Archontis, V.; Hansteen, V.

    2014-06-10

    We report on the formation of small solar flares produced by patchy magnetic reconnection between interacting magnetic loops. A three-dimensional (3D) magnetohydrodynamic (MHD) numerical experiment was performed, where a uniform magnetic flux sheet was injected into a fully developed convective layer. The gradual emergence of the field into the solar atmosphere results in a network of magnetic loops, which interact dynamically forming current layers at their interfaces. The formation and ejection of plasmoids out of the current layers leads to patchy reconnection and the spontaneous formation of several small (size ?1-2 Mm) flares. We find that these flares are short-lived (30 s3 minutes) bursts of energy in the range O(10{sup 25}-10{sup 27}) erg, which is basically the nanoflare-microflare range. Their persistent formation and co-operative action and evolution leads to recurrent emission of fast EUV/X-ray jets and considerable plasma heating in the active corona.

  11. Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?

    SciTech Connect (OSTI)

    Cerutti, B.; Werner, G. R. Uzdensky, D. A.; Begelman, M. C.

    2014-05-15

    The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.

  12. Assessing out-of-band flare effects at the wafer level for EUV lithography

    SciTech Connect (OSTI)

    George, Simi; Naulleau, Patrick; Kemp, Charles; Denham, Paul; Rekawa, Senajith

    2010-01-25

    To accurately estimate the flare contribution from the out-of-band (OOB), the integration of a DUV source into the SEMATECH Berkeley 0.3-NA Micro-field Exposure tool is proposed, enabling precisely controlled exposures along with the EUV patterning of resists in vacuum. First measurements evaluating the impact of bandwidth selected exposures with a table-top set-up and subsequent EUV patterning show significant impact on line-edge roughness and process performance. We outline a simulation-based method for computing the effective flare from resist sensitive wavelengths as a function of mask pattern types and sizes. This simulation method is benchmarked against measured OOB flare measurements and the results obtained are in agreement.

  13. MAGNETIC ENERGY PARTITION BETWEEN THE CORONAL MASS EJECTION AND FLARE FROM AR 11283

    SciTech Connect (OSTI)

    Feng, L.; Li, Y. P.; Gan, W. Q.; Wiegelmann, T.; Inhester, B.; Su, Y.; Sun, X. D.

    2013-03-01

    On 2011 September 6, an X-class flare and a halo coronal mass ejection (CME) were observed from Earth erupting from the same active region AR 11283. The magnetic energy partition between them has been investigated. SDO/HMI vector magnetograms were used to obtain the coronal magnetic field using the nonlinear force-free field (NLFFF) extrapolation method. The free magnetic energies before and after the flare were calculated to estimate the released energy available to power the flare and the CME. For the flare energetics, thermal and nonthermal energies were derived using the RHESSI and GOES data. To obtain the radiative output, SDO/EVE data in the 0.1-37 nm waveband were utilized. We have reconstructed the three-dimensional (3D) periphery of the CME from the coronagraph images observed by STEREO-A, B, and SOHO. The mass calculations were then based on a more precise Thomson-scattering geometry. The subsequent estimate of the kinetic and potential energies of the CME took advantage of the more accurate mass, and the height and speed in a 3D frame. The released free magnetic energy resulting from the NLFFF model is about 6.4 Multiplication-Sign 10{sup 31} erg, which has a possible upper limit of 1.8 Multiplication-Sign 10{sup 32} erg. The thermal and nonthermal energies are lower than the radiative output of 2.2 Multiplication-Sign 10{sup 31} erg from SDO/EVE for this event. The total radiation covering the whole solar spectrum is probably a few times larger. The sum of the kinetic and potential energy of the CME could go up to 6.5 Multiplication-Sign 10{sup 31} erg. Therefore, the free energy is able to power the flare and the CME in AR 11283. Within the uncertainty, the flare and the CME may consume a similar amount of free energy.

  14. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    SciTech Connect (OSTI)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org

    2012-10-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t {sup -5/3} decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of {approx}10{sup 8} M{sub Sun }. At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  15. RHESSI AND TRACE OBSERVATIONS OF MULTIPLE FLARE ACTIVITY IN AR 10656 AND ASSOCIATED FILAMENT ERUPTION

    SciTech Connect (OSTI)

    Joshi, Bhuwan; Kushwaha, Upendra; Cho, K.-S.; Veronig, Astrid M.

    2013-07-01

    We present Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Transition Region and Coronal Explorer (TRACE) observations of multiple flare activity that occurred in the NOAA active region 10656 over a period of 2 hr on 2004 August 18. Out of four successive flares, three were class C events, and the final event was a major X1.8 solar eruptive flare. The activities during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by three localized episodes of energy release occurring in the vicinity of a filament that produces intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of {approx}12 km s{sup -1}. The filament eruption is accompanied by an X1.8 flare, during which multiple hard X-ray (HXR) bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts, which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied by very high plasma temperatures of {approx}31 MK, followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in the current sheet below the erupting prominence. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play an important role in destabilizing the active-region filament through the tether-cutting process, leading to large-scale eruption and X-class flare.

