Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tax credits stimulate gas drilling without decreasing federal tax revenue: A win-win situation  

SciTech Connect

The long-term U.S. natural gas resource base (1300 + TCF) exists. The challenge is the timely conversion of that resource base to proved, deliverable reserves. Tax credits stimulate the transfer of the natural gas resource base to deliverable proved reserves by effective price enhancement and through the discovery, application, and dissemination of technology. Tax incentives act as net price increases to gas producers as long as all companies have roughly the same tax rate and all are able to utilize the credit. Tax incentives can thus be merged with gas price for statistical purposes. This paper demonstrates how the existence of the 29 credits stimulated drilling, increased relatively clean burning gas reserves, resulted in new technological advances and possibly increased federal tax receipts with no upward pressure on gas prices. New tax-stimulus mechanisms are introduced that will help ensure that tax credits both stimulate drilling and increase tax revenue.

Cline, S.B.

1995-12-31T23:59:59.000Z

2

Expenses Revenues  

NLE Websites -- All DOE Office Websites (Extended Search)

Expenses Expenses Revenues O&M Expense: /1 Reclamation $42,542,742 Western $57,084,199 Total O&M Expense $99,626,941 Purchase Power Expense: Custom Product and Supplemental Power /2 $201,512,000 $201,512,000 HBA Costs /3 $2,379,720 $0 Purchases for Project Use customers /4 $0 $0 Washoe Cost for BR /5 $471,500 $0 Total Purchase Power Expense/Revenue $204,363,220 $201,512,000 Interest Expense: Total Interest Expense $8,932,452 Other Expenses: Total Other Expenses $3,120,960 Project Repayment (Expense): Total Project Repayment $12,000,000 Other Pass-through Expenses & Revenues: CAISO Market & GMC Charges for 2207A (WSLW) and WPUL /6 $2,928,629 $0 CAISO Expenses & Revenues /6 $21,439,303 $20,749,986 PG&E costs incurred for Wheeling /7 $10,700,551 $9,883,246 PATH 15 revenues and expenses

3

A method for evaluating a gas reservoir using a digital computer  

E-Print Network (OSTI)

GROSS REVENUE ALL LEASE SJNYAIY YEAR OIL OR CONDENSATE GROSS NET BARRELS BARRELS GROSS HCF GAS NET HCF OIL REVENUE GAS REVENUE TOTAL REVENUE FUTURE IISCSUNTL-0 VET VA&UE COSTS REVENUE 6 30 PEA. 4107. 4959 2699 ' 781 ' 215 ~ 3594... OF ESTINATED PRODUCTION AND REVENUE AS OF JUNE Ie 1963 JOHN OOE iIORKING INTEREST I 00000000 OIL NET INTEREST 0 ~ 8750000D GAS NET INTEREST 0 ' 87500000 PIPICIN GAS CO BIRCHFIELD LEASE 'IIO ~ I SANPLE GAS FIELD BACA COUNTY' COL0%600 FUTURE PRODUCTION...

Garb, Forrest Allan

2012-06-07T23:59:59.000Z

4

Crop Revenue Coverage (CRC)  

E-Print Network (OSTI)

Crop Revenue Coverage guarantees a stated amount of revenue based on commodity futures prices. This publication explains how CRC works and gives examples based on harvest price scenarios....

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-17T23:59:59.000Z

5

Optimization of offshore natural gas field development.  

E-Print Network (OSTI)

?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

Johansen, Gaute Rannem

2011-01-01T23:59:59.000Z

6

2012 Revenue for Delivery Service Providers  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue for Delivery Service Providers" Revenue for Delivery Service Providers" "(Data from form EIA-861 schedule 4C)" ,,,"Revenue (Thousands Dollars)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Pacific Gas & Electric Co","CA","Investor Owned",38657,306699,232366,2843,580565 "San Diego Gas & Electric Co","CA","Investor Owned",1019.1,62400.1,84143.3,0,147562.5 "Southern California Edison Co","CA","Investor Owned",6706,456007,69193,".",531906 "Connecticut Light & Power Co","CT","Investor Owned",362262,514043,100262,6681,983248

7

revenue | OpenEI  

Open Energy Info (EERE)

revenue revenue Dataset Summary Description EIA previously collected sales and revenue data in a category called "Other." This category was defined as including activities such as public street highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. EIA has revised its survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. Source Energy Information Administration (EIA) Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords EIA Electricity Generation revenue sales utilities Data application/vnd.ms-excel icon f8262010.xls (xls, 992.3 KiB) application/vnd.ms-excel icon f8262009.xls (xls, 1.5 MiB)

8

revenues | OpenEI  

Open Energy Info (EERE)

revenues revenues Dataset Summary Description The data included in this submission is United States Department of Transportation (DOT) data on rates and revenue statistics up to 1995. The data includes state motor-fuel tax receipts, 1919-1995, state motor fuel taxes and related receipts, 1950-1995, and state and federal motor fuel tax rates, 1919-1995 The data is presented in .xlsx format. Source DOT Date Released Unknown Date Updated Unknown Keywords DOT highway motor vehicles rates revenues Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor-fuel tax receipts, 1919-1995 (xlsx, 13.8 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon State motor fuel taxes and related receipts, 1950-1995 (xlsx, 78.5 KiB)

9

The revenue imperative  

E-Print Network (OSTI)

I contend that the revenue imperative, the government's acute need for additional funds, governed Civil War fiscal policy. My thesis questions the prevalent "Beard-Hacker thesis" that asserts the Republican administration purposefully inaugurated...

Flaherty, Jane

2012-06-07T23:59:59.000Z

10

Capital and revenue expenditures  

E-Print Network (OSTI)

T and Charaoteristios of Various Expenditures ~ ~ 7 III. Bases for Expenditure Classifioationi ~ ~ ~ ~ ~ ~ ~ ~ r ~ ' ~ IV ~ Methods of kooountiag for Capital and Revenue Expenditure( ~ ~ I CkPITLL ERE RKVRRUm bXPLM)ITURkiS ISTRORUGTIOR kn ?ttonpt will be made... whish represent part of the nooessary cost of usine the asset during the current period, shouLd be oharged abainst the revenue of the period? heveaue expenditures are expensosg capital expenditures are noti fhe toras aooounting period' and "fiscal...

Owens, Jack Bailey

2012-06-07T23:59:59.000Z

11

Florida Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Next Release Date: 12312015 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves New...

12

Measurement of advective soil gas flux: Results of field and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of advective soil gas flux: Results of field and laboratory experiments with CO2. Measurement of advective soil gas flux: Results of field and laboratory experiments...

13

Background - Revenue Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Revenue Collection Revenue Collection The Internal Revenue Service (IRS) collects Federal fuel taxes from large oil companies or large oil distribution firms with storage facilities prior to distribution of the fuels to customers. The Federal fuel taxes are imposed when the fuel is first removed from bulk storage and sold. Although these taxes are "passed on" to the individual purchaser, data at the individual purchaser level are simply not available. Additional Federal heavy vehicle non-fuel-based fees include (1) the retail sales excise tax on tractors and trailers, (2) the tax on heavy vehicle tire sales, and (3) the heavy vehicle-use tax. Truck registration was once used as a proxy for truck taxes, but was rejected because it did not accurately reflect on-highway usage in a particular State. In fact, the State where the heavy vehicle and/or tires are purchased is not necessarily the State in which these purchases will be used.

14

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2003.04.02 - 2003.09.02 Lead Scientist : Marc Fischer For data sets, see below. Description Ecosystem-atmosphere exchange of carbon, water, and energy varies with climate, soil, and land management, in ways 1) that influence the CO2 flux and planetary boundary layer CO2 concentration in ARM CART and 2) that we can model and predict. This activity repeated portable flux system measurements that we performed in spring 2002, by continuing measurements of the spatial heterogeneity of carbon, water, and energy fluxes in fields surrounding the ARM SGP Central Facility (CF).

15

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2006.01.01 - 2006.12.31 Lead Scientist : Marc Fischer For data sets, see below. Description Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal to inter-annual time scales. In an extension of our earlier work on crop systems, we investigated the effects of burning on the cycles of carbon, water, and energy in an example of grazed land of the Southern Great Plains. In collaboration with Dr. Herman Mayeux, of the USDA Grazing

16

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2004.04.15 - 2004.12.15 Lead Scientist : Marc Fischer For data sets, see below. Description Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal to inter-annual time scales. Models predicting fluxes for un-irrigated agriculture were posed with the challenge of characterizing the onset and severity of plant water stress. We conducted a study that quantified the spatial heterogeneity and temporal variations in land

17

The Natural Gas Pools Characteristics in Sulige Gas Field, Ordos Basin, China  

Science Journals Connector (OSTI)

There are abundant natural gas resources in Sulige gas field, Ordos Basin. The ascertained resources ... setting and reservoir heterogeneity. The characteristics of natural gas pools were analyzed from gas compos...

Lin Xiaoying; Zeng Jianhui; Zhang Shuichang

2012-01-01T23:59:59.000Z

18

NSTX High Field Side Gas Fueling System  

SciTech Connect

Fueling National Spherical Torus Experiment (NSTX) plasmas with gas injected from the high field side (HFS) has produced earlier, more reliable transitions to the H-mode, longer H-mode durations, higher toroidal rotation, and higher edge electron temperature compared with similar discharges using the low field side (LFS) gas fueling injectors. The HFS gas fueling system consists of a Center Stack midplane injector, and an injector at the inner, upper corner of the Center Stack. The challenging design and installation constraints for the HFS gas system involved placing the control components as close as possible to the machine-vacuum interface, devising a special feed-through flange, traversing through vessel regions whose temperatures during bake-out range from 150 to 350 degrees Centigrade, adapting the gas transport tubing size and route to the small instrumentation wire channels behind the existing graphite plasma facing component tiles on the Center Stack, and providing output orifices shielded from excessive plasma power depositions while concentrating the output flow to facilitate fast camera viewing and analysis. Design, recent performance, and future upgrades will be presented.

H.W. Kugel; M. Anderson; G. Barnes; M. Bell; W. Blanchard; L. Dudek; D. Gates; R. Gernhardt; R. Maingi; D. Mueller; T. Provost; R. Raman; V. Soukhanovskii; J. Winston

2003-10-09T23:59:59.000Z

19

Greenhouse Gases (GHG) Emissions from Gas Field Water in Southern Gas Field, Sichuan Basin, China  

Science Journals Connector (OSTI)

In order to assess correctly the gases emissions from oil/gas field water and its contributions to the source of greenhouse gases (GHG) at the atmospheric temperature and pressure, ... first developed to study th...

Guojun Chen; Wei Yang; Xuan Fang; Jiaai Zhong…

2014-03-01T23:59:59.000Z

20

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

22

Antisymmetric field in string gas cosmology  

E-Print Network (OSTI)

We study how the introduction of a 2-form field flux modify the dynamics of a T-duality invariant string gas cosmology model of Greene, Kabat and Marnerides. It induces a repulsive potential term in the effective action for the scale factor of the spacial dimensions. Without the 2-form field flux, the universe fails to expand when the pressure due to string modes vanishes. With the presence of a homogeneous 2-form field flux, it propels 3 spacial dimensions to grow into a macroscopic 4 dimensional space-time. We find that it triggers an expansion of a universe away from the oscillating phase around the self-dual radius. We also investigate the effects of a constant 2-form field. We can obtain an expanding 4 dimensional space-time by tuning it at the critical value.

Igmar C. Rosas-López; Yoshihisa Kitazawa

2010-07-09T23:59:59.000Z

23

FOUNDATION REVENUE OBJECT CODES LSU Foundation Revenue Object Codes  

E-Print Network (OSTI)

FOUNDATION REVENUE OBJECT CODES 4 page 1 LSU Foundation Revenue Object Codes 0F00 Foundation - Balance Forward 0F01 Foundation - Other Contributions 0F02 Foundation - State of Louisiana 0F03 Foundation - Corporate Contributions 0F04 Foundation - Corporate Match Contributions 0F05 Foundation - Individual

Harms, Kyle E.

24

Gas storage and separation by electric field swing adsorption  

DOE Patents (OSTI)

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

25

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD  

E-Print Network (OSTI)

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD INFRASTRUCTURE UNDER COMPLEX FISCAL Pittsburgh, PA 15213 Abstract The optimal development planning of offshore oil and gas fields has received development planning. Keywords Multiperiod Optimization, Planning, Offshore Oil and Gas, MINLP, MILP, FPSO

Grossmann, Ignacio E.

26

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

27

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

28

,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2012...

29

Private Activity Revenue Bonds (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

Private Activity Revenue Bonds are available in the form of both taxable bonds and tax-exempt bonds. Both types of bonds provide access to long-term capital markets for fixed asset financing....

30

Public Utilities Specialist (Revenue Analyst)  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve as an analyst in evaluating the development of short and long-term business strategy, market monitoring, revenue tracking and forecasting, cost...

31

Geochemical characteristics and formation process of natural gas in Kela 2 gas field  

Science Journals Connector (OSTI)

On the basis of a large amount of natural gas components and the carbon isotope as well ... as some other analysis data in Kela 2 gas field, the geochemical characteristics, source, origin, and formation process ...

Mengjun Zhao; Shuangfang Lu; Tingdong Wang; Jian Li

2002-12-01T23:59:59.000Z

32

Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

33

Colorado Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

34

Michigan Dry Natural Gas Reserves New Field Discoveries (Billion...  

Gasoline and Diesel Fuel Update (EIA)

New Field Discoveries (Billion Cubic Feet) Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

35

Utah Dry Natural Gas Reserves New Field Discoveries (Billion...  

Annual Energy Outlook 2012 (EIA)

New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

36

Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

37

California Dry Natural Gas Reserves New Field Discoveries (Billion...  

Annual Energy Outlook 2012 (EIA)

New Field Discoveries (Billion Cubic Feet) California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

38

Pennsylvania Dry Natural Gas Reserves New Field Discoveries ...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

39

Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion...  

Annual Energy Outlook 2012 (EIA)

New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

40

Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Kansas Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

42

Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion...  

Annual Energy Outlook 2012 (EIA)

New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

43

Montana Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

44

Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...  

Annual Energy Outlook 2012 (EIA)

New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

45

Alabama Dry Natural Gas Reserves New Field Discoveries (Billion...  

Gasoline and Diesel Fuel Update (EIA)

New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

46

Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

47

Texas Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

48

Ohio Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

49

Alaska Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

50

Miscellaneous States Shale Gas Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

51

Oil and Gas Field Code Master List - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Field Code Master List Oil and Gas Field Code Master List With Data for 2012 | Release Date: May 8, 2013 | Next Release Date: April 2014 Previous Issues Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2012 Definition of a Field Afield is defined as "an area consisting of a single reservoir ormultiple reservoirs all grouped on, or related to, the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both." More › About the Field Code Master List Related Links

52

Gas plants, new fields spark production rise  

SciTech Connect

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

53

Federal offshore statistics: 1995 - leasing, exploration, production, and revenue as of December 31, 1995  

SciTech Connect

This report provides data on federal offshore operations for 1995. Information is included for leasing activities, development, petroleum and natural gas production, sales and royalties, revenue from federal offshore leasing, disbursement of federal revenues, reserves and resource estimates, and oil pollution in U.S. and international waters.

Gaechter, R.A.

1997-07-01T23:59:59.000Z

54

Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993  

SciTech Connect

This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

Francois, D.K.

1994-12-31T23:59:59.000Z

55

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

56

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

57

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER...

58

Utility-Based Revenue Streams- Notes  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Neighborhood Program October 2011 Workshop Summary of Revenue Streams from Breakout Sessions (11/20/11).

59

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

60

Geology of new Springdale gas field in northeastern Kansas  

SciTech Connect

The Springdale gas field in Leavenworth County, Kansas, is east of the old McLouth and north of the old Ackerland/Jarbolo fields, both now used for gas storage. Gas production from McLouth sand bodies and the Burgess sand in the Cherokee Group (Pennsylvanian) ranges from 1350 to 1400 ft and extends to the nearby Great Kansas City area. Gas pressures range from 350 to 500 psi and open-flow tests produced up to 675 MCFGD. Structurally, the better wells are high on the flanks of a paleovalley opening toward the north. This structure is reflected on the erosional surface of the Mississippian rocks below and is preserved in the now-deformed base of the Kansas City Group of rocks. The Springdale field is only one of several new Pennsylvanian gas fields in Leavenworth, Wyandotte, and Johnson Counties, Kansas, that are currently commercial. These fields serve as a good example of opening a new frontier in an old area.

Goebel, E.D.; Dow, V.E.

1987-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Receives $57.2 Million in Revenue Sharing Agreement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives $57.2 Million in Revenue Sharing Agreement Receives $57.2 Million in Revenue Sharing Agreement DOE Receives $57.2 Million in Revenue Sharing Agreement February 3, 2009 - 12:00pm Addthis Washington, D.C. -- The U. S. Department of Energy (DOE) has received a payment of $57.2 million from the Dakota Gasification Company (DGC), a subsidiary of Basin Electric Power Generation, pursuant to the revenue sharing provision of an Asset Purchase Agreement among DOE, DGC and Basin. The current payment of $57.2 million brings the total to $380 million of revenue sharing payments DOE has received from the sale of synthetic natural gas produced from the Great Plains Synfuels Plant. The Great Plains Synfuels Plant has been successfully operated for more than 20 years and has brought significant opportunities to study and benefit from the

62

Lithium bromide absorption chiller passes gas conditioning field test  

SciTech Connect

A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

Lane, M.J.; Huey, M.A. [Nicol and Associates, Richardson, TX (United States)

1995-07-31T23:59:59.000Z

63

Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas  

Science Journals Connector (OSTI)

If observed oil and gas field size distributions are obtained ... should approximate that of the parent population of oil and gas fields. However, empirical evidence ... the observable size distributions change w...

Lawrence J. Drew; Emil D. Attanasi; John H. Schuenemeyer

1988-11-01T23:59:59.000Z

64

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network (OSTI)

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and… (more)

[No author

2012-01-01T23:59:59.000Z

65

Experimentally observed field–gas interaction in intense optical lattices  

SciTech Connect

When a gas perturbed by a laser interference pattern, an optical lattice, exhibits a periodic modulation of its refractive index, strong Bragg diffraction of the perturbing light can occur. This scattering reduces the field's ability to further manipulate the gas. Experimental observations of Bragg scattering, evidence of a two-way coupling, are compared to the evolution of the light fields calculated by solutions to the wave equation. Comparison indicates momentum deposition as a prime contributor to the shape of the scattering function vs. lattice velocity, a rationale further supported through additional direct simulation Monte Carlo simulation.

Graul, Jacob S.; Cornella, Barry M.; Ketsdever, Andrew D.; Lilly, Taylor C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States)] [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

2013-12-09T23:59:59.000Z

66

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

The VBA code provided at the bottom of this document is an updated version The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't add area to convex portions to maintain buffer spacing Fills in non-field "islands" smaller than buffer size Joins separate polygon rings with a "bridge" if sufficiently close Minimizes increase in total field area Methodology: creates trapezoids between neighboring wells within an oil/gas

67

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network (OSTI)

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

68

Depositional environment and reservoir morphology of the Upper Wilcox sandstones, Katy gas field, Waller County, Texas  

E-Print Network (OSTI)

" Wilcox oil and gas fields Page Structure map on the top of the Wilcox Group, Katy gas field, Wailer County, Texas. Contour interval is 100 feet. Nap shows location of wells in the field which penetrate the'IJpper Wilcox" section. Cores are from... Sedimentary structures of the Upper Wilcox sandstones in Humble W-35, Katy gas field, Mailer County, Texas 18 Shale character, deformational features, and sedimentary structures of the Upper Wilcox sand- stones in Humble W-35, Katy gas field, Mailer...

