National Library of Energy BETA

Sample records for gas filling station

  1. Analysis on Current Status of the Gas Filling Station Networks...

    Open Energy Info (EERE)

    Name: Analysis on Current Status of the Gas Filling Station Networks Website Focus Area: Natural Gas Topics: Potentials & Scenarios Website: www.gashighway.net...

  2. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  3. Biodiesel Filling Stations UK | Open Energy Information

    Open Energy Info (EERE)

    Filling Stations UK Jump to: navigation, search Name: Biodiesel Filling Stations UK Place: United Kingdom Product: A website providing a list of places in the UK where people can...

  4. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  5. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  6. EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information

    Open Energy Info (EERE)

    EUHYFIS Hydrogen Filling Station Consortium Jump to: navigation, search Name: EUHYFIS (Hydrogen Filling Station Consortium) Place: Oldenburg, Germany Zip: 26123 Sector: Hydro,...

  7. AGFA - Argonne Gas Filled Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGFA - Argonne Gas Filled Analyzer AGFA, the Argonne Gas-filled Fragment Analyzer is a state-of-the art gas-filled separator at ATLAS, which is being developed in collaboration among the Argonne Physics Division, Hebrew University, Jerusalem, University of Massachusetts, Lowell, University of Maryland, University of Edinburgh, Lawrence Berkeley National Laboratory and Oregon State University. This separator will be used for a wide range of studies, e.g. 1) in conjunction with Gammasphere for

  8. Greening Gas Stations

    Office of Environmental Management (EM)

    eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Greening Gas Stations Prestene S. Garnenez Intern, Sandia National Laboratories Graduate Student, University of California, Los Angeles Department of Urban Planning eere.energy.gov It's Not Easy Being GREEN * What does it mean to be Green? * Can a Gas Station be Green? * How can a Gas Station be "Green"? * Image: inconvenientyouth.org eere.energy.gov What does it mean to be Green? * There are no "rules" for being

  9. Finding the Right Filling Station for Alternative Vehicles Now Easier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Right Filling Station for Alternative Vehicles Now Easier For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A new online interactive computer program is taking the guesswork out of finding the fuel needed by the thousands of alternative vehicles on the road today in the United States. The program, called the Alternative Fuel Refueling Station Locator, was developed by the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC). The AFDC

  10. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station |

    Office of Environmental Management (EM)

    Department of Energy Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis In 2012, Ozinga Brothers Concrete opened Chicago's first privately owned compressed natural gas fueling station to local businesses and government agencies. The station is specifically designed for medium and heavy-use trucks and buses, but can handle light-duty vehicles and can fill more than

  11. Gas mixtures for gas-filled particle detectors

    DOE Patents [OSTI]

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Gas mixtures for gas-filled radiation detectors

    DOE Patents [OSTI]

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Improved gas mixtures for gas-filled particle detectors

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  14. Improved gas mixtures for gas-filled radiation detectors

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  15. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    SciTech Connect (OSTI)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester`s OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 {micro}m wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas.

  16. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  17. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  18. Attempts to Produce D2-Gas-Filled Be Shells

    SciTech Connect (OSTI)

    Cook, B; McElfresh, M; Alford, C; Fought, E; Letts, S

    2005-01-14

    We have attempted to fabricate some 0.5 mm diameter D{sub 2}-gas-filled Be shells by coating gas-filled PVA-coated GDP mandrels with Cu-doped Be. We find that during the coating all (or most) of the gas leaks out. This is likely due to either small cracks or holes in the coating that are formed at the earliest points and are maintained during the thickness build-up of the coating, and/or to some level of intrinsic porosity in the coating. This memo documents our efforts.

  19. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  20. Gas-filled hohlraum experiments at the national ignition facility.

    SciTech Connect (OSTI)

    Fernndez, J. C.; Gautier, D. C.; Goldman, S. R.; Grimm, B. M.; Hegelich, B. M.; Kline, J. L.; Montgomery, D. S.; Lanier, N. E.; Rose, H. A.; Schmidt, D. M.; Swift, D. C.; Workman, J. B.; Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J. H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O. L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  1. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines...

    Office of Scientific and Technical Information (OSTI)

    and energetic ions released during target detonation. To reduce the uncertainties of cooling and beamtarget propagation through such gas-filled chambers, we present a pulsed...

  2. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

  3. Natural Gas Compressor Stations on the Interstate Pipeline Network...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Data in Response to Security Concerns. Source: Energy Information Administration, Natural Gas Division, Natural Gas Transportation Information System, Compressor Station Database. ...

  4. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect (OSTI)

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  5. Argonne Gas-filled Fragment Analyzer-AGFA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas-filled Fragment Analyzer-AGFA Argonne National Laboratory B.B. Back, R.V.F. Janssens, W.F. Henning, T.L. Khoo, J.A. Nolen, D.H. Potterveld, G. Savard, D. Seweryniak Hebrew University, Jerusalem, Israel M. Paul University of Massachusetts Lowell P. Chowdhury, C.J. Lister University of Maryland W.B. Walters University of Edinburgh P.J. Woods Lawrence Berkeley National Laboratory K. Gregorich Oregon State University W. Loveland Date: February 11, 2013 Abstract As the premier stable-beam user

  6. Sandia Energy - More California Gas Stations Can Provide Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says Home Infrastructure Security Energy Transportation Energy CRF Facilities News News &...

  7. A compact gas-filled avalanche counter for DANCE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  8. Attempts to Produce D2-Gas-Filled Be Shells (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Attempts to Produce D2-Gas-Filled Be Shells Citation Details In-Document Search Title: Attempts to Produce D2-Gas-Filled Be Shells We have attempted to fabricate some 0.5 mm diameter D{sub 2}-gas-filled Be shells by coating gas-filled PVA-coated GDP mandrels with Cu-doped Be. We find that during the coating all (or most) of the gas leaks out. This is likely due to either small cracks or holes in the coating that are formed at the earliest points and are maintained during the

  9. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega Citation Details In-Document Search Title: Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion

  10. Demonstrated high performance of gas-filled rugby-shaped hohlraums...

    Office of Scientific and Technical Information (OSTI)

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter ...

  11. Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as

  12. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    SciTech Connect (OSTI)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  13. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    SciTech Connect (OSTI)

    NIKROO,A; BAUGH,W; STEINMAN,D.A

    2003-06-01

    OAK-B135 Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx} 0.15 {micro}m/hr coatings with {approx} 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {micro}m/hr, was considerably worse ({approx} 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C.

  14. Fabrication of Gas-Filled Tungsten-Coated Glass Shells

    SciTech Connect (OSTI)

    Nikroo, A.; Baugh, W.; Steinman, D.A.

    2004-03-15

    Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. We report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx}0.15 {mu}m/hr coatings with {approx}2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {mu}m/hr, was considerably worse ({approx}100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 deg. C.

  15. More California Gas Stations Can Provide Hydrogen than Previously Thought,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Study Says California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  16. Evaluation of Maximum Radionuclide Groundwater Concentrations for Basement Fill Model. Zion Station Restoration Project

    SciTech Connect (OSTI)

    Sullivan, Terry

    2014-12-02

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y?. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.

  17. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  18. Apparatus and methods for determining gas saturation and porosity of a formation penetrated by a gas filled or liquid filled borehole

    DOE Patents [OSTI]

    Wilson, Robert D. (477 W. Scenic Dr., Grand Junction, CO 81503)

    2001-03-27

    Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.

  19. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years

    Broader source: Energy.gov [DOE]

    In 2003 there were 1,097 natural gas refueling stations nationwide. By 2013, that number increased by about 25% to a total of 1,374 natural gas refueling stations. In 2003, there were six states...

  20. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect (OSTI)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6?mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6?mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  2. Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega

    SciTech Connect (OSTI)

    Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others

    2014-07-15

    A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.

  3. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  4. 1,"Chuck Lenzie Generating Station","Natural gas","Nevada Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Co",522 9,"Apex Generating Station","Natural gas","Los Angeles Department of Water & Power",494.4 10,"Desert Star Energy Center","Natural gas","Desert Star Energy Center SDG&E",45

  5. NREL report shows E85 gives gas stations a competitive edge - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL report shows E85 gives gas stations a competitive edge Quantity of E85 sold most important factor in profitability July 18, 2008 A study released by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) can help gas station owners and Clean Cities stakeholders determine whether adding E85 to their product mix can increase profitability. Competition in the fueling station business continues to intensify, particularly as grocery stores and discount clubs

  6. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  7. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  8. The effect of mix on capsule yields as a function of shell thickness and gas fill

    SciTech Connect (OSTI)

    Bradley, P. A.

    2014-06-15

    An investigation of direct drive capsules with different shell thicknesses and gas fills was conducted to examine the amount of shock induced (Richtmyer-Meshkov) mix versus Rayleigh-Taylor mix from deceleration of the implosion. The RAGE (Eulerian) code with a turbulent mix model was used to model these capsules for neutron yields along with time-dependent mix amounts. The amount of Richtmyer-Meshkov induced mix from the shock breaking out of the shell is about 0.1??g (0.15??m of shell material), while the Rayleigh-Taylor mix is of order 1??g and determines the mixed simulation yield. The simulations were able to calculate a yield over mix (YOM) ratio (experiment/mix simulation) between 0.5 and 1.0 for capsules with shell thicknesses ranging from 7.5 to 20??m and with gas fills between 3.8 and 20?atm of D{sub 2} or DT. The simulated burn averaged T{sub ion} values typically lie with 0.5?keV of the data, which is within the measurement error. For capsules with shell thicknesses >25??m, the YOM values drop to 0.10??0.05, suggesting that some unmodeled effect needs to be accounted for in the thickest capsules.

  9. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  10. Basement Fill Model Evaluation of Maximum Radionuclide Concentrations for Initial Suite of Radionuclides. Zion Station Restoration Project

    SciTech Connect (OSTI)

    Sullivan, Terry

    2014-12-10

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y? as specified in 10 CFR 20 Subpart E. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on radionuclide concentrations in the fill material and the water in the interstitial spaces of the fill. (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use by ZSRP in selecting ROCs for detailed dose assessment calculations.

  11. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  12. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect (OSTI)

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  13. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  14. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Gustafson, K.