  16. THE 2014 MARCH 29 X-FLARE: SUBARCSECOND RESOLUTION OBSERVATIONS OF Fe XXI ?1354.1

    SciTech Connect (OSTI)

    Young, Peter R.; Tian, Hui; Jaeggli, Sarah

    2015-02-01

    The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe ?10 MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI ?1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75s) and sometimes offset by up to 1''. 100-200 km s{sup 1} blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of <2'', and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least sixminutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly 131 filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at ?1'', and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically <10 km s{sup 1}, and mean non-thermal motions fall from 43 km s{sup 1} at the flare peak to 26 km s{sup 1} six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of 1354.106 0.023 .

  17. 2015 CO2 Capture Technology Meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Capture Technology Meeting 2015 NETL CO2 CAPTURE TECHNOLOGY MEETING June 23-26, 2015 Meeting Summary Previous Proceedings 2014: NETL CO2 Capture Technology Meeting 2013: NETL CO2 Capture Technology Meeting 2012: NETL CO2 Capture Technology Meeting Proceedings of the 2015 NETL CO2 Capture Technology Meeting Table of Contents Presentations Tuesday, June 23, 2015 Opening/Overview Systems Studies and Modeling Post-Combustion Membrane-Based Capture Wednesday, June 24, 2015 Post-Combustion

  18. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  19. Isotope separation by photoselective dissociative electron capture

    DOE Patents [OSTI]

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  20. Gamma-Ray Observations of a Giant Flare From the Magnetar Sgr 1806-20

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Gamma-Ray Observations of a Giant Flare From the Magnetar Sgr 1806-20 Citation Details In-Document Search Title: Gamma-Ray Observations of a Giant Flare From the Magnetar Sgr 1806-20 Magnetars comprise two classes of rotating neutron stars (Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars), whose X-ray emission is powered by an ultrastrong magnetic field, B {approx} 10{sup 15} G. Occasionally SGRs enter into active episodes producing many short

  1. 1 Hz FLARING IN SAX J1808.4-3658: FLOW INSTABILITIES NEAR THE PROPELLER STAGE

    SciTech Connect (OSTI)

    Patruno, Alessandro; Watts, Anna; Klein Wolt, Marc; Wijnands, Rudy; Van der Klis, Michiel

    2009-12-20

    We present a simultaneous periodic and aperiodic timing study of the accreting millisecond X-ray pulsar SAX J1808.4-3658. We analyze five outbursts of the source and for the first time provide a full and systematic investigation of the enigmatic phenomenon of the 1 Hz flares observed during the final stages of some of the outbursts. We show that links between pulsations and 1 Hz flares might exist, and suggest that they are related with hydrodynamic disk instabilities that are triggered close to the disk-magnetosphere boundary layer when the system is entering the propeller regime.

  2. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  3. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  4. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  5. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    -- is a process that captures carbon dioxide emissions from sources like coal-fired power plants and either reuses or stores it so it will not enter the atmosphere. We'll...

  6. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  7. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is transported to

  8. BISICLES Captures Details of Retreating Antarctic Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 Satellite observations suggest that the shrinking West Antarctic ice sheet is contributing to global sea level rise. But until recently, scientists could not accurately model the physical processes driving retreat of the ice sheet. Now, a new ice sheet model-called Berkeley-ISICLES (BISICLES)-is shedding light on these details.

  9. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  10. THE 5 GHz ARECIBO SEARCH FOR RADIO FLARES FROM ULTRACOOL DWARFS

    SciTech Connect (OSTI)

    Route, Matthew; Wolszczan, Alexander E-mail: alex@astro.psu.edu

    2013-08-10

    We present the results of a 4.75 GHz survey of 33 brown dwarfs and one young exoplanetary system for flaring radio emission, conducted with the 305 m Arecibo radio telescope. The goal of this program was to detect and characterize the magnetic fields of objects cooler than spectral type L3.5, the coolest brown dwarf detected prior to our survey. We have also attempted to detect flaring radio emission from the HR 8799 planetary system, guided by theoretical work indicating that hot, massive exoplanets may have strong magnetic fields capable of generating radio emission at GHz frequencies. We have detected and confirmed radio flares from the T6.5 dwarf 2MASS J10475385+2124234. This detection dramatically extends the temperature range over which brown dwarfs appear to be at least sporadic radio-emitters, from 1900 K (L3.5) down to 900 K (T6.5). It also demonstrates that the utility of radio detection as a unique tool to study the magnetic fields of substellar objects extends to the coolest dwarfs, and, plausibly to hot, massive exoplanets. We have also identified a single, 3.6{sigma} flare from the L1 dwarf, 2MASS J1439284+192915. This detection is tentative and requires confirmation by additional monitoring observations.

  11. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    SciTech Connect (OSTI)

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-08-10

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  12. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    SciTech Connect (OSTI)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  13. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    SciTech Connect (OSTI)

    Bobra, M. G.; Couvidat, S.

