National Library of Energy BETA

Sample records for gas field names

  1. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data ...

  2. Improving the Field Performance of Natural Gas Furnaces, Chicago...

    Energy Savers [EERE]

    the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: ...

  3. EM Names Los Alamos Field Office Manager

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – EM announced today the selection of Douglas E. Hintze as the manager of the new EM Los Alamos (EM-LA) Field Office.

  4. Vernon Daub Named Carlsbad Field Office Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dennis Hurtt U.S. DOE Carlsbad Field Office (505) 234-7327 www.wipp.energy.gov U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews For Immediate Release Vernon Daub Named Carlsbad Field Office Deputy Manager CARLSBAD, N.M., November 29, 2007 - Vernon Daub has been named deputy manager of the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO). Daub has been serving in that role on an interim basis since the

  5. NAME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept2011 Page 1 HPC Archive Solutions Made Simple Alan Powers, CSC/NOAA Jason Hick, NERSC Matt Cary, CSC/NASA Page 2 * Facilities Afternoon Break - 3 to 3:30pm * Format Hold questions till the end of a section topic * Introductions Jason, Matt, Alan * Attendees Show of Hands (SoH) No Archive experience, <5, or 5+ * Attendees SoH - Archive_Plans, HPSS, SamQFS, DMF * Attendees Raise Hands: Provide Name, Company, Problem looking to solve? OR Interest in the class? * Site Background and Archive

  6. NAME

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Liaison Officers (RLO) Distribution List NAME PROGRAM PROGRAM OFFICE PHONE EMAIL Auch, Joan NA-122.21 National Nuclear Security Administration 202-586-1852 Joan.auch@nnsa.doe.gov Barnes, Claude GC Office of the General Counsel 202-586-2957 claude.barnes@hq.doe.gov Black, Helen EE Office of Energy Efficiency and Renewable Energy 202-586-8563 helen.black@hq.doe.gov Briggs, Felecia (alternate POC) HS Office of Health, Safety and Security 301-903-8803 felecia.briggs@hq.doe.gov Cambrel,

  7. ,"New Mexico Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  9. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  10. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  11. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  12. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  13. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  14. Oil and Gas Field Code Master List - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Field Code Master List With Data for 2015 | Release Date: February 24, 2016 | Next Release Date: February 2017 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2015 Definition of a Field A field is defined as "an area consisting of a single reservoir or multiple reservoirs all grouped on, or related to, the same

  15. Dan Krivitsky named Los Alamos Field Office Employee of the Year | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Dan Krivitsky named Los Alamos Field Office Employee of the Year Wednesday, April 30, 2014 - 3:21pm Dan Krivitsky named Los Alamos Field Office Employee of the Year Dan Krivitsky's success in facilitating work between federal agencies and his efforts in counter-terrorism initiatives and Intelligence Work For Others (WFO) earned him Employee of the Year for NNSA's Los Alamos Field Office. Krivitsky of Los Ranchos, near Albuquerque, is a member of the

  16. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel

  17. George T. Basabilvazo Named Assistant Manager for Development and Research at Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George T. Basabilvazo Named Assistant Manager For Development and Research at Carlsbad Field Office CARLSBAD, N.M., October 4, 2000 - George T. Basabilvazo has been named Assistant Manager for Development and Research at the U.S. Department of Energy's (DOE) Carlsbad Field Office. "I am delighted to have George in this position," said Dr. Inés Triay, Manager of the Carlsbad Field Office. "He has the experience to ensure that we move forward in developing new technologies to

  18. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  19. Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Virginia Dry Natural Gas Proved Reserves ...

  20. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  1. Carol Sohn named Deputy Manager at Nevada Field Office | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Carol Sohn named Deputy Manager at Nevada Field Office Friday, January 23, 2015 - 2:27pm Carol Sohn is the new Deputy Manager for the National Nuclear Security Administration's Nevada Field Office. Ms. Sohn has an extensive background in nuclear safety analysis and nuclear materials processing. Ms. Sohn obtained her BS in Chemical Engineering from Purdue University. She also completed her Masters of Science in Management from the Purdue Krannert School. Prior

  2. West Virginia Dry Natural Gas Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves New ... New Field Discoveries of Dry Natural Gas Reserves West Virginia Dry Natural Gas Proved ...

  3. About the Oil and Gas Field Code Master List

    U.S. Energy Information Administration (EIA) Indexed Site

    About the Oil and Gas Field Code Master List 1 April 30, 2012 About the Oil and Gas Field Code Master List The U.S. Energy Information Administration's (EIA) Oil and Gas Field Code ...

  4. Power Plays: Geothermal Energy in Oil and Gas Fields | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields April 25, 2016 9:00AM ...