    1993-07-20

    A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

  15. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    SciTech Connect (OSTI)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

  16. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect (OSTI)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber wall acts as the primary heat exchanger. During removal, gas is pumped through the laser ports by turbo molecular-drag pumps (TM-DP). For the purpose of reducing organic based lubricants and seals, a magnetically levitated TM-DP is being investigated with pump manufacturers. Currently, magnetically levitated turbo molecular pumps are commercially available. The pumps will be exposed to thermal loads and ionizing radiation (tritium, Ar-41, post detonation neutrons). Although the TM-DP's will be subjected to these various radiations, current designs for similar pumping devices have been hardened and have the ability of locating control electronics in remote radiation shielded enclosures4. The radiation hardened TM-DP's will be 5 required to operate with minimal maintenance for periods of up to 18 continuous months. As part of this initial investigation for developing a conceptual engineering strategy for a gas fill solution, commercial suppliers of low pressure gas pumping systems have been contacted and engaged in this evaluation. Current technology in the area of mechanical pumping systems indicates that the development of a robust pumping system to meet the requirements of the FTF gas fill concept is within the limits of COTS equipment3,4.

  17. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect (OSTI)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  18. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    SciTech Connect (OSTI)

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; O'Hern, Timothy J.; Benavides, Gilbert L.

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellows with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.

  19. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  20. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; O'Hern, Timothy J.; Benavides, Gilbert L.

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less

  1. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  2. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  3. Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report

    SciTech Connect (OSTI)

    Moore, J. A.

    1999-06-30

    The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

  4. Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.

    SciTech Connect (OSTI)

    Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R.

    2008-01-01

    Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

  5. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect (OSTI)

    Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  6. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a

  7. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    SciTech Connect (OSTI)

    Saleh, Mohammed F.; Biancalana, Fabio

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  8. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  9. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  10. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  11. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  12. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane....

  13. Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

  14. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  15. Tunable coherent soft X-ray source based on the generation of high-order harmonic of femtosecond laser radiation in gas-filled capillaries

    SciTech Connect (OSTI)

    Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E

    2014-05-30

    We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 – 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)

  16. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.

  17. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  18. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  19. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    SciTech Connect (OSTI)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  20. Pyrotechnic filled molding powder

    DOE Patents [OSTI]

    Hartzel, Lawrence W. (Dayton, OH); Kettling, George E. (Cincinnati, OH)

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  1. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85),...

  2. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect (OSTI)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  3. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn29.5Al0.5Ti filler metal

    SciTech Connect (OSTI)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn29.5Al0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard MgAl intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated AlMgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the MgAl dissimilar joint. - Highlights: Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. The effect of Ti in filler metal is investigated. The formation of MgAl intermetallic compounds is avoided.

  4. Loose-fill insulations

    SciTech Connect (OSTI)

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  5. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  6. 20,000 and Counting: Alternative Fueling and Charging Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up-to-date information on fueling stations for biodiesel, compressed natural gas, electricity, E85 (up to 85% ethanol), hydrogen, liquefied natural gas, and propane. The...

  7. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov [DOE]

    The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

  8. Dye filled security seal

    DOE Patents [OSTI]

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  10. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural

  11. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect (OSTI)

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  12. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  13. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  14. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  15. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  16. Fuel Station of the Future- Innovative Approach to Fuel Cell Technology

    Office of Environmental Management (EM)

    Unveiled in California | Department of Energy Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California September 15, 2011 - 5:51pm Addthis A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. A customer fills up at a new Energy Department supported

  17. Compressed natural gas (CNG) measurement

    SciTech Connect (OSTI)

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  18. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  19. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, Dariush K. (Oakland, CA)

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  20. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

  1. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  2. Aging Studies of Filled and Unfilled VCE

    SciTech Connect (OSTI)

    Letant, S; Herberg, J; Alviso, C; Small, W; Mulcahy, H; Pearson, M; Wilson, T; Chinn, S; Maxwell, R

    2009-11-10

    This report presents data on the effects of temperature and gamma radiation on the chemical and structural properties of both filled and unfilled VCE material produced by the Kansas City Plant using WR-qualified processes. Thermal effects up to 300 C and gamma irradiation doses of 1 MRad and 25 MRad were investigated under atmospheric conditions. Characterization techniques used in the study comprise Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Tensile Testing, Solid Phase MicroExtraction - Gas Chromatography/Mass Spectrometry (SPME-GC/MS), phenol extraction followed by HPLC, and various Nuclear Magnetic Resonance (NMR) techniques including: {sup 13}C, {sup 13}C {l_brace}{sup 1}H{r_brace} cross polarization (CP), {sup 1}H magic angle spinning (MAS), 13C{l_brace}{sup 1}H{r_brace} Wide-line-Separation (2D-WISE) and development of Center band-Only Detection of Exchange (CODEX).

  3. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  4. Particle-filled microporous materials

    DOE Patents [OSTI]

    McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.

    1990-09-18

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.

  5. Particle-filled microporous materials

    DOE Patents [OSTI]

    McAllister, Jerome W. (Hudson, WI); Kinzer, Kevin E. (Cottage Grove, WI); Mrozinski, James S. (Oakdale, MN); Johnson, Eric J. (Woodbury, MN); Dyrud, James F. (New Richmond, WI)

    1990-01-01

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  6. Particle-filled microporous materials

    DOE Patents [OSTI]

    McAllister, Jerome W. (P.O. Box 33427, St. Paul, MN 55133); Kinzer, Kevin E. (P.O. Box 33427, St. Paul, MN 55133); Mrozinski, James S. (P.O. Box 33427, St. Paul, MN 55133); Johnson, Eric J. (P.O. Box 33427, St. Paul, MN 55133)

    1992-07-14

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  7. Refueling Stations | Open Energy Information

    Open Energy Info (EERE)

    Refueling Stations Jump to: navigation, search TODO: Add description List of Refueling Stations Incentives Retrieved from "http:en.openei.orgwindex.php?titleRefuelingStations...

  8. Pilgrim Station | Open Energy Information

    Open Energy Info (EERE)

    Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    SciTech Connect (OSTI)

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  10. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil ... The EIA has determined that the informational map displays here do not raise security ...

  11. Characterization of Carbon Epoxy-Filled Composite

    SciTech Connect (OSTI)

    Mason, Thomas Albert; Liu, Cheng; Lovato, Manuel L.; Valdez, James Anthony; Cady, Carl Mcelhinney; Walker, Emily Kristine; Livescu, Veronica

    2015-11-25

    Please find attached a summary of the characterization work performed at Los Alamos between 2014 and 2015 on epoxy-filled carbon composite material.

  12. How to fill the EXPOSURE REQUEST FORM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sample description, mask description and exposure parameters. Most of fields are straightforward. The following are some basic guidelines to help filling some of important...

  13. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    access to a free app that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, E85, propane, and hydrogen. The National Renewable...

  14. Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station November 6, 2013 - 12:00am Addthis...

  15. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  16. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Plate Station The hot plate station is comprised of four Prazitherm precision hot plates manufactured for resist processing. Each hot plate is sized 350mm x 350mm. They are flat and level, with temperature uniformity of +/- 0.5º. The maximum operating temperature is limited to 200ºC in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released into the cleanroom environment. Each hot plate is controlled through

  17. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  18. Dielectric waveguide gas-filled stark shift modulator

    DOE Patents [OSTI]

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  19. Electrolysis at Forecourt Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLEAN FUEL ITM Electrolysis at Forecourt Stations NREL Workshop Feb 27 & 28, 2014 Contents: * Introduction ITM Power Inc. * Target Costs * Challenges and Technology Developments - Continuous Improvements * Renewable Energy - Power pricing is the Key * HFuel PEM Electrolysis Module Spec * 100 % Renewable Hydrogen Refuelling Project ITM POWER INC. CLEAN FUEL ITM Electrolysis at Forecourt Stations INTRODUCTION - ITM POWER INC. ITM POWER INC. ENERGY STORAGE | CLEAN FUEL Established to enter the

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  1. Biosciences: Emery Station Operations Center (ESOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences: Emery Station Operations Center (ESOC

  2. Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Refueling Station Arkansas Launches Natural Gas-Powered Buses and Refueling Station to someone by E-mail Share Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Facebook Tweet about Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Twitter Bookmark Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Google Bookmark Alternative Fuels Data

  3. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  4. MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS

    Office of Legacy Management (LM)

    MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS Report 2 ANALYSIS OF RESPONSE O F RIFLE.GAP D A M TO PROJECT RULISON UNDERGROUND NUCLEAR DETONATION bv J. E. Ahlberg, J. Fowler, L W. Heller ........ . . . . . . . . - . . . . . . . . . . . . . . . - . . - ...... *- , .... . . . - ->-w-J- * - : - . . June 1972 s~omsored by Office, Chief of Engineers, U. S. Army Conducted by U. S. A m y Engineer Waterways Experiment Station Soils and Pavements Laboratory Vicksburg,

  5. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  6. Multifunctional, Inorganic-Filled Separators for Large Format...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

  7. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 - ...

  8. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Radiation-induced mechanical property changes in filled rubber Citation Details In-Document Search Title: Radiation-induced mechanical property changes in filled rubber Authors:...

  9. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  10. Numerical recipes for mold filling simulation

    SciTech Connect (OSTI)

    Kothe, D.; Juric, D.; Lam, K.; Lally, B.

    1998-07-01

    Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.

  11. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  12. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    SciTech Connect (OSTI)

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; Sartor, George; Zheng, Jinyang; Yang, Jian

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes of the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.

  13. Microsoft Word - 3Q2011Gas_Compress

    Office of Legacy Management (LM)

    Water Vapor in Gas at the Holmes Mesa Compressor Station, Garfield County, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 2 September 2011 Purpose: Natural gas from local wells in the Parachute field is sent by pipelines to the Holmes Mesa Compressor Station in Garfield County, Colorado. The U.S. Department of Energy (DOE) currently monitors natural gas wells at their respective well heads that supply gas to this compressor station. DOE has

  14. EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...

    Broader source: Energy.gov (indexed) [DOE]

    Emera's CNG plant facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame...

  15. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fueling Station Locator Alternative Fueling Station Locator Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count

  16. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect (OSTI)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.40.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  17. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  18. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  19. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  20. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  1. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING

    SciTech Connect (OSTI)

    Kesterson, M.