DePaul, Gilbert John

2012-06-07T23:59:59.000Z

69

Geology of Bravo Dome carbon dioxide gas field, New Mexico  

SciTech Connect

The Bravo Dome carbon dioxide gas field is located in Union and Harding Counties of northeast New Mexico. The Bravo Dome field covers approximately 800,000 acres, but areal boundaries of the field have not been fully defined. Production in 1989 was 113 bcf of gas from 272 wells. Cumulative production at the end of 1989 was 626 bcf. Estimated recoverable reserves are more than 10 tcf. The gas is 98-99% CO{sub 2}. Most CO{sub 2} produced from Bravo Dome is used for enhanced oil recovery in the Permian basin. The Bravo Dome is a faulted, southeast-plunging, basement-cored anticlinal nose. It is bordered on the east and south by large high-angle faults of Pennsylvanian and Wolfcampian (Early Permian) age. The principal reservoir in the Bravo Dome field is the Tubb sandstone (Leonardian-Permian) at depths of 1,900 to 2,950 ft. The Tubb consists of 0-400 ft of fine- to medium-grained, well-sorted, orange feldspathic sandstone. It rests unconformably on Precambrian basement on the highest parts of the Bravo Dome and is not offset by late Paleozoic faults that form the dome. The Cimmaron Anhydrite (Leonardian-Permian) conformably overlies the Tubb and is a vertical seal. The trap at Bravo Dome has structural and stratigraphic aspects. Drape of Tubb sandstone over the dome created structural closure on the northeast, southeast, and southwest flanks of the field. Trapping on the northwest flank of the field is associated with regional northwest thinning of the Tubb.

Broadhead, R.F. (New Mexico Bureau of Mines and Mineral Resources, Socorro (United States))

1991-03-01T23:59:59.000Z

70

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents (OSTI)

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

71

Thermodynamics of Modified Chaplygin Gas and Tachyonic Field  

E-Print Network (OSTI)

Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.

Samarpita Bhattacharya; Ujjal Debnath

2010-12-26T23:59:59.000Z

72

Financing and Revenue: Crowd Funding: Enabling Small Investors...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing and Revenue: Crowd Funding: Enabling Small Investors to Help Fund Business Loans for E3 Upgrades Peer Exchange Call Financing and Revenue: Crowd Funding: Enabling Small...

73

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...  

Open Energy Info (EERE)

Commercial Sales (MWh) 128656 Commercial Consumers 48190 Industrial Revenue (Thousand ) 871 Industrial Sales (MWh) 14240 Industrial Consumers 485 Other Revenue (Thousand ) 70...

74

Mineral Recovery Creates Revenue Stream for Geothermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development January 21, 2014 - 12:00am...

75

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

76

Cargo revenue management for space logistics  

E-Print Network (OSTI)

This thesis covers the development of a framework for the application of revenue management, specifically capacity control, to space logistics for use in the optimization of mission cargo allocations, which in turn affect ...

Armar, Nii A

2009-01-01T23:59:59.000Z

77

A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand |  

Open Energy Info (EERE)

Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection of anomalous gas levels. This paper describes a soil gas survey conducted over a large part of the Rotorua geothermal field to supplement the sparse gas data from drillhole samples and to determine gas distribution patterns over the field. Data collected from a reference hole were used to observe the effect changing meteorological conditions had on soil gas levels. The results were

78

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network (OSTI)

1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

Grossmann, Ignacio E.

79

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network (OSTI)

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

80

Huntsman and West Engelland Fields a Case History of Gas Migration  

Science Journals Connector (OSTI)

During the years 1982–85, a lengthy litigation took place between KN Energy and Marathon Oil Corp. The case involved performance of two ... gas into the gas cap of a producing oil field. After some 3 years of ext...

M. R. Tek

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

82

World Bank Good Practice Guidelines: Financial Analysis of Revenue  

Open Energy Info (EERE)

Good Practice Guidelines: Financial Analysis of Revenue Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities Jump to: navigation, search Tool Summary Name: World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities Agency/Company /Organization: World Bank Topics: Finance Resource Type: Guide/manual Website: siteresources.worldbank.org/INTRANETFINANCIALMGMT/Resources/FMB-Notes/ References: World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities[1] References ↑ "World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities" Retrieved from "http://en.openei.org/w/index.php?title=World_Bank_Good_Practice_Guidelines:_Financial_Analysis_of_Revenue_Generating-Entities&oldid=329414"

83

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales -  

Open Energy Info (EERE)

September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-09 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand $) 4960 Residential Sales (MWh) 49913 Residential Consumers 35998 Commercial Revenue(Thousand $) 2510 Commercial Sales (MWh) 24408 Commercial Consumers 8569 Industrial Revenue (Thousand $) 1308 Industrial Sales (MWh) 17792 Industrial Consumers 19 Total Revenue (Thousand $) 8778 Total Sales (MWh) 92113 Total Consumers 44586 Source: Energy Information Administration. Form EIA-826 Database Monthly

84

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure  

Science Journals Connector (OSTI)

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ... Offshore oil and gas field development represents a very complex problem and involves multibillion dollar investments and profits (Babusiaux et al.(1)). ... This paper focuses on a nonconvex MINLP model for the strategic/tactical planning of the offshore oil and gas fields, which includes sufficient details to make it useful for realistic oilfield development projects, as well as for extensions to include fiscal and uncertainty considerations. ...

Vijay Gupta; Ignacio E. Grossmann

2012-04-07T23:59:59.000Z

85

,"New York Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

86

Revenue Management with Partially Refundable Fares  

Science Journals Connector (OSTI)

We introduce and analyze an intertemporal choice model where customer valuations are uncertain and evolve over time. The model leads directly to the study of call options on capacity that are similar to partially refundable fares. We show that the capacity ... Keywords: pricing, real options, revenue management, stochastic, transportation

Guillermo Gallego; Özge ?ahin

2010-07-01T23:59:59.000Z

87

Program Sustainability: Update on Revenue Strategies Peer Exchange...  

Office of Environmental Management (EM)

Program Sustainability: Update on Revenue Strategies Peer Exchange Call Program Sustainability: Update on Revenue Strategies Peer Exchange Call December 11, 2014 12:30PM to 2:0...

88

Equitable Carbon Revenue Distribution Under an International Emissions  

E-Print Network (OSTI)

No. 5 Equitable Carbon Revenue Distribution Under an International Emissions Trading Regime Nathan INSTITUTE University of Massachusetts Amherst #12;Equitable Carbon Revenue Distribution Under an International Emissions Trading Regime Nathan E. Hultman and Daniel M. Kammen Energy & Resources Group Goldman

Kammen, Daniel M.

89

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

90

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network (OSTI)

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

Wang, Jianwei

2010-01-14T23:59:59.000Z

91

,"Underground Natural Gas Storage - Salt Cavern Storage Fields"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Storage Fields" Salt Cavern Storage Fields" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm10vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

92

Federal offshore statistics: 1992. Leasing, exploration, production, and revenues as of December 31, 1992  

SciTech Connect

The Outer Continental Shelf Lands Act, enacted in 1953 and amended several times, charges the Secretary of the Interior with the responsibility for administering and managing mineral exploration and development of the outer continental shelf, as well as for conserving its natural resources. This report documents the following: Federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; Federal offshore oil and natural gas sales volume and royalties; revenue from Federal offshore leases; disbursement of Federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. 11 figs., 83 tabs.

Francois, D.K.

1993-12-31T23:59:59.000Z

93

Comprehensive Financial Model For Oil and Gas Field Projects In Qatar.  

E-Print Network (OSTI)

??Project finance is essentially the raising of finance for a new project, secured against future revenues rather than an existing corporate balance sheet or other… (more)

Al-Thani, Faisal F.J.

2002-01-01T23:59:59.000Z

94

Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 108 95 1980's 99 77 208 329 327 163 398 242 163 146 1990's 437 259 110 108 79 53 66 84 42 37 2000's 42 52 18 13 9 48 12 56 85 178 2010's 1 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas New Reservoir Discoveries in Old Fields Oklahoma Dry Natural Gas Proved Reserves Dry Natural Gas New Reservoir Discoveries in Old Fields

95

Mineral revenues: the 1983 report on receipts from Federal and Indian leases with summary data from 1920 to 1983  

SciTech Connect

Tables and figures abound for: mineral revenue management in 1983; offshore federal mineral revenues; onshore federal mineral revenues; Indian mineral revenues; distribution of federal and Indian mineral revenues; plus appended lease management data. (PSB)

Not Available

1984-01-01T23:59:59.000Z

96

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network (OSTI)

). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

97

Characterization of Field-Exposed Iron Aluminide Hot Gas Filters  

SciTech Connect

The use of a power turbine fired with coal-derived synthesis gas will require some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processes without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years (see, for example, Alvin 1997, Nieminen et al. 1996, Oakey et al. 1997, Quick and Weber 1995, Tortorelli, et al. 1999).

McKamey, C.G.; McCleary, D.; Tortorelli, P.F.; Sawyer, J.; Lara-Curzio, E.; Judkins, R.R.

2002-09-19T23:59:59.000Z

98

Estimated gas reserves and availability of the Viking-Kinsella Field, Alberta, Canada  

E-Print Network (OSTI)

-KINSELVL FEEI' . ~. . . . . . . . . . ~ ~ ~ - ~ 3 '3 CIASSIF ICATION of RESERVES Proved Reserves Probable Reserves Possible Reserves 5 6 6 6 FUTURE AVAIIJBXLITY of PIPELINE GAS. . . . . . . . . . . . . . . . 6 Estimation of' Projected Peri...'ormance of Free Gas . . . . . . . 7 Estimated Projected Performance of' the Viking-Kinaella Field . 9 CONCWS ION ACKNOWLZDGEbEN1'S REFERENCES 13 TABUIAT I 0 NS I - Estimated Natnral Gas Reserves--viking sand IX - Projected Perf'ormance--Viking Sand 15...

Meyer, Lawrence Joffre

1952-01-01T23:59:59.000Z

99

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty  

Science Journals Connector (OSTI)

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty ... The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this article. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

Bora Tarhan; Ignacio E. Grossmann; Vikas Goel

2009-02-23T23:59:59.000Z

100

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network (OSTI)

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Secondary natural gas recovery in mature fluvial sandstone reservoirs, Frio Formation, Agua Dulce Field, South Texas  

SciTech Connect

An approach that integrates detailed geologic, engineering, and petrophysical analyses combined with improved well-log analytical techniques can be used by independent oil and gas companies of successful infield exploration in mature Gulf Coast fields that larger companies may consider uneconomic. In a secondary gas recovery project conducted by the Bureau of Economic Geology and funded by the Gas Research Institute and the U.S. Department of Energy, a potential incremental natural gas resource of 7.7 bcf, of which 4.0 bcf may be technically recoverable, was identified in a 490-ac lease in Agua Dulce field. Five wells in this lease had previously produced 13.7 bcf from Frio reservoirs at depths of 4600-6200 ft. The pay zones occur in heterogeneous fluvial sandstones offset by faults associated with the Vicksburg fault zone. The compartments may each contain up to 1.0 bcf of gas resources with estimates based on previous completions and the recent infield drilling experience of Pintas Creek Oil Company. Uncontacted gas resources occur in thin (typically less than 10 ft) bypassed zones that can be identified through a computed log evaluation that integrates open-hole logs, wireline pressure tests, fluid samples, and cores. At Agua Dulce field, such analysis identified at 4-ft bypassed zone uphole from previously produced reservoirs. This reservoir contained original reservoir pressure and flowed at rates exceeding 1 mmcf/d. The expected ultimate recovery is 0.4 bcf. Methodologies developed in the evaluation of Agua Dulce field can be successfully applied to other mature gas fields in the south Texas Gulf Coast. For example, Stratton and McFaddin are two fields in which the secondary gas recovery project has demonstrated the existence of thin, potentially bypassed zones that can yield significant incremental gas resources, extending the economic life of these fields.

Ambrose, W.A.; Levey, R.A. (Univ. of Texas, Austin, TX (United States)); Vidal, J.M. (ResTech, Inc., Houston, TX (United States)); Sippel, M.A. (Research and Engineering Consultants, Inc., Englewood, CA (United States)); Ballard, J.R. (Envirocorp Services and Technology, Houston, TX (United States)); Coover, D.M. Jr. (Pintas Creek Oil Company, Corpus Christi, TX (United States)); Bloxsom, W.E. (Coastal Texas Oil and Gas, Houston, TX (United States))

1993-09-01T23:59:59.000Z

102

A new generation of multilateral well enhances small gas field economics  

E-Print Network (OSTI)

the economic benefits of the new technology in the domain of offshore and small gas fields. This work also shows that this new generation of multilaterals brings new option values to the domain of multilateral technology....

Atse, Jean-Philippe

2004-09-30T23:59:59.000Z

103

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado  

Science Journals Connector (OSTI)

Water Intensity Assessment of Shale Gas Resources in the Wattenberg Field in Northeastern Colorado ... Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. ...

Stephen Goodwin; Ken Carlson; Ken Knox; Caleb Douglas; Luke Rein

2014-04-21T23:59:59.000Z

104

World Bank Good Practice Guidelines: Financial Analysis of Revenue  

Open Energy Info (EERE)

Practice Guidelines: Financial Analysis of Revenue Practice Guidelines: Financial Analysis of Revenue Generating-Entities (Redirected from General Renewable Energy-Economic and Financial Analysis) Jump to: navigation, search Tool Summary Name: World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities Agency/Company /Organization: World Bank Topics: Finance Resource Type: Guide/manual Website: siteresources.worldbank.org/INTRANETFINANCIALMGMT/Resources/FMB-Notes/ References: World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities[1] References ↑ "World Bank Good Practice Guidelines: Financial Analysis of Revenue Generating-Entities" Retrieved from "http://en.openei.org/w/index.php?title=World_Bank_Good_Practice_Guidelines:_Financial_Analysis_of_Revenue_Generating-Entities&oldid=329414

105

Optimization of offshore oil and gas field development using mathematical programming  

E-Print Network (OSTI)

OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT USING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Petroleum Engineering OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT VSING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Approved as to style and content by: R. A. Startzma...

Grimmett, Todd Thatcher

2012-06-07T23:59:59.000Z

106

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

107

"2012 Non-Utility Power Producers- Revenue"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue" Revenue" "(Data from form EIA-861U)" ,,,"Revenue (thousand dollars)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",1735,".",1735 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",798,".",798 "FRV SI Transport Solar LP","AZ","Non_Utility",".",243,".",".",243 "MFP Co III, LLC","AZ","Non_Utility",".",603,".",".",603

108

FY 2002 Generation Audited Accumulated Net Revenues, February...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 021003 February 2003 Bonneville Power Administration Power Business Line FY 2002 Generation Audited Accumulated Net Revenues for Financial- Based Cost Recovery Adjustment...

109

FY 2003 Generation Audited Accumlated Net Revenues, March 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2004 Bonneville Power Administration Power Business Line FY 2003 Generation (PBL) Audited Accumulated Net Revenues for Financial-Based Cost Recovery Adjustment Clause (FB...

110

Magnetism of a relativistic degenerate electron gas in a strong magnetic field  

SciTech Connect

The magnetization and magnetic susceptibility of a degenerate electron gas in a strong magnetic field in which electrons are located on the ground Landau level and the electron gas has the properties of a nonlinear paramagnet have been calculated. The paradoxical properties of the electron gas under these conditions-a decrease in the magnetization with the field and an increase in the magnetization with the temperature-have been revealed. It has been shown that matter under the corresponding conditions of neutron stars is a paramagnet with a magnetic susceptibility of {chi} {approx} 0.001.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2012-09-15T23:59:59.000Z

111

NETL: News Release - Field Testing Underway of Remote Sensor Gas Leak  

NLE Websites -- All DOE Office Websites (Extended Search)

September 16, 2004 September 16, 2004 Field Testing Underway of Remote Sensor Gas Leak Detection Systems CASPER, WY-An extensive field test that will document and demonstrate how effective technologies are in remotely detecting natural gas leaks is being held September 13-17, as the Department of Energy simulates natural gas leaks along a predetermined course at DOE's Rocky Mountain Oilfield Testing Center (RMOTC). Low-flying aircraft, satellites and special ground vehicles carrying advanced leak detection sensors will participate as representatives of the gas industry and potential technology manufacturers observe the technologies in a real-world environment and evaluate their readiness for commercialization. The test plan was devised with strong input from an industry advisory board and test participants to compare the effectiveness of several gas-leak detection devices from ground, air and satellite based platforms.

112

Passive drainage and biofiltration of landfill gas: Results of Australian field trial  

Science Journals Connector (OSTI)

A field scale trial was undertaken at a landfill site in Sydney, Australia (2004–2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

Stuart A. Dever; Gareth E. Swarbrick; Richard M. Stuetz

2011-01-01T23:59:59.000Z

113

Field-dependent collision frequency of the two-dimensional driven random Lorentz gas Christoph Dellago*  

E-Print Network (OSTI)

Institute for Theoretical Physics, University of Utrecht, Postbus 80006, Utrecht 3508 TA, The Netherlands-driven, thermostated Lorentz gas the collision frequency increases with the magnitude of the applied field due to long exponents on the applied field strength. These nonanalytic terms can be traced back to logarithmic terms

Dellago, Christoph

114

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

115

Cargo Revenue Management for Space Logistics Nii A. Armar  

E-Print Network (OSTI)

Cargo Revenue Management for Space Logistics by Nii A. Armar B.S., Aerospace Engineering for Space Logistics by Nii A. Armar Submitted to the Department of Aeronautics and Astronautics on November of revenue management, specifically capacity control, to space logistics for use in the optimization

de Weck, Olivier L.

116

ISP and CP revenue sharing and content piracy  

Science Journals Connector (OSTI)

With the network neutrality debate, the revenue sharing between Internet service providers(ISPs) and content providers(CPs) has been received attentions. In this paper, we study the revenue sharing of them from the perspective of collaboration to reduce ... Keywords: content provider, contents piracy, internet service provider, profit sharing

Jiwon Park, Jeonghoon Mo

2014-04-01T23:59:59.000Z

117

Single-Issue Industrial Revenue Bond Program (Missouri) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) < Back Eligibility Commercial Construction Industrial Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Missouri Program Type Bond Program Provider Missouri Development Finance Board The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i) the acquisition, construction and equipping of qualified manufacturing production facilities and/or equipment, and (ii) refinances outstanding tax-exempt bonds. It

118

Flexible gas insulated transmission line having regions of reduced electric field  

DOE Patents (OSTI)

A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

1983-01-01T23:59:59.000Z

119

Turtle Bayou - 1936 to 1983: case history of a major gas field in south Louisiana  

SciTech Connect

Turtle Bayou field, located in the middle Miocene trend in S. Louisiana, is nearing the end of a productive life which spans over 30 yr. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by 2 other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approx. 6500 to 12,000 ft. Now estimated to have contained ca 1.2 trillion scf of gas in place, cumulative production through 1982 was 702 billion scf. Cumulative condensate-gas ratio has been 20 bbl/million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75% of original gas in place.

Cronquist, C.

1983-01-01T23:59:59.000Z

120

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas Liquids 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 Pentanes Plus 9,772 10,464 10,689 11,270 11,542 11,167 1981-2013 Liquefied Petroleum Gases 64,284 66,268 64,249 67,770 70,834 70,029 1981-2013 Ethane 27,647 28,274 26,311 27,829 30,063 30,015 1981-2013 Propane 23,332 24,191 24,157 25,425 25,974 25,545 1981-2013 Normal Butane 5,876 6,383 6,543 6,399 6,508 6,893 1981-2013 Isobutane 7,429 7,420 7,238 8,117 8,289 7,576 1981-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Natural Gas Liquids 650,794 652,822 697,124 757,019 808,865 881,306 1981-2012 Pentanes Plus 95,899 96,530 98,904 101,155 106,284 116,002 1981-2012 Liquefied Petroleum Gases 554,895 556,292 598,220 655,864 702,581 765,304 1981-2012 Ethane 258,682 256,713 280,590 317,180 337,972 356,592 1981-2012 Propane 185,099 187,340 199,398 213,782 230,227 260,704 1981-2012 Normal Butane 46,833 48,976 49,528 56,655 57,399 65,555 1981-2012 Isobutane 64,281 63,263 68,704 68,247 76,983 82,453 1981-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

122

A field example of a gas orifice meter with debris-ridden liquid in mist flow  

SciTech Connect

A field example of debris-ridden liquids in an orifice meter is presented in this paper. Flow conditions in gas pipelines containing hydrocarbon liquids and particulate matter are discussed. Known effects on measurement of the presence of these materials in orifice meters is presented. By definition, gas measurement is accurate if performed on a clean and dry flow stream. This paper demonstrates the importance of removing as much liquid and debris as possible prior to measurement.