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  14. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  15. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  16. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  17. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture process and confirmed the technical feasibility in bench-scale experiments. In these tests, we did not observe any CO breakthrough both during adsorption and desorption steps indicating that there is complete conversion of CO to CO{sub 2} and H{sub 2}. The overall CO conversions above 90 percent were observed. The sorbent achieved a total CO{sub 2} loading of 7.82 percent wt. of which 5.68 percent is from conversion of CO into CO{sub 2}. The results of the system analysis suggest that the TDA combined shift and high temperature PSA-based Warm Gas Clean-up technology can make a substantial improvement in the IGCC plant thermal performance for a plant designed to achieve near zero emissions (including greater than 90 percent carbon capture). The capital expenses are also expected to be lower than those of Selexol. The higher net plant efficiency and lower capital and operating costs result in substantial reduction in the COE for the IGCC plant equipped with the TDA combined shift and high temperature PSA-based carbon capture system.

  18. THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES

    SciTech Connect (OSTI)

    Karpen, J. T.; Antiochos, S. K.; DeVore, C. R.

    2012-11-20

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  19. Carbon Capture Technology | Open Energy Information

    Open Energy Info (EERE)

    power plants contains 10-12 percent CO2 by volume, while flue gas from natural gas combined cycle plants contains only 3-6 percent CO2. For effective carbon...

  20. LanzaTech- Capturing Carbon. Fueling Growth.

    SciTech Connect (OSTI)

    2014-03-07

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  1. 2011 Department of Energy Investments in Carbon Capture Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon...

  2. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to maintain integrity of turbine components. May 10, 2013 Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Captured...

  3. Layered solid sorbents for carbon dioxide capture (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Layered solid sorbents for carbon dioxide capture Citation Details In-Document Search Title: Layered solid sorbents for carbon dioxide capture You are accessing a document from...

  4. co2 capture meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies

  5. The Water-Energy Nexus: Capturing the Benefits of Integrated...

    Energy Savers [EERE]

    The Water-Energy Nexus: Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners The Water-Energy Nexus: Capturing the Benefits ...

  6. Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...

    Open Energy Info (EERE)

    Grangemouth Advanced CO2 Capture Project GRACE Jump to: navigation, search Name: Grangemouth Advanced CO2 Capture Project (GRACE) Place: United Kingdom Sector: Carbon Product:...

  7. Capturing Energy Upgrades in the Real Estate Transaction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing Energy Upgrades in the Real Estate Transaction Capturing Energy Upgrades in the Real Estate Transaction Because green building techniques and products may impact the ...

  8. Report to the President on Capturing Domestic Competitive Advantage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced...

  9. Carbon Capture, Transport and Storage Regulatory Test Exercise...

    Open Energy Info (EERE)

    Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory...

  10. Methods of capturing and immobilizing radioactive nuclei with...

    Office of Scientific and Technical Information (OSTI)

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials Citation Details In-Document Search Title: Methods of capturing and...

  11. Pre-Combustion Carbon Capture Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification...

  12. Theoretical Synthesis of Mixed Materials for CO2 Capture Applications...

    Office of Scientific and Technical Information (OSTI)

    Theoretical Synthesis of Mixed Materials for CO2 Capture Applications Citation Details In-Document Search Title: Theoretical Synthesis of Mixed Materials for CO2 Capture...

  13. Secretary Chu Announces $3 Billion Investment for Carbon Capture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces 3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis ...

  14. NETL emphasizes CO{sub 2} capture from existing plants

    SciTech Connect (OSTI)

    2008-04-01

    This paper gives brief description of several carbon dioxide capture projects that were directed toward a broader range of capture technologies.

  15. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  16. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

    SciTech Connect (OSTI)

    Nelson, Thomas; Coleman, Luke; Anderson, Matthew; Gupta, Raghubir; Herr, Joshua; Kalluri, Ranjeeth; Pavani, Maruthi

    2009-12-31

    The objective of this research and development (R&D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with <35% increase in the cost of electrictiy (ICOE).

  17. IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE Citation Details In-Document Search Title: IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense

  18. Regenerable sorbent technique for capturing CO.sub.2 using immobilized

    Office of Scientific and Technical Information (OSTI)

    amine sorbents (Patent) | SciTech Connect Patent: Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents Citation Details In-Document Search Title: Regenerable sorbent technique for capturing CO.sub.2 using immobilized amine sorbents The disclosure provides a CO.sub.2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a

  19. Copper clusters capture and convert carbon dioxide to make fuel | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Copper clusters capture and convert carbon dioxide to make fuel By Payal Marathe * August 6, 2015 Tweet EmailPrint Capture and convert-this is the motto of carbon dioxide reduction, a process that stops the greenhouse gas before it escapes from chimneys and power plants into the atmosphere and instead turns it into a useful product. One possible end product is methanol, a liquid fuel and the focus of a recent study conducted at the U.S. Department of Energy's (DOE)

  20. Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks Previous Next List Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, and Hong-Cai Zhou, J. Phys. Chem. C, 2013, 117 (8), pp 4057-4061, DOI: 10.1021/jp311512q Abstract Image Abstract: Amine-grafted porous polymer networks were investigated for CO2 capture directly from air (400 ppm CO2, 78.96% N2, and 21% O2). Under these

  1. A comparison of the CO2 capture characteristics of zeolites and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metal-organic frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks Previous Next List Rajamani Krishna, Jasper M. van Baten, Sep. Purif. Technol., 87, 120-126 (2012) DOI: 10.1016/j.seppur.2011.11.031 Full-size image (58 K) Abstract: Considerable progress has been made in recent years on the development of novel adsorbents for CO2 capture. Pressure swing adsorption

  2. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture. One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  3. Thermal Neutron Capture y's (CapGam)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture.  One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %Iγ (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

  4. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  5. Rule of capture: government and the oil industry

    SciTech Connect (OSTI)

    Tomain, J.P.