    2011-03-31

    The purpose of this work was to develop a model that can be used to predict temperatures of the glass in the Defense Waste Processing Facility (DWPF) canisters during filling and cooldown. Past attempts to model these processes resulted in large (>200K) differences in predicted temperatures compared to experimentally measured temperatures. This work was therefore intended to also generate a model capable of reproducing the experimentally measured trends of the glass/canister temperature during filling and subsequent cooldown of DWPF canisters. To accomplish this, a simplified model was created using the finite element modeling software COMSOL Multiphysics which accepts user defined constants or expressions to describe material properties. The model results were compared to existing experimental data for validation. A COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were {approx}40 C for the 87inch thermocouple location at 3000 minutes and during the initial cooldown at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general trends in temperatures during filling and cooling observed experimentally. However, the model was developed using parameters designed to fit a single set of experimental data. Therefore, Q-loss is not currently a function of pour rate and pour temperature. Future work utilizing the existing model should include modifying the Q-loss term to be variable based on flow rate and pour temperature. Further enhancements could include eliminating the Q-loss term for a user defined convection where Navier-Stokes does not need to be solved in order to have convection heat transfer.

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    On November 6, the El Paso Natural Gas Company announced a force majeure because of turbine mechanical failure at the Alamo Lake number 2 station. The station is located in La...

  3. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Hanford Meteorological Station Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The HMS is operated by Mission Support Alliance for the U.S. Department of Energy. The HMS provides a

  4. 20,000 and Counting: Alternative Fueling and Charging Stations Hit Major Milestone

    Broader source: Energy.gov [DOE]

    Thanks to the Energy Department’s Alternative Fueling Station Locator tool, it’s easier than ever for drivers of alternative fuel and plug-in electric vehicles to find a place to fill up. This is due, in part, to hitting a recent milestone of more than 20,000 locations listed.

  5. Wachs Cutter Tooling Station (4495)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  6. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  7. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tri-Generation Fuel Cell and Hydrogen Fueling Station World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station April 18, 2013 - 12:00am Addthis EERE supported the development of the world's first tri-generation station-a combined heat and power system that produces hydrogen in addition to heat and electricity-in Fountain Valley. The system runs on natural gas and biogas generated by the Orange County Sanitation District's wastewater treatment facility.

  8. Liquid-Filled Piping System Analysis

    Energy Science and Technology Software Center (OSTI)

    1993-07-07

    WHAM6 is used to calculate pressure and velocity transients in liquid-filled piping networks. It can be applied to multiloop complex piping networks consisting of dead ends, elbows, orifices, multiple-branch tees, changes of flow passage cross section, check valves, pumps, pressurizers or tanks, and exit valves or breaks. Hydraulic losses are considered. Transients can be initiated either by closure or opening of one or more exit valves (equivalent to system ruptures) or by a prescribed gasmore » pressure history in a pressurizer tank.« less

  9. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  10. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  11. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  12. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  13. Assessment of dome-fill technology and potential fill materials for the Hanford single-shell tanks

    SciTech Connect (OSTI)

    Smyth, J.D.; Shade, J.W.; Somasundaram, S.

    1992-05-01

    This study is part of a task that will identify dome-fill materials to stabilize and prevent the collapse of the structures of 149 single- shell tanks (SSTs). The SSTs were built at the Hanford Site in Washington State and used between 1944 and 1980 to store radioactive and other hazardous wastes. In addition to identifying suitable fill materials, this task will develop the technology and methods required to fill the tanks with the selected material. To date, basalt is the only candidate fill material with any testing conducted for its suitability as a dome-fill material. Sufficient data do not exist to select or eliminate basalt as a candidate material. This report documents a review of past dome-fill work at the Hanford Site and of other pertinent literature to establish a baseline for the dome-fill technology. In addition, the report identifies existing dome-fill technology, preliminary performance criteria for dome-fill technology development, potential testing strategies, and potential fill materials. As a part of this study, potential fill materials are qualitatively evaluated and a list of preliminary candidate fill materials is identified. Future work will further screen these materials. The dome-fill task work will ultimately contribute to the development of a final waste form package and the safe isolation of wastes from the Hanford Site SSTs.

  14. Feasibility of SF6 Gas-Insulated Transformers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ® PORTLAND DISTRICT 2 Outline  Transformer Background & Basics  Oil-filled transformers  Oil-filled transformer concerns  Gas-insulated transformers (GIT)  Gas-insulated transformer benefits  Gas-insulated transformer concerns  Risks and Unknowns  Questions? BUILDING STRONG ® PORTLAND DISTRICT

  15. Constrained ceramic-filled polymer armor

    DOE Patents [OSTI]

    Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.

    1990-11-13

    An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.

  16. Method of filling a microchannel separation column

    DOE Patents [OSTI]

    Arnold, Don W. (Livermore, CA)

    2002-01-01

    A method for packing a stationary phase into a small diameter fluid passageway or flow channel. Capillary action is employed to distribute a stationary phase uniformly along both the length and diameter of the flow channel. The method disclosed here: 1) eliminates the need for high pressure pumps and fittings and the safety hazards associated therewith; 2) allows the use of readily available commercial microparticles, either coated or uncoated, as the stationary phase; 3) provides for different types of particles, different particle sizes, and different particle size distributions to be packed in sequence, or simultaneously; 4) eliminates the need for plugging the flow channel prior to adding the stationary phase to retain the packing particles; and 5) many capillaries can be filled simultaneously.

  17. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  18. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  19. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  20. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides Download presentation slides from the...

  1. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Dagoutou Hydropower Station Jump to: navigation, search Name: Shimian Dagoutou Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product:...

  2. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Liuyang Hedong Hydropower Station Jump to: navigation, search Name: Liuyang Hedong Hydropower Station Place: Liuyang, Hunan Province, China Zip: 410305 Sector: Hydro Product:...

  3. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Eryuan Huian Hydropower Station Jump to: navigation, search Name: Eryuan Huian Hydropower Station Place: Dali Bai Autonomous Prefecture, Yunnan Province, China Zip: 671200 Sector:...

  4. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Baxin Hydropower Station Jump to: navigation, search Name: Tianlin Baxin Hydropower Station Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  5. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Danihe Hydropower Station Jump to: navigation, search Name: Shimian Danihe Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product: China-based...

  6. Reference Designs for Hydrogen Fueling Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... greenfield and gasoline station co-location. 35 Summary * The Reference Station Design Task has produced results that include: - Vehicle roll-out scenarios - Detailed ...

  7. Franklin Heating Station | Open Energy Information

    Open Energy Info (EERE)

    search Name: Franklin Heating Station Place: Minnesota Phone Number: 5072893534 Facebook: https:www.facebook.compagesFranklin-Heating-Station116610418398578 References:...

  8. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  9. Fang Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  10. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  11. Poihipi Power Station | Open Energy Information

    Open Energy Info (EERE)

    Poihipi Power Station General Information Name Poihipi Power Station Sector Geothermal energy Location Information Location Poihipi Road, Near Taupo, Waikato, New Zealand...

  12. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  13. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  14. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  15. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  16. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  17. Natural Gas Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles » Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas powers about 116,000 vehicles in the United States and roughly 14.8 million vehicles worldwide as of 2010. There are two types of natural gas used for transportation fuel: compressed natural gas (CNG) and liquefied natural gas (LNG). Because it is a liquid, the energy density of LNG is greater than

  18. Students Innovate to Address Gas Shortages Following Hurricane Sandy |

    Energy Savers [EERE]

    Department of Energy Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Ian Kalin Director of the Energy Data Initiative What are the key

  19. EPA - Section 404 Dredge and Fill Permitting webpage | Open Energy...

    Open Energy Info (EERE)

    the discharge of dredged or fill material into waters of the United States. Author Environmental Protection Agency Published Environmental Protection Agency, Date Not...

  20. Oregon Section 401 Removal/Fill Certification Webpage | Open...

    Open Energy Info (EERE)

    Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Section 401 RemovalFill Certification Webpage Abstract Provides overview...

  1. Idaho Dredge and Fill Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Dredge and Fill Permits Webpage Citation Idaho Department of...

  2. Oregon Removal-Fill Permit Application Webpage | Open Energy...

    Open Energy Info (EERE)

    Application Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Removal-Fill Permit Application Webpage Abstract Provides information for...

  3. Casting Process Simulator 2D Mold Fill and Solidification

    Energy Science and Technology Software Center (OSTI)

    1995-05-06

    The CaPS software is a tool used to setup, simulate, and examine the results from two-dimensional filling and solidification of a sand casting.

  4. Casting Process Simulator 3D Mold Fill an Solidification

    Energy Science and Technology Software Center (OSTI)

    1997-03-06

    The CAPS software is a tool used to setup, simulate, and examine the results from three-dimensional filling and solidification of a sand casting.

  5. Design and operating experience of the Holcomb Station dry scrubber

    SciTech Connect (OSTI)

    Emerson, R.D.

    1985-01-01

    The Holcomb Station dry flue gas desulfurization system has been operational since May, 1983. The lime based system, consisting of three spray drying absorbers and two baghouses, has met all regulatory compliance requirements and contractual guarantee values. Some serious operational problems were encountered during the startup of this system. This paper discusses these problems and subsequent solutions along with testing experience to-date. The availability of this system for the first quarter of 1985 was 99.51 percent.

  6. Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA)

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A fact sheet summarizing the National Renewable Energy Laboratory safety evaluation of Phill, Fuelmaker Corporation's natural gas home refueling appliance, used to fill CNG vehicles at home.

  7. Workplace Charging Station Basics | Department of Energy

    Energy Savers [EERE]

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  8. Pala Fire Station Solar Project

    Energy Savers [EERE]

    Pala Fire Station Solar Project Pala Band of Mission Indians Pala Environmental Department Pala Fire Departme nt The Pala Reservation  Located in San Diego County, California  Approximately 13,000 acres  Over 1,000 tribal members  Home to approximately 1,350 people The Pala Reservation  Over 800 houses and buildings  New houses all have PV solar  Main energy users:  Pala Casino Resort & Spa  Pala Fire Station  Pala Administration complex Long-term goal:

  9. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    SciTech Connect (OSTI)

    Reyes-Vera, Erick Gmez-Cardona, Nelson D.; Chesini, Giancarlo; Cordeiro, Cristiano M. B.; Torres, Pedro

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.