  5. POSTED BY JOB NAME FIELD OFFICE U.S. DEPARTMENT OF ENERGY ADP TRANSCRIPTION SHEET

    National Nuclear Security Administration (NNSA)

    1 1 1 1 1 1 1 POSTED BY JOB NAME FIELD OFFICE U.S. DEPARTMENT OF ENERGY ADP TRANSCRIPTION SHEET INTERNAL PROJECT TRANSFERS (See instructions for provisions regarding confidentiality.) ACT. CODE PROC. CODE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 SHIPPER RIS TRAN. CODE TO PROJECT NUMBER RECEIVER RIS INTERNAL

  6. POSTED BY JOB NAME FIELD OFFICE U.S. DEPARTMENT OF ENERGY ADP TRANSCRIPTION SHEET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 1 1 1 1 1 POSTED BY JOB NAME FIELD OFFICE U.S. DEPARTMENT OF ENERGY ADP TRANSCRIPTION SHEET INTERNAL PROJECT TRANSFERS (See instructions for provisions regarding confidentiality.) ACT. CODE PROC. CODE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 SHIPPER RIS TRAN. CODE TO PROJECT NUMBER RECEIVER RIS INTERNAL

  7. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2001.07.11 - 2001.07.25 Lead Scientist : Marc Fischer Data Availability Data are being processed for inclusion in ARM Archive. For data sets, see below. Summary July, 2001: Three systems were deployed in four fields during a

  8. Gas storage and separation by electric field swing adsorption...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Gas storage and separation by electric field swing adsorption Title: Gas storage and separation by electric field swing adsorption Gases are stored, ...

  9. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2004.04.15 - 2004.12.15 Lead Scientist : Marc Fischer For data sets, see below. Abstract Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are

  10. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2005.03.01 - 2006.01.08 Lead Scientist : Marc Fischer For data sets, see below. Abstract Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are

  11. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2007.01.01 - 2007.12.31 Lead Scientist : Marc Fischer For data sets, see below. Abstract Accurate prediction of the regional responses of CO2 flux to changing climate, land use, and management requires models that are

  12. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Related Campaigns PGS Validation 2011-2013 2011.03.01, Fischer, SGP PGS Validatation 2010 2010.03.01, Fischer, SGP PGS Validatation 2009.03.01, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2008.01.01 - 2008.12.31 Lead Scientist : Marc Fischer For data sets,

  13. Geology of Ziliujing gas field - The gas field developed earliest in the world

    SciTech Connect (OSTI)

    Ding, Chuanbai )

    1991-03-01

    Ziliujing gas field, located in Zigong municipality, Sichuan, is an asymmetric anticline, and well depth is generally less than 1,300 m. There are eight gas- and brine-producing intervals. Tc-3 of the Lower Triassic is the main gas-producing horizon, which is a carbonate with a combination of fracture and intergranular porosities. As early as 1,500 years ago, the production of brine and natural gas was started; over 13,000 wells were drilled of which over 1,000 wells were gas wells. The total area of different producing zones is about 22 km{sup 2}. The distribution and production of natural gas are controlled by structural faults. The gas sources supplied are beyond the limit of the structure. Tc-3 reservoir is a typical fissured reservoir, and most of the wells have the characteristics of (1) high initial production rate; (2) rapid depletion; and (3) long producing life. Owing to the favorable geological conditions; the great number of wells; outstanding ancient technologies in drilling, production, and transportation; comprehensive utilization; and very long production history, tremendous success is achieved in the development of gas fields. The total cumulative gas production by the end of 1985 was 33 billion cubic meters in which 17.2 billion cubic meters were contributed by Tc-3 reservoir; maximum gas and brine recoveries have been achieve. So far the gas reservoirs have not been depleted and new discoveries have been found in recent years. The brilliant achievements of the ancestors remain.

  14. 2012 Ignik Sikumi gas hydrate field trial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 Ignik Sikumi gas hydrate field trial August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Photo of the Ignik Drilling Pad Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-CH4 Exchange Overview Final abandonment of Ignik Sikumi #1 wellsite has been

  15. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1" "Date","U.S. Gas Plant Production of Natural Gas Liquids ...

  16. Top 100 Oil and Gas Fields of 2009

    Gasoline and Diesel Fuel Update (EIA)

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved ...

  17. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  18. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  19. Top 100 Oil and Gas Fields of 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2009 ranks the United States' largest oil and gas fields by their estimated 2009 proved reserves. The Top 100's Share of U.S. Proved Reserves in 2009 The Top 100 oil fields and Top 100 gas fields each accounted for about 60 percent of the respective total proved reserves of the United States. The Top 100 oil

  20. A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New...

    Open Energy Info (EERE)

    Rotorua Geothermal Field, Rotorua, New Zealand Abstract Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection...

  1. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","42016","01151994" ,"Release ...

  2. ,"Underground Natural Gas Storage - Storage Fields Other than...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","42016","01151994" ...

  3. Characterization of Field-Aged Exhaust Gas Recirculation Cooler...

    Broader source: Energy.gov (indexed) [DOE]

    Characterized field-aged exhaust gas recirculation coolers from 7 engine manufacturers, discussed differences and commonalities, and provided understanding of cooler fouling and ...