    1984-01-01

    In his analysis of the oil industry-government relationship, the author examines the question of whether Big Oil is really bad and, if so, whether the government should leave it alone because it is unmanageable or regulate it for that reason. Responding to Robert Sherrill's The Oil Follies of 1970-1980 and its emphasis on conspiracy and betrayal, he focuses on the replacement of the Rule of Capture, which promoted the production of natural resources, with regulations restricting oil and gas production. He concludes that Big Government has not managed Big Oil well, but proposes an approach based on a series of workable projects instead of antitrust review. These initiatives could include efforts for horizontal and vertical divestiture, restrictions on tax divestiture, regulating cross-ownership, and a reworking of banking and tax laws.

  6. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  7. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  8. Systematic muon capture rates in PQRPA

    SciTech Connect (OSTI)

    Samana, A. R.; Sande, D.; Krmpoti?, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  9. Real Time Telemetry Data Capture and Storage

    Energy Science and Technology Software Center (OSTI)

    1997-05-14

    This program is used to capture telemetry data from remote instrumentation systems. The data can be captured at the rate of 1M bit per second. The data can come in one of several formats, NRZ, RZ, and Bi-Phase. The DECOM software takes the serial data stream and locks on to a unique code word. By tracking the code word the software can strip out the information. Thus the program can display the incoming data realmore »time while saving the data to disk.« less

  10. Weigh-In-Motion Waveform Capture Systems

    Energy Science and Technology Software Center (OSTI)

    2007-09-01

    Input data is generated from multiple weight sensor signals embedded in a thin weighing pad. This information is then reduced to total weight and position of a wheel rolling over the pad. This produces a signal which includes both the wheel weight and it inertial effects due to vehicle bounce, engine noise, and other mechanical vibrations. In order to extract accurate weight information of the wheel from the extraneous information, it is necessary to firstmorecapture the waveform and then perform a form of modal analysis. This program captures the above data and formats it into a useable form for analysis.less

  11. Screening of low cost sorbents for arsenic and mercury capture in gasification systems

    SciTech Connect (OSTI)

    Cedric Charpenteau; Revata Seneviratne; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-09-15

    A novel laboratory-scale fixed-bed reactor has been developed to investigate trace metal capture on selected sorbents for cleaning the hot raw gas in Integrated Gasification Combined Cycle (IGCC) power plants. The new reactor design is presented, together with initial results for mercury and arsenic capture on five sorbents. It was expected that the capture efficiency of sorbents would decrease with increasing temperature. However, a commercial activated carbon, Norit Darco 'Hg', and a pyrolysis char prepared from scrap tire rubber exhibit similar efficiencies for arsenic at 200 and at 400{sup o}C (70% and 50%, respectively). Meta-kaolinite and fly ash both exhibit an efficiency of around 50% at 200{sup o}C, which then dropped as the test temperature was increased to 400{sup o}C. Activated scrap tire char performed better at 200{sup o}C than the pyrolysis char showing an arsenic capture capacity similar to that of commercial Norit Darco 'Hg'; however, efficiency dropped to below 40% at 400{sup o}C. These results suggest that the capture mechanism of arsenic (As4) is more complex than purely physical adsorption onto the sorbents. Certain elements within the sorbents may have significant importance for chemical adsorption, in addition to the effect of surface area, as determined by the BET method. This was indeed the case for the mercury capture efficiency for all four sorbents tested. Three of the sorbents tested retained 90% of the mercury when operated at 100{sup o}C. As the temperature increased, the efficiency of activated carbon and pyrolysis char reduced significantly. Curiously, despite having the smallest Brunauer-Emmet-Teller (BET) surface area, a pf-combustion ash was the most effective in capturing mercury over the temperature range studied. These observations suggest that the observed mercury capture was not purely physical adsorption but a combination of physical and chemical processes. 27 refs., 4 figs., 4 tabs.

  12. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  13. Industrial Carbon Capture Project Selections | Department of Energy

    Office of Environmental Management (EM)

    Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections September 2, 2010 These projects have been selected for negotiation of awards; final award amounts may vary. PDF icon Industrial Carbon Capture Project Selections More Documents & Publications ICCS_Project_Selections.pdf CCSTF - Final Report Before the Subcommittee on Energy -- House Science, Space, and Technology Committee

  14. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  15. Synthesis of optimal adsorptive carbon capture processes.

    SciTech Connect (OSTI)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  16. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  17. Capture and fission with DANCE and NEUANCE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; et al

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less

  18. Capture and fission with DANCE and NEUANCE

    SciTech Connect (OSTI)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  19. Porphyrins for boron neutron capture therapy

    DOE Patents [OSTI]

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  20. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect (OSTI)

    Howard Meyer; S.James Zhou; Yong Ding; Ben Bikson

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTIâ??s Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).