  10. Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells

    SciTech Connect (OSTI)

    Mayani, Maryam Gholami; Reenaas, Turid Worren

    2014-08-18

    In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range of light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.

  11. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  12. Solar collector panels having coated fibrous filling for fire inhibition

    SciTech Connect (OSTI)

    Reinert, C.P.

    1982-04-13

    Solar collector panels filled with porous fiber mats have the fibers coated with a pigmented intumescent paint which expands to partially fill the spaces between the fibers for retarding convective fluid flow through the fiber mat in the case of a fire in the structure with which the collector is associated.

  13. Filling and solidification with coupled heat transfer and stress analysis

    SciTech Connect (OSTI)

    Ruiz, D.J.; Khandhia, Y.

    1995-12-31

    A full filling and solidification simulation of the MCWASP 7 casting has been carried out using the commercial finite element (FE) analysis codes LS-DYNA3D and FIDAP. The two codes were used to carry out back-to-back analysis of the mould filling. Both codes track the free surface and predict filling times. LS-DYNA3D has been used both for the filling simulation and to carry out a coupled thermal and stress analysis of the casting during solidification, predicting cooling rates, residual stresses and as-cast shape. The methodology used and details of the FE models are summarized. Results are presented for comparison with the casting trial data (x-rays of filling and thermocouple data).

  14. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  15. Passive gas separator and accumulator device

    DOE Patents [OSTI]

    Choe, H.; Fallas, T.T.

    1994-08-02

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  16. FABRICATION AND ATTACHMENT OF POLYIMIDE FILL TUBES TO PLASTIC NIF CAPSULES

    SciTech Connect (OSTI)

    Takagi, M; Saito, K; Frederick, C; Nikroo, A; Cook, R

    2006-12-08

    We have developed a technique for drawing commercially available polyimide tubing to the required fill tube dimensions. The tubes are then precisely cut with an Excimer laser to produce a clean, flat tip. We have also demonstrated that one can use the Excimer laser to drill less than a 5 {micro}m diameter through hole in the {approx}150 wall of a NIF dimension GDP shell, and can then create a 10-15 {micro}m diameter, 20-40 {micro}m deep counterbore centered on the through hole with the same laser. Using a home built assembly station the tube is carefully inserted into the counterbore and glued in place with UV-cure epoxy, using a LED UV source to avoid heating the joint. We expect that the same joining technique can be used for Be shells.

  17. Passive gas separator and accumulator device

    DOE Patents [OSTI]

    Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

    1994-01-01

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  18. Business Case for Installing E85 at Retail Stations, Clean Cities Fact Sheet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    January 2008 Fact Sheet In a business environment where there are up to four gas stations on every major intersection, it's hard for retailers to differentiate themselves from their competitors. One way station owners can distinguish themselves and make a profit is to add alternative fuels, such as E85 (85% ethanol, 15% gasoline), to their product mix. When pricing and availability of the fuel are positive, adding E85 can be a profitable move that can position a station as "green."

  19. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  20. New Mexico Surface Water Quality Bureau Federal Dredge and Fill...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: New Mexico Surface Water Quality Bureau Federal Dredge and Fill Permits webpage Author New Mexico...

  1. Filling Knowledge Gaps with Five Fuel Cycle Studies

    SciTech Connect (OSTI)

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01

    During FY 2010, five studies were conducted of technology families applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a technology family is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: Advanced once through with uranium fuel in fast reactors (SFR), Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), Sustained recycle with Th/U-233 in light water reactors (LWRs), Sustained recycle with Th/U-233 in molten salt reactors (MSR), and Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in the five studies was spotty. Some studies did not have existing or past work to draw on in one or more of these areas. Resource constraints limited the amount of new analyses that could be performed. Little or no assessment was done of how soon any of the technologies could be deployed and therefore how quickly they could impact domestic or international fuel cycle performance. There were six common R&D needs, such as the value of advanced fuels, cladding, coating, and structure that would survive high neutron fluence. When a technology family is considered for use in a new fuel cycle mission, fuel cycle performance characteristics are dependent on both the design choices and the fuel cycle approach. For example, the use of the sodium-cooled fast reactor to provide recycle in either breeder or burner mode has been studied for decades, but the SFR could be considered for once-through fuel cycle with the physical reactor design and fuel management parameters changed. In addition, the sustained recycle with Th/U-233 in LWR could be achieved with a heterogeneous assembly and derated power density. Therefore, it may or may not be adjustable for other fuel cycle missions although a reactor intended for one fuel cycle mission is built. Simple parameter adjustment in applying a technology family to a new fuel cycle mission should be avoided and, if observed, the results viewed with caution.

  2. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    DOE Patents [OSTI]

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  3. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM); Roybal, Herman E. (Santa Fe, NM)

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  4. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  5. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated

    Energy Savers [EERE]

    for 2009 | Department of Energy to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 - 9:27am Addthis WASHINGTON, DC -- The U.S. Department of Energy today announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude oil for the nation's Strategic Petroleum

  6. New Contracts Awarded for Continued Fill of Strategic Petroleum Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Contracts Awarded for Continued Fill of Strategic Petroleum Reserve New Contracts Awarded for Continued Fill of Strategic Petroleum Reserve February 15, 2005 - 10:12am Addthis WASHINGTON, DC -- The U.S. Department of Energy has awarded two new contracts to deliver crude oil to the Strategic Petroleum Reserve (SPR) this spring under the Royalty-In-Kind (RIK) exchange program. Shell Trading (US) Company and Vitol SA Inc. submitted the best offers and were awarded

  7. STRUCTURAL AND MECHANICAL EFFECTS OF RADIATION EXPOSURE ON FILLED

    Office of Scientific and Technical Information (OSTI)

    ELASTOMERS - RECENT INSIGHTS FROM EXPERIMENTS AND MODELING (Conference) | SciTech Connect Conference: STRUCTURAL AND MECHANICAL EFFECTS OF RADIATION EXPOSURE ON FILLED ELASTOMERS - RECENT INSIGHTS FROM EXPERIMENTS AND MODELING Citation Details In-Document Search Title: STRUCTURAL AND MECHANICAL EFFECTS OF RADIATION EXPOSURE ON FILLED ELASTOMERS - RECENT INSIGHTS FROM EXPERIMENTS AND MODELING Authors: Maiti, A ; Weisgraber, T ; Gee, R ; Dinh, L ; Wilson, T ; Small, W ; Alviso, C ; Chinn, S ;

  8. DOE to Resume Filling Strategic Petroleum Reserve | Department of Energy

    Office of Environmental Management (EM)

    to Resume Filling Strategic Petroleum Reserve DOE to Resume Filling Strategic Petroleum Reserve January 2, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude oil for the nation's Strategic Petroleum Reserve (SPR) to replenish SPR supplies sold following hurricanes Katrina and Rita in 2005. In

  9. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  10. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  11. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  12. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

    1981-12-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  13. Settling of loose-fill insulations due to vibration

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

    1983-01-01

    Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

  14. Experimental Stations by Number | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 1000-40000 eV Ryan Davis

  15. Commissioning and operation of the CEBAF end station refrigeration system

    SciTech Connect (OSTI)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.; Kashy, D.; Keesee, M.; Wilson, J. Jr.

    1996-08-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1,500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned fin 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance.

  16. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more...

  17. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  18. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: • Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). • Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. • Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. • Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. • Maintain safety as the top priority in the system design and operation. • Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  19. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  20. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  1. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  2. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  3. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  4. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  5. Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective

    SciTech Connect (OSTI)

    Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-28

    We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE?=?Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

  6. Fractional Quantum Hall Effect at Landau Level Filling v=4/11...

    Office of Scientific and Technical Information (OSTI)

    Fractional Quantum Hall Effect at Landau Level Filling v411. Citation Details In-Document Search Title: Fractional Quantum Hall Effect at Landau Level Filling v411. Abstract...

  7. Plasma-filled diode based on the coaxial gun

    SciTech Connect (OSTI)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-15

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of {>=}1 MeV at the current of Almost-Equal-To 100 kA was obtained in the experiments with a plasma-filled diode. The energy of Almost-Equal-To 5 kJ with the peak power of {>=}100 GW dissipated in the diode.

  8. Radiation-induced mechanical property changes in filled rubber (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Radiation-induced mechanical property changes in filled rubber Citation Details In-Document Search Title: Radiation-induced mechanical property changes in filled rubber Authors: Maiti, A ; Weisgraber, T H ; Gee, R H ; Small, W ; Alviso, C T ; Chinn, S C ; Maxwell, R S Publication Date: 2011-04-15 OSTI Identifier: 1227007 Report Number(s): LLNL-JRNL-481283 DOE Contract Number: AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Physical

  9. Exhaustive search system and method using space-filling curves

    DOE Patents [OSTI]

    Spires, Shannon V.

    2003-10-21

    A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.

  10. MRDIS Standalone Central Alarm Station

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communicationsmore » or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.« less

  11. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Office of Environmental Management (EM)

    ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked us whether Department of Energy ("Department" or "DOE") appropriated funds may be used to reimburse the lab contractors for the cost of installing electric vehicle recharging stations and to pay (whether by reimbursement or by DOE directly) electricity bill costs resulting from the use of such stations. As more fully discussed below, the labs have several options for installing electric

  12. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  13. Schiller Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleSchillerStationBiomassFacility&oldid398074" Feedback Contact needs updating Image needs updating...

  14. Boyd Station LLC | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Boyd Station LLC Place: Danville, Pennsylvania Product: A biodiesel technology testing facility in Danville, Pennsylvania. Coordinates: 38.081585,...

  15. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Broader source: Energy.gov [DOE]

    Several National Laboratory contractors have asked whether appropriated funds may be used to reimburse cost of installing electric vehicle recharging stations and to pay electricity bill costs...

  16. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  17. Reference Designs for Hydrogen Fueling Stations Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  18. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design Task: Project Deliverable 2-2 On-Board Storage ...