Chisholm, J.L.; Mooney, C.V. [Texas A and M Univ., Kingsville, TX (United States); Datta-Barua, L.; Feldmann, R.J.

1995-12-31T23:59:59.000Z

123

Effect of Energy Efficiency Standards on Natural Gas Prices  

E-Print Network (OSTI)

Review of Conventional Oil and Gas Terms of Alberta?, JulyOffice (GAO), 2007, ?Oil and Gas Royalties: A Comparison ofRevenue Received from Oil and Gas Production by the Federal

Carnall, Michael

2012-01-01T23:59:59.000Z

124

Cigarette Purchasing Patterns among New York Smokers: Implications for Health, Price, and Revenue  

E-Print Network (OSTI)

York Smokers: Implications for Health, Price, and RevenueYORK SMOKERS: IMPLICATIONS FOR HEALTH, PRICE, AND REVENUEYork Smokers: Implications for Health, Price, and Revenue

New York State Department of Health; (Kevin Davis); (Matthew Farrelly); (Qiang Li); (Andrew Hyland)

2006-01-01T23:59:59.000Z

125

U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,173 3,860 3,188 1980's 2,539 3,731 2,687 1,574 2,536 999 1,099 1,089 1,638 1,450 1990's 2,004 848 649 899 1,894 1,666 1,451 2,681 1,074 1,568 2000's 1,983 3,578 1,332 1,222 759 942 409 796 1,170 1,372 2010's 850 947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves U.S. Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves New Field Discoveries

126

Thermodynamic functions of a nonrelativistic degenerate neutron gas in a magnetic field  

SciTech Connect

The Fermi energy, partial concentrations of polarized neutrons, pressure, and volume energy density of a degenerate nonrelativistic neutron gas in a magnetic field are calculated using numerical methods taking into account the anomalous magnetic moment of a neutron. The results of calculations are a generalization of relations underlying the Oppenheimer-Volkov model of a neutron star to the case of an applied magnetic field. An ultrastrong (up to 10{sup 17} G) magnetic field changes the pressure and internal energy of the star and affects it static configuration and evolution. It is shown that a degenerate neutron gas in ultrastrong and weak magnetic fields is paramagnetic; the corresponding values of magnetic susceptibility differ by a factor on the order of unity. The possibility of experimentally verifying the results from analysis of pulsar-emitted radiation is discussed.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2010-01-15T23:59:59.000Z

127

Practical scheme for a light-induced gauge field in an atomic Bose gas  

Science Journals Connector (OSTI)

We propose a scheme to generate an Abelian gauge field in an atomic gas using two crossed laser beams. If the internal atomic state follows adiabatically the eigenstates of the atom-laser interaction, Berry’s phase gives rise to a vector potential that can nucleate vortices in a Bose gas. The present scheme operates even for a large detuning with respect to the atomic resonance, making it applicable to alkali-metal atoms without significant heating due to spontaneous emission. We test the validity of the adiabatic approximation by integrating the set of coupled Gross-Pitaevskii equations associated with the various internal atomic states, and we show that the steady state of the interacting gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge field.

Kenneth J. Günter, Marc Cheneau, Tarik Yefsah, Steffen P. Rath, and Jean Dalibard

2009-01-21T23:59:59.000Z

128

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

129

Kadanwari Gas Field, Pakistan: a disappointment turns into an attractive development opportunity  

Science Journals Connector (OSTI)

...orientated, 2 km spaced seismic grid, with a shot point interval...consistent set of results to use in estimating volumetric gas-in-place...this paper reality. Jerry Smart, Simon Beswetherick and Richard...1998. Kadanwari field: The benefits of asset management. Proceedings...

Nasir Ahmad; Siddique Chaudhry

130

Local Government Revenue Bonds (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Revenue Bonds (Montana) Government Revenue Bonds (Montana) Local Government Revenue Bonds (Montana) < Back Eligibility Utility Commercial Investor-Owned Utility Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Bond Program Provider Any interested county or municipality. Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally are secured by the project itself. The taxing power or general credit of the government may not be used to secure the bonds. Local governments may not operate any project

131

Office of Natural Resources Revenue | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Revenue Natural Resources Revenue Jump to: navigation, search Logo: Office of Natural Resources Revenue Name Office of Natural Resources Revenue Address Denver Federal Center, Bldg 85 P.O. Box 25165 Place Denver, CO Zip 80225-0165 Phone number (303) 231-3162 Website http://www.onrr.gov/ Coordinates 39.7233202°, -105.1108186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7233202,"lon":-105.1108186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revenue Bond Issuance Cost Assistance (Wisconsin) Revenue Bond Issuance Cost Assistance (Wisconsin) Industrial Revenue Bond Issuance Cost Assistance (Wisconsin) < Back Eligibility Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Bond Program Provider Wisconsin Economic Development Corporation Industrial Revenue Bonds (IRB) are tax-exempt bonds that can be used to stimulate capital investment and job creation by providing private borrowers with access to financing at interest rates that are lower than conventional bank loans. The IRB process involves five separate entities - the borrower, lender, bond attorney, issuer, and WEDC. WEDC allocates the bonding authority or the volume cap for the program under Wis. Stat. §

133

Alliance revenue management in practice : techniques and simulation analysis  

E-Print Network (OSTI)

The primary motivations for the formation of airline alliances have been to increase revenues and decrease costs for alliance partners. A major advantage comes through increase in the number of destinations served by an ...

Jain, Himanshu, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

134

,"Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18swy_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18swy_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

135

,"Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18spa_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18spa_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

136

,"Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sco_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sco_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

137

,"Virginia Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sva_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sva_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

138

,"Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sal_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sal_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

139

,"North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18snd_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18snd_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

140

,"Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sfl_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sfl_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18snm_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18snm_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

142

,"Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sar_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sar_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

143

,"Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18smt_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18smt_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

144

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

145

,"Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sms_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sms_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

146

,"Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18smi_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18smi_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

147

Study of Inflationary Generalized Cosmic Chaplygin Gas for Standard and Tachyon Scalar Fields  

E-Print Network (OSTI)

We consider an inflationary universe model in the context of generalized cosmic Chaplygin gas by taking matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index and important observational parameter, i.e., tensor-scalar ratio in terms of inflatons. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case.

M. Sharif; Rabia Saleem

2014-06-18T23:59:59.000Z

148

,"Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sok_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sok_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

149

,"West Virginia Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18swv_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18swv_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

150

,"Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sky_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sky_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

151

Case study of a horizontal well in a layered Rotliegendes gas field  

SciTech Connect

A horizontal well was drilled in the Ravenspurn North field to drain a thin gas column above the aquifer. The field has a significant variation in reservoir quality, with most of the wells requiring stimulation by hydraulic fracturing. The reservoir is formed from a stacked sequence of aeolian dune and fluvial sandstones with a wide permeability range. The horizontal well was chosen as an alternative to stimulation by hydraulic fracturing to avoid water production from the aquifer. The well was successful, flowing at higher gas rates than expected with no water production. Production, core, and production logging data were used to demonstrate greater than expected lateral heterogeneity in the field. The horizontal well was found to be appropriate for the very specific conditions found in one part of the reservoir; however, the overall development strategy of using hydraulic fracture remains the preferred technique.

Catterall, S.J.A.; Yaliz, A. (Hamilton Oil Co. Ltd., London (United Kingdom))

1995-02-01T23:59:59.000Z

152

Turtle Bayou--1936 to 1983--case history of a major gas field in South Louisiana  

SciTech Connect

Turtle Bayou Field, located in the middle Miocene trend in South Louisiana, is nearing the end of a productive life which spans over 30 years. Discovered by Shell Oil Company in 1949 after unsuccessful attempts by two other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6500 to 12,000 feet. Now estimated to have contained about 1.2 trillion standard cubic feet of gas in place, cumulative production through 1982 was 702 billion standard cubic feet. Cumulative condensate-gas ratio has been 20 barrels per million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75 percent of original gas in place. On decline since 1973, it is anticipated the field will be essentially depleted in the next five years.

Cronquist, C.

1983-10-01T23:59:59.000Z

153

Turtle Bayou 1936-1983: case history of a major gas field in south Louisiana  

SciTech Connect

Turtle Bayou field, located in the middle Miocene trend in south Louisiana, is nearing the end of a productive life spanning more than 30 years. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by two other companies, the field is a typical, low-relief, moderately faulted U.S. Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6,500 to 12,000 ft (1980 to 3660 m). Now estimated to have contained about 1.2 trillion scf (34 X 10/sup 9/ std m/sup 3/) of gas in place, cumulative production through 1982 was 702 billion scf (20 X 10/sup 9/ std m/sup 3/). Cumulative condensate/gas ration (CGR) has been 20 bbl/MMcf (110 X 10/sup -6/ m/sup 3//m/sup 3/. Recovery mechanisms in individual reservoirs include strong bottomwater drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range form 40 to 83% of original gas in place (OGIP). On decline since 1973, it is anticipated the field will be essentially depleted in the next 5 years.

Cronquist, C.

1984-11-01T23:59:59.000Z

154

Calculation of electronic states of a two-dimensional electron gas in a periodic magnetic field  

E-Print Network (OSTI)

CALCULATION OF ELECTRONIC STATES OF A TWO-DIMENSIONAL ELECTRON GAS IN A PERIODIC MAGNETIC FIELD A Thesis ANISI. L HAOEE Submitted to the Office ol' Graduate Studies of Texas A&M I. , niversity in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE, May 1992 Major Subject: Electricaj Engineering CALCULATION OF ELECTRONIC STATES OF A TWO-DIMENSIONAL ELECTRON GAS IN A PERIODIC MAGNETIC FIEI D A Thesis by ANISIlL HAOLtE 8L~ M. H. Weichold (Chair of Oornmittee) D...

Haque, Anisul

2012-06-07T23:59:59.000Z

155

Evaluation of naturally fractured gas shale production utilizing multiwell transient tests: A field study  

SciTech Connect

A series of multiple well transient tests were conducted in a Devonian shale gas field in Meigs County, Ohio. Production parameters were quantified and it was determined that the reservoir is highly anisotropic, which is a significant factor in calculating half-fracture length from pressure transient data. Three stimulation treatments, including conventional explosive shooting, nitrogen foam frac, and high energy gas frac (HEGF), were compared on the basis of overall effectiveness and performance. Based on the evaluation of results, the nitrogen foam frac provided the most improved productivity. The study provided new type curves and analytical solutions for the mathematical representation of naturally fractured reservoirs and confirmed that the shale reservoir in Meigs County can be modeled as a dual porosity system using pseudosteady-state gas transfer from the matrix to the fracture system.

Chen, C.C.; Alam, J.; Blanton, T.L.; Vozniak, J.P.

1984-05-01T23:59:59.000Z

156

Integral-Field Stellar and Ionized Gas Kinematics of Peculiar Virgo Cluster Spiral Galaxies  

E-Print Network (OSTI)

We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5-meter telescope, to seek kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. 2-Dimensional maps of the stellar velocity $V$, and stellar velocity dispersion $\\sigma$ and the ionized gas velocity (H$\\beta$ and/or [\\ion{O}{3}]) are presented for galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axis are found in several galaxies. While in some cases this is due to a bar, in other cases it seems associated with a gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxi...

Cortés, J R; Hardy, E

2014-01-01T23:59:59.000Z

157

Semiclassical Approximation for Non-Abelian Field Strength Correlators in the Instanton Dilute Gas Model  

E-Print Network (OSTI)

Field strength correlators are semi-classically evaluated in the dilute gas model of non-Abelian sources (instantons) and compared with lattice data for QCD at zero temperature. We show that one of the Euclidean invariant, tensorial structures vanishes for configurations being purely selfdual or anti-selfdual. We compute the invariant functions contributing to the correlators within the two lowest orders in an instanton density expansion. Fitting instanton size and density for quenched and full QCD, we obtain a reasonable description.

E. -M. Ilgenfritz; B. V. Martemyanov; S. V. Molodtsov; M. Müller--Preussker; Yu. A. Simonov

1997-12-26T23:59:59.000Z

158

A New Variable Modified Chaplygin Gas Model Interacting with Scalar Field  

E-Print Network (OSTI)

In this letter we present a new form of the well known Chaplygin gas model by introducing inhomogeneity in the EOS. This model explains $\\omega=-1$ crossing. Also we have given a graphical representation of the model using $\\{r,s\\}$ parameters. We have also considered an interaction of this model with the scalar field by introducing a phenomenological coupling function and have shown that the potential decays with time.

Writambhara Chakraborty; Ujjal Debnath

2010-06-11T23:59:59.000Z

159

Modified Chaplygin Gas as Scalar Field and Holographic Dark Energy Model  

E-Print Network (OSTI)

We study the correspondence between field theoretic and holographic dark energy density of the universe with the modified Chaplygin gas (MCG) respectively both in a flat and non-flat FRW universe. We present an equivalent representation of the MCG with a homogeneous minimally coupled scalar field by constructing the corresponding potential. A new scalar field potential is obtained here which is physically realistic and important for cosmological model building. In addition we also present holographic dark energy model described by the MCG. The dynamics of the corresponding holographic dark energy field is determined by reconstructing the potential in a non-flat universe. The stability of the holographic dark energy in this case in a non-flat universe is also discussed.

B. C. Paul; P. Thakur; A. Saha

2008-09-20T23:59:59.000Z

160

Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations  

E-Print Network (OSTI)

The Chaplygin gas model, characterized by an equation of state of the type $p = - \\frac{A}{\\rho}$ emerges naturally from the Nambu-Goto action of string theory. This fluid representation can be recast under the form of a tachyonic field given by a Born-Infeld type Lagrangian. At the same time, the Chaplygin gas equation of state can be obtained from a self-interacting scalar field. We show that, from the point of view of the supernova type Ia data, the three representations (fluid, tachyonic, scalar field) lead to the same results. However, concerning the matter power spectra, while the fluid and tachyonic descriptions lead to exactly the same results, the self-interacting scalar field representation implies different statistical estimations for the parameters. In particular, the estimation for the dark matter density parameter in the fluid representation favors a universe dominated almost completely by dark matter, while in the self-interacting scalar field representation the prediction is very closed to that obtained in the $\\Lambda$CDM model.

C. E. M. Batista; J. C. Fabris; M. Morita

2009-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Using landfill gas for energy: Projects that pay  

SciTech Connect

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

162

Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994  

SciTech Connect

The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

1995-12-01T23:59:59.000Z

163

Microsoft Word - CLPUD Revenue Metering CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gregory Vassallo Gregory Vassallo TPC-ALVEY Proposed Action: New Revenue Meters at Central Lincoln's Florence and Berrydale Substations Budget Information: Work Order # 00004866, Task 04 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility... Location: Lane County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade revenue metering at Central Lincoln People's Utility District's (Central Lincoln) Florence and Berrydale Substations to 115-kV. Bonneville will retire the 12.5-kV revenue metering at Central Lincoln's Florence, Berrydale, and Heceta Beach Substations once

164

City of Detroit (Michigan) EIA Revenue and Sales - May 2008 | Open Energy  

Open Energy Info (EERE)

City of Detroit (Michigan) EIA Revenue and Sales - May 2008 City of Detroit (Michigan) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for May 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-05 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-05-01 End Date 2008-06-01 Residential Revenue(Thousand $) 1.4 Residential Sales (MWh) 15.6 Residential Consumers 82 Commercial Revenue(Thousand $) 3889 Commercial Sales (MWh) 38146 Commercial Consumers 121 Other Revenue (Thousand $) 49 Other Sales (MWh) 376 Other Consumers 1 Total Revenue (Thousand $) 3939.4 Total Sales (MWh) 38537.6 Total Consumers 204 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

165

City of Detroit (Michigan) EIA Revenue and Sales - March 2008 | Open Energy  

Open Energy Info (EERE)

City of Detroit (Michigan) EIA Revenue and Sales - March 2008 City of Detroit (Michigan) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 1.4 Residential Sales (MWh) 16 Residential Consumers 81 Commercial Revenue(Thousand $) 3467 Commercial Sales (MWh) 38666 Commercial Consumers 117 Other Revenue (Thousand $) 50 Other Sales (MWh) 455 Other Consumers 1 Total Revenue (Thousand $) 3518.4 Total Sales (MWh) 39137 Total Consumers 199 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

166

U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,301 4,579 2,566 1980's 2,577 2,998 3,419 2,965 2,686 2,960 1,771 1,499 1,909 2,243 1990's 2,412 1,604 1,724 1,866 3,480 2,452 3,110 2,382 2,162 2,196 2000's 2,368 2,800 1,694 1,610 1,206 1,208 1,155 1,188 1,622 2,598 2010's 1,668 1,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas New Reservoir Discoveries in Old Fields

167

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

168

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

169

,"Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sut_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sut_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:11:13 PM"

170

,"Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sak_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sak_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:11:07 PM"

171

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

172

,"Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sks_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sks_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:11:09 PM"

173

Influence of spatially varying pseudo-magnetic field on a 2D electron gas in graphene  

E-Print Network (OSTI)

The effect of a varying pseudo-magnetic field, which falls as $1/x^2$, on a two dimensional electron gas in graphene is investigated. By considering the second order Dirac equation, we show that its correct general solution is that which might present singular wavefunctions since such field induced by elastic deformations diverges as $x\\rightarrow0$. We show that only this consideration yields the known relativistic Landau levels when we remove such elastic field. We have observed that the zero Landau level fails to develop for certain values of it. We then speculate about the consequences of these facts to the quantum Hall effect on graphene. We also analyze the changes in the relativistic cyclotron frequency. We hope our work being probed in these contexts, since graphene has great potential for electronic applications.