  1. SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    SciTech Connect (OSTI)

    Wang, Shuo; Liu, Chang; Deng, Na; Wang, Haimin

    2014-02-20

    The Helioseismic and Magnetic Imager provides 45s cadence intensity images and 720s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease, and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson etal. and Fisher etal. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.

  2. Slag capture and removal during laser cutting

    DOE Patents [OSTI]

    Brown, Clyde O. (Newington, CT)

    1984-05-08

    Molten metal removed from a workpiece in a laser cutting operation is blown away from the cutting point by a gas jet and collected on an electromagnet.

  3. Carbon Capture R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research

  4. Energy Department Investments in Innovative Carbon Capture Projects |

    Office of Environmental Management (EM)

    Department of Energy Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Post-Combustion CO2 Capture Technologies COMPANY CITY & STATE PROJECT TITLE DOE INVESTMENT PROJECT DESCRIPTION SRI International Menlo Park, CA CO2 Capture Using Advanced Carbon Sorbents at a Slipstream Scale Approx. $10.5 million The project team will test a CO2 sorbent capture process and conduct pilot-scale testing of the sorbent

  5. Plant-wide dynamic simulation of an IGCC plant with CO2 capture

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    To eliminate the harmful effects of greenhouse gases, especially that of CO2, future coalfired power plants need to consider the option for CO2 capture. The loss in efficiency for CO2 capture is less in an Integrated Gasification Combined Cycle (IGCC) plant compared to other conventional coal combustion processes. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. With this objective in mind, a detailed plant-wide dynamic simulation of an IGCC plant with CO2 capture has been developed. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of about 96 mol% of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. The clean syngas is sent to a gas turbine (GT) followed by a heat recovery steam generator (HRSG). The steady state results are validated with data from a commercial gasifier. A 5 % ramp increase in the flowrate of coal is introduced to study the system dynamics. To control the conversion of CO at a desired level in the WGS reactors, the steam/CO ratio is manipulated. This strategy is found to be efficient for this operating condition. In the absence of an efficient control strategy in the AGR process, the environmental emissions exceeded the limits by a great extent.

  6. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect (OSTI)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  7. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    SciTech Connect (OSTI)

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sun, Xin; Sundaresan, S.; Sahinidis, Nikolaos V.; Zitney, Stephen E.; Bhattacharyya, D.; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith; Shinn, John

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify industrial challenge problems, CCSI ensures that the simulation tools are developed for the carbon capture technologies of most relevance to industry. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories' core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI's industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI's academic participants (Carnegie Mellon University, Princeton University, West Virginia University, and Boston University) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 12, CCSI released its first set of computational tools and models. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies as well as related technologies, such as those found in the power, refining, chemicals, and gas production industries. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that provide new capabilities such as creating reduced order models (ROMs) from reacting multiphase flow simul

  8. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  9. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    SciTech Connect (OSTI)

    Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

  10. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    SciTech Connect (OSTI)

    Mossessian, George; Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2012-04-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  11. Energetic electron propagation in the decay phase of non-thermal flare emission

    SciTech Connect (OSTI)

    Huang, Jing; Yan, Yihua; Tsap, Yuri T.

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  12. An Experiment to Locate the Site of TeV Flaring in M87

    SciTech Connect (OSTI)

    Harris, D.E.; /Harvard-Smithsonian Ctr. Astrophys.; Massaro, F.; /Harvard-Smithsonian Ctr. Astrophys. /KIPAC, Menlo Park /SLAC; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Horns, D.; Raue, M.; /Hamburg U.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Wagner, S.; /Heidelberg Observ.; Colin, P.; /Munich, Max Planck Inst.; Mazin, D.; /Barcelona, IFAE; Wagner, R.; /Munich, Max Planck Inst.; Beilicke, M.; /McDonnell Ctr. Space Sci.; LeBohec, S.; Hui, M.; /Utah U.; Mukherjee, R.; /Barnard Coll.

    2012-05-18

    We describe a Chandra X-ray target-of-opportunity project designed to isolate the site of TeV flaring in the radio galaxy M87. To date, we have triggered the Chandra observations only once (2010 April) and by the time of the first of our nine observations, the TeV flare had ended. However, we found that the X-ray intensity of the unresolved nucleus was at an elevated level for our first observation. Of the more than 60 Chandra observations we have made of the M87 jet covering nine years, the nucleus was measured at a comparably high level only three times. Two of these occasions can be associated with TeV flaring, and at the time of the third event, there were no TeV monitoring activities. From the rapidity of the intensity drop of the nucleus, we infer that the size of the emitting region is of order a few light days x the unknown beaming factor; comparable to the same sort of estimate for the TeV emitting region. We also find evidence of spectral evolution in the X-ray band which seems consistent with radiative losses affecting the non-thermal population of the emitting electrons within the unresolved nucleus.

  13. MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS

    SciTech Connect (OSTI)

    Yu Cong

    2013-07-10

    We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when current sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.

  14. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    SciTech Connect (OSTI)

    Longcope, D. W.

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ? 0.38(F/?{sub co,} {sub 0}){sup 1/3}, where ?{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.

  15. PRELIMINARY CARBON DIOXIDE CAPTURE TECHNICAL AND ECONOMIC FEASIBILITY STUDY EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS) for carbon dioxide (CO2) capture and separation from coal combustionderived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technologyCapture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS)is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technologys other key component is the use of a low-cost sorbent.