  19. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  20. Sei Vojany Station repowering reconstruction assessment feasibility study. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Six technologies are considered for application to the proposed Vojany Power Station EVO III. These technologies are: Conventional pulverized coal (PC) with SOx and NOx control; Atmospheric circulating fluidized bed (CFB); Atmospheric bubbling fluidized bed (BFB); Pressurized fluidized bed combustion combined cycle (PFBC-CC); Integrated coal gasification combined cycle (IGCC); and Gas fired combustion turbine combined cycle (CTCC).

  1. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  2. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  3. Background noise spectra of global seismic stations

    SciTech Connect (OSTI)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  4. Clean Cities Moving Fleets Forward with Liquefied Natural Gas...

    Broader source: Energy.gov (indexed) [DOE]

    Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help...

  5. High speed imager test station

    DOE Patents [OSTI]

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  6. High speed imager test station

    DOE Patents [OSTI]

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  7. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D.

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  8. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  9. New Energy Department Team Established to Help Local Authorities Get Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stations Impacted by Hurricane Sandy Back Online | Department of Energy Department Team Established to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online New Energy Department Team Established to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online November 4, 2012 - 2:02pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the government-wide effort to assist the response and recovery efforts following Hurricane Sandy,

  10. Reliability of natural gas cogeneration systems

    SciTech Connect (OSTI)

    1995-12-01

    Cogeneration systems fueled by natural gas exceed the reliability of most central station power generating units, according to a study conducted by RINC Corporation for Gas Research Institute (GRI). In the study, researchers obtained operating data from 122 natural gas cogeneration units nationwide representing 2,200 megawatts (MW) of capacity and nearly 2 million hours of operating time at 37 facilities. Units were grouped into categories reflecting size (from 60 kilowatts to 100 MW), type of system (gas engine or gas turbine technology), use of emission controls, and type of thermal application. Various types and sizes of gas systems reported average availability factors ranging from 90.0 to 95.8 versus a weighted average of 85.9 percent for fossil-fuel steam, nuclear, and gas-turbine-based central station power generating units. Comparisons are based on study data and data reported by the North American Electric Reliability Council for utility power plants. Gas cogeneration can improve utility operations because as a group the relatively small, dispersed cogeneration units are more reliable than one or more large central station units of similar capacity.

  11. Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Texas Law Enforcement Vehicles Fill up With Propane to someone by E-mail Share Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Facebook Tweet about Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Twitter Bookmark Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Google Bookmark Alternative Fuels Data Center: Texas Law Enforcement Vehicles Fill up With Propane on Delicious

  12. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Environmental Management (EM)

    Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station fuels the city's fleets and

  13. Control of electrolyte fill to fuel cell stack

    DOE Patents [OSTI]

    Pollack, William (Scott Township, Allegheny County, PA)

    1982-01-01

    A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.

  14. Solar heat pump systems with refrigerant-filled collectors

    SciTech Connect (OSTI)

    O'Dell, M.P.; Beckman, W.A.; Mitchell, J.W.

    1983-01-01

    The heat pump system with a refrigerant-filled evaporator consists of a standard air-to-air or air-to-liquid heat pump that utilizes a solar panel as the evaporator. A combination of solar energy and convection heat transfer acts as the ''free'' energy absorbed by the collector/evaporator. In this paper, the seasonal performance of such systems for industrial applications will be presented. Performance of collector/evaporator heat pumps will be compared with alternative heat pump and solar systems. The benefits of covered and coverless collector/evaporators will be discussed. Results to date have shown that refrigerant-filled collector heat pumps do not perform as well as conventional heat pumps at small collector areas but have as much as 15% performance improvement over conventional heat pumps at an appropriate collector area.

  15. Radiation-induced mechanical property changes in filled rubber (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins

  16. Innovative Way to Test Batteries Fills a Market Niche | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Way to Test Batteries Fills a Market Niche November 20, 2014 Illustration of a grey isothermal batter calorimeter, which looks similar to a copy machine. NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by NREL and NETZSCH researchers, performs precise thermal measurements needed to design safer, longer-lasting, and more cost-effective battery systems. Illustration from NETZSCH Isothermal Battery Calorimeters (IBCs), developed by NREL researchers, are capable of

  17. NREL Fills Key Leadership Role for Energy Systems Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Fills Key Leadership Role for Energy Systems Integration June 17, 2013 Bryan J. Hannegan will join the Energy Department's National Renewable Energy Laboratory on June 24 as associate laboratory director for Energy Systems Integration, a critical area of research and development that addresses challenges of integrating clean energy sources into the national energy infrastructure. Hannegan joins NREL from the Electric Power Research Institute (EPRI) where he held several

  18. NMMSS Fill-able Forms | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Fill-able Forms | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  19. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2 Topics for Today >GTI Introduction >Natural Gas Infrastructure is Undergoing Changes >Questions that have been addressed >Two Scenarios >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED 1941 > Independent, not-for-profit company established by natural gas

  20. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    20,236 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours of operation, and access. About the data

  1. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo

  2. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

  3. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels

  4. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share

  5. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  6. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  7. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  8. Webinar: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  9. Bendersville Station-Aspers, Pennsylvania: Energy Resources ...

    Open Energy Info (EERE)

    OpenEI by expanding it. Bendersville Station-Aspers is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  10. POST 10/Truck Inspection Station (Map 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force offcers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck

  11. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  12. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  13. Check Out the New Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    With more than 10,000 publicly accessible alternative fueling stations, the new Alternative Fuel Station Locator map makes fueling your alternative fuel vehicle easier than ever.

  14. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  15. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  16. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression This presentation by Matther Weaver of Pdc...

  17. Experiences from Ethanol Buses and Fuel Station Report - La Spezia...

    Open Energy Info (EERE)

    Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report...

  18. Fact #717: March 5, 2012 Availability of Electric Charging Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Electric Charging Stations Has Increased Dramatically in Recent Years At the end of September 2009, there were just 465 electric vehicle charging stations nationwide....

  19. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  20. Puge County Gongdefang Hydropower Station Investment and Development...

    Open Energy Info (EERE)

    Puge County Gongdefang Hydropower Station Investment and Development Co Ltd Jump to: navigation, search Name: Puge County Gongdefang Hydropower Station Investment and Development...

  1. Jingning County Baihe II Station Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Baihe II Station Hydropower Co Ltd Jump to: navigation, search Name: Jingning County Baihe II Station Hydropower Co. Ltd. Place: Hangzhou, Zhejiang Province, China Zip: 310002...

  2. The Status of Renewable Hydrogen and Energy Station Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations The Status of Renewable Hydrogen and Energy Station Technologies and Policy...

  3. Development Wells At Fallon Naval Air Station Area (Sabin, Et...

    Open Energy Info (EERE)

    Fallon Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station...

  4. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November ...

  5. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Cornia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  8. Carboli 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Bagnore 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  10. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  11. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  13. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Nuova Lago Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  16. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  17. Response of a water-filled spherical vessel to an internal explosion

    SciTech Connect (OSTI)

    Lewis, M.W.; Wilson, T.L.

    1997-06-01

    Many problems of interest to the defense community involve fluid-structure interaction (FSI). Such problems include underwater blast loading of structures, bubble dynamics and jetting around structures, and hydrodynamic ram events. These problems may involve gas, fluid, and solid dynamics, nonlinear material behavior, cavitation, reaction kinetics, material failure, and nonlinearity that is due to varying geometry and contact conditions within a structure or between structures. Here, the authors model the response of a water-filled, thick-walled, spherical steel vessel to an internal explosion of 30 grams of C-4 with FSI2D--a two-dimensional coupled finite element and finite volume hydrodynamics code. The gas phase detonation products were modeled with a Becker-Kistiakowsky-Wilson high-explosive equation of state. Predictions from a fully coupled model were compared to experimental results in the form of strain gauge traces. Agreement was reasonably good. Additionally, the calculation was run in an uncoupled mode to understand the importance of fluid-structure interaction in this problem. The uncoupled model results in an accumulation of nonphysical energy in the vessel.

  18. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect (OSTI)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  19. UPS to Expand Use of Liquefied Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPS to Expand Use of Liquefied Natural Gas UPS to Expand Use of Liquefied Natural Gas October 25, 2013 - 12:00am Addthis UPS, a founding member of Clean Cities' National Clean Fleets Partnership, announced plans to invest approximately $50 million to build an additional nine liquefied natural gas (LNG) fueling stations, bringing the total number of stations to 13. Four were announced in April, and all should be operational by the end of 2014. The enhanced LNG fueling infrastructure will support

  20. Heavy rains hamper Louisiana gas line

    SciTech Connect (OSTI)

    Horner, C.

    1983-06-01

    Despite heavy rains and flooding a 36-mile gas pipeline loop for Transcontinental Gas Pipe Line Corp. was completed from north of Starks (at the end of Transco's south Louisiana lateral) to the Lake Charles area. Somastic-coated, 42-in. grade X-60 pipe comprises 90% of the route. The contract included multiple 30-42 in. fabrications, installation of six 42-in. gate valves, and expansion of the Gillis compressor station.

  1. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  2. Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature ...