  4. Characterization of Field-Aged Exhaust Gas Recirculation Cooler Deposits

    Broader source: Energy.gov [DOE]

    Characterized field-aged exhaust gas recirculation coolers from 7 engine manufacturers, discussed differences and commonalities, and provided understanding of cooler fouling and prevention.

  5. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  6. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  8. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  9. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  10. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  12. Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  13. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  14. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  15. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  16. Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  18. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  19. New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Field Discoveries (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Field Demonstration of High Efficiency Gas Heaters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This report discusses a field demonstration to analyze the energy savings for one of these ... Louis, MO. Field Demonstration of High Efficiency Gas Heaters (2.28 MB) More Documents & ...

  2. Natural Gas Plant Field Production: Natural Gas Liquids

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 PADD 1

  3. Kalimantan field development hikes gas supply for LNG export

    SciTech Connect (OSTI)

    Suharmoko, G.R. )

    1991-10-14

    This paper reports on the development of Tambora and Tunu gas fields in Kalimantan that have increased available gas supply for the export of liquefied natural gas (LNG) from Indonesia. The demand for LNG is increasing in the energy thirsty Far East market. And Indonesia, the world's largest exporter, is keeping pace by expanding the Bontang liquefaction plant in East Kalimantan. A fifth train, with a capacity of around 2.5 million tons/year, began operating in January 1990. Start-up of a sixth train, of identical capacity, is planned for January 1994. The Bontang plant is operated by PT Badak on behalf of Pertamina, the Indonesian state oil and gas mining company. The feed to the fifth train comes primarily from the first-phase development of Total Indonesie's two gas fields, Tambora and Tunu. The sixth train will be fed by a second-phase development of the Tunu field.

  4. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2003.04.02 - 2003.09.02 Lead Scientist : Marc Fischer For data sets, see below. Abstract Ecosystem-atmosphere ...

  5. Top 100 U.S. Oil and Gas Fields

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Fields March 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Top 100 U.S. Oil ...

  6. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  7. Gas characterization system 241-AN-105 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  8. Gas characterization system 241-AW-101 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  9. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES The VBA code below calculates the area percent of a first polygon layer (e.g. oil/gas field outlines) that are within a second polygon layer (e.g. federal land) and writes out the fraction as an attribute for the first polygon layer. If you make buffered well field outline polygons using the VBA code in BUFFERED_WELL_FIELD_OUTLINES.doc, you will have a feature class with the attribute PCTFEDLAND to use as the first polygon layer. If not, add the

  10. Rehabilitation program eyed for big gas field in China

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    CER Corp., Las Vegas, has recommended a rehabilitation program it believes could boost deliverability by 20% in a major gas field in China. This paper reports that the recommendations resulted from a 4 year, multimillion dollar study of Weiyuan field in Central China's Sichuan province. Sichuan province is China's major gas producing province, with current flow of about 671 MMcfd and potential recovery pegged at 280 tcf. China's government recently announced a shift in its exploration and development emphasis to natural gas (OGJ, Jan. 6, p. 30). Funded by World Bank, CER's study found that a workover program, infill drilling, and wellbore dewatering program could significantly increase reserves.

  11. Power Plays: Geothermal Energy In Oil and Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  12. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    SciTech Connect (OSTI)

    Mulchaey, John S.; Jeltema, Tesla E. E-mail: tesla@ucolick.or

    2010-05-20

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  13. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  14. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect (OSTI)

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  15. Top 100 U.S. Oil and Gas Fields

    U.S. Energy Information Administration (EIA) Indexed Site

    Supplement from: U.S. Crude Oil and Natural Gas Proved Reserves Top 100 U.S. Oil and Gas Fields With Data for 2013 | Release Date: April 2, 2015 | Next Release Date: January 2016 Previous Issues (pdf): Year: 2009 2008 2007 (Appendix B) 2006 (Appendix B) 2005 (Appendix B) 2004 (Appendix B) 2003 (Appendix B) 2002 (Appendix B) 2001 (Appendix B) 2000 (Appendix B) 1999 (Appendix B) 1998 (Appendix B) 1997 (Appendix B) 1996 (Appendix B) Go Introduction This supplement to the U.S. Energy Information

  16. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  17. Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 772 7 16 23 17 1990's 3 68 75 5 25 63 13 11 57 44 2000's 45 27 68 12 18 6 27 0 191 257 2010's 48 47 5 17 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  18. Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 115 47 48 1980's 33 18 16 15 30 42 65 90 96 30 1990's 39 16 7 0 0 10 76 0 6 0 2000's 15 50 8 0 0 11 1 0 4 19 2010's 2 14 7 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't

  20. Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 155 197 1980's 168 412 376 53 53 94 14 11 26 91 1990's 50 10 0 25 0 23 30 2 4 0 2000's 20 13 14 6 8 1 0 6 21 0 2010's 51 47 44 2 135 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  1. Saga of coal bed methane, Ignacio Blanco gas field, Colorado

    SciTech Connect (OSTI)

    Boyce, B.C.; Harr, C.L.; Burch, L.C. )

    1989-09-01

    Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section of the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.