  16. Probing the Mechanism of CO2 Capture in Diamine-Appended Metal-Organic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frameworks using Measured and Simulated X-ray Spectroscopy | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Probing the Mechanism of CO2 Capture in Diamine-Appended Metal-Organic Frameworks using Measured and Simulated X-ray Spectroscopy Previous Next List Drisdell, Walter S.; Poloni, Robert; McDonald, Thomas M.; Pasal, Tod A.; Wan, Liwen F.; Pemmaraju, C. Das; Vlaisavljevich, Bess; Odoh, Samuel O.; Neaton, Jeffrey B.; Long, Jeffrey R.; Prendergast, David;

  17. Understanding the effect of side groups in ionic liquids on carbon-capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties: a combined experimental and theoretical effort | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort Previous Next List Fangyong Yan, Michael Lartey, Krishnan Damodaran, Erik Albenze, Robert L. Thompson, Jihan Kim, Maciej Haranczyk, Hunaid B. Nulwala, David R. Luebke and Berend Smit, Phys. Chem. Chem. Phys., 2013,15, 3264-3272 DOI:

  18. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO{sub 2}. A capture efficiency of 85 to 95% CO{sub 2} was achieved under steady-state conditi ons. The CO{sub 2} adsorption capacity did not change significantly during the field test, as determined from the CO{sub 2} adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO{sub 2} capture using the carbon sorbent and compared with the no-CO{sub 2} capture and CO{sub 2} capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO{sub 2} capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO{sub 2}, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO{sub 2} capture. The results indicate that further long-term testing with a flue gas from a pulverized coal fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing , and the use of low-cost construction materials.

  19. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  20. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  1. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,296 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,296

  2. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  3. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 Dry Production 78,122

  4. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,497,569 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  5. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 0 1994-2014 Vented and Flared 0 0 0 0 0 0 1996-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1994-2014 Marketed Production 821 1,407 1,344 770 770 950 1979-2014 Dry Production 821 1,407 1,344 770 770 950

  6. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,765,305 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  7. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  8. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    7,593,697 7,934,689 8,143,510 8,299,472 8,663,333 8,765,412 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,734,153 1967-2014 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,520,200 1967-2014 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,408,980 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 558,854 502,020 437,367 423,413 452,150 1967-2014 Vented and Flared 39,569 35,248 47,530 76,113 81,755 1967-2014 Nonhydrocarbon Gases Removed 279,981

  9. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,353 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  10. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  11. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    752,341 754,086 731,049 739,603 714,788 720,593 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 675,828 677,396 656,702 664,386 642,094 647,308

  12. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    88,406 87,904 89,371 104,127 104,572 113,096 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 88,406 87,904 89,371 104,127 104,572 113,096 1991

  13. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    217,883 213,529 204,298 209,342 200,704 206,487 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 217,883 213,529 204,298 209,342 200,704 206,487 1989

  14. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    398,737 408,325 396,931 404,431 403,683 429,251 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 398,737 408,325 396,931 404,431 403,683 429,251

  15. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    68,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 150,260 149,361 145,208 149,375 145,622 147,684 1989

  16. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,803 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  17. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,511 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046 255,911 2007-2014 From Coalbed Wells 529,891 514,531 376,543 449,281 419,132 2002-2014 Repressuring 10,043 10,439 0 NA NA 1967-2014 Vented and Flared 1,242 1,291 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1980-2014 Marketed

  18. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  19. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  20. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  1. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,219 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  2. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  3. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,943,739 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  4. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    35,984 33,029 30,933 31,404 30,891 34,204 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1994-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 35,984 33,029 30,933 31,404 30,891 34,204

  5. New materials for methane capture from dilute and medium-concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome New materials for methane capture from dilute and medium-concentration sources Previous Next List J. Kim, A. Maiti, L.-C. Lin, J. K. Stolaroff, B. Smit, and R. D. Aines, Nature Communications 4, 1694 (2013) DOI: 10.1038/ncomms2697 thumb Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However,

  6. Data Capture Technique for High Speed Signaling

    DOE Patents [OSTI]

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  7. LOW ENERGY PROTON CAPTURE STUDY OF THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOW ENERGY PROTON CAPTURE STUDY OF THE 14 N(p, γ) 15 O REACTION Stephen Michael Daigle A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Depart- ment of Physics and Astronomy. Chapel Hill 2013 Approved by: Arthur E. Champagne Gerald Cecil Jonathan Engel Reyco Henning Christian Iliadis c 2013 Stephen Michael Daigle ALL RIGHTS RESERVED ii ABSTRACT Stephen Michael

  8. ON THE FLARE-INDUCED SEISMICITY IN THE ACTIVE REGION NOAA 10930 AND RELATED ENHANCEMENT OF GLOBAL WAVES IN THE SUN

    SciTech Connect (OSTI)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; Garcia, R. A. E-mail: pvk@prl.res.in E-mail: tiwari@mps.mpg.de

    2011-12-10

    A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <{nu} < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <{nu} < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post-flare enhancements in the high-frequency global velocity oscillations in the Sun, as evident from the wavelet power spectrum and the corresponding scale-average variance. The present observations of the flare-induced seismic signals in the active region in context of the driving force are different as compared to previous reports on such cases. We also find indications of a connection between flare-induced localized seismic signals and the excitation of global high-frequency oscillations in the Sun.