  3. EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida |

    Office of Environmental Management (EM)

    Department of Energy 6: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the

  4. Vitrification of waste with conitnuous filling and sequential melting

    DOE Patents [OSTI]

    Powell, James R. (Shoreham, NY); Reich, Morris (Kew Gardens Hills, NY)

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  5. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  6. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  7. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  8. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  10. November 10, 2004: First hydrogen refueling station opens in Washington,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC. | Department of Energy 0, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004 Secretary Abraham joins representatives of Shell and General Motors in the opening of the nation's first integrated gasoline/hydrogen refueling station in Washington, D.C. The station will be used to refuel General Motors' fuel

  11. NREL: Technology Deployment - Mobile App Puts Alternative Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations in the Palm of Your Hand Mobile App Puts Alternative Fueling Station Locations in the Palm of Your Hand News NREL Developed Mobile App for Alternative Fueling Station Locations Released Energy Department Launches Alternative Fueling Station Locator App Using the Enhanced Alternative Fueling Station Locator Alternative Fueling Stations Database Sponsors U.S. Department of Energy Related Stories Remote Shading Tool Has Potential to Reduce Solar Soft Costs by 17 Cents/Watt Contact

  12. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  13. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  14. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  15. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  16. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  17. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  18. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  19. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  20. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  1. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  9. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  10. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  16. Technical Design Report, Second Target Station

    SciTech Connect (OSTI)

    Galambos, John D.; Anderson, David E.; Bechtol, D.; Bethea, Katie L.; Brown, N.; Carden, W. F.; Chae, Steven M.; Clark, A.; Counce, Deborah M.; Craft, K.; Crofford, Mark T.; Collins, Richard M.; Cousineau, Sarah M.; Curry, Douglas E.; Cutler, Roy I.; Dayton, Michael J.; Dean, Robert A.; Deibele, Craig E.; Doleans, Marc; Dye, T.; Eason, Bob H.; Eckroth, James A.; Fincrock, C.; Fritts, S.; Gallmeier, Franz X.; Gawne, Ken R.; Hartman, Steven M.; Herwig, Kenneth W.; Hess, S.; Holmes, Jeffrey A.; Horak, Charlie M.; Howell, Matthew P.; Iverson, Erik B.; Jacobs, Lorelei L.; Jones, Larry C.; Johnson, B.; Johnson, S.; Kasemir, Kay; Kim, Sang-Ho; Laughon, Gregory J.; Lu, W.; Mahoney, Kelly L.; Mammosser, John; McManamy, T.; Michilini, M.; Middendorf, Mark E.; O'Neal, Ed; Nemec, B.; Peters, Roy Cecil; Plum, Michael A.; Reagan, G.; Remec, Igor; Rennich, Mark J.; Riemer, Bernie; Saethre, Robert B.; Schubert, James Phillip; Shishlo, Andrei P.; Smith, C. Craig; Strong, William Herb; Tallant, Kathie M.; Tennant, David Alan; Thibadeau, Barbara M.; Trumble, S.; Trotter, Steven M.; Wang, Z.; Webb, Steven B.; Williams, Derrick C.; White, Karen S.; Zhao, Jinkui

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  17. Request for Information on Efficiency Standards for Natural Gas Compressors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Efficiency Standards for Natural Gas Compressors Request for Information on Efficiency Standards for Natural Gas Compressors Ormat Technologies is headquartered in Reno Nevada and designs and manufactures waste heat recovery units that are commonly applied on natural gas pipeline compressor stations PDF icon Ormat EERE meeting memo More Documents & Publications DOE Meeting Memorandum: Ex Parte Communications Review of Thermally Activated Technologies, July 2004

  18. Request for Information on Efficiency Standards for Natural Gas Compressors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Request for Information on Efficiency Standards for Natural Gas Compressors Request for Information on Efficiency Standards for Natural Gas Compressors Ormat Technologies is headquartered in Reno Nevada and designs and manufactures waste heat recovery units that are commonly applied on natural gas pipeline compressor stations PDF icon Ormat EERE meeting memo More Documents & Publications DOE Meeting Memorandum: Ex Parte Communications Geothermal Energy Production

  19. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  20. Evaluation of Magnetic Insulation in SF6 Filled Regions

    SciTech Connect (OSTI)

    Houck, T; Ferriera, T; Goerz, D; Javedani, J; Speer, R; Tully, L; Vogtlin, G

    2009-06-08

    The use of magnetic fields perpendicular to quasistatic electric fields to deter electrical breakdown in vacuum, referred to as magnetic insulation, is well understood and used in numerous applications. Here we define quasi-static as applied high-voltage pulse widths much longer than the transit time of light across the electrode gap. For this report we extend the concept of magnetic insulation to include the inhibition of electrical breakdown in gases. Ionization and electrical breakdown of gases in crossed electric and magnetic fields is only a moderately explored research area. For sufficiently large magnetic fields an electron does not gain sufficient energy over a single cycloidal path to ionize the gas molecules. However, it may be possible for the electron to gain sufficient energy for ionization over a number of collisions. To study breakdown in a gas, the collective behavior of an avalanche of electrons in the formation of a streamer in the gas is required. Effective reduced electric field (EREF) theory, which considers the bulk properties of an electron avalanche, has been successful at describing the influence of a crossed magnetic field on the electric field required for breakdown in gases; however, available data to verify the theory has been limited to low gas pressures and weak electronegative gases. High power devices, for example explosively driven magnetic flux compressors, operate at electrical field stresses, magnetic fields, and insulating gas pressures nearly two orders of magnitude greater than published research for crossed fields in gases. The primary limitation of conducting experiments at higher pressures, e.g. atmospheric, is generating the large magnetic fields, 10's Tesla, and electric fields, >100 kV/cm, required to see a significant effect. In this paper we describe measurements made with a coaxial geometry diode, form factor of 1.2, operating at peak electrical field stress of 220 kV/cm, maximum magnetic field of 20 Tesla, and SF{sub 6} pressure of 760 torr.

  1. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  2. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  3. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  4. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  6. A bubble detection system for propellant filling pipeline

    SciTech Connect (OSTI)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  7. Magnetism in Na-filled Fe-based skutterudites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material nearmore » an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.« less

  8. Fluid-filled bomb-disrupting apparatus and method

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  9. Mullins effect in a filled elastomer under uniaxial tension

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maiti, A.; Small, W.; Gee, R. H.; Weisgraber, T. H.; Chinn, S. C.; Wilson, T. S.; Maxwell, R. S.

    2014-01-16

    Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less

  10. Remaining Sites Verification Package for 132-D-3, 1608-D Effluent Pumping Station, Waste Site Reclassification Form 2005-033

    SciTech Connect (OSTI)

    R. A. Carlson

    2006-05-09

    Decommissioning and demolition of the 132-D-3 site, 1608-D Effluent Pumping Station was performed in 1986. Decommissioning included removal of equipment, water, and sludge for disposal as radioactive waste. The at- and below-grade structure was demolished to at least 1 m below grade and the resulting rubble buried in situ. The area was backfilled to grade with at least 1 m of clean fill and contoured to the surrounding terrain. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

  11. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect (OSTI)

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  12. Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass

    Office of Scientific and Technical Information (OSTI)

    Defects (Journal Article) | SciTech Connect Journal Article: Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass Defects Citation Details In-Document Search Title: Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass Defects Precision single bumps were deposited on the surface of ICF capsules to simulate the hydrodynamic instability caused by a fill tube. The bump is fabricated by placing an aperture mask on the capsule and coating plasma polymer through the

  13. Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Waste Heat Recovery | Department of Energy Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery Proactive Design of n-Type (In, Ce) Filled Skutterudites Enabling High-Temperature Waste Heat Recovery Thermoelectric and structural properties of n-type (In, Ce) filled skutterudites including power factors and ZT as a function of temperature are presented PDF icon subramanian.pdf More Documents & Publications Proactive Design of n-Type

  14. Theoretical study of Ag- and Au-filled skutterudites. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Theoretical study of Ag- and Au-filled skutterudites. Theoretical study of Ag- and Au-filled skutterudites. Uses ab initio atomistic DFT modeling as implemented in VASP to determine theoretical values of thermoelectric properties for Ag-filled skutterudites. PDF icon stoica.pdf More Documents & Publications Thermoelectric Generator Development for Automotive Waste Heat Recovery Recent Progress in the Development of N-type Skutterudites Advanced Thermoelectric Materials and

  15. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Environmental Management (EM)

    Reserve | Department of Energy Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil

  16. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 9, 2014 - 2:20pm Addthis University students can join the...

  17. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 10, 2014 - 12:00am Addthis The Energy Department posted a blog...

  18. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents ...

  19. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  20. Webinar May 12: Overview of Station Analysis Tools Developed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economics and incorporates a station's capital and operating cost based on key design variables such as station capacity and mode of hydrogen delivery. To complement HRSAM, H2FAST...

  1. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tech tool predicts fire behavior in bark beetle-ravaged forests August 9, 2012 Rocky Mountain Research Station and LANL build better computer models LOS ALAMOS, N. M. and FORT COLLINS, CO., August 9, 2012-Fire fighters facing fast-moving wildfires need better tools to predict erratic fire behavior, especially in forests with dead trees caused by massive outbreaks of bark beetles whose predations create an abundance of dead fuel and changes in the tree canopy structure. Tools typically available

  2. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  3. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,178","9,197",89.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  4. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,164","10,337",101.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,065","8,612",92.3,"BWR","application/vnd.ms-excel","application/vnd.ms-

  6. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  7. AMF Deployment, McMurdo Station, Antarctica

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antarctica McMurdo Deployment AMF Home McMurdo Home Experiment Planning Abstract and Related Campaigns Science Plan AWARE Website Deployment Operations Baseline Instruments and Data Plots at the Archive Weather & Climate Support for the AWARE Project Outreach News & Press AWARE Log of Events Backgrounder (PDF, 1.5MB) Poster (JPEG, 1.3MB) Images Contacts Paul Ortega, AMF Operations Hanna Goss, Media Contact Dan Lubin, Principal Investigator AMF Deployment, McMurdo Station, Antarctica

  8. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2007-06-20

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  9. Antenna unit and radio base station therewith

    DOE Patents [OSTI]

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  10. Guidance for Filling Out a Detailed H2A Production Case Study | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Guidance for Filling Out a Detailed H2A Production Case Study Guidance for Filling Out a Detailed H2A Production Case Study Download presentation slides from the EERE Fuel Cell Technologies Office webinar, "Guidance for Filling Out a Detailed H2A Production Case Study," held July 9, 2013. PDF icon Guidance for Filling Out a Detailed H2A Production Case Study Webinar Slides More Documents & Publications Summary of Electrolytic Hydrogen Production: Milestone Completion

  11. List of Refueling Stations Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate...

  12. Washington DC's First Electric Vehicle Charging Station | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of

  13. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic feasibility of developing a vacant, undeveloped General Services Administration-owned property into an income-producing site equipped with a hydrogen fueling station and a covered 175-stall parking structure with roof-top solar panels. According to the analysis, the proposed station will

  14. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  16. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  17. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  18. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  19. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  20. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  3. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Orlando Plugs into Electric Vehicle Charging Stations | Department of

    Energy Savers [EERE]

    Energy Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on

  5. Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Fleets, Turns into Profit Center Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center to someone by E-mail Share Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Facebook Tweet about Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Twitter Bookmark Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local

  6. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  7. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect (OSTI)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within 0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of 2.6% from the reference condition for the setup used. The ?-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 0.25) mm at 6 MV and (0.74 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup ?1}, respectively. For the inner 5 5 cm{sup 2} region and the outer 11 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup ?1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.