L. G. da Silva Leite; D. Cogollo; C. Filgueiras; Edilberto O. Silva

2015-01-28T23:59:59.000Z

174

,"Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18soh_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18soh_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:11:11 PM"

175

,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18stx_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18stx_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:11:12 PM"

176

Hydrate risks and prevention solutions for a high pressure gas field offshore in South China Sea  

Science Journals Connector (OSTI)

YC13-4 gas field is located in the west of the South China Sea, where the seawater depth is around 90 m, and the average surface temperature is 26.2°C, while the minimum temperature at seabed is 18.9°C. Subsea wellheads are designed for gas production. In this paper, the risks of hydrate formation during drilling, well testing and gas production are analysed under different operation conditions. The results show that most hydrate problems will occur during shutdown and restart operations, and the degree of hydrate occurrence is slight to medium, which poses difficult tasks for choosing safe, reliable and economic methods to mitigate the hydrate problems. Various solutions for hydrate control in different processes are considered, including filling the wellbore with drilling/completion fluids or seawater for pressure control during shutdowns, and injection of methanol into wellbore and subsea pipeline during production. A simple and economic method using down-hole chokes to reduce gas pressure before it enters the hydrate stability zone is introduced, and the placement depth of the down-hole choke is determined. [Received: September 5, 2012; Accepted: March 6, 2013

Liang Zhang; Anyuan Huang; Wei Wang; Shaoran Ren; Shukai Jin; Dake Fang

2013-01-01T23:59:59.000Z

177

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - November  

Open Energy Info (EERE)

November November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-11 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-11-01 End Date 2008-12-01 Residential Revenue(Thousand $) 4227 Residential Sales (MWh) 35279 Residential Consumers 35982 Commercial Revenue(Thousand $) 2029 Commercial Sales (MWh) 15195 Commercial Consumers 8707 Industrial Revenue (Thousand $) 1178 Industrial Sales (MWh) 14250 Industrial Consumers 19 Total Revenue (Thousand $) 7434 Total Sales (MWh) 64724 Total Consumers 44708 Source: Energy Information Administration. Form EIA-826 Database Monthly

178

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February  

Open Energy Info (EERE)

February February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-02-01 End Date 2009-03-01 Residential Revenue(Thousand $) 6100 Residential Sales (MWh) 57003 Residential Consumers 36097 Commercial Revenue(Thousand $) 2044 Commercial Sales (MWh) 16286 Commercial Consumers 8682 Industrial Revenue (Thousand $) 1219 Industrial Sales (MWh) 14517 Industrial Consumers 19 Total Revenue (Thousand $) 9363 Total Sales (MWh) 87806 Total Consumers 44798 Source: Energy Information Administration. Form EIA-826 Database Monthly

179

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

NONE

1996-08-01T23:59:59.000Z

180

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

1982-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Revenue Maximization with Quality Assurance for Composite Web Services  

E-Print Network (OSTI)

Revenue Maximization with Quality Assurance for Composite Web Services Dani¨el Worm, Miroslav Abstract--Service composition is one of the major approaches in service oriented architecture (SOA) based systems. Due to the inherent stochastic nature of services execution environment the issue of composite

van der Mei, Rob

182

Classifying Web Search Queries to Identify High Revenue Generating Customers  

E-Print Network (OSTI)

searching, the set of terms for which a user searches is called the query. If a user enters a query and then clicks on a result, these query terms are embedded within the URL that is passed from the search engineClassifying Web Search Queries to Identify High Revenue Generating Customers Adan Ortiz-Cordova 329

Jansen, James

183

A & N Electric Coop (Virginia) EIA Revenue and Sales - March 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop (Virginia) EIA Revenue and Sales - March 2008 A & N Electric Coop (Virginia) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company A & N Electric Coop (Virginia) Place Virginia Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 3137.475 Residential Sales (MWh) 25920.427 Residential Consumers 30081 Commercial Revenue(Thousand $) 1274.236 Commercial Sales (MWh) 11114.985 Commercial Consumers 4104 Industrial Revenue (Thousand $) 1204.511 Industrial Sales (MWh) 13352.88 Industrial Consumers 17 Total Revenue (Thousand $) 5616.222 Total Sales (MWh) 50388.292 Total Consumers 34202 Source: Energy Information Administration. Form EIA-826 Database Monthly

184

A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 A & N Electric Coop (Maryland) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for February 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-02 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-02-01 End Date 2008-03-01 Residential Revenue(Thousand $) 26.62 Residential Sales (MWh) 219.596 Residential Consumers 281 Commercial Revenue(Thousand $) 6.541 Commercial Sales (MWh) 51.4 Commercial Consumers 48 Total Revenue (Thousand $) 33.161 Total Sales (MWh) 270.996 Total Consumers 329 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next

185

A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 A & N Electric Coop (Maryland) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 22.803 Residential Sales (MWh) 184.316 Residential Consumers 282 Commercial Revenue(Thousand $) 4.944 Commercial Sales (MWh) 37.174 Commercial Consumers 48 Total Revenue (Thousand $) 27.747 Total Sales (MWh) 221.49 Total Consumers 330 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next

186

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February  

Open Energy Info (EERE)

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-02 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-02-01 End Date 2008-03-01 Residential Revenue(Thousand $) 5156 Residential Sales (MWh) 58360 Residential Consumers 35731 Commercial Revenue(Thousand $) 1765 Commercial Sales (MWh) 16880 Commercial Consumers 8063 Industrial Revenue (Thousand $) 1345 Industrial Sales (MWh) 18516 Industrial Consumers 20 Total Revenue (Thousand $) 8266 Total Sales (MWh) 93756 Total Consumers 43814 Source: Energy Information Administration. Form EIA-826 Database Monthly

187

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

188

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

189

Influence of Different Revenue Structures on the Economy of PV Plants in Selected Countries  

Science Journals Connector (OSTI)

The rentability of PV plants depends not only on cost, but also on revenues. Revenues are gained if electricity is fed into a grid or if tariff costs for non-delivered electricity can be taken into account. Un...

G. Hille; F. Staiß; F. Steinborn

1991-01-01T23:59:59.000Z

190

A & N Electric Coop (Virginia) EIA Revenue and Sales - December 2008 | Open  

Open Energy Info (EERE)

& N Electric Coop (Virginia) EIA Revenue and Sales - December 2008 & N Electric Coop (Virginia) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company A & N Electric Coop (Virginia) Place Virginia Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 3387.979 Residential Sales (MWh) 26238.158 Residential Consumers 29955 Commercial Revenue(Thousand $) 1371.134 Commercial Sales (MWh) 11120.987 Commercial Consumers 4091 Industrial Revenue (Thousand $) 1247.948 Industrial Sales (MWh) 12732.6 Industrial Consumers 17 Total Revenue (Thousand $) 6007.061 Total Sales (MWh) 50091.745 Total Consumers 34063

191

City of Detroit (Michigan) EIA Revenue and Sales - November 2008 | Open  

Open Energy Info (EERE)

City of Detroit (Michigan) EIA Revenue and Sales - November 2008 City of Detroit (Michigan) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-11 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-11-01 End Date 2008-12-01 Residential Revenue(Thousand $) 1.709 Residential Sales (MWh) 17.18 Residential Consumers 79 Commercial Revenue(Thousand $) 4219 Commercial Sales (MWh) 41796 Commercial Consumers 126 Other Revenue (Thousand $) 38.9 Other Sales (MWh) 376.3 Other Consumers 1 Total Revenue (Thousand $) 4259.609 Total Sales (MWh) 42189.48 Total Consumers 206 Source: Energy Information Administration. Form EIA-826 Database Monthly

192

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March  

Open Energy Info (EERE)

EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for March 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-03 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-03-01 End Date 2009-04-01 Residential Revenue(Thousand $) 4997 Residential Sales (MWh) 45336 Residential Consumers 36181 Commercial Revenue(Thousand $) 1847 Commercial Sales (MWh) 14202 Commercial Consumers 8631 Industrial Revenue (Thousand $) 1402 Industrial Sales (MWh) 14267 Industrial Consumers 18 Total Revenue (Thousand $) 8246 Total Sales (MWh) 73805 Total Consumers 44830 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

193

Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV  

E-Print Network (OSTI)

The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

Barbosa, Séverine; Ducruix, Sébastien

2008-01-01T23:59:59.000Z

194

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

195

RUNTIME QoS CONTROL AND REVENUE OPTIMIZATION WITHIN SERVICE ORIENTED ARCHITECTURE.  

E-Print Network (OSTI)

RUNTIME QoS CONTROL AND REVENUE OPTIMIZATION WITHIN SERVICE ORIENTED ARCHITECTURE. Miroslav Zivkovic. #12;RUNTIME QoS CONTROL AND REVENUE OPTIMIZATION WITHIN SERVICE ORIENTED ARCHITECTURE Miroslav AND REVENUE OPTIMIZATION WITHIN SERVICE ORIENTED ARCHITECTURE PROEFSCHRIFT ter verkrijging van de graad van

van der Mei, Rob

196

"2012 Total Electric Industry- Revenue (Thousands Dollars)"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue (Thousands Dollars)" Revenue (Thousands Dollars)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",7418025.1,6137400,3292222.3,37797.4,16885444.6 "Connecticut",2212594.3,1901294.3,451909.7,18679.5,4584477.8 "Maine",656822,467228,241624.4,0,1365674.3 "Massachusetts",3029291.6,2453106,2127180,17162,7626739.5 "New Hampshire",713388.2,598371.1,231041,0,1542800.3 "Rhode Island",449603.6,431951.9,98597.2,1955.9,982108.6 "Vermont",356325.4,285448.7,141870,0,783644.1 "Middle Atlantic",20195109.9,20394744.7,5206283.9,488944,46285082.4

197

Electric Utility Sales and Revenue - EIA-826 detailed data file  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-826 detailed data Form EIA-826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects retail sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, and agricultural irrigations.

198

A statistical analysis of well production rates from UK oil and gas fields – Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35 Mt/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

199

Field evaluation of natural gas and dry sorbent injection for MWC emissions control  

SciTech Connect

The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

1993-10-01T23:59:59.000Z

200

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

202

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for April 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-04 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-04-01 End Date 2008-05-01 Residential Revenue(Thousand $) 24400 Residential Sales (MWh) 247343 Residential Consumers 331573 Commercial Revenue(Thousand $) 14383 Commercial Sales (MWh) 152042 Commercial Consumers 52280 Industrial Revenue (Thousand $) 1241 Industrial Sales (MWh) 13081 Industrial Consumers 524 Other Revenue (Thousand $) 92 Other Sales (MWh) 1113 Other Consumers 1 Total Revenue (Thousand $) 40116 Total Sales (MWh) 413579 Total Consumers 384378 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

203

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 35185 Residential Sales (MWh) 410509 Residential Consumers 327240 Commercial Revenue(Thousand $) 19393 Commercial Sales (MWh) 208884 Commercial Consumers 48125 Industrial Revenue (Thousand $) 1172 Industrial Sales (MWh) 15357 Industrial Consumers 466 Other Revenue (Thousand $) 78 Other Sales (MWh) 1202 Other Consumers 1 Total Revenue (Thousand $) 55828 Total Sales (MWh) 635952 Total Consumers 375832 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

204

City of Detroit (Michigan) EIA Revenue and Sales - February 2009 | Open  

Open Energy Info (EERE)

City of Detroit for City of Detroit for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2009-02-01 End Date 2009-03-01 Residential Revenue(Thousand $) 2.1 Residential Sales (MWh) 22.5 Residential Consumers 78 Commercial Revenue(Thousand $) 4175 Commercial Sales (MWh) 41864 Commercial Consumers 117 Other Revenue (Thousand $) 76.9 Other Sales (MWh) 786 Other Consumers 1 Total Revenue (Thousand $) 4254 Total Sales (MWh) 42672.5 Total Consumers 196 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_February_2009&oldid=12572

205

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December  

Open Energy Info (EERE)

4-County Electric 4-County Electric Power Assn for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 5629 Residential Sales (MWh) 49312 Residential Consumers 35980 Commercial Revenue(Thousand $) 2031 Commercial Sales (MWh) 15395 Commercial Consumers 8710 Industrial Revenue (Thousand $) 1337 Industrial Sales (MWh) 14148 Industrial Consumers 19 Total Revenue (Thousand $) 8997 Total Sales (MWh) 78855 Total Consumers 44709 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=4-County_Electric_Power_Assn_(Mississippi)_EIA_Revenue_and_Sales_-_December_2008&oldid=19495

206

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 |  

Open Energy Info (EERE)

June 2008 June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-06-01 End Date 2008-07-01 Residential Revenue(Thousand $) 39796 Residential Sales (MWh) 376563 Residential Consumers 348410 Commercial Revenue(Thousand $) 25354 Commercial Sales (MWh) 244206 Commercial Consumers 62285 Industrial Revenue (Thousand $) 1913 Industrial Sales (MWh) 11642 Industrial Consumers 542 Other Revenue (Thousand $) 54 Other Sales (MWh) 697 Other Consumers 1 Total Revenue (Thousand $) 67117 Total Sales (MWh) 633108 Total Consumers 411238 Source: Energy Information Administration. Form EIA-826 Database Monthly

207

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February  

Open Energy Info (EERE)

February February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2009-02-01 End Date 2009-03-01 Residential Revenue(Thousand $) 28078 Residential Sales (MWh) 297866 Residential Consumers 341636 Commercial Revenue(Thousand $) 15755 Commercial Sales (MWh) 165037 Commercial Consumers 49052 Industrial Revenue (Thousand $) 639 Industrial Sales (MWh) 16720 Industrial Consumers 474 Other Revenue (Thousand $) 128 Other Sales (MWh) 2187 Other Consumers 1 Total Revenue (Thousand $) 44600 Total Sales (MWh) 481810 Total Consumers 391163

208

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January  

Open Energy Info (EERE)

January January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand $) 38361 Residential Sales (MWh) 457391 Residential Consumers 334784 Commercial Revenue(Thousand $) 20964 Commercial Sales (MWh) 244215 Commercial Consumers 52783 Industrial Revenue (Thousand $) 1321 Industrial Sales (MWh) 21368 Industrial Consumers 539 Other Revenue (Thousand $) 52 Other Sales (MWh) 707 Other Consumers 1 Total Revenue (Thousand $) 60698 Total Sales (MWh) 723681 Total Consumers 388107

209

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August  

Open Energy Info (EERE)

August August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-08-01 End Date 2008-09-01 Residential Revenue(Thousand $) 5720 Residential Sales (MWh) 58786 Residential Consumers 36069 Commercial Revenue(Thousand $) 2643 Commercial Sales (MWh) 26367 Commercial Consumers 8540 Industrial Revenue (Thousand $) 1445 Industrial Sales (MWh) 19022 Industrial Consumers 20 Total Revenue (Thousand $) 9808 Total Sales (MWh) 104175 Total Consumers 44629 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

210

City of Detroit (Michigan) EIA Revenue and Sales - January 2008 | Open  

Open Energy Info (EERE)

January 2008 January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand $) 1.7 Residential Sales (MWh) 19 Residential Consumers 76 Commercial Revenue(Thousand $) 4458 Commercial Sales (MWh) 47480 Commercial Consumers 123 Other Revenue (Thousand $) 63.3 Other Sales (MWh) 537 Other Consumers 1 Total Revenue (Thousand $) 4523 Total Sales (MWh) 48036 Total Consumers 200 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from

211

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - October  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for October 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-10 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-10-01 End Date 2008-11-01 Residential Revenue(Thousand $) 27599 Residential Sales (MWh) 248769 Residential Consumers 329654 Commercial Revenue(Thousand $) 19506 Commercial Sales (MWh) 193998 Commercial Consumers 48492 Industrial Revenue (Thousand $) 1811 Industrial Sales (MWh) 14741 Industrial Consumers 477 Other Revenue (Thousand $) 55 Other Sales (MWh) 713 Other Consumers 1 Total Revenue (Thousand $) 48971 Total Sales (MWh) 458221 Total Consumers 378624 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

212

City of Detroit (Michigan) EIA Revenue and Sales - December 2008 | Open  

Open Energy Info (EERE)

City of Detroit for City of Detroit for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 1.8 Residential Sales (MWh) 18.3 Residential Consumers 80 Commercial Revenue(Thousand $) 3407 Commercial Sales (MWh) 34836 Commercial Consumers 118 Other Revenue (Thousand $) 38.9 Other Sales (MWh) 376 Other Consumers 1 Total Revenue (Thousand $) 3447.7 Total Sales (MWh) 35230.3 Total Consumers 199 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_December_2008&oldid=19459

213

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March  

Open Energy Info (EERE)

4-County Electric 4-County Electric Power Assn for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 4327 Residential Sales (MWh) 47531 Residential Consumers 35777 Commercial Revenue(Thousand $) 1611 Commercial Sales (MWh) 14718 Commercial Consumers 8072 Industrial Revenue (Thousand $) 1263 Industrial Sales (MWh) 14908 Industrial Consumers 20 Total Revenue (Thousand $) 7201 Total Sales (MWh) 77157 Total Consumers 43869 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=4-County_Electric_Power_Assn_(Mississippi)_EIA_Revenue_and_Sales_-_March_2008&oldid=14733

214

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - October  

Open Energy Info (EERE)

4-County Electric 4-County Electric Power Assn for October 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-10 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-10-01 End Date 2008-11-01 Residential Revenue(Thousand $) 4860 Residential Sales (MWh) 41611 Residential Consumers 36025 Commercial Revenue(Thousand $) 2534 Commercial Sales (MWh) 20639 Commercial Consumers 8686 Industrial Revenue (Thousand $) 1229 Industrial Sales (MWh) 15293 Industrial Consumers 19 Total Revenue (Thousand $) 8623 Total Sales (MWh) 77543 Total Consumers 44730 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=4-County_Electric_Power_Assn_(Mississippi)_EIA_Revenue_and_Sales_-_October_2008&oldid=18430"

215

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - May 2008  

Open Energy Info (EERE)

May 2008 May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for May 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-05 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-05-01 End Date 2008-06-01 Residential Revenue(Thousand $) 3585 Residential Sales (MWh) 34492 Residential Consumers 35775 Commercial Revenue(Thousand $) 1809 Commercial Sales (MWh) 16055 Commercial Consumers 8087 Industrial Revenue (Thousand $) 1467 Industrial Sales (MWh) 17891 Industrial Consumers 20 Total Revenue (Thousand $) 6861 Total Sales (MWh) 68438 Total Consumers 43882 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

216

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008  

Open Energy Info (EERE)

March 2008 March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand $) 25715 Residential Sales (MWh) 250621 Residential Consumers 337464 Commercial Revenue(Thousand $) 15187 Commercial Sales (MWh) 156079 Commercial Consumers 52810 Industrial Revenue (Thousand $) 1664 Industrial Sales (MWh) 17211 Industrial Consumers 529 Other Revenue (Thousand $) 106 Other Sales (MWh) 880 Other Consumers 1 Total Revenue (Thousand $) 42672 Total Sales (MWh) 424791 Total Consumers 390804 Source: Energy Information Administration. Form EIA-826 Database Monthly

217

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - May 2008 |  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for May 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-05 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-05-01 End Date 2008-06-01 Residential Revenue(Thousand $) 24553 Residential Sales (MWh) 218454 Residential Consumers 337410 Commercial Revenue(Thousand $) 19095 Commercial Sales (MWh) 187996 Commercial Consumers 55845 Industrial Revenue (Thousand $) 1116 Industrial Sales (MWh) 34382 Industrial Consumers 519 Other Revenue (Thousand $) 52 Other Sales (MWh) 702 Other Consumers 1 Total Revenue (Thousand $) 44816 Total Sales (MWh) 441534 Total Consumers 393775 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

218

City of Detroit (Michigan) EIA Revenue and Sales - August 2008 | Open  

Open Energy Info (EERE)

City of Detroit for City of Detroit for August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-08-01 End Date 2008-09-01 Residential Revenue(Thousand $) 1.75 Residential Sales (MWh) 18.6 Residential Consumers 77 Commercial Revenue(Thousand $) 4689 Commercial Sales (MWh) 45432 Commercial Consumers 124 Other Revenue (Thousand $) 51 Other Sales (MWh) 403 Other Consumers 1 Total Revenue (Thousand $) 4741.75 Total Sales (MWh) 45853.6 Total Consumers 202 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_August_2008&oldid=17335

219

City of Detroit (Michigan) EIA Revenue and Sales - April 2008 | Open Energy  

Open Energy Info (EERE)

April 2008 April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for April 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-04 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-04-01 End Date 2008-05-01 Residential Revenue(Thousand $) 1.2 Residential Sales (MWh) 13 Residential Consumers 81 Commercial Revenue(Thousand $) 4537 Commercial Sales (MWh) 41373 Commercial Consumers 121 Other Revenue (Thousand $) 55 Other Sales (MWh) 400 Other Consumers 1 Total Revenue (Thousand $) 4593.2 Total Sales (MWh) 41786 Total Consumers 203 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from

220

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January  

Open Energy Info (EERE)

January January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for January 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-01 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand $) 38208 Residential Sales (MWh) 442616 Residential Consumers 329875 Commercial Revenue(Thousand $) 18652 Commercial Sales (MWh) 197785 Commercial Consumers 47346 Industrial Revenue (Thousand $) 1173 Industrial Sales (MWh) 16509 Industrial Consumers 453 Other Revenue (Thousand $) 100 Other Sales (MWh) 1537 Other Consumers 1 Total Revenue (Thousand $) 58133 Total Sales (MWh) 658447 Total Consumers 377675

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

City of Detroit (Michigan) EIA Revenue and Sales - January 2009 | Open  

Open Energy Info (EERE)

City of Detroit for City of Detroit for January 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-01 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand $) 2.5 Residential Sales (MWh) 27 Residential Consumers 81 Commercial Revenue(Thousand $) 4964 Commercial Sales (MWh) 48160 Commercial Consumers 120 Other Revenue (Thousand $) 63.5 Other Sales (MWh) 513 Other Consumers 1 Total Revenue (Thousand $) 5030 Total Sales (MWh) 48700 Total Consumers 202 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_January_2009&oldid=12026