  9. Capturing the benefits of distributed generation

    SciTech Connect (OSTI)

    Coles, L.R.

    1999-11-01

    Existing and future distributed generation (DG) can provide significant benefits to customers, utilities and other service providers. For the customer, these benefits could include improved reliability, better power quality and lower costs. For the utility distribution company, these benefits could include deferral of costly distribution upgrades and local voltage support. For the region`s generation and transmission suppliers, DG can provide dependable capacity supply, relief from transmission constraints, and ancillary transmission services such as reactive supply and supplemental reserves. The promise of DG technologies is strong. The technical hurdles to capturing these benefits are being met with improved generators and with enhanced command, control, and communications technologies. However, institutional and regulatory hurdles to capturing these distributed generation benefits appear to be significant. Restructuring for retail access and the delamination of utilities into wires companies and generation companies may make it difficult to capture many of the multiple benefits of DG. Policy-makers should be aware of these factors and strive to craft policies and rules that give DG a fair change to deliver these strong benefits.

  10. Metazen – metadata capture for metagenomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bischof, Jared; Harrison, Travis; Paczian, Tobias; Glass, Elizabeth; Wilke, Andreas; Meyer, Folker

    2014-12-08

    Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less

  11. Photosphere emission in the X-ray flares of swift gamma-ray bursts and implications for the fireball properties

    SciTech Connect (OSTI)

    Peng, Fang-Kun; Liang, En-Wei; Xi, Shao-Qiang; Lu, Rui-Jing; Zhang, Bing [Guangxi Key Laboratory for Relativistic Astrophysics, the Department of Physics, Guangxi University, Nanning 530004 (China); Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Hou, Shu-Jin [Institute of Physics and Electronic Engineering, Nanyang Normal College, Nanyang 473061 (China); Zhang, Jin, E-mail: lew@gxu.edu.cn, E-mail: xywang@nju.edu.cn, E-mail: zhang@physics.unlv.edu [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    X-ray flares of gamma-ray bursts (GRBs) are usually observed in the soft X-ray range and the spectral coverage is limited. In this paper, we present an analysis of 32 GRB X-ray flares that are simultaneously observed by both Burst Alert Telescope and X-Ray Telescope on board the Swift mission, so that a joint spectral analysis with a wider spectral coverage is possible. Our results show that the joint spectra of 19 flares are fitted with the absorbed single power law or the Band function models. More interestingly, the joint spectra of the other 13 X-ray flares are fitted with the absorbed single power-law model plus a blackbody component. Phenomenally, the observed spectra of these 13 flares are analogous to several GRBs with a thermal component, but only with a much lower temperature of kT = 1 ? 3 keV. Assuming that the thermal emission is the photosphere emission of the GRB fireball, we derive the fireball properties of the 13 flares that have redshift measurements, such as the bulk Lorentz factor ?{sub ph} of the outflow. The derived ?{sub ph} range from 50 to 150 and a relation of ?{sub ph} to the thermal emission luminosity is found. It is consistent with the ?{sub 0} L {sub iso} relations that are derived for the prompt gamma-ray emission. We discuss the physical implications of these results within the content of jet composition and the radiation mechanism of GRBs and X-ray flares.

  12. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  13. Speeding Up Zeolite Evaluation for Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the center of this periodic structure is a cavity that might be a good candidate for adsorption of a gas such as carbon dioxide. The seven small red areas at the corners (plus the...

  14. A2BE Carbon Capture LLC | Open Energy Information

    Open Energy Info (EERE)

    Logo: A2BE Carbon Capture LLC Name: A2BE Carbon Capture LLC Address: 2301 Panorama Ave Place: Boulder, Colorado Zip: 80304 Region: Rockies Area Sector: Biofuels Product:...

  15. Energy Department Project Captures and Stores more than One Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new carbon-capture units and central co-gen and CO2 product compressor. | Photo ... new carbon-capture units and central co-gen and CO2 product compressor. | Photo ...

  16. CO2 Capture Poject CCP | Open Energy Information

    Open Energy Info (EERE)

    CO2 Capture Poject CCP Jump to: navigation, search Name: CO2 Capture Poject (CCP) Place: United Kingdom Sector: Carbon Product: CCP is a partnership of energy companies and...

  17. Capturing the Sun, Creating a Clean Energy Future (Brochure)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean ...

  18. Models from Big Molecules Captured in a Flash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models from Big Molecules Captured in a Flash Models from Big Molecules Captured in a Flash Print Sunday, 26 May 2013 00:00 The structures of most of the two million proteins in...

  19. co2 capture meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Processes for Advanced Carbon Capture Technologies (IMPACCT) PDF-1.55MB Karma Sawyer, U.S. Department of Energy, ARPA-e EFRC-NETL Research on Carbon Capture and...