  2. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  3. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  4. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  5. U.S. Department of Energy National Nuclear Security Administration Los Alamos Field Office Overview Presentation to: Name Title

    Office of Environmental Management (EM)

    Environmental Management Los Alamos Field Office Legacy Cleanup Completion Project WELCOME Northern New Mexico Citizens' Advisory Board November 12, 2015 Doug Hintze EM-LA Manager History of Work Completed  Environmental Management Accomplishments at LANL * Soil and Groundwater * Legacy Waste Disposition * Demolition & Decommissioning 2 Soil and Groundwater 3 Mercury-contaminated soil being excavated Preparing mercury-contaminated soil for shipment Restoration of work at TA-32 Soil and

  6. U.S. Department of Energy National Nuclear Security Administration Los Alamos Field Office Overview Presentation to: Name Title

    Office of Environmental Management (EM)

    Accident Investigation Board Corrective Action Plan Update to Northern New Mexico Citizens Advisory Board Combined Committee Meeting Dave Nickless Environmental Management Los Alamos Field Office January 13, 2016  Phase 1 Report Issued on April 22, 2014: "Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014" * Discusses how the radiological material was released into the atmosphere  Phase 2 Report Issued April 16, 2015: "Radiological Release

  7. U.S. Department of Energy National Nuclear Security Administration Los Alamos Field Office Overview Presentation to: Name Title

    Office of Environmental Management (EM)

    Management Los Alamos Field Office Legacy Cleanup Completion Project Overview Presented to Northern New Mexico Citizen's Advisory Board July 29, 2015 Robert Pfaff Project Management  Beginning of Year Plan * Fiscal Year (FY) 2016 EM-LA Presidential Budget Request is $188.6M * FY 2016 Senate Mark is $188.6M * FY 2016 House Mark is $180M * Initial planning is conservatively set at $180M (FY 2016 low mark) o FY 2016 priorities were previously discussed with NNMCAB o We anticipate discussions

  8. Field test comparison of natural gas engine exhaust valves

    SciTech Connect (OSTI)

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  9. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 53 17 1980's 359 45 15 9 17 10 0 1 20 25 1990's 21 12 5 10 4 14 0 0 0 0 2000's 1 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  11. Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 5 60 1980's 8 48 13 3 0 0 6 0 0 0 1990's 6 0 0 0 0 0 0 0 1 0 2000's 0 33 0 21 0 0 13 7 61 128 2010's 50 165 414 36 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  12. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1 3 1980's 5 17 7 4 2 13 0 0 0 0 1990's 3 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 4 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 25 12 1980's 4 2 1 10 13 1990's 2 1 22 14 0 0 0 0 0 0 2000's 7 0 0 5 0 0 0 0 0 1 2010's 1 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 9 22 1980's 15 16 20 12 12 22 0 7 2 8 1990's 2 2 5 2 3 80 0 2 0 123 2000's 0 4 1 1 171 32 14 15 17 8 2010's 22 18 9 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  15. Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.

    2010-04-30

    Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.

  16. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    SciTech Connect (OSTI)

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  17. First Name Last Name EMPLOYEE INFORMATION FORM

    Broader source: Energy.gov (indexed) [DOE]

    Name Last Name EMPLOYEE INFORMATION FORM Date of Birth SSN Married Not Married Male Female ... PRIOR FEDERAL SERVICE To be Completed by Employee NSN 7540-00-634-4101 Previous Edition ...

  18. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  19. U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  20. New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  1. New York Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Gasoline and Diesel Fuel Update (EIA)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  2. Total Number of Existing Underground Natural Gas Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  3. OE Contributors Named IEEE Fellows

    Broader source: Energy.gov [DOE]

    Dr. Ram Adapa, technical leader for transmission systems, and Mark McGranaghan, vice president of Power Delivery & Utilization for EPRI were name IEEE Fellows in recognition of their contributions to IEEE fields of interest.

  4. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  5. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    first polygon layer (e.g. buffered well oil-field boundaries) with a field "PCTFEDLAND" ... Output: Layer (1)'s PctFedLand column gets updated Code by Kirk Kuykendall, AmberGIS; text ...

  6. First Name Last Name EMPLOYEE INFORMATION FORM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Name Last Name EMPLOYEE INFORMATION FORM Date of Birth SSN Married Not Married Male Female Current Home Address Line 1 Current Home Address Line 2 City State Zip Zip+4 Home Phone Number Department/Agency Operating Administration Office Position Title Grade Work Address Line 1 Work Address Line 2 City State Zip Zip+4 Office Phone Number Affidavit Date Appointment Date Apartment # Middle Name Use as Beneficiary Yes No U.S. Department of Energy 1955 Fremont Avenue Idaho Falls ID 83415 STANDARD FORM

  7. U.S. Natural Gas Plant Field Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids 757,019 808,865 881,306 951,057 1,100,298 1,194,630 1981-2015 Pentanes Plus 101,155 106,284 116,002 126,809 143,831 156,568 1981-2015 Liquefied Petroleum Gases ...