  8. Containment pressurization and burning of combustible gases in a large, dry PWR containment during a station blackout sequence

    SciTech Connect (OSTI)

    Lee, M.; Fan, C.T. (National Tsing-Hua Univ., Dept. of Nuclear Engineering, Hsinchu (TW))

    1992-07-01

    In this paper, responses of a large, dry pressurized water reactor (PWR) containment in a station blackout sequence are analyzed with the CONTAIN, MARCH3, and MAAP codes. Results show that the predicted containment responses in a station blackout sequence of these three codes are substantially different. Among these predictions, the MAAP code predicts the highest containment pressure because of the large amount of water made available to quench the debris upon vessel failure. The gradual water boiloff by debris pressurizes the containment. The combustible gas burning models in these codes are briefly described and compared.

  9. Tritium Instrument Demonstration Station (TIDS) | Department of Energy

    Office of Environmental Management (EM)

    3rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. PDF icon Tritium Instrument Demonstration Station (TIDS) More Documents & Publications Tritium Instrument Demonstration Station (TIDS) Tritium Instrument Demonstration Station (TIDS) Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National Laboratory (SRNL)

  10. SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station

  11. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  12. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  13. Wet powder seal for gas containment

    DOE Patents [OSTI]

    Stang, Louis G. (Sayville, NY)

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  14. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  15. License Amendment Request for Storing Exelon Sister Nuclear Stations Class

    Office of Scientific and Technical Information (OSTI)

    B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 (Conference) | SciTech Connect License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 Citation Details In-Document Search Title: License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 Exelon Nuclear (Exelon) designed and constructed

  16. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  17. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect (OSTI)

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  18. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  19. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  20. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,867,"7,727",101.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" 3,867,"6,866",90.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  1. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  2. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,097","9,241",96.2,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,097","9,241",96.2

  3. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    SciTech Connect (OSTI)

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  4. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  5. Method for filling the cavities of cells with a chromogenic fluid

    DOE Patents [OSTI]

    Tonazzi, Juan C. Lopez (Tucson, AZ); Kucharczyk, Jr., Joseph E. (Tucson, AZ); Agrawal, Anoop (Tucson, AZ)

    1999-01-01

    A method and apparatus are disclosed for filling a cell cavity positioned between a first substrate and a second substrate with a cell filling liquid. The method entails forming at least one evacuation cavity encompassing at least a portion of an outer surface of each of the first and second substrates of a cell containing a cell cavity and isolating the cell cavity from the evacuation cavity; reducing a pressure in each of the evacuation cavity and the cell cavity; and dispensing the cell filling fluid into the cell cavity.

  6. Apparatus for filling the cavities of cells and laminated substrates with a fluid

    DOE Patents [OSTI]

    Lopez Tonazzi, Juan C. (Tucson, AZ); Kucharczyk, Jr., Joseph E. (Tucson, AZ); Agrawal, Anoop (Tucson, AZ)

    2001-01-01

    A method and apparatus are disclosed for filling a cell cavity positioned between a first substrate and a second substrate with a cell filling liquid. The method entails forming at least one evacuation cavity encompassing at least a portion of an outer surface of each of the first and second substrates of a cell containing a cell cavity and isolating the cell cavity from the evacuation cavity; reducing a pressure in each of the evacuation cavity and the cell cavity; and dispensing the cell filling fluid into the cell cavity.

  7. Method for filling the cavities of cells with a chromogenic fluid

    DOE Patents [OSTI]

    Tonazzi, J.C.L.; Kucharczyk, J.E. Jr.; Agrawal, A.

    1999-01-05

    A method and apparatus are disclosed for filling a cell cavity positioned between a first substrate and a second substrate with a cell filling liquid. The method entails forming at least one evacuation cavity encompassing at least a portion of an outer surface of each of the first and second substrates of a cell containing a cell cavity and isolating the cell cavity from the evacuation cavity; reducing a pressure in each of the evacuation cavity and the cell cavity; and dispensing the cell filling fluid into the cell cavity. The application is to the fabrication of electrochromic windows. 22 figs.

  8. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect (OSTI)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  9. Robust bearing estimation for 3-component stations

    SciTech Connect (OSTI)

    CLAASSEN,JOHN P.

    2000-02-01

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the inherent information in the arrival at every step of the process to achieve near-optimal results. In particular the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, and finally to apply bias corrections when calibration information is available to yield a single final estimate. The algorithm was applied to a small but challenging set of events in a seismically active region. It demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted from these findings.

  10. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  11. Development of a Renewable Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Renewable Hydrogen Energy Station Development of a Renewable Hydrogen Energy Station Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_heydorn.pdf More Documents & Publications Validation of an Integrated Hydrogen Energy Station Fuel Cell Power Plants Renewable and Waste Fuels Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011

  12. Validation of an Integrated Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Integrated Hydrogen Energy Station Validation of an Integrated Hydrogen Energy Station 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_06_heydorn.pdf More Documents & Publications Development of a Renewable Hydrogen Energy Station Fuel Cell Power Plants Renewable and Waste Fuels DFC Technology Status

  13. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Fueling Station Based on GEGR SCPO Technology (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 05_ge_distributed_h2_fueling_station.pdf More Documents & Publications BILIWG: Consistent "Figures of Merit" (Presentation) Idaho Operations AMWTP Fact Sheet

  14. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station,

    Energy Savers [EERE]

    Yellowstone National Park | Department of Energy Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case study describes the performance of a mobile photovoltaic system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyoming. This small, remote outpost is not served by the electric utility grid and previously

  15. Station Footprint: Separation Distances, Storage Options, and Pre-Cooling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron Harris of Sandia National Laboratories was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_12_harris.pdf More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design

  16. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  17. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  18. Department of Energy Helping Americans Find Alternative Fuel Stations |

    Office of Environmental Management (EM)

    Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information

  19. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  20. College Station Utilities- Residential Energy Back II Rebate Program

    Broader source: Energy.gov [DOE]

    College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. Rebates only apply for replacements in...

  1. WWTP Power Generation Station Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  2. Kaneohe Station, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaneohe Station, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.44882, -157.760696 Show Map Loading map... "minzoom":false,"mapping...

  3. Antu County 303 Hydropower Station Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co., Ltd. Place: Jilin Province, China Zip: 133613 Sector: Hydro Product: China-based small hydro CDM project developer. References: Antu County 303 Hydropower Station Co.,...

  4. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic feasibility of ...

  5. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...

  6. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  7. Hellisheidi Geothermal Power Station - South Iceland | Open Energy...

    Open Energy Info (EERE)

    - South Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hellisheidi Geothermal Power Station - South Iceland Published...

  8. Targeting Net Zero Energy at Marine Corps Air Station Miramar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and ... laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable ...

  9. Brunswick Station, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brunswick Station, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.89624, -69.931446 Show Map Loading map... "minzoom":false,"mapping...

  10. Rongjiang County Sanjunyan Small Hydropower Station | Open Energy...

    Open Energy Info (EERE)

    Station Place: Guizhou Province, China Zip: 557200 Sector: Hydro Product: China-based small hydro project developer. References: Rongjiang County Sanjunyan Small Hydropower...

  11. Alternative Fueling Station Locator - Mobile | Open Energy Information

    Open Energy Info (EERE)

    version of the Alternative Fueling Station Locator, part of the Department of Energy's Alternative Fuels and Advanced Vehicles Datacenter, allows users to search for alternative...

  12. MHK ISDB/Instruments/Automatic Weather Station AWS 2700 | Open...

    Open Energy Info (EERE)

    Weather Station AWS 2700 < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  13. Help Design the Hydrogen Fueling Station of Tomorrow

    Broader source: Energy.gov [DOE]

    University students can join the Energy Department-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station.

  14. EV Charging Stations Take Off Across America | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's

  15. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory...

  16. Mobile Alternative Fueling Station Locator Now Available - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Mobile Alternative Fueling Station Locator Now Available Drivers can now find alternative fueling stations using cell phones & PDAs February 4, 2009 Driving cross-country or even around town in an alternative fuel vehicle used to require drivers to do a little homework to find the nearest fueling station - but not anymore. Consumers on-the-go can now access the U.S. Department of Energy's (DOE) Alternative Fueling Station Locator using their cell phone, BlackBerry, or other personal

  17. Re: Potomac River Generating Station Department of Energy, Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia. PDF icon Department of Energy Order No. 202-05-03 Revised Notice of Planned Outages During January 2006 More Documents & Publications Re: Potomac River Generating Station ...

  18. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power ... Electric Power Co",1190 4,"Columbia (WI)","Coal","Wisconsin Power & Light ...

  19. Experimental Station 7-3 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy Main Scientific Disciplines Biomedical Sciences Structural Molecular Biology Beam Line Specifications Source 20-pole, 2-Tesla wiggler, 0.8 mrad beam, Side station...

  20. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  2. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  3. Cerro Prieto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  4. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  5. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  6. Webinar October 13: Reference Designs for Hydrogen Fueling Stations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy October 13: Reference Designs for Hydrogen Fueling Stations Webinar October 13: Reference Designs for Hydrogen Fueling Stations October 8, 2015 - 2:37pm Addthis The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT). The goal of the H2FIRST Reference Station Design Task is to accelerate acceptance of near-term hydrogen

  7. DOE - Office of Legacy Management -- Moab AEC Ore Buying Station...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  8. DOE - Office of Legacy Management -- Grants AEC Ore Buying Station...

    Office of Legacy Management (LM)

    The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were ...

  9. U.S. Naval Station, Guantanamo Bay, Cuba

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba.

  10. EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

  11. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  12. High-Temperature Thermoelectric Properties of p-Type Yb-filled...

    Office of Scientific and Technical Information (OSTI)

    High-Temperature Thermoelectric Properties of p-Type Yb-filled Skutterudites with FeSb2 Nanoinclusions Citation Details In-Document Search Title: High-Temperature Thermoelectric ...

  13. Title 33 CFR 323 Permits for Discharges of Dredged or Fill Material...

    Open Energy Info (EERE)

    Title 33 CFR 323 Permits for Discharges of Dredged or Fill Material Into Waters of the United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  14. Energy Secretary Bodman Announces SPR Fill to be Complete in August

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- Secretary of Energy Samuel Bodman announced today that the planned fill of the Strategic Petroleum Reserve (SPR) will be complete in August, when the SPR reaches 700 million...