222

City of Detroit (Michigan) EIA Revenue and Sales - June 2008 | Open Energy  

Open Energy Info (EERE)

City of Detroit for City of Detroit for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-06-01 End Date 2008-07-01 Residential Revenue(Thousand $) 1.6 Residential Sales (MWh) 17.7 Residential Consumers 77 Commercial Revenue(Thousand $) 4376 Commercial Sales (MWh) 44180 Commercial Consumers 123 Other Revenue (Thousand $) 49 Other Sales (MWh) 386 Other Consumers 1 Total Revenue (Thousand $) 4426.6 Total Sales (MWh) 44583.7 Total Consumers 201 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_June_2008&oldid=16285

223

City of Detroit (Michigan) EIA Revenue and Sales - March 2009 | Open Energy  

Open Energy Info (EERE)

9 9 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for March 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-03 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2009-03-01 End Date 2009-04-01 Residential Revenue(Thousand $) 2.1 Residential Sales (MWh) 20.7 Residential Consumers 79 Commercial Revenue(Thousand $) 3720 Commercial Sales (MWh) 36330 Commercial Consumers 112 Other Revenue (Thousand $) 60.4 Other Sales (MWh) 560 Other Consumers 1 Total Revenue (Thousand $) 3782.5 Total Sales (MWh) 36910.7 Total Consumers 192 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from

224

City of Detroit (Michigan) EIA Revenue and Sales - July 2008 | Open Energy  

Open Energy Info (EERE)

City of Detroit for City of Detroit for July 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-07 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-07-01 End Date 2008-08-01 Residential Revenue(Thousand $) 1.7 Residential Sales (MWh) 18.1 Residential Consumers 77 Commercial Revenue(Thousand $) 4597 Commercial Sales (MWh) 44891 Commercial Consumers 123 Other Revenue (Thousand $) 52 Other Sales (MWh) 408 Other Consumers 1 Total Revenue (Thousand $) 4650.7 Total Sales (MWh) 45317.1 Total Consumers 201 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=City_of_Detroit_(Michigan)_EIA_Revenue_and_Sales_-_July_2008&oldid=16810"

225

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - June  

Open Energy Info (EERE)

June June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-06-01 End Date 2008-07-01 Residential Revenue(Thousand $) 4308 Residential Sales (MWh) 43136 Residential Consumers 35693 Commercial Revenue(Thousand $) 2163 Commercial Sales (MWh) 20896 Commercial Consumers 8204 Industrial Revenue (Thousand $) 1584 Industrial Sales (MWh) 20161 Industrial Consumers 21 Total Revenue (Thousand $) 8055 Total Sales (MWh) 84193 Total Consumers 43918 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

226

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January  

Open Energy Info (EERE)

January January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand $) 4728 Residential Sales (MWh) 52804 Residential Consumers 35677 Commercial Revenue(Thousand $) 1764 Commercial Sales (MWh) 17519 Commercial Consumers 8082 Industrial Revenue (Thousand $) 1337 Industrial Sales (MWh) 17398 Industrial Consumers 20 Total Revenue (Thousand $) 7829 Total Sales (MWh) 87721 Total Consumers 43779 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

227

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April  

Open Energy Info (EERE)

April April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for April 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-04 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-04-01 End Date 2008-05-01 Residential Revenue(Thousand $) 3675 Residential Sales (MWh) 35568 Residential Consumers 35751 Commercial Revenue(Thousand $) 1765 Commercial Sales (MWh) 14949 Commercial Consumers 8105 Industrial Revenue (Thousand $) 1350 Industrial Sales (MWh) 18637 Industrial Consumers 20 Total Revenue (Thousand $) 6790 Total Sales (MWh) 69154 Total Consumers 43876 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

228

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - July  

Open Energy Info (EERE)

July July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for July 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-07 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-07-01 End Date 2008-08-01 Residential Revenue(Thousand $) 5325 Residential Sales (MWh) 54199 Residential Consumers 35931 Commercial Revenue(Thousand $) 2496 Commercial Sales (MWh) 24576 Commercial Consumers 8442 Industrial Revenue (Thousand $) 1484 Industrial Sales (MWh) 18327 Industrial Consumers 21 Total Revenue (Thousand $) 9305 Total Sales (MWh) 97102 Total Consumers 44394 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

229

Numerical modeling of gas migration into and through faulted sand reservoirs in Pabst Field (Main Pass East Block 259), northern Gulf of Mexico  

E-Print Network (OSTI)

The further exploration and development of Pabst Gas Field with faulted sand reservoirs require an understanding of the properties and roles of faults, particularly Low Throw near Vertical Faults (LTNVFs), in gas migration and accumulation at a...

Li, Yuqian

2006-08-16T23:59:59.000Z

230

Processes involved in the origin and accumulation of hydrocarbon gases in the Yuanba gas field, Sichuan Basin, southwest China  

Science Journals Connector (OSTI)

Abstract Natural gases in the superimposed Sichuan Basin commonly experienced a history of remigration in marine carbonate reservoirs since the late Cretaceous. The reservoir in the Changxing Formation (P2c) in the Yuanba gas field in the Sichuan Basin is characterized by a great burial depth of 6200–7000 m and a high temperature about 165 °C. The gas dryness is 99.73–99.99%, and ?13C values of methane and ethane are ?31.0 to ?28.9‰ and ?29.9 to ?25.6‰, respectively. The chemical and isotopic compositions of natural gases, abundant reservoir solid bitumen, and high reservoir temperature (maximum to 240 °C) indicate that the \\{P2c\\} gases are of sapropelic origin and are derived from oil cracking. The paleo-oil layers, recognized by solid bitumen distribution, were mainly developed in high position traps when the paleo-oil accumulated during the early Jurassic. Reconstructed structural evolution shows the northwest was uplifted sharply and southern part dipped gently to the north in the gas field after oil cracking. Fluid potential analyses based on changes in the structural configuration imply that gas should re-migrate mainly to the northwest. The observations that paleo-oil-water contacts are mainly above the present day gas-water contacts in the northwest traps, and are below present day gas-water contacts in the middle and eastern traps also confirm the gas remigration trend. Currently, high gas production wells are mainly located in northwest traps and in high positions in the middle and eastern traps. Systematic analyses on early paleo-oil accumulation and late gas remigration processes can reduce the economic risks associated with natural gas exploration in the northeastern Sichuan Basin.

Pingping Li; Fang Hao; Xusheng Guo; Huayao Zou; Xinya Yu; Guangwei Wang

2015-01-01T23:59:59.000Z

231

1. Was your auditor for the Revenue Bond Series 2003A and 2005A financial audit year ended 6/30/12 invited to bid?  

E-Print Network (OSTI)

IFB13403 1. Was your auditor for the Revenue Bond Series 2003A and 2005A financial audit year ended 6/30/12 invited to bid? Yes 2. How long has Gilbert Associates, Inc been your auditor? Since 2003,365.24. 6. How many auditors were on the engagement; how many hours/weeks were spent in the field last year

232

Natural Gas Discovery and Development Impacts on Rio Vista and Its Community  

E-Print Network (OSTI)

61 4. Royalties: The fight for municipalcommunity where the gas royalty revenues they receive from16 Figure 4.1. First Gas Royalty Check paid to the City of

Gbedema, Tometi Koku

2006-01-01T23:59:59.000Z

233

Identification and selection of a stable gel polymer to control or reduce water production in gas condensate fields  

Science Journals Connector (OSTI)

Abstract The existence of water in hydrocarbon reservoirs damages the wells. In many cases, it leads to shut off the wells and decreases the gas production efficiency. For example, one of the problems of fractured gas wells is unwanted water invasion to gas production areas through the existing fracture in the reservoirs. This would increase the water production and decrease the gas production efficiency. As well, increasing of water/gas production ratio will increase the total operational costs due to water separation from the gas flow, corrosion of inside and outside well facilities and hydrate formation. Hence, prevention of water production in gas wells can boost the gas production economy. Generally, some mechanical and chemical methods exist to control unwanted water. One of the most effective methods to control and prevent of water production in hydrocarbon reservoirs is gel polymer method. The gel polymer is a chemical method with high efficiency and low cost. This work is concerned with producing a stable and suitable gel polymer (HPAM–Cr (III) gel system) to control and remove water in the gas condensate fields. The important parameters in the gel construction such as the polymer and cross-linker concentrations, pH of solution and also the effect of different additives have been examined and optimized at four temperatures of 30, 60, 80 and 100 °C. The effect of gel polymer on the absolute and relative permeabilities of two different cores for water and gas condensate fluids has been investigated. The results show that prepared gel polymer results in decreasing the water relative permeability, while increases the gas condensate relative permeability.

Shahram Karimi; Feridun Esmaeilzadeh; Dariush Mowla

2014-01-01T23:59:59.000Z

234

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

235

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

K.A. Lokhandwala; T. Hofmann; J. Kaschemekat; C. Bailey; M. Jacobs; R. Baker; Membrane Group

2000-04-04T23:59:59.000Z

236

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS  

SciTech Connect

The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; J. Kaschemekat; K.A. Lokhandwala; Membrane Group; Module Group; Systems Group

2001-01-11T23:59:59.000Z

237

Optimizing the efficiency of cylindrical cyclone gas/liquid separators for field applications  

E-Print Network (OSTI)

Problems associated with the use of compact cylindrical cyclone gas/liquid (CCGL) separators can be attributed to two physical phenomena: gas carry-under and liquid carryover (LCO). Inadequate understanding of the complex multiphase hydrodynamic...

Adebare, Adedeji

2006-10-30T23:59:59.000Z

238

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics  

Science Journals Connector (OSTI)

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics ... OPGEE models oil production emissions in more detail than previous transport LCA models. ... El-Houjeiri, H. and Brandt, A.Exploring the variation of GHG emissions from conventional oil production using an engineering-based LCA model. ...

Hassan M. El-Houjeiri; Adam R. Brandt; James E. Duffy

2013-05-01T23:59:59.000Z

239

A & N Electric Coop (Maryland) EIA Revenue and Sales - December 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop A & N Electric Coop for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 24.33 Residential Sales (MWh) 185.391 Residential Consumers 283 Commercial Revenue(Thousand $) 5.013 Commercial Sales (MWh) 35.107 Commercial Consumers 48 Total Revenue (Thousand $) 29.343 Total Sales (MWh) 220.498 Total Consumers 331 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=A_%26_N_Electric_Coop_(Maryland)_EIA_Revenue_and_Sales_-_December_2008&oldid=19445

240

A & N Electric Coop (Maryland) EIA Revenue and Sales - January 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop A & N Electric Coop for January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand $) 27.415 Residential Sales (MWh) 227.468 Residential Consumers 280 Commercial Revenue(Thousand $) 6.434 Commercial Sales (MWh) 50.297 Commercial Consumers 48 Total Revenue (Thousand $) 33.849 Total Sales (MWh) 277.765 Total Consumers 328 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=A_%26_N_Electric_Coop_(Maryland)_EIA_Revenue_and_Sales_-_January_2008&oldid=13616"

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A & N Electric Coop (Virginia) EIA Revenue and Sales - January 2008 | Open  

Open Energy Info (EERE)

8 8 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company A & N Electric Coop (Virginia) Place Virginia Start Date 2008-01-01 End Date 2008-02-01 Residential Revenue(Thousand $) 2520.599 Residential Sales (MWh) 21314.163 Residential Consumers 29923 Commercial Revenue(Thousand $) 713.471 Commercial Sales (MWh) 6200.643 Commercial Consumers 4127 Industrial Revenue (Thousand $) 988.903 Industrial Sales (MWh) 11242.109 Industrial Consumers 17 Total Revenue (Thousand $) 4222.973 Total Sales (MWh) 38756.915 Total Consumers 34067 Source: Energy Information Administration. Form EIA-826 Database Monthly

242

A & N Electric Coop (Virginia) EIA Revenue and Sales - June 2008 | Open  

Open Energy Info (EERE)

June 2008 June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company A & N Electric Coop (Virginia) Place Virginia Start Date 2008-06-01 End Date 2008-07-01 Residential Revenue(Thousand $) 2705.705 Residential Sales (MWh) 20742.585 Residential Consumers 29861 Commercial Revenue(Thousand $) 1580.369 Commercial Sales (MWh) 12964.065 Commercial Consumers 4081 Industrial Revenue (Thousand $) 1437.835 Industrial Sales (MWh) 14640.78 Industrial Consumers 17 Total Revenue (Thousand $) 5723.909 Total Sales (MWh) 48347.43 Total Consumers 33959 Source: Energy Information Administration. Form EIA-826 Database Monthly

243

A & N Electric Coop (Maryland) EIA Revenue and Sales - January 2009 | Open  

Open Energy Info (EERE)

A & N Electric Coop A & N Electric Coop for January 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-01 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand $) 33.241 Residential Sales (MWh) 268.236 Residential Consumers 283 Commercial Revenue(Thousand $) 7.293 Commercial Sales (MWh) 55.35 Commercial Consumers 48 Total Revenue (Thousand $) 40.534 Total Sales (MWh) 323.586 Total Consumers 331 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=A_%26_N_Electric_Coop_(Maryland)_EIA_Revenue_and_Sales_-_January_2009&oldid=12012

244

City of Detroit (Michigan) EIA Revenue and Sales - February 2008 | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » City of Detroit (Michigan) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for City of Detroit for February 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-02 Utility Company City of Detroit (Michigan) Place Michigan Start Date 2008-02-01 End Date 2008-03-01 Residential Revenue(Thousand $) 1.5 Residential Sales (MWh) 17 Residential Consumers 76 Commercial Revenue(Thousand $) 4083 Commercial Sales (MWh) 43432 Commercial Consumers 123 Other Revenue (Thousand $) 55 Other Sales (MWh) 494

245

A & N Electric Coop (Maryland) EIA Revenue and Sales - April 2008 | Open  

Open Energy Info (EERE)

A & N Electric Coop A & N Electric Coop for April 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-04 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date 2008-04-01 End Date 2008-05-01 Residential Revenue(Thousand $) 19.183 Residential Sales (MWh) 150.454 Residential Consumers 282 Commercial Revenue(Thousand $) 6.078 Commercial Sales (MWh) 47.676 Commercial Consumers 48 Total Revenue (Thousand $) 25.261 Total Sales (MWh) 198.13 Total Consumers 330 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1] Previous | Next Retrieved from "http://en.openei.org/w/index.php?title=A_%26_N_Electric_Coop_(Maryland)_EIA_Revenue_and_Sales_-_April_2008&oldid=15216

246

Flash2007-33RevenueTierDiscounts.rtf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVENUE TIER DISCOUNT REVENUE TIER DISCOUNT S* Service Category Baseline $0-$9M Tier 1 $10-34M Tier 2 $ 35-74M Tier 3 $75-149M Tier 4 $150-199M Tier 5 $200M+ Express Next Day First AM MAS MAS MAS MAS MAS MAS Express Next Day Mid-Morning MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Next Day Afternoon MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Second Day MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Third Day MAS 21.9% 24.0% 26.9% 29.2% 30.2% Intl Priority - Puerto Rico MAS MAS MAS MAS MAS MAS Intl Economy - Puerto Rico MAS MAS MAS MAS MAS MAS Same Day Service MAS MAS MAS MAS MAS MAS Standard Ground** MAS 1.7% 4.8% 13.2% 15.2% 17.3% Ground $4,000 - $40,000** Not Offered 4.8% 11.1% 15.2% 17.3% 27.9% Ground $40,000+" Not Offered 39.2% 39.2% 39.2% 39.2% 39.2% *Discounts shown EXCLUDE the waiver of fuel surcharges and are thus understated

247

Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets  

Energy.gov (U.S. Department of Energy (DOE))

Provides information for energy efficiency programs on the opportunities and challenges associated with participating in forward capacity markets and reliability pricing models as potential revenue streams.

248

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

249

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

250

Oil revenue of the Arabian gulf Emirates: patterns of allocation and impact on economic development.  

E-Print Network (OSTI)

??The study aims to analyse the oil revenue, its allocational pattern and impact on economic development in Kuwait, Bahrain, Qatar and the UAE from the… (more)

Al-Kuwari, Ali Khalifa

1974-01-01T23:59:59.000Z

251

Oil revenue and economic development case of Libyan economy (1970-2007).  

E-Print Network (OSTI)

??This study aims to investigate different aspects of the relationship between oil revenues and economic development for the Libyan economy. To do so this thesis… (more)

Ali, Issa Saleh

2011-01-01T23:59:59.000Z

252

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

253

Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas  

SciTech Connect

We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.

Sun Qing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Hu Xinghua; Liu, W. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Xie, X. C. [International Center for Quantum Materials, Peking University, Beijing 100871 (China); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Ji Anchun [Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2011-08-15T23:59:59.000Z

254

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

255

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

256

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...Department of Exploration Geophysics...engineering and the oil and gas industries...The higher costs of offshore storage...rate was the benchmark for the...because of cost. Figure S4...Asia Pacific Oil & Gas Conference...2009), A benchmark study on...sequestration process. Exploration Geophysics...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

257

Analysis and Modelling of Fraud and Revenue Assurance Threats in Future Telecommunications Network and Service Environments  

E-Print Network (OSTI)

Analysis and Modelling of Fraud and Revenue Assurance Threats in Future Telecommunications Network and revenue assurance in future telecommunication network and service environments. 1. Introduction, usually, to obtain property or services from him or her unjustly [1]. The Telecommunications (Fraud) Act

Haddadi, Hamed

258

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for January 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-01 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand $) 6009 Residential Sales (MWh) 56047 Residential Consumers 36041 Commercial Revenue(Thousand $) 2159 Commercial Sales (MWh) 17259 Commercial Consumers 8727

259

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for February 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-02 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-02-01 End Date 2008-03-01 Residential Revenue(Thousand $) 32207 Residential Sales (MWh) 371971 Residential Consumers 331256 Commercial Revenue(Thousand $) 18469 Commercial Sales (MWh) 200148 Commercial Consumers 52121

260

Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data |  

Open Energy Info (EERE)

26 Database Monthly Electric Utility Sales and Revenue Data 26 Database Monthly Electric Utility Sales and Revenue Data Dataset Summary Description EIA previously collected sales and revenue data in a category called "Other." This category was defined as including activities such as public street highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. EIA has revised its survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. This is an electric utility data file that includes utility level retail sales of electricity and associated revenue by end-use sector, State, and reporting month. The data source is the survey: Form EIA-826, "Monthly Electric Utility Sales and Revenue Report

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - November  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-11 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-11-01 End Date 2008-12-01 Residential Revenue(Thousand $) 36996 Residential Sales (MWh) 319196 Residential Consumers 331439 Commercial Revenue(Thousand $) 20266 Commercial Sales (MWh) 191904 Commercial Consumers 48563

262

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - September  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Central Illinois Pub Serv Co for September 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-09 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand $) 21156 Residential Sales (MWh) 187445 Residential Consumers 329283 Commercial Revenue(Thousand $) 14874 Commercial Sales (MWh) 128656 Commercial Consumers 48190

263

Sell-in versus Sell-through Revenue Recognition: An Examination of Firm Characteristics and Financial Information Quality  

E-Print Network (OSTI)

This study examines revenue recognition methods used by high technology firms for sales to distributors. Revenue is either recognized when products are delivered to distributors (sell-in) or when distributors resell products to end-users (sell...

Rasmussen, Stephanie Jean Binger

2010-10-12T23:59:59.000Z

264

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

265

The Esso Energy Award Lecture, 1998. Boosting production from low-pressure oil and gas fields: a revolution in hydrocarbon production  

Science Journals Connector (OSTI)

...Boosting production from low-pressure oil and gas fields: a revolution in hydrocarbon...major part of the future source of oil and gas supply. Full development...Caledonia Ltd (Wood Group Engineering), Marathon Oil UK Ltd, Mobil North Sea Ltd, Oil...