  8. Willow plant name 'Preble'

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  9. An evaluation of gas field rules in light of current conditions and production practices in the Panhandle non-associated gas fields

    SciTech Connect (OSTI)

    Brady, C.L.; O`Rear, C.H.

    1996-09-01

    During the early years of development in the Panhandle fields the Rule of Capture was king. Under the Rule of Capture each property owner has the right to drill as many wells as desired at any location. Adjacent property owners protect their rights by doing the same. Courts adopted the Rule of Capture to protect mineral owners from liability due to migration of oil and gas across property boundary lines. This general practice {open_quotes}to go and do likewise{close_quotes} generally leads to enormous economic and natural resource waste. Established to offset the waste created under the Rule of Capture is the doctrine of Correlative Rights. Correlative Rights is the fight of each mineral owner to obtain oil and gas from a common source of supply under lawful operations conducted from his property. However, each mineral owner has a duty to every other mineral owner not to extract oil and gas in a manner injurious to the common source of supply. This paper will examine the historical context of these common law principles with regard to the Panhandle non-associated gas fields. Discovered in 1917, the Panhandle fields are ideal to evaluate the merit of statutes and regulations enacted in response to production practices. As in many Texas fields, proration in the Panhandle fields is the primary mechanism to protect correlative rights and prevent waste. Signed and made effective May 1989, the current field rules pre-date much of the enhanced recovery techniques that use well-head vacuum compression. This paper reviews the gas rules in the 1989 Texas Railroad Commission order in light of current reservoir conditions and production practices.

  10. Widget:MHK-Device-Name | Open Energy Information

    Open Energy Info (EERE)

    set the Name field to the device name, or SUBPAGENAME, for MHK Instrumentation & Sensor Database devices. The Name field is restricted on these forms and can only be edited...

  11. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling (PGS) Validation Field Campaign 2002.01.01 - 2002.07.31 Lead Scientist : Marc Fischer For data sets, see below. Abstract The PGS validation will continue measuring the...

  12. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect (OSTI)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  13. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect (OSTI)

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electronsa process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 ?m). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  14. Mark Musculus named SAE fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Musculus named SAE fellow - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  15. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    SciTech Connect (OSTI)

    Kaaeid Lokhandwala

    2007-03-31

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. MTR then located an alternative testing opportunity and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, CA, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; the units will be delivered in mid-2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

  16. U.S. Natural Gas Plant Field Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Natural Gas Liquids 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 Pentanes Plus 12,323 11,708 12,970 12,520 13,325 13,410 1981-2016 Liquefied Petroleum Gases 90,078 84,830 95,814 92,586 98,063 95,120 1981-2016 Ethane 35,939 33,304 39,579 38,526 42,236 41,404 1981-2016 Propane 34,929 33,311 36,460 35,200 36,169 34,716 1981-2016 Normal Butane 9,656 9,463 10,271 9,308 9,681 9,335 1981-2016 Isobutane 9,554 8,752 9,504 9,552 9,977

  17. Italy - Adriatic Sea - Barbara - A giant gas field marked by seismic velocity anomaly - A subtle trap

    SciTech Connect (OSTI)

    Ianniello, A.; Bolelli, W.; Di Scala, L. )

    1990-09-01

    Barbara gas field, discovered in 1971, is located in the northern sector of the Adriatic offshore. The field is a gentle anticline involving Quaternary clastic sediments and shaped by carbonate Mesozoic morphology. The presence of shallow gas pockets at the crest of the structure distort the seismic signal to such an extent that structural reconstruction using seismic data is not possible. Moreover, time delays and ray-path anomalies do not allow the use of staking velocities for the depth conversion. Seismic attribute analysis, instead of velocities, and time delays on the isochrone maps are providing a key to the understanding of seismic anomalies and are an indirect tool for reconstructing the real structural configuration of the field. The appraisal story of the field illustrates how the previously mentioned complications influenced its delineation and how an understanding of these complications helped in upgrading the reserves from an initial value of 10 billion ECM of gas to 40 billion ECM. Additional data acquired with the development wells tend to increase the estimate. Therefore, Barbara field is the most important Italian gas field of the decade. The producing formation is composed of very thin-bedded sandstone and shale intercalations, representing the peculiarity of this reservoir. Development of the field is being achieved with six production platforms and 72 wells.

  18. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  19. Turtle Bayou - 1936 to 1983: case history of a major gas field in south Louisiana

    SciTech Connect (OSTI)

    Cronquist, C.