  15. 70 MPa Fast-Fill Modeling and Validation Experiments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70 MPa Fast-Fill Modeling and Validation Experiments 70 MPa Fast-Fill Modeling and Validation Experiments These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon mpafastfill_modelingexperiments_ostw.pdf More Documents & Publications Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings

  16. Mirror symmetry and the half-filled Landau level (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Mirror symmetry and the half-filled Landau level Citation Details In-Document Search This content will become publicly available on December 3, 2016 Title: Mirror symmetry and the half-filled Landau level Authors: Kachru, Shamit ; Mulligan, Michael ; Torroba, Gonzalo ; Wang, Huajia Publication Date: 2015-12-04 OSTI Identifier: 1230068 Grant/Contract Number: AC02-76SF00515 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information:

  17. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium Citation Details In-Document Search Title: Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar

  18. Inspection of the Establishment and Filling of the Department's Ombudsman Position, IG-0393

    Office of Environmental Management (EM)

    REPORT ON INSPECTION OF THE ESTABLISHMENT AND FILLING OF THE DEPARTMENT'S OMBUDSMAN POSITION Report No: DOE/IG0393 Office of Inspections Washington, D.C. 20585 Date Issued: August 1, 1996 INFORMATION: Report on "Inspection of the Establishment and Filling of the Department's Ombudsman Position" The Secretary BACKGROUND: The subject final report is provided to inform you of our findings and recommendations concerning our review of possible personnel irregularities regarding the

  19. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  20. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup }, 1{sup },2] crystal orientation.

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  2. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil...

  3. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  4. Project X Energy Station Workshop Report. Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

    SciTech Connect (OSTI)

    Asner, David M.; Hurh, Patrick; Brady Raap, Michaele C.; Gohar, Yoursy; Peterson, Mary E.; Pithcer, Eric; Riemer, Bernie; Senor, David J.; Wootan, David W.

    2013-06-14

    Project X Energy Station Workshop Report Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

  5. Apparatus for the liquefaction of a gas and methods relating to same

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID

    2009-12-29

    Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

  6. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  8. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  9. Rotary gas expander for energy recovery from natural gas expansion. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-15

    The specific purpose of this project was to develop a positive-displacement rotary expansion device (based on the Wankel Engine principle) and demonstrate that it could be used as an economical alternative to sophisticated turboexpanders for low gas flow and small pressure differential stations. The positive-displacement rotary expander would operate at much lower speeds than conventional turboexpanders. It would therefore be more efficient at lower pressure differentials and gas flows, and could cost significantly less because inefficient and costly gear-reduction equipment would not be required. Another purpose of this project was to develop a fail safe control system for operation in hazardous atmospheres. Design considerations for the rotary gas expander and the control system are discussed. A projection is made of the electrical generation potential and the economics of recovering the energy present in the high temperature gas. (MCW)

  10. Irradiation Environment of the Materials Test Station

    SciTech Connect (OSTI)

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  11. Severe Accident Test Station Activity Report

    SciTech Connect (OSTI)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000C compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  12. Conceptual design of a submerged power station

    SciTech Connect (OSTI)

    Herring, J.S. )

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. Idaho National Engineering Laboratory is developing the concept of a submerged power stations (SPS). The reactor is located in the forward part of the vessel, while the turbine and generator are in the midsection, and the control and crew quarters are located at the opposite end of the vessel. The current design of the SPS has a 22.5-m o.d., is 146 m long, and has a total mass, including seawater in the annular region between the hulls, of 47,000 t. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 300 to 600 MW(electric) transmitted to shore by undersea cables. The SPS has the advantages of centralized fabrication and maintenance. The author believes that the SPS has significant safety and environmental advantages.

  13. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  14. Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of

  15. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  16. Apparatus and method for excluding gas from a liquid

    DOE Patents [OSTI]

    Murphy, Jr., Robert J. (Bellaire, TX)

    1985-01-01

    The present invention is directed to an apparatus and method for preventing diffusion of a gas under high pressure into the bulk of a liquid filling a substantially closed chamber. This apparatus and method is particularly useful in connection with test devices for testing fluid characteristics under harsh conditions of extremely high pressure and high temperature. These devices typically pressurize the liquid by placing the liquid in pressure and fluid communication with a high pressure inert gas. The apparatus and method of the present invention prevent diffusion of the pressurizing gas into the bulk of the test liquid by decreasing the chamber volume at a rate sufficient to maintain the bulk of the liquid free of absorbed or dissolved gas by expelling that portion of the liquid which is contaminated by the pressurizing gas.

  17. Apparatus for converting garbage into a fuel gas

    SciTech Connect (OSTI)

    Szloboda, D.T.

    1982-10-05

    Garbage to be converted is fed into the upper end of a vertical chamber. A gas collection chamber is provided around the upper end of the chamber and a blower is used for lowering the pressure in this gas collection chamber. The lower pressure causes a draw within a combustion zone defined at the lower end of the garbage chamber. The draw promotes combustion of garbage in the combustion zone much in the same manner that the draw by a pipe smoker will promote combustion within the bowl of his pipe. The gas collected in the gas chamber is delivered through a water filled cleaner or filter. The gas discharged from the upper end of the filter is ready for use in a power device or a furnace, or it may be collected and compressed or even liquified, into a storage container, for easy mobility and later use.

  18. Alternative Fueling Station Locator App Provides Info at Your...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy ... that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy ...

  19. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  20. Apparatus for the liquefaction of natural gas and methods relating to same

    DOE Patents [OSTI]

    Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

    2009-09-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    said it will begin maintenance next Monday, February 28, at its compressor station in Airport, Alabama. The maintenance, which is expected to continue until April 1, will result...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update: Gulf South Pipeline Company began scheduled maintenance on the Jackson Compressor Station in central Mississippi on Tuesday, September 12. The maintenance...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in the Rockies may have resulted from transportation constraints attributable to maintenance on several compressor stations on the Rockies Express Pipeline (REX) in Colorado,...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Supply from the Rockies to the Northwest and Northern California was limited by maintenance at Northwest Pipelines Kemmerer Compressor Station in Wyoming. In addition, a...

  5. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-02-14

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.

  6. Dispersion relations for a plasma-filled helix-loaded-waveguide

    SciTech Connect (OSTI)

    Makowski, M.A.; Hooper, E.B.; Stallard, B.W.

    1994-01-01

    The propagation of waves on bounded, magnetized plasma columns arises in connection with a variety of applications. To this end dispersion relations axe developed for a variety of multi-region circularly symmetric configurations. These include, a sheath helix in free space, a plasma column in free space, a plasma filled conducting tube, a plasma filled sheath-helix in free space, a sheath helix within a conducting cylinder, a plasma filled sheath-helix within a conducting cylinder, and a plasma column within a sheath-helix contained within a conducting cylinder. The latter configuration is of the most interest for whistler wave excitation for plasma thruster applications, since it includes the effect of a vacuum region separating the plasma column from the helical excitation structure.

  7. Experimental Station 6-2b | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b Beam line 6-2b is a wiggler end-station dedicated for High Resolution Hard X-ray Spectroscopy. The end station combines three multicrystal Johann spectrometers that enable X-ray Emission Spectroscopy (XES), Resonant Inelastic X-ray Scattering (RIXS), High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS) and X-ray Raman Spectroscopy (XRS) techniques. The ambient pressure operation of the end-station provides a great flexibility of implementing various sample

  8. Experimental Station 8-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 BL8-1 is equipped with a post-monochromator beam-splitting mirror to allow for two sample chamber locations. BL8-1a accommodates roll-on user chambers. BL8-1b is under modification to provide energy range from 2 eV to 10 eV. The mirror cooling system was upgraded in FY04 and the BL8-1 stations are SPEAR3 500 mA compatible. Stations 8-1a and 8-1b cannot be used simultaneously. This experimental station is NOT open to users. Status Closed Supported Techniques Photoemission spectroscopy Soft

  9. ARM - PI Product - NOAA PMEL Station Chemistry Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsNOAA PMEL Station Chemistry Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : NOAA PMEL Station Chemistry Data Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH. Data

  10. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  11. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  12. High-Temperature Thermoelectric Properties of p-Type Yb-filled

    Office of Scientific and Technical Information (OSTI)

    Skutterudites with FeSb2 Nanoinclusions (Journal Article) | SciTech Connect High-Temperature Thermoelectric Properties of p-Type Yb-filled Skutterudites with FeSb2 Nanoinclusions Citation Details In-Document Search Title: High-Temperature Thermoelectric Properties of p-Type Yb-filled Skutterudites with FeSb2 Nanoinclusions Authors: Zhou, Chen ; Sakamoto, Jeffrey ; Morelli, Donald T Publication Date: 2011-12-09 OSTI Identifier: 1066327 DOE Contract Number: SC0001054 Resource Type: Journal

  13. Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in

    Energy Savers [EERE]

    Southwest Louisiana | Department of Energy Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in Southwest Louisiana Connecting Ready-to-Work Americans with Ready-to-Be-Filled Jobs in Southwest Louisiana August 7, 2014 - 1:21pm Addthis On July 9, 2014, nearly 60 participants gathered at SOWELA Technical Community College to share information and learn about energy investments that will bring billions of dollars and thousands of in-demand energy jobs to the region. On July 9,

  14. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  15. Green is Our Favorite Color: Students Fill in the Lines with Energy-themed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coloring Book | Department of Energy Green is Our Favorite Color: Students Fill in the Lines with Energy-themed Coloring Book Green is Our Favorite Color: Students Fill in the Lines with Energy-themed Coloring Book September 12, 2014 - 4:01pm Addthis A page from the Get Current coloring book. A page from the Get Current coloring book. A page from the Get Current coloring book. A page from the Get Current coloring book. A page from the Get Current coloring book. A page from the Get Current

  16. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  17. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  18. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect (OSTI)

    Rosenthal, A

    2011-08-19

    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners

  19. Port Jefferson Station, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Port Jefferson Station is a census-designated place in Suffolk County, New York.1...

  20. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... valve at the AC Transit station in Emeryville, California. 19 This approach is non-standard but is allowed under the current ASME Section VIII boiler and pressure vessel code. ...