1999-01-01T23:59:59.000Z

266

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

267

Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing  

Science Journals Connector (OSTI)

Graphene based new physics phenomena are leading to a variety of stimulating graphene-based photonic devices. In this study, the enhancement of surface evanescent field by graphene...

Yao, B C; Wu, Y; Zhang, A Q; Rao, Y J; Wang, Z G; Cheng, Y; Gong, Y; Zhang, W L; Chen, Y F; Chiang, K S

2014-01-01T23:59:59.000Z

268

Effective ionization coefficients, electron drift velocities, and limiting breakdown fields for gas mixtures of possible interest to particle detectors  

SciTech Connect

We have measured the gas-density, N, normalized effective ionization coefficient, {bar a}/N, and the electron drift velocity, w, as a function of the density-reduced electric field, E/N, and obtained the limiting, (E/N){sub lim}, value of E/N for the unitary gases Ar, CO{sub 2}, and CF{sub 4}, the binary gas mixtures CO{sub 2}:Ar (20: 80), CO{sub 2}:CH{sub 4} (20:80), and CF{sub 4}:Ar (20:80), and the ternary gas mixtures CO{sub 2}:CF{sub 4}:Ar (10:10:80) and H{sub 2}O: CF{sub 4}:Ar (2:18:80). Addition of the strongly electron thermalizing gas CO{sub 2} or H{sub 2}O to the binary mixture CF{sub 4}:Ar (1) cools'' the mixture (i.e., lowers the electron energies), (2) has only a small effect on the magnitude of w(E/N) in the E/N range employed in the particle detectors, and (3) increases {bar a}/N for E/N {ge} 50 {times} 10{sup {minus}17} V cm{sup 2}. The increase in {bar a}/N, even though the electron energies are lower in the ternary mixture, is due to the Penning ionization of CO{sub 2}(or H{sub 2}O) in collisions with excited Ar* atoms. The ternary mixtures -- being fast, cool, and efficient -- have potential for advanced gas-filled particle detectors such as those for the SCC muon chambers. 17 refs., 8 figs., 1 tab.

Datskos, P.G. (Tennessee Univ., Knoxville, TN (United States). Dept. of Physics); Christophorou, L.G.; Carter, J.G. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

269

Development of gas cluster ion beam surface treatments for reducing field emission and breakdown in RF cavities  

SciTech Connect

Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

D.R. Swenson; E. Degenkolb; A.T. Wu; Z. Insepov

2006-11-01T23:59:59.000Z

270

The thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields  

E-Print Network (OSTI)

The thermodynamical partition function for a gas of color-singlet bags consisting of fundamental and adjoint particles in both $U(N_c)$ and $SU(N_c)$ group representations is reviewed in detail. The constituent particle species are assumed to satisfy various thermodynamical statistics. The gas of bags is probed to study the phase transition for a nuclear matter in the extreme conditions. These bags are interpreted as the Hagedorn states and they are the highly excited hadronic states which are produced below the phase transition point to the quark-gluon plasma. The hadronic density of states has the Gross-Witten critical point and exhibits a third order phase transition from a hadronic phase dominated by the discrete low-lying hadronic mass spectrum particles to another hadronic phase dominated by the continuous Hagedorn states. The Hagedorn threshold production is found just above the highest known experimental discrete low-lying hadronic mass spectrum. The subsequent Hagedorn phase undergoes a first order deconfinement phase transition to an explosive quark-gluon plasma. The role of the chiral phase transition in the phases of the discrete low-lying mass spectrum and the continuous Hagedorn mass spectrum is also considered. It is found crucial in the phase transition diagram. Alternate scenarios are briefly discussed for the Hagedorn gas undergoes a higher order phase transition through multi-processes of internal color-flavor structure modification.

Ismail Zakout; Carsten Greiner

2007-09-03T23:59:59.000Z

271

Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...  

Open Energy Info (EERE)

August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

272

Chain hotels versus independent hotels : an analysis of branding, room revenue & volatility  

E-Print Network (OSTI)

This thesis analyzes the historical performance of chain-affiliated hotels and independent (non-affiliated) hotels with an emphasis on the volatility of room revenues. The thesis attempts to prove or disprove the hypothesis ...

Langlois, Tyler J. (Tyler Joseph), 1974-

2003-01-01T23:59:59.000Z

273

Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions  

E-Print Network (OSTI)

Generalized mean-field approach for thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities, and for large enough values of hadron radii ($r\\gtrsim0.9$ fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. For the smaller and more commonly used values of hard-core hadron radii ($r\\lesssim0.5$ fm) the van der Waals excluded-volume procedure is shown to be sufficient.

D. Anchishkin; V. Vovchenko

2015-01-23T23:59:59.000Z

274

Hydrodynamic flow in lower Cretaceous Muddy sandstone, Gas Draw Field, Powder River Basin, Wyoming  

E-Print Network (OSTI)

/dx =[pj(p?- p )j (dh/dx), (4) where 8 is the angle of inclination, dz/dx is the slope of the oil- water interface, dh/dx is the horizontal component of head change, and pj(p - p ) is an amplification factor (Willis, 1961). Thus the w 0 hydrodynamic oil... reflected by Muddy thickness greater than 100 ft appears to cross the north end of Gas Draw, but 37 CHEVRON 1 FEDERAL PERMEABILITY (md) FEET 1000 100 10 I 0. 1 20 POROSITY &Im 20 10 0 WATER SATURATION 100 80 80 40 20 0 I I I I I I OIL SATURATION...

Lin, Joseph Tien-Chin

2012-06-07T23:59:59.000Z

275

The Potential Field in and around a Gas Discharge, and Its Influence on the Discharge Mechanism  

Science Journals Connector (OSTI)

In the first part of the paper, results on the spatial extension of cathode and anode fall regions in carbon arcs are reported. Potential-probe measurements reveal that the potential drop in front of either electrode is confined to less than one tenth of a millimeter. In the second part of the paper, the distortion of the potential field in and around any discharge, as caused by the non-uniform space charge distribution in the discharge, is discussed for the cases of a low current carbon arc and a negative point corona; for the latter case use was made of data by Loeb. The potential field distortions result in radial electric fields which, depending on their polarity, seem to hinder or support the radial expansion of the discharge. Potential-probe measurements in low and high current carbon arcs are in good agreement with this theoretical analysis and prove the transitional region between the distorted potential field in the arc and the undistorted potential field outside of the discharge to be a fairly thin one.

W. Finkelnburg and S. M. Segal

1951-08-01T23:59:59.000Z

276

MULTI-KEV X-RAY YIELDS FROM HIGH-Z GAS TARGETS FIELDED AT OMEGA  

SciTech Connect

The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at {approx} 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3{omega} ({approx} 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

Kane, J O; Fournier, K B; May, M J; Colvin, J D; Thomas, C A; Marrs, R E; Compton, S M; Moody, J D; Bond, E J; Davis, J F

2010-11-04T23:59:59.000Z

277

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

278

Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.  

SciTech Connect

The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

2012-12-01T23:59:59.000Z

279

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

280

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

282

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

283

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

284

Potential impacts of federal regulation of greenhouse gas emissions on Wyoming's energy-derived tax revenue  

Science Journals Connector (OSTI)

...the change in quantity by a firms ability to respond (supply elasticity), as opposed to the more robust factor demand response. The EDM model is incorporated into an isee systems STELLA policy model through including elasticities as converters...

Milton Geiger; Roger Coupal; Donald McLeod

285

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets  

Energy.gov (U.S. Department of Energy (DOE))

November 15, 2012 Webinar: Exploring Opportunities for Energy Efficiency as a Revenue Stream in the Forward Capacity Markets, Better Buildings Neighborhood Program; regional transmission organizations (RTOs)

286

Geochemical evaluation of CO2 injection and containment in a depleted gas field  

Science Journals Connector (OSTI)

Abstract The short- and long-term geochemical impact of CO2 injection into a depleted gas reservoir (DGR) is investigated using reservoir/geochemical modeling with TOUGH2/TOUGHREACT and 1D kinetic diffusion modeling with PHREEQC (caprock/well-cement). Simulations of CO2 injection into the reservoir predict displacement and buoyancy of post-production CH4, as well as dry-out of the near-well zone. We computed that the areal extent of the CH4/brine dominated zone and the dry-out zone are relatively small compared to the CO2/brine dominated zone after well-closure. For the current DGR model we therefore conclude that it is reasonable to model geochemical reactions in the reservoir without taking into account post-production CH4. Although the CO2 dissolution capacity of the studied DGR is smaller compared to a deep saline aquifer of similar size, the modeling predicts that dissolution and subsequent CO2 mineral trapping proceed faster. Precipitation of dawsonite and magnesite were yet predicted at initial CO2 partial pressure (PCO2) of 9.3 bar, while these minerals were not identified in reservoir samples. This could indicate that their tendency of precipitation is overestimated by the model and hence the database used. This has significant impact on long-term modeled bulk porosity and PCO2. Simulations of CO2 diffusion through the caprock show that mineral reactions significantly retard the total dissolved carbon (TDC) plume. After 10,000 years, 99% of the TDC is present within the first 6.4 m above the reservoir contact. The progression of the TDC plume in the caprock is sensitive to the composition, kinetic rates, and surface area of primary and secondary minerals. Cement alteration modeling shows progressive carbonation of cement phases, resulting in three zones of distinct mineralogy and porosity. The three zones are predominantly characterized by: (i) unaltered cement, (ii) portlandite dissolution, and (iii) calcite precipitation. The simulated thickness of the affected zone is 3.8 cm after 100 years. This distance is sensitive to kinetic rate constants of C–S–H phases, but less sensitive to kinetic rate constant of portlandite. In summary, our applied methodology provides quantitative predictions of the geochemical impact of CO2 on the DGR storage complex. The methodology can be used for screening of potential DGR storage locations and to define criteria for minimal caprock and cement sheet thickness, for assuring short- and long-term integrity of the storage location.

Tim J. Tambach; Mariëlle Koenen; Laura J. Wasch; Frank van Bergen

2015-01-01T23:59:59.000Z

287

Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provide  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provider, 1990-2012" Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",386304,429152,232325,0,"NA",1047781 2012,"AL","Total Electric Industry",3491380,2318146,2100936,0,"NA",7910462 2012,"AR","Total Electric Industry",1664696,933567,971266,52,"NA",3569581 2012,"AZ","Total Electric Industry",3718357,2829551,813094,0,"NA",7361001 2012,"CA","Total Electric Industry",13821565,16327164,4925482,49095,"NA",35123306

288

New Method of Denitrification Analysis of Bradyrhizobium Field Isolates by Gas Chromatographic Determination of 15N-Labeled N2  

Science Journals Connector (OSTI)

...determined from nitrogen isotope paring...of the carrier gas on the sensitivity...Low-pressure solubility of gases in liquid water. Chem. Rev...Chromatography, Gas methods Culture...Nitrites metabolism Nitrogen Isotopes metabolism...

Reiko Sameshima-Saito; Kaori Chiba; Kiwamu Minamisawa

2004-05-01T23:59:59.000Z

289

Low-frequency anomalies in spectral ratios of single station microtremor measurements: Observations across an oil and gas field in Austria  

E-Print Network (OSTI)

Low-frequency anomalies in spectral ratios of single station microtremor measurements: Observations across an oil and gas field in Austria Marc Lambert and Stefan M. Schmalholz, Geological Institute, ETH are calculated from the different components of ground motion measured at single stations. An example

Podladchikov, Yuri

290

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-Print Network (OSTI)

A comparison of microseismicity induced by gel-proppant- and water-injected hydraulic fractures induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker

291

RESEARCH ARTICLE Forty percent revenue increase by combining organic  

E-Print Network (OSTI)

Uganda. Cabbage was grown on eight replicate farms in close association with a farmer field school-Saharan Africa indicate the need for effective strategies to restore soils, while improving smallholder incomes an eco- nomic perspective and none have explored its potential in intensively managed, market vegetable

Paris-Sud XI, Université de

292

Semi-Markov Adaptive Critic Heuristics with Application to Airline Revenue Management  

E-Print Network (OSTI)

Semi-Markov Adaptive Critic Heuristics with Application to Airline Revenue Management Ketaki Management and Systems Engineering Missouri University of Science and Technology Rolla, MO 65409 Abstract the time spent in each transition of the underlying Markov chains is itself a random variable

Gosavi, Abhijit

293

Revenue Maximization in Reservation-based Online Advertising Through Dynamic Inventory  

E-Print Network (OSTI)

and oftentimes a publisher uncontrollably runs out of a highly desirable inventory type, failing to meetRevenue Maximization in Reservation-based Online Advertising Through Dynamic Inventory Management inventory on content sites owned by publishers (e.g., CNN, amazon, etc.). Sales representatives, acting

Tomkins, Andrew

294

Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint  

SciTech Connect

This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

Wagner, M. J.; Kutscher, C. F.

2010-10-01T23:59:59.000Z

295

For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South Louisiana and became accustomed to the oil indus-  

E-Print Network (OSTI)

For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South jobs and how they worked together to drill and explore for oil and gas. It was no wonder then that I in building the oil and gas assets in Enerfin Resources over a 20 year period to over $250 million. After

Stephens, Jacqueline

296

Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Abstract A comprehensive understanding of porosity variations in tight gas sandstones plays an important role in reservoir management and provision of plans for developing of the field. This is especially important when we encounter with some degree of complexity in reservoir characteristics of these sandstones. Reservoir properties of tight gas sandstones of the Whicher Range field, the target reservoir of this study, were affected by internal reservoir heterogeneity mostly related to depositional and diagenetic features of the reservoir sandstones. In this study, 2D seismic data in combination with well log data were used for prediction of porosity based on seismic inversion technique and multi-attribute regression analysis. The results show that acoustic impedance from model based inversion is the main seismic attribute in reservoir characterization of tight sandstones of the field. Wide variations in this parameter can be effectively used to differentiate the reservoir sandstones based on their tightness degree. Investigation of porosity by this method resulted in 2D-view of porosity variations in sandstone reservoir which is in accordance with variations in geological characteristics of tight gas sandstones in the field. This view can be extended to a 3D-view in the framework of reservoir model to follow the variations throughout the field.

Rahim Kadkhodaie-Ilkhchi; Reza Moussavi-Harami; Reza Rezaee; Majid Nabi-Bidhendi; Ali Kadkhodaie-Ilkhchi

2014-01-01T23:59:59.000Z

297

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

298

Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria  

SciTech Connect

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.

Rucci, A.; Vasco, D.W.; Novali, F.

2010-04-01T23:59:59.000Z

299

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

300

Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return  

Energy.gov (U.S. Department of Energy (DOE))

In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Wind Program and the National Renewable Energy Laboratory recently published a study conducted in collaboration with the Electric Power Research Institute and the University of Colorado. Researchers examined how the contribution of wind power providing active power controls could benefit the total power system economics, increase revenue streams, and improve the reliability and security of the nation’s power system, all while having negligible impacts on the turbine and its components.

302

Development of the temperature fields in an electric arc struck on a point electrode in a homogeneous gas stream  

Science Journals Connector (OSTI)

A study is made of the problem of a point electric source in a homogeneous gas stream and operating in the arc discharge regime. The development of an electric arc struck on a point cathode in a ... . The station...

A. B. Vatazhin

303

Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow  

SciTech Connect

The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

Schweigert, I. V., E-mail: ischweig@itam.nsc.ru [Russian Academy of Sciences, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch (Russian Federation)

2012-08-15T23:59:59.000Z

304

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network (OSTI)

-2016 Drilling and Exploration (Upstream) $329.9bn 3.10% 5.50% $158.4bn 48.00% Refining (Downstream) $698.9bn 4.60% 3.10% $90.9bn 13.00% 9 CHAPTER II METHODOLOGY The study includes literature review from academic and industry specific journals... Outsourcing Outlook in the Oil and Gas Industry Industry Segment Drilling and Exploration Refining Revenue $329.9bn $698.9bn Average Total Logistic Expenditure (ATLE) (11% of Revenue*) $36.29bn $76.88bn Average Total Logistics Expenditure Outsourced...

Herrera, Cristina 1988-

2012-04-30T23:59:59.000Z

305

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

306

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

307

Trap types vs productivity of significant Wilcox gas fields in the south Texas, listric growth fault trend, and the divergent origin of its two largest producers  

SciTech Connect

Detailed mapping and analysis of 23 Wilcox fields in the subject trend indicates that gas production is related to trap type. Of total cumulative production of 3.4 TCFG, 65% is from upthrown fault blocks implying very effective fault seals due to differential pressure and/or shale smears. NE Thompsonville and Bob West fields have produced 650 and 200 BCFG, respectively, with 400 BCFG remaining reserves in the latter. The field structures are not attributed to listric growth faulting, as is suggested by their trend location. NE Thompsonville is a 9-mile-long turtle structure that originated through depositional loading of an upper slope basin, followed by tilting, and then eventual collapse of a sediment squeeze-up mound due to gravitational instability. These events provide an excellent example of basin evolution through sediment loading accompanied by withdrawal of a salt-shale substrate; the basin flanks are defined by basin-dipping listric faulting that accommodated subsidence and merge beneath its floor. Bob West Field lies along the edge of the Laramide fold belt. The 1-1/2 x 4 mile field anticline adjoins a deep-seated fault that slices over and across a buried structural ridge of probable Cretaceous age. Uplift of the latter, immediately following deposition of 20+ stacked, shelf-bar producing sands, upwarped the fault and resulted in rollover growth of the Wilcox anticline. The fault shows no downward decrease in dip typical of listric faults. NE Thompsonville and Bob West fields both produce upthrown along crestal faults. This analysis indicates that {open_quotes}high-side{close_quotes} closures, irrespective of diverse origins, have achieved head-of-the-class stature as Wilcox gas producers.

Stricklin, F.L. Jr. [Wilcox Exploration Enterprises, Woodlands, TX (United States)

1996-09-01T23:59:59.000Z

308

Oklahoma Cherokee formation study shows benefits of gas tax credits  

SciTech Connect

To no one's surprise, the administration's recently released energy initiative package does not advocate the use of tax incentives such as the Internal Revenue Code Sec. 29 (tight sand gas) credit that expired Dec. 31, 1992. This is unfortunate since tax credits do stimulate drilling, as the authors' recent study of Oklahoma's Pennsylvanian age Cherokee formation demonstrates. Within this 783,000 acre study area, more than 130 additional wells were drilled between 1991--92 because of tax credit incentives. And such tax credits also increase total federal tax revenues by causing wells to be drilled that would not have been drilled or accelerating the drilling of wells, thereby increasing taxable revenue. In short, tax credits create a win-win situation: they stimulate commerce, increase tax revenues, reduce the outflow of capital to foreign petroleum projects, and add to the nation's natural gas reserve, which is beneficial for national security, balance of payments, the environment, and gas market development. The paper discusses the study assumptions, study results, and the tax credit policy.

Stanley, B.J.; Cline, S.B. (Hefner Corp., Oklahoma City, OK (United States))

1994-01-10T23:59:59.000Z

309

The impact of federal revenue sharing on recreation and parks in Texas  

E-Print Network (OSTI)

of the uses of shared funds, total expenditures for recreation from 1969 to 1973, amounts of Revenue Sharing spent, and a listing of the major problems experienced in utilizing shared f'unds. A mailed questionnaire was sent to 122 Texas cities... became avai1abl! . '!!~wc- *birds of the reaper. ding cities had sren* one nsrt of thei r shared funds for' recreation. However, st pr. e ent these frnds have had lit*I. e overall impac+ the trends of expenditures for leisure services. Most...

Verinder, Sydney Henry

2012-06-07T23:59:59.000Z

310

An experimental investigation of the Hahn-Noll revenue neutral auction for emissions licenses  

SciTech Connect

This paper reports on three series of laboratory experiments designed to test the performance of the Hahn-Noll revenue neutral auction (RNA). An alternative institution, a no-rebate uniform price auction (UPA), is also examined as a benchmark. In these experiments, the RNA markets were little different from UPA markets in terms of either prices or market efficiencies. The two institutions did differ in terms of the distribution of the gains from exchange and of the propensity of bidders to engage in a certain type of overbidding. 25 refs., 13 figs., 3 tabs.