    1983-01-01

    Turtle Bayou field, located in the middle Miocene trend in S. Louisiana, is nearing the end of a productive life which spans over 30 yr. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by 2 other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approx. 6500 to 12,000 ft. Now estimated to have contained ca 1.2 trillion scf of gas in place, cumulative production through 1982 was 702 billion scf. Cumulative condensate-gas ratio has been 20 bbl/million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75% of original gas in place.

  20. Field-free alignment in repetitively kicked nitrogen gas

    SciTech Connect (OSTI)

    Cryan, James P. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Bucksbaum, Philip H. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Coffee, Ryan N. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2009-12-15

    We demonstrate a high level of laser-induced transient alignment in room temperature and density N{sub 2} with a technique that avoids laser field ionization. Our measured alignment shows an improvement over previous one-pulse or two-pulse experimental alignment results and approaches the theoretical maximum value. We employ eight equally spaced ultrafast laser pulses with a separation that takes advantage of the periodic revivals for the ensemble of quantum rotors. Each successive pulse increases the transient alignment [(t)] and also moves the rotational population away from thermal equilibrium. These measurements are combined with simulations to determine the value of , the J-state distributions, and the functional dependencies of the alignment features.

  1. Williams named ASA Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Williams named ASA Fellow May 27, 2015 The American Statistical Association (ASA) has honored Brian Williams of LANL's Statistical Sciences group with the title of Fellow. Williams...

  2. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  3. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  4. Directory of awardee names

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    Standardization of grant and contract awardee names has been an area of concern since the development of the Department`s Procurement and Assistance Data System (PADS). A joint effort was begun in 1983 by the Office of Scientific and Technical Information (OSTI) and the Office of Procurement and Assistance Management/Information Systems and Analysis Division to develop a means for providing uniformity of awardee names. As a result of this effort, a method of assigning vendor identification codes to each unique awardee name, division, city, and state combination was developed and is maintained by OSTI. Changes to vendor identification codes or awardee names contained in PADS can be made only by OSTI. Awardee names in the Directory indicate that the awardee has had a prime contract (excluding purchase orders of $10,000 or less) with, or a financial assistance award from, the Department. Award status--active, inactive, or retired--is not shown. The Directory is in alphabetic sequence based on awardee name and reflects the OSTI-assigned vendor identification code to the right of the name. A vendor identification code is assigned to each unique awardee name, division, city, and state (for place of performance). The same vendor identification code is used for awards throughout the Department.

  5. NAFTA opportunities: Oil and gas field drilling machinery and services sector

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) significantly improves market access in Mexico and Canada for U.S. exports of oil and gas field equipment. Foreign markets account for more than 80 percent of U.S. shipments of oil and gas field machinery. Foreign markets are expected to continue their importance to this industry, in the long term. Mexico and Canada are moderate-sized markets for U.S. exports of oilfield products. In 1992, U.S. exports of this equipment amounted to about $113 million to Mexico and $11 million to Canada.

  6. No Job Name

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To freeze deuterium gas into pellets, the injector is cooled to 10 K with a cryogenic ... To freeze deuterium gas into pellets, the injector is cooled to 10 K with a cryogenic ...

  7. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect (OSTI)

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  8. DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field

    Broader source: Energy.gov [DOE]

    In a newly awarded project, researchers funded by the U.S. Department of Energy are partnering with European scientists to track injected carbon dioxide in the world's first and longest running carbon storage operation located at the Sleipner gas field in the North Sea.

  9. Exemptions from OSHA`s PSM rule oil and gas field production

    SciTech Connect (OSTI)

    West, H.H. [Shawnee Engineers, Houston, TX (United States); Landes, S. [SH Landes, Houston, TX (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) regulation, OSHA 1910.119, contains a number of exemptions which are specifically directed to the low hazard situations typically found in the field production facilities of the oil and gas industry. Each relevant PSM exemption is discussed with particular regard to the requirements of hydrocarbon production facilities.

  10. Williams named ASA Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May » Williams named ASA Fellow Williams named ASA Fellow The American Statistical Association (ASA) has honored Brian Williams with the title of Fellow. May 27, 2015 Brian Williams Brian Williams Communications Office (505) 667-7000 His research includes experimental design, computer experiments, Bayesian inference, spatial statistics, and statistical computing. The American Statistical Association (ASA) has honored Brian Williams of LANL's Statistical Sciences group with the title of Fellow.

  11. Carlsten named IEEE Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsten named IEEE Fellow Carlsten named IEEE Fellow Bruce Carlsten is a pioneer in the production and use of high-brightness electron beams. February 11, 2016 Bruce Carlsten Bruce Carlsten Communications Office (505) 667-7000 IEEE cited him "for contributions to high-brightness electron beams and vacuum electron devices." The Institute of Electrical and Electronics Engineers (IEEE) has honored Bruce Carlsten of LANL's Accelerator Operations and Technology group with the title of

  12. U.S. Natural Gas Liquids Lease Condensate, Reserves New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) New Field Discoveries (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 19 2010's 36 4 2 3 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate New Field Discoveries U.S.