  20. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  1. Secretary Moniz Tours Kemper Carbon Capture and Storage Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Addthis 1 of 5 A group including U.S. Secretary of Energy Ernest J. Moniz and Mississippi Gov. Phil Bryant tours the Kemper carbon capture and storage facility in Liberty, Mississippi, on Friday, Nov. 8. Kemper is the largest carbon capture and storage facility in the United States. | Photo Copyright 2013 Southern Company. 2 of 5 Southern

  2. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Energy Savers [EERE]

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  3. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Environmental Management (EM)

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  4. DOE Selects 16 Transformational Carbon Capture Technologies Projects for

    Office of Environmental Management (EM)

    Funding | Department of Energy 16 Transformational Carbon Capture Technologies Projects for Funding DOE Selects 16 Transformational Carbon Capture Technologies Projects for Funding August 13, 2015 - 9:59am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected 16 projects to receive funding through NETL's Carbon Capture Program. The program funds development and testing of transformational carbon dioxide (CO2) capture systems for new and existing

  5. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  6. Efficient Regeneration of Physical and Chemical Solvents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Tande, Brian; Seames, Wayne; Benson, Steve

    2013-05-31

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO{sub 2}) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO{sub 2} from flue gas) and a physical solvent (typical for pre- combustion capture of CO{sub 2} from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO{sub 2} from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO{sub 2} flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO{sub 2} permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO{sub 2} in these systems is low less than 2% for both chemical and physical solvents primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  7. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  8. A flare observed in coronal, transition region, and helium I 10830 emissions

    SciTech Connect (OSTI)

    Zeng, Zhicheng; Cao, Wenda; Qiu, Jiong; Judge, Philip G.

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 ) and He I 10830 narrow band (bandpass: 0.5 , centered 0.25 to the blue). We analyze the spatio-temporal behavior of the He I 10830 data, which were obtained over a 90''90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  9. OFF-SITE RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING, PHASE I11

    Office of Legacy Management (LM)

    RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING, PHASE I11 F i.EMSL-LV-539-8 c by Monitoring Operations D i v i s i o n Environmental M o n i t o r i n g and Support Laboratory U. S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada Published November 1976 T h i s s u r v e i 1 lance performed under a Memorandum o f Understanding No. AT( 26-1 )-539 f o r t h e U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION , I 1 DISCLAIMER T h i s report was prepared a s a n account of work

  10. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.

  11. Los Alamos devices capture 'Oscars of Invention' awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos devices capture 'Oscars of Invention' awards Los Alamos devices capture 'Oscars of Invention' awards Safire oil-well measurement and AWS laser-based spectrometer for materials inspection capture R&D Magazine's "R&D 100s" July 3, 2014 Los Alamos devices capture 'Oscars of Invention' awards Safire oil-well measurement and AWS laser-based spectrometer for materials inspection capture R&D Magazine's "R&D 100s" Contact Nancy Ambrosiano Communications

  12. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  13. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect (OSTI)

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using the 2-bed configuration with recirculation in both beds was 65-70% with a high flue gas CO₂ loading (~7%) and up to 85% with a low flue gas CO₂ loading (~4%). A sorbent regenerator system consisting of a pre-heater, desorber, and cooler is used to heat the CO₂-rich sorbent with direct and indirect steam producing a nearly 100% pure stream of CO₂. Parametric testing of the regenerator system demonstrated the impact of process conditions on both desorption rate and the heat of regeneration. Clear evidence of the use of specific process conditions that lower the overall energy of desorption was identified. This observation validates measurements made at the laboratory-scale. Several longer-term continuous tests were conducted to evaluate the performance of the sorbent/process as a function of time. Using a 2-bed configuration, sustained capture efficiency of 40-60% with a high flue gas CO₂ loading (~8%) and 70-80% with a low flue gas CO₂ loading (~4%) were achieved. However, sorbent working capacity was found to be considerably lower than laboratory-scale measurements. The low working capacity is attributed to insufficient sorbent/gas contact time in the adsorber. Sorbent properties that had a significant impact on CO₂ capture performance were identified. The results show that controlling these sorbent properties substantially improves CO₂ capture performance, with preliminary estimates indicating that relative improvement of ~30% is possible. Testing culminated with an operationally trouble-free test of 15 hours with sustainable performance. Overall, several practical strategies to increase performance of the sorbent and process were identified. The initial technical and economic assessment of the CACHYS™ process estimated the cost of CO2 capture was $36.19/ton with a 48.6% increase in levelized cost of electricity (LCOE) for the 550 MWe net plant. Using additional data gathered over the course of the project, and with revised technical and economic assumptions, the estimated cost of CO₂ capture with the CACHYS™ process is $39/ton (only includes the cost of the CO2 capture system) with an increase in LCOE of 55.9%. Overall, CACHYS™ represents a significant improvement over the benchmark MEA system, and has demonstrated progress towards achieving DOE’s goals for CO₂ capture technologies.

  14. Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture

    SciTech Connect (OSTI)

    None

    2010-08-01

    IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

  15. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  16. Plasma dynamics above solar flare soft x-ray loop tops

    SciTech Connect (OSTI)

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup 1} and appear to increase with height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.

  17. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect (OSTI)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil

    2012-09-20

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  18. PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

    SciTech Connect (OSTI)

    Russell, A. J. B.; Fletcher, L.

    2013-03-10

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

  19. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  20. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.