Franciosi, R.; Isaac, R.M.; Pingry, D.E.; Reynolds, S.S. (Univ. of Arizona, Tucson (United States))

1993-01-01T23:59:59.000Z

311

Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report  

SciTech Connect

Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

Baroni, M. [American Oil Recovery, Inc., Decatur, IL (United States)

1995-09-01T23:59:59.000Z

312

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

313

Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

IRS Ruling IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent excise tax rate. The IRS also rejected the Coalition's proposal that the NGV tax rate be expressed as gasoline gallon equivalent (GGE) rather than in thousand cubic feet (mcf) as provided in the Internal Revenue Code, but stated that no restrictions exist on taxpayers engaged in fuel sales based on

314

Maximizing the revenues of data centers in regulation market by coordinating with electric vehicles  

Science Journals Connector (OSTI)

Abstract Frequency regulation is a major market service to reduce the undesired imbalance between power supply and demand in the power market. In order to participate in the regulation market, both the supply and demand sides need to be capable of flexibly adjusting their power generation and consumption, respectively. As the scale of Internet data centers is increasing rapidly, their significant power consumption has enabled them to become an important player in the regulation market for maximized profits and thus minimized operating expenses. On the other side, Plug-in Hybrid Electric Vehicles (PHEVs) have also recently been identified as a major participant in the regulation market, due to their large power demand for battery charging. In this paper, we propose a novel power management scheme that jointly leverages a data center and its employees’ \\{PHEVs\\} to (1) maximize the revenues that the data center receives from the regulation market and (2) get the \\{PHEVs\\} charged at no expense to their owners. Our scheme features a two-level hierarchical power control design. At the first level, our scheme interacts with the regulation market to provide information about the data center power consumption on an hourly basis. At the second level, the scheme decides the power budgets for the servers and UPS in the data center, as well as PHEVs, in real time, to follow the given regulation signal. In addition, we show how to leverage the thermal energy storage (TES) tanks available in many data centers to adapt the cooling power consumption for better management of the data center power demand and further increased regulation revenues. We evaluate the proposed scheme with real-world workload and regulation traces. The results show that our scheme performs a high-quality regulation service. As a result, the proposed scheme outperforms several commonly used baselines by having higher regulation revenues, and so lower operating expenses, for the data center. Finally, we analyze the cost savings of the PHEV owners, throughout the lifetime of the PHEVs, by getting their batteries charged at no expense.

Marco Brocanelli; Sen Li; Xiaorui Wang; Wei Zhang

2014-01-01T23:59:59.000Z

315

A critical review of methods used in the estimation of natural gas reserves: Natural gas reserves in the state of Texas. Some educational prerequisites in the field of petroleum economics and evaluation.  

E-Print Network (OSTI)

-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne... Bibliography 58 TABLE of ILLUSTRATIONS ~Pa e A CRITICAI REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES Curves Curve No Curves Showing Change in the Compressi- bility Factor with Depth and Composition of the Wet Gas. Z4-A Curve No...

Crichton, John Alston

2012-06-07T23:59:59.000Z

316

Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields  

E-Print Network (OSTI)

.........................................................76 4.2.3 Water-Gas Ratio Trend in 1976 .........................................................78 4.2.4 Water-Gas Ratio Trend in 1977 .........................................................81 4.2.5 Water-Gas Ratio Trend 1978 ? 2004... .........................................................76 4.2.3 Water-Gas Ratio Trend in 1976 .........................................................78 4.2.4 Water-Gas Ratio Trend in 1977 .........................................................81 4.2.5 Water-Gas Ratio Trend 1978 ? 2004...

Ozobeme, Charles Chinedu

2007-04-25T23:59:59.000Z

317

FORM EIA-826 MONTHLY ELECTRIC SALES AND REVENUE WITH STATE DISTRIBUTIONS REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

MONTHLY ELECTRIC SALES AND REVENUE WITH STATE DISTRIBUTIONS REPORT OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 1.37 hours NOTICE: This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the confidentiality of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any

318

A new methodology for analyzing and predicting U.S. liquefied natural gas imports using neural networks  

E-Print Network (OSTI)

at Mexico we that that natural gas imports have remained fairly flat and in the future Mexico is predicted to become a net importer of natural gas from the U.S. This trend is due to the fact that the national oil company of Mexico, PEMEX, had about 60... percent of its revenue going to the Mexican government in 2003 5 . This trend is expected to continue into the future. With sixty percent of its $56.3 billion revenue going to the Mexican government, PEMEX is unable to meet its country?s demand...

Bolen, Matthew Scott

2005-11-01T23:59:59.000Z

319

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

320

Who is winning the cell-phone wars? Answer: it depends how you count. Units, market share, revenue, profit.  

E-Print Network (OSTI)

Who is winning the cell-phone wars? Answer: it depends how you count. Units, market share, revenue launched. According to another analyst, Cannaccord, Apple now has four percent of the cell-phone market quarter, not that far off a million a day. iPhone sales increased by 4 million but its market share

South Bohemia, University of

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.  

SciTech Connect

In this reporting period two main accomplishments stand out. The Springdale task is in play in the northern Michigan Basin and the geochemical survey work over the Springdale prospect continued to progress. We still need to characterize the play in terms of the type of trap (basal reef diagenetic (?)) and its relation to the well documented pinnacle reef play. Also, we have become aware that Capac Field in the southern reef trend (Figure 1) is a possible analog to Springdale and so will be looking more closely at the literature on that field, particularly the work by Bowers (1987). Future work is directed toward further defining the Springdale project via more wells and examination and characterization of well cuttings. One to two more geochemical surveys are planned, one this spring and a final one in early fall. Based on current oil prices and Springdale production as of January 2005, an ROI, (defined as Total liquids revenue, $5.45m/DOE support, $1.45m) better than 3.75. This does not include gas revenues, which have not yet been calculated.

James R. Wood; A. Wylie; W. Quinlan

2005-04-01T23:59:59.000Z

322

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

323

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

among 36 states as part of their share of federal revenues collected by the Minerals Management Service (MMS) during fiscal year 2004 (FY04) (October 2003 through September...

324

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

325

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

326

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

327

Microminiature gas chromatograph  

DOE Patents (OSTI)

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

328

Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran  

Science Journals Connector (OSTI)

Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data ... Keywords: Artificial neural network, Burial history, Cluster analysis, Organic facies, Rock-Eval pyrolysis, Well log data

Bahram Alizadeh; Saeid Najjari; Ali Kadkhodaie-Ilkhchi

2012-08-01T23:59:59.000Z

329

Renewable Natural Gas Clean-up Challenges and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Natural Gas Clean-up Renewable Natural Gas Clean-up p Challenges and Applications Renewable Resource Webinar July 13, 2011 Brian Weeks, Gas Technology Institute 281 235 7993, brian.weeks@gastechnology.org Kristine Wiley, Gas Technology Institute 847 768 0910 kristine wiley@gastechnology org 847 768 0910, kristine.wiley@gastechnology.org 2 Today's Talk Today s Talk >Who is GTI Who is GTI >What is Renewable Natural Gas (RNG) Ch ll f R bl N t l G >Challenges for Renewable Natural Gas >How do we clean up RNG? >Recommendations and Summary 2 - - 3 GTI at a Glance... > Not-for-profit research > Not for profit research, with 65+ year history > Facilities 18 Chi ─ 18 acre campus near Chicago ─ 200,000 ft 2 , 28 specialized labs $60 illi > $60 + million i in revenue

330

Influence assessment of landfill gas pumping  

Science Journals Connector (OSTI)

Changes in CH4 gas concentrations arising in a landfill as a consequence of a number of gas extraction pumping rates, are characterized. The field-monitored results indicate a fairly free flow of gas through the ...

Edward A. McBean; Anthony J. Crutcher; Frank A. Rovers

1984-04-01T23:59:59.000Z

331

Empirical study on the Korean treasury auction focusing on the revenue comparison in multiple versus single price auction  

E-Print Network (OSTI)

EMPIRICAL STUDY ON THE KOREAN TREASURY AUCTION FOCUSING ON THE REVENUE COMPARISON IN MULTIPLE VERSUS SINGLE PRICE AUCTION A Dissertation by BOO-SUNG KANG Submitted to the Office of Graduate Studies of Texas A&M... IN MULTIPLE VERSUS SINGLE PRICE AUCTION A Dissertation by BOO-SUNG KANG Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by...

Kang, Boo-Sung

2006-04-12T23:59:59.000Z

332

Effects of Residual Feed Intake Classification on Feed Efficiency, Feeding Behavior, Carcass Traits, and Net Revenue in Angus-Based Composite Steers  

E-Print Network (OSTI)

of $118 to profits of $170 per head (Langemeier et al., 1992). These drastic net revenue differentials are the result of substantial variability in input costs, feeder and fed cattle prices and cattle performance. 4 Past investigations into factors...

Walter, Joel

2012-02-14T23:59:59.000Z

333

The challenges of improving revenue-recognition standard for multiple-element firms:evidence from the software industry (SOP 97-2)  

E-Print Network (OSTI)

I investigated whether implementing SOP 97-2, the revenue-recognition standard for the software industry, reduces earnings informativeness. This standard is particularly important for two reasons: First, its provisions coincide with provisions...

Srivastava, Anup

2008-10-10T23:59:59.000Z

334

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

335

Fluid Inclusion Gas Analysis  

SciTech Connect

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

336

Holographic Chaplygin gas model  

E-Print Network (OSTI)

In this paper we consider a correspondence between the holographic dark energy density and Chaplygin gas energy density in FRW universe. Then we reconstruct the potential and the dynamics of the scalar field which describe the Chaplygin cosmology.

M R Setare

2007-04-27T23:59:59.000Z

337

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

338

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

339

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1  

SciTech Connect

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

340

Abandoned oil fields in Oklahoma  

SciTech Connect

Data are presented for approximately 165 abandoned oil fields in Oklahoma that have produced 10,000 or more barrels of oil prior to abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production, if known; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (ATT)

Chism, J.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

342

Identification and evaluation of bypassed and incompletely drained gas reservoirs in the wave-dominated deltaic system of the Frio Formation (Oligocene), North McFaddin field, Victoria County, South Texas  

SciTech Connect

An integrated geologic, engineering, and petrophysical evaluation of North McFaddin field, undertaken in cooperation with the current operator. Anaqua Oil and Gas, Inc., targeted actual and potential secondary natural gas resources within thin reservoirs (typically 5-15 ft thick). Funded by the Gas Research Institute, the U.S. Department of Energy, and the State of Texas, this research forms part of the Secondary Gas Recovery project of the Bureau of Economic Geology. Improved vertical resolution of recently developed wireline tools and advances in well-log analytical techniques have been fundamental in identifying these resources. Reservoirs are vertically compartmentalized by nonreservoir facies of subequal thicknesses and collectively are grouped into sequences 75-100 ft thick. Individual reservoirs typically form laterally discontinuous lobes (5000-6000 ft wide) of variable elongation and orientation with respect to inferred depositional dip. Reservoir facies are interpreted to be of distal shoreface origin. Contour maps of net sandstone thickness, relative spontaneous potential deflection, and resistivity were superposed for each reservoir unit. These data were integrated with structure maps and well-test production, wireline-formation test, and sidewall-core data, allowing the potentially productive limits of each reservoir unit to be delineated. By comparing subsequently determined volumes of original gas in place with historical production data, potentially recoverable reserves were estimated to be as much as 1000 mmcf for individual reservoirs. These procedures enabled not only the recommendation of recompletion targets, but also suggested a strategic location for a potential development well.

Burn, M.J.; Levey, R.A. (Univ. of Texas, Austin, TX (United States)); Sippel, M.A. (Research and Engineering Consultants, Inc., Englewood, CO (United States)); Vidal, J. (ResTech, Inc., Houston, TX (United States)); Ballard, J.R. (Envirocorp Services Technology, Inc., Houston, TX (United States)); Knowles, P. (Anaqua Oil and Gas, Inc., Corpus Christi, TX (United States))

1993-09-01T23:59:59.000Z

343

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

344

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

345

Building America Technlogy Solutions for New and Existing Homes: Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the PARR research team examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE.

346

FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS. Task 45. Final topical report  

SciTech Connect

TASK 45 FIELD DEPLOYMENT EVALUATION OF THE FREEZE-THAW/ EVAPORATION (FTE ) PROCESS TO TREAT OIL AND GAS PRODUCED WATERS coupling evaporation with freezing. This offers operators a year- round method for treating produced water. Treating water with the FTE process reduces the volume of water to be disposed of as well as purifying the water to a level acceptable for watering livestock and agricultural lands. This process is currently used at two evaporation facilities, one in the San Juan Basin in New Mexico and one in the Green River Basin in Wyoming. the freezing point below that of pure water. When such a solution is cooled below 32EF, relatively pure ice crystals form, along with an unfrozen brine solution that contains elevated concentrations of salts. Because of the brine's high concentration of these constituents, its density is greater than that of the ice, and the purified ice and brine are easily separated. Coupling the natural processes of freezing and evaporation makes the FTE process a more cost- effective and efficient method for the treatment and disposal of produced water and allows for year-round operation of an FTE facility. drops below 32 F, produced water is automatically pumped from a holding pond and sprayed onto a freezing pad. The freezing pad consists of an elevated framework of piping with regularly placed, upright, extendable spray heads similar to those used to irrigate lawns. As the spray freezes, an ice pile forms over the elevated framework of pipes, and the brine, with an elevated constituent concentration, drains from the ice pile. The high-salinity brine, identified by its high electrical conductivity, is separated using automatic valves and pumped to a pond where it can subsequently be disposed of by conventional methods. As the ice pile increases in height, the sprayers are extended. When the ice on the freezing pad melts, the relatively pure water is pumped from the freezing pad and discharged or stored for later use . No new wastes are generated by the FTE process. and the U. S. Department of Energy has been conducted since 1992 to develop a commercial FTE purification process for produced waters. Numeric process and economic modeling, as well as the laboratory-scale process simulation that confirmed the technical and economic feasibility of the process, was performed by B. C. Technologies, Ltd., and the University of North Dakota Energy & Environmental Research Center (EERC) from 1992 to 1995. They then conducted a field evaluation from 1995 to 1997 in New Mexico's San Juan Basin at a conventional evaporation facility operated by Amoco Production Company. The results of this evaluation confirmed that the FTE process has significant commercial economic potential. A new facility was designed in 1998, and its construction is expected to begin in 1999.

Ames A. Grisanti; James A. Sorensen

1999-05-01T23:59:59.000Z

347

Proposed Revenues, Financial Strategy, and Program Costs for FY 1992 and 1993 : Technical Appendix, BPA Programs in Perspective.  

SciTech Connect

Programs in Perspective is the Bonneville Power Administration's public involvement process (PIP) for engaging customers and other stakeholders in a regional dialog to set strategic direction and broad program plans for BPA effort. This planning leads into a biennial rate setting cycle and offers a more accessible and flexible opportunity for dialog on broad issues than is possible under the strict administrative procedures of ratemaking. The self-financed character of BPA has made this public process a necessary and valuable one to assure that those who pay BPA's rates have a clear understanding and a strong voice in the plans for use of the resulting revenues. During 1989, the previous PIP engaged the region in discussion of major strategic, issues focussing on major areas. In 1990, BPA seeks discussion of the directions and plans specifically for fiscal years 1992 and 1993. The steps taken for those years will lay the foundation for the years beyond. Thus, we have subtitled this year's process, Staying fit for the long run.'' We have consulted extensively with customers and others in the region in developing these plans. In dozens of program--specific meetings, BPA staff have talked and listened to what others think our plans ought to be. PIP now gives us a chance to review their sum total, along with projections for revenues and our overall financial position. 8 tabs., 8 figs.

United States. Bonneville Power Administration.

1990-07-01T23:59:59.000Z

348

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

349

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

350

The Esso Energy Award Lecture, 1998. Boosting production from low-pressure oil and gas fields: a revolution in hydrocarbon production  

Science Journals Connector (OSTI)

...have developed a simple cost-effective system which...moving parts; low capital cost, with the payback achieved...14% coal oil gas hydro nuclear Figure 2. World primary...such as ASME, API, BS, Dnv stoomwezen (Dutch...The WELLCOM system is a cost-effective way to boost...

1999-01-01T23:59:59.000Z

351

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

352

Optimization of the gas production rate by marginal cost analysis: Influence of the sales gas pressure, gas price and duration of gas sales contract  

Science Journals Connector (OSTI)

Abstract The development of a gas field requires accurate planning, but the gas production rate is one of the main challenges in determining the feasibility of a gas project. An optimum gas production rate is determined not only by the gas reserve and reservoir characteristics but also by the consumer's requirements of the sales gas pressure, duration of the gas sales contract and gas price. This paper presents a gas production optimization model based on the marginal cost approach to maximize economic profit using a case study in the Donggi gas field. The results reveal that increasing the sales gas pressure and gas price raises the optimum gas production rate and increases the maximum profit; meanwhile, increasing the duration of a gas sales contract will reduce the optimum gas production rate and reduce or increase the maximum profit depending on the gas reserve and reservoir characteristics. This work clearly shows the relationship between the user's requirements and optimum gas production rate, which is an important piece of information for negotiating the gas price and planning production.

Suprapto Soemardan; Widodo Wahyu Purwanto; Arsegianto

2014-01-01T23:59:59.000Z

353

Research of Shale Gas in China  

Science Journals Connector (OSTI)

The shale gas is an efficient and abundant energy sources ... field. With the support of our country, shale gas research has very progress. The researchers commenced ... in the early period of 21st century. Shale

Haifeng Chen; Miao He; Bing Han; Zhonglin Li…

2013-01-01T23:59:59.000Z

354

VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies I. Atlas of the 2D gas structure  

E-Print Network (OSTI)

We present an atlas of a sample of local (U)LIRGs covering the luminosity range log(L_IR/L_sun)=11.1-12.4. The atlas is based on near-infrared H and K-band VLT-SINFONI IFS, and presents the ionised, partially ionised, and warm molecular gas 2D flux distributions and kinematics over a FoV of 3x3 kpc (LIRGs) and 12x12kpc (ULIRGs) and with average linear resolutions of 0.2kpc and 0.9kpc, respectively. The different phases of the gas show a wide morphological variety with the nucleus as the brightest Br_g source for 33% of the LIRGs and 71% of the ULIRGs, whereas all the (U)LIRGs have their maximum H_2 emission in their nuclear regions. In LIRGs, the ionised gas distribution is dominated by the emission from the star-forming rings or giant HII regions in the spiral arms. The Br_g and [FeII] line at 1.644 micron trace the same structures, although the emission peaks at different locations in some of the objects, and the [FeII] seems to be more extended and diffuse. The ULIRG subsample contains mainly pre-coalescen...

López, J Piqueras; Arribas, S; Alonso-Herrero, A; Bedregal, A G

2012-01-01T23:59:59.000Z

355

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

356

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified  

E-Print Network (OSTI)

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified Fraud Examiners (ACFE, the University's total expense for scholarships and fellowships was $110,067,000. Fraud cost includes reported

Sanders, Seth

357

Flow through shares for Natural Gas exploration (Quebec, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flow through shares for Natural Gas exploration (Quebec, Canada) Flow through shares for Natural Gas exploration (Quebec, Canada) Flow through shares for Natural Gas exploration (Quebec, Canada) < Back Eligibility Utility Industrial Program Info Funding Source Government of Quebec State Quebec Program Type Corporate Tax Incentive Provider Revenu Quebec, Resources Naturalles Quebec A flow-through share is a security issued by an exploration company that waives its exploration deduction in favor of the investor. The Québec Taxation Act enables a private individual to benefit from a significant tax deduction when calculating his or her taxable income. In fact, the Québec system provides for a basic deduction equal to 100 percent of the cost of the flow-through shares. For shares acquired after March 30, 2004 the individual may deduct an additional 25% when exploration costs are incurred

358

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

359

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

360

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

362

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

363

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

364

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

365

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

366

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

367

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

368

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

369

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

370

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

371

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

372

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

373

Field ionization from carbon nanofibers  

E-Print Network (OSTI)

The Micro Gas Analyzer project aims to develop power-efficient, high resolution, high sensitivity, portable and real-time gas sensors. We developed a field ionizer array based on gated CNTs. Arrays of CNTs are used because ...