  13. Scaling law for direct current field emission-driven microscale gas breakdown

    SciTech Connect (OSTI)

    Venkattraman, A.; Alexeenko, A. A.

    2012-12-15

    The effects of field emission on direct current breakdown in microscale gaps filled with an ambient neutral gas are studied numerically and analytically. Fundamental numerical experiments using the particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale ionization and space-charge enhancement of field emission. The numerical experiments are then used to validate a scaling law for the modified Paschen curve that bridges field emission-driven breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in cathode electric field, total steady state current density, and the ion-enhancement coefficient including a new breakdown criterion. It also includes the effect of all key parameters such as pressure, operating gas, and field-enhancement factor providing a better predictive capability than existing microscale breakdown models. The field-enhancement factor is shown to be the most sensitive parameter with its increase leading to a significant drop in the threshold breakdown electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also shown to agree well with two independent sets of experimental data for microscale breakdown in air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown process for given operating conditions makes the proposed model a suitable candidate for the design and analysis of electrostatic microscale devices.

  14. Turtle Bayou--1936 to 1983--case history of a major gas field in South Louisiana

    SciTech Connect (OSTI)

    Cronquist, C.

    1983-10-01

    Turtle Bayou Field, located in the middle Miocene trend in South Louisiana, is nearing the end of a productive life which spans over 30 years. Discovered by Shell Oil Company in 1949 after unsuccessful attempts by two other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6500 to 12,000 feet. Now estimated to have contained about 1.2 trillion standard cubic feet of gas in place, cumulative production through 1982 was 702 billion standard cubic feet. Cumulative condensate-gas ratio has been 20 barrels per million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75 percent of original gas in place. On decline since 1973, it is anticipated the field will be essentially depleted in the next five years.

  15. Turtle Bayou 1936-1983: case history of a major gas field in south Louisiana

    SciTech Connect (OSTI)

    Cronquist, C.

    1984-11-01

    Turtle Bayou field, located in the middle Miocene trend in south Louisiana, is nearing the end of a productive life spanning more than 30 years. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by two other companies, the field is a typical, low-relief, moderately faulted U.S. Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approximately 6,500 to 12,000 ft (1980 to 3660 m). Now estimated to have contained about 1.2 trillion scf (34 X 10/sup 9/ std m/sup 3/) of gas in place, cumulative production through 1982 was 702 billion scf (20 X 10/sup 9/ std m/sup 3/). Cumulative condensate/gas ration (CGR) has been 20 bbl/MMcf (110 X 10/sup -6/ m/sup 3//m/sup 3/. Recovery mechanisms in individual reservoirs include strong bottomwater drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range form 40 to 83% of original gas in place (OGIP). On decline since 1973, it is anticipated the field will be essentially depleted in the next 5 years.

  16. Natural gas cofiring in a refuse derived fuel incinerator: Results of a field evaluation. Topical report

    SciTech Connect (OSTI)

    Beshai, R.Z.; Hong, C.C.

    1993-10-01

    An evaluation of emissions reduction and improved operation of a municipal solid waste incinerator through natural gas cofiring is presented. A natural gas cofiring system was retrofitted on a refuse derived fuel combustor of the Columbis Solid Waste Reduction Facility in Columbus, Ohio. The field evaluation, conducted between July 6 and August 5, 1992, showed significant improvements in emissions and boiler operations. Carbon monoxide emissions were reduced from the baseline operations range of 530 to 1,950 parts per million to less than 50 ppm. Emissions of carbon dioxide, sulfur dioxide, hydrocarbons, and polychlorinated dibenzo-p-dioxins and furans were also reduced.

  17. Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial

    SciTech Connect (OSTI)

    White, Mark D.; Lee, Won Suk

    2014-05-14

    A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapid exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest

  18. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output:

  19. A review of the Arun field gas production/cycling and LNG export project. [Sumatra, Indonesia

    SciTech Connect (OSTI)

    Alford, M.E.

    1983-03-01

    The Arun field was discovered by Mobil Oil Indonesia Inc. in late 1971 in its Bee block in the Aceh province on the north coast of Sumatra, Indonesia. Mobil's operations in this area are conducted under the terms of a production sharing agreement with Pertamina, the Indonesian state-owned oil and gas enterprise. The scope of operations covered by this paper is from production of gas and raw condensate in the field through stabilization and export of condensate and purification, liquefaction, and export of gas at the LNG plant at Blang Lancang, near Lho Seumawe (Sumatra) Indonesia. Mobil Oil Indonesia, Inc. is the field operator and P.T. Arun NGL Company operates the pipelines and LNG plant facilities. All the facilities which will be described are owned by Pertamina; P.T. Arun is owned by Pertamina, Mobil Oil Indonesia, and Japan Indonesia LNG company (JILCO). JILCO represents the five (5) original Japanese LNG purchasers. Brief descriptions are included of the geology, reservoir geometry, well producing characteristics, field producing and cycling facilities, and the treating, liquefaction and export facilities.