Adeoti, Bosun J

2008-01-01T23:59:59.000Z

374

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

375

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

376

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-06-04T23:59:59.000Z

377

FLNG compared to LNG carriers - Requirements and recommendations for LNG production facilities and re-gas units.  

E-Print Network (OSTI)

??An increasing price and demand for natural gas has made it possible to explore remote gas fields. Traditional offshore production platforms for natural gas have… (more)

Aronsson, Erik

2012-01-01T23:59:59.000Z

378

Abandoned oil fields in Kansas and Nebraska  

SciTech Connect

Data on approximately 400 abandoned oil fields in Kansas and 90 abandoned oil fields in Nebraska are presented. The following information is obtained on each field: county; DOE field code; field name; AAPG geologic province code; discovery date; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; API gravity; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (DMC)

Not Available

1982-12-01T23:59:59.000Z

379

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network (OSTI)

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

380

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

382

NETL: News Release - DOE's Early Investment in Shale Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2011 2, 2011 DOE's Early Investment in Shale Gas Technology Producing Results Today Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues for states and the Federal Government. Spurred by the technological advancements resulting from this investment, U.S. shale gas production continues to grow, amounting to more than 8 billion cubic feet per day, or about 14 percent of the total volume of dry natural gas produced in the United States. DOE's Energy Information Administration (EIA) projects that the shale gas share of U.S. natural gas production will reach 45 percent by 2035. The EIA also projects that 827 trillion cubic feet of natural gas is now recoverable from U.S. shales using currently available technology-an increase of nearly 500 trillion cubic feet over earlier estimates.

383

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

384

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

385

The Intense Radiation Gas  

E-Print Network (OSTI)

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2005-03-08T23:59:59.000Z

386

Makeup of UK petrol retail price: a case of income and environmentalism and implication for China's taxation revenue and control of PM2.5 pollutants  

Science Journals Connector (OSTI)

UK petrol retail prices have been changing owing to different reasons, including changes in any of the four major components - fuel duty, the product (in connection with crude oil prices), VAT and the retailers' or delivery profit and the weaker pound sterling. However, this does not change the fact that the taxes on fuels, including fuel duties and the VATs account for over 50% of the retail price, one of the highest in the EU, which are not only one of the major sources of government revenue but also helps to protect the environment by discouraging drivers from using their cars. Therefore, it may also have a strong implication for the Chinese government, especially in its efforts to tackle traffic congestions, streamline the toll way charge systems and to control the PM2.5 pollutants while still struggling to stabilise its revenue from taxes/fuel duties.

Hui Ding; Ling Zhao

2013-01-01T23:59:59.000Z

387

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

388

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources » Fossil » Natural Gas Sources » Fossil » Natural Gas Natural Gas July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

389

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

390

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

391

Agegraphic Chaplygin gas model of dark energy  

E-Print Network (OSTI)

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

394

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

395

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

396

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

397

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

398

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

399

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

400

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

402

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

403

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

404

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

405

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

406

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

407

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

408

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

409

Gas Separations using Ceramic Membranes  

SciTech Connect

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

410

ATIS -- Alternative Revenue Approaches  

E-Print Network (OSTI)

approaches to achieve a self sustaining ATIS, identifywith an emphasis on building a self-sustaining ATIS based onapproaches to achieve a self sustaining ATIS. The emphasis

Yim, Y. B.

2001-01-01T23:59:59.000Z

411

Internal Revenue Service  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Number of participants as of the end of the plan year (welfare plans complete only lines 6a, 6b, 6c, and 6d). a Active participants ......

412

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

413

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

414

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

415

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

416

VOLUME 77, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER 1996 Lyapunov Exponents from Kinetic Theory for a Dilute, Field-Driven Lorentz Gas  

E-Print Network (OSTI)

. Cohen,3 H. A. Posch,4 and Ch. Dellago4 1 Institute for Theoretical Physics, University of Utrecht, Postbus 80006, 3508 TA Utrecht, The Netherlands 2 Institute for Physical Science and Technology for a dilute, random, two-dimensional Lorentz gas in an applied field, E, in a steady state at constant energy

Dellago, Christoph

417

Separating equipment for protecting field booster compressor stations  

Science Journals Connector (OSTI)

Possible alternatives of locating a gas separating unit in layouts of plants for preparing gas for transporting and for field booster compressor stations (BCS) are examined. Designs of a gas cleaning unit of the ...

B. S. Palei; V. A. Tolstov; A. P. Romashov…

2013-09-01T23:59:59.000Z

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

419

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

420

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

423

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

424

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

425

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

426

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

427

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

428

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

429

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

430

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

432

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

433

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

434

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

435

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

436

Improved gas mixtures for gas-filled radiation detectors  

DOE Patents (OSTI)

Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

1980-03-28T23:59:59.000Z

437

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

438

Arun field  

SciTech Connect

The Arun field is a giant gas-condensate field operated by Mobil and Pertamina with over 20,000 acres of closure at the top of the Arun reservoir. A middle-shelf patch reef complex of early to middle Miocene age is the producing facies at the Arun field. About 1,100 ft of porous limestones, encased in shales, create a stratigraphic trap for overpressure hydrocarbons. Three main carbonate lithologies were encountered during the examination of over 4,300 ft of core; (1) a reef facies consisting of vuggy, coral encrusting, red-algal boundstones, (2) a near-reef facies consisting of foraminiferal, mixed-skeletal packstones with gravel-size coral fragments, and (3) an interreef lagoonal facies consisting of benthonic-foram packstones. Twenty-two species of corals have been identified from Arun reef facies; major reef-forming coals, listed in order of decreasing abundance, are Porites cf P. Lutes, Cyphastrea microphthalma, Astreopora myriophthalma, Styloconiella gunetheri, Porites solida, and Acropora ssp. The Arun reef is comprised of limestones (with minor amounts of dolomite). No shale beds occur in the sequence, and all carbonate facies are in communication. A pervasive microporosity, occurring throughout the Arun Limestone, results from meteoric alteration of original carbonate mud to form a microrhombic porosity that accounts for about three-fourths of the field's total porosity.

Jordan, C.F. Jr.; Abdullah, M.

1988-01-01T23:59:59.000Z

439

FE Oil and Natural Gas News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

oil-natural-gas-news Office of Fossil Energy Forrestal oil-natural-gas-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas http://energy.gov/articles/energy-department-authorizes-additional-volume-proposed-freeport-lng-facility-export Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas

440

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

computed seismic speeds and attenuation in rocks with partial gas ...  

E-Print Network (OSTI)

During production of a field, gas may come out of solution and crcatr .... I.: radial spherical coordinate. SC: fractional gas saturation, (a3/b3) t: t,ime .... c#J = 0.30,.

White, J. E.

442

Wet-gas compression in twin-screw multiphase pumps  

E-Print Network (OSTI)

encountered when operating under conditions with high gas volume fractions (GVF). Twin-screw multiphase pumps experience a severe decrease in efficiency when operating under wet-gas conditions, GVF over 95%. Field operations have revealed severe vibration...

Chan, Evan

2009-05-15T23:59:59.000Z

443

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

444

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

445

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

446

Natural Gas Liquids New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

35 26 32 16 30 65 1979-2008 35 26 32 16 30 65 1979-2008 Federal Offshore U.S. 25 7 21 6 24 22 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 25 7 21 6 13 22 1981-2008 Texas 0 0 0 0 11 0 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 35 26 32 16 30 65 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 0 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 0 4 1 0 0 0 1979-2008 Florida 0 0 0 0 0 0 1979-2008 Kansas 0 0 0 0 0 0 1979-2008 Kentucky 0 0 1 0 0 0 1979-2008 Louisiana 0 0 0 1 0 3 1981-2008

447

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

448

Natural Gas Liquids New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

35 26 32 16 30 65 1979-2008 35 26 32 16 30 65 1979-2008 Federal Offshore U.S. 25 7 21 6 24 22 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 25 7 21 6 13 22 1981-2008 Texas 0 0 0 0 11 0 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 35 26 32 16 30 65 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 0 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 0 4 1 0 0 0 1979-2008 Florida 0 0 0 0 0 0 1979-2008 Kansas 0 0 0 0 0 0 1979-2008 Kentucky 0 0 1 0 0 0 1979-2008 Louisiana 0 0 0 1 0 3 1981-2008

449

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

450

Shale Natural Gas New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

868 557 232 2009-2011 868 557 232 2009-2011 Alaska 0 0 0 2009-2011 Lower 48 States 868 557 232 2009-2011 Alabama 0 0 2009-2010 Arkansas 0 0 0 2009-2011 California 0 2011-2011 San Joaquin Basin Onshore 0 2011-2011 Colorado 4 0 0 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 244 48 0 2009-2011 North 244 48 0 2009-2011 Michigan 0 2 0 2009-2011 Montana 0 0 0 2009-2011 New Mexico 0 0 0 2009-2011 East 0 0 0 2009-2011 West 0 0 0 2009-2011 North Dakota 6 8 2 2009-2011 Ohio 0 0 2009-2010 Oklahoma 0 54 37 2009-2011 Pennsylvania 120 49 162 2009-2011 Texas 353 396 31 2009-2011 RRC District 1 353 114 20 2009-2011 RRC District 2 Onshore 282 0 2010-2011 RRC District 3 Onshore 0 0 0 2009-2011 RRC District 4 Onshore 0 0 0 2009-2011 RRC District 5 0 0 0 2009-2011

451

Field Demonstration of High Efficiency Gas Heaters  

Energy.gov (U.S. Department of Energy (DOE))

For many buildings that do not require space cooling, non-centralized equipment such as unit heaters provide space heating to building occupants. Unit heaters are a major source of energy use nationally, accounting for nearly 18% of primary space heating energy use for commercial buildings, and most prominently appear in warehouses, distribution centers, loading docks, etc.

452

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

453

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

454

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

455

Gas?Kinetic Temperature of Planar High?Frequency Capacitive Discharge Plasma in N2/CO2/He Gas Mixtures  

Science Journals Connector (OSTI)

Using methods of emission spectroscopy, we have determined the gas?kinetic temperature fields of planar high?frequency capacitive discharge plasma in N2/CO2/He gas mixtures depending on the excitation frequency, ...

V. V. Azharonok; I. I. Filatova; V. D. Shimanovich…

2001-09-01T23:59:59.000Z

456

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

457

RAPID/Geothermal/Well Field/California | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit Agency: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Drilling & Well Field Permit Before drilling can commense,...

458

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

459

Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy  

SciTech Connect

Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

Cochran, J.; Zinaman, O.; Logan, J.; Arent, D.

2014-02-01T23:59:59.000Z

460

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

462

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

463

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

464

Bianchi Models with Chaplygin Gas  

E-Print Network (OSTI)

Einstein Gravitational Field Equations (EFE) of Chaplygin gas dominated Bianchi-type models are obtained by using metric approximation. The solutions of equations for a special case, namely Bianchi I model which is a generalization of isotropic Friedmann-Robertson-Walker (FRW) cosmology, are obtained. The early and late behaviours of some kinematic parameters in model are presented in graphically.

Gülçin; Uluyazi; Özgür Sevinc

2012-09-13T23:59:59.000Z

465

Interacting holographic generalized Chaplygin gas model  

E-Print Network (OSTI)

In this paper we consider a correspondence between the holographic dark energy density and interacting generalized Chaplygin gas energy density in FRW universe. Then we reconstruct the potential of the scalar field which describe the generalized Chaplygin cosmology.

M. R. Setare

2007-08-01T23:59:59.000Z

466

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

467

Gas Model of Gravitons with Light Speed  

E-Print Network (OSTI)

We first review some aspects of gravitational wave and the thermodynamic expression of Einstein field equations, these achieved conclusions allow people to think of Einstein's gravitational wave as a kind of sound wave in ordinary gas which propagates as an adiabatic compression wave. In the following, using the properties of photon gas in "white wall box", we find an analogous relationship between ordinary gas and photon gas through sound velocity formula. At last, by taking the ordinary gas as an intermediary, we find that gravitational wave is analogous to photon gas, or equally, gravitons are analogous to photons although they are different in some ways such as spins and coupling strengths, and these different properties don't affect their propagation speeds. Utilizing this analogous relationship, we achieve the gas model of gravitons and this model naturally gives out the light speed of gravitons

Ming Chen; Yong-Chang Huang

2014-06-17T23:59:59.000Z

468

Microsoft Word - 3Q2011Gas_Compress  

Office of Legacy Management (LM)

of Legacy Management Grand Junction, Colorado Date Sampled: 2 September 2011 Purpose: Natural gas from local wells in the Parachute field is sent by pipelines to the Holmes...

469

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

A. E.; Copp, J. F. . 111991. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field. Proceedings of () ; () : Sixteenth workshop on...

470

The Chemistry of Flammable Gas Generation  

SciTech Connect

The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

ZACH, J.J.

2000-10-30T23:59:59.000Z

471

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

472

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network (OSTI)

of the effect of gas production rate and rock and fluid properties on the recovery of gas from strong water drive gas reservoirs will permit gas production optimization and should result in conservation of natural and financial resources. Hence... saturations, gas production rate is not a dominant factor affecting the ultimate gas recovery. Almost all the gas is recovered whether producing the field at 0. 1 or 10 times GRR. In predicting the gas recovery in a strong water drive reser- voir...

Soemarso, Christophorus

2012-06-07T23:59:59.000Z

473

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

474

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network (OSTI)

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

475

GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE  

E-Print Network (OSTI)

1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL ("tallow"). A key factor for the use of biofuels in gas turbines is their Emissions Indices (NOx, CO, VOC to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME

Paris-Sud XI, Université de

476

Oil and Gas Production Optimization; Lost Potential due to Uncertainty  

E-Print Network (OSTI)

Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

Johansen, Tor Arne

477

S. 156: A Bill to amend the Internal Revenue Code of 1986. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, January 21, 1993  

SciTech Connect

S. 156 is a Bill to amend the Internal Revenue Code of 1986 with respect to energy credit. The proposed amendment discusses energy credit allowance against entire regular tax and alternative minimum tax and rules for the application of energy credit. Cross references and an effective date are given.

Not Available

1993-01-01T23:59:59.000Z

478

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

479

Results of gas monitoring of double-shell flammable gas watch list tanks  

SciTech Connect

Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

Wilkins, N.E.

1995-01-19T23:59:59.000Z

480

Natural Gas Annual Respondent Query System  

Gasoline and Diesel Fuel Update (EIA)

loading new table loading new table Home > Natural Gas > Natural Gas Annual Respondent Query System Natural Gas Annual Respondent Query System (EIA-176 Data through 2012) Report: 176 Natural Gas Deliveries 176 Natural Gas Supply Items 176 Natural Gas Other Disposition Items 176 Type of Operations and Sector Items 176 Continuation Text Lines 176 Company List 191 Field Level Storage Data 757 Processing Capacity 176 Custom Report (User-defined) Years: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 to 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Sort by: Area, Company, Item Company, Area, Item Item, Area, Company Company: Show only Company ID Show only Company Name Show both Company ID, Name 2012 Total

Note: This page contains sample records for the topic "gas field revenues" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

482

Gas treating alternatives for LNG plants  

SciTech Connect

This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

1998-12-31T23:59:59.000Z

483

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

484

Gas Kick Mechanistic Model  

E-Print Network (OSTI)

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

485

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

486

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

487

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

488

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

489

Natural Gas Industrial Price  

Annual Energy Outlook 2012 (EIA)

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

490

Issues surrounding continuation of the noncompetitive oil and gas lottery system  

SciTech Connect

The Bureau of Land Management is responsible for the leasing of oil and gas mineral rights on over 300 million acres of public lands. Under the Mineral Leasing Act of 1920, lands with known oil and gas deposits are leased competitively. However, much more federal land is leased through a noncompetitive lottery system, which generates substantial receipts for the federal Treasury - about $250 million in filing fees for the 5-year period 1980-1984. The lottery system has been criticized since its 1959 inception for encouraging fraud, misleading the public, and generating insufficient revenues. On October 12, 1983, the program was suspended for 10 months because of recognized weaknesses in the system. This report highlights major issues surrounding the lottery program.

Not Available

1985-04-04T23:59:59.000Z

491

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

492

Landfill gas with hydrogen addition – A fuel for SI engines  

Science Journals Connector (OSTI)

The recent quest to replace fossil fuels with renewable and sustainable energy sources has increased interest on utilization of landfill and bio gases. It is further augmented due to environment concerns and global warming caused by burning of conventional fossil fuels, energy security concerns and high cost of crude oil, and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Methane if released directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is generally flared, where the energy recovery is not in place in practice. Using landfill gas to generate energy not only encourages more efficient collection reducing emissions into the atmosphere but also generates revenues for operators and local governments. However, use of landfill gases for energy production is not always perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address these disadvantages involved by studying landfill gases in a technological perspective and motivate utilization of landfill gas for future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way. It has been shown that though the performance and combustion characteristics of the landfill gas fueled engine deteriorated in comparison with methane operation, increasing compression ratio and advancing spark timing improved the performance of the landfill gas operation in par with methane operation. The effects due to composition changes in the landfill gas were found more pronounced at lean and rich mixture operation than at stoichiometry. In addition, the effects of additions of hydrogen up to 30% in the landfill gas were studied. Addition of even small quantities of hydrogen such as 3–5% delivered better performance improvement particularly at the lean and rich limit operations and extended the operational limits. Additions of hydrogen also improved the combustion characteristics and reduced cyclic variations of landfill gas operations especially at the lean and rich mixtures.

S.O. Bade Shrestha; G. Narayanan

2008-01-01T23:59:59.000Z

493

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

494

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

NONE

1997-04-01T23:59:59.000Z

495

Effects of increasing filing fees for noncompetitive onshore oil and gas leases  

SciTech Connect

The Government Accounting Office (GAO) examined the impact of increasing the fee charged to applicants for noncompetitive onshore oil and gas leases from $25.00 to $75.00. Interior believes the increased filing fee will: (1) reduce casual speculation and multiple filings, thereby reducing fraud potential, development delays caused by assignments, and administrative burden; and (2) generate significant additional revenue. Interior's analysis is, of necessity, based largely on conjecture, but the possibility that the positive results foreseen may not materialize to the degree projected cannot be ruled out. For example, while it is likely that the $75 fee will generate additional revenue over what was obtainable under either the $10 or $25 rate, Interior's projections of at least a million filings annually and $150 million in revenues are far from certain. GAO was also unable in the time available to determine the degree to which the problems the Department desires to overcome exist, or that they will be resolved through a fee increase. Results suggest that: reducing the number of filings is not necessarily the total or only solution to reducing the administrative burden; the casual speculator is not having that great an adverse effect on development, and in fact has certain positive aspects; and the true extent of fraud in the SOG may not be as great as initially supposed. In addition, there are possible adverse effects that may not have been fully considered. For example, the increased filing fee, when coupled with the increased rental, could adversely affect industry's exploration activities, particularly that of the smaller independent. GAO suggests, now that the increase is in effect, that the Interior Department and the Congress closely watch the results, and be prepared to take remedial action if deemed necessary.

Not Available

1982-03-19T23:59:59.000Z

496

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

497

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

498

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D.; Bourcier, William L.

2014-08-19T23:59:59.000Z

499

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

500

Practice Field Practice Field  

E-Print Network (OSTI)

Courts Soccer Field Swimming pool Bandeen Hall Mountain House # 3 # 2 Golf Course Security Patterson Hall.B. Scott Arena Library Centennial Theater Mc Greer Hall Pollack Hall New Johnson Science Building Dewhurst Dining Hall Champlain Regional College # 4 Mackinnon Hall Residence # 6 Memorial House Retired Faculty