  20. Ion Species and Charge States of Vacuum Arc Plasma with Gas Feed and Longitudinal Magnetic Field

    SciTech Connect (OSTI)

    Oks, Efim; Anders, Andre

    2010-06-23

    The evolution of copper ion species and charge state distributions is measured for a long vacuum arc discharge plasma operated in the presence of a longitudinal magnetic field of several 10 mT and working gas (Ar). It was found that changing the cathode-anode distance within 20 cm as well as increasing the gas pressure did not affect the arc burning voltage and power dissipation by much. In contrast, burning voltage and power dissipation were greatly increased as the magnetic field was increased. The longer the discharge gap the greater was the fraction of gaseous ions and the lower the fraction of metal ions, while the mean ion charge state was reduced. It is argued that the results are affected by charge exchange collisions and electron impact ionization.

  1. Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves Florida Dry Natural Gas

  2. Helium gas bubble trapped in liquid helium in high magnetic field

    SciTech Connect (OSTI)

    Bai, H. Hannahs, S. T.; Markiewicz, W. D.; Weijers, H. W.

    2014-03-31

    High magnetic field magnets are used widely in the area of the condensed matter physics, material science, chemistry, geochemistry, and biology at the National High Magnetic Field Laboratory. New high field magnets of state-of-the-art are being pursued and developed at the lab, such as the current developing 32 T, 32 mm bore fully superconducting magnet. Liquid Helium (LHe) is used as the coolant for superconducting magnets or samples tested in a high magnetic field. When the magnetic field reaches a relatively high value the boil-off helium gas bubble generated by heat losses in the cryostat can be trapped in the LHe bath in the region where BzdBz/dz is less than negative 2100 T{sup 2}/m, instead of floating up to the top of LHe. Then the magnet or sample in the trapped bubble region may lose efficient cooling. In the development of the 32 T magnet, a prototype Yttrium Barium Copper Oxide coil of 6 double pancakes with an inner diameter of 40 mm and an outer diameter of 140 mm was fabricated and tested in a resistive magnet providing a background field of 15 T. The trapped gas bubble was observed in the tests when the prototype coil was ramped up to 7.5 T at a current of 200 A. This letter reports the test results on the trapped gas bubble and the comparison with the analytical results which shows they are in a good agreement.

  3. Overview of NETL Field Studies Related to Oil and Gas Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY lab 18 Aug 2015 Richard Hammack, Monitoring Team Lead USDOE National Energy Technology Laboratory, Pittsburgh, PA Overview of NETL Field Studies Related to Oil and Gas Production DOE Tribal Leaders Forum Denver, Colorado Newfield Exploration, Bakken Petroleum System, North Dakota * Reduce Environmental Impacts * Demonstrate Safe/Reliable Operations * Improve Efficiency of Hydraulic Fracturing Program Objectives * Surface Monitoring - Ambient Air Quality - Air Emissions - Ground Motion -

  4. Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 391 332 123 1980's 130 287 85 42 27 87 17 5 9 2 1990's 4 16 6 0 17 21 0 39 7 18 2000's 8 44 15 32 8 11 2 2 1 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  6. California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 38 2 3 1980's 13 0 2 6 11 1990's 32 11 13 15 7 14 17 10 12 3 2000's 5 2 5 0 5 2 4 1 14 0 2010's 0 0 9 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 949 667 79 177 601 222 1990's 203 123 127 139 257 268 516 373 249 92 2000's 303 603 84 195 264 138 80 78 472 476 2010's 519 69 58 5 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  8. U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Depleted Fields Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 335 2000's 336 351 340 318 320 320 322 326 324 331 2010's 331 329 330 332 333 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  9. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  10. U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) New Field Discoveries (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 94 1980's 90 131 112 70 55 44 34 39 41 83 1990's 39 25 20 24 54 52 65 114 66 51 2000's 92 138 48 35 26 32 16 30 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Carlsten named IEEE Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsten named IEEE Fellow February 11, 2016 The Institute of Electrical and Electronics Engineers (IEEE) has honored Bruce Carlsten of LANL's Accelerator Operations and Technology group with the title of Fellow. IEEE cited him "for contributions to high-brightness electron beams and vacuum electron devices." Carlsten is a pioneer in the production and use of high-brightness electron beams. His discovery of techniques enabling unprecedented beam brightness has led to a new generation

  12. Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994

    SciTech Connect (OSTI)

    Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

    1995-12-01

    The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

  13. Multidiscipline studies of the depletion behavior of the F23 Gas Field, offshore Sarawak, East Malaysia

    SciTech Connect (OSTI)

    Heijna, H.B.; Sin, S.L.M.; Ing, S.T.T.; Van Vliet, A.; Wong, K.; Hassan, W.M.W. )

    1994-07-01

    The F23 gas field is located 178 km north-northwest of Bintulu in the central Luconia province, offshore Sarawak. The accumulation consists of a late Miocene layered platform-type carbonate buildup 22 km[sup 2] and a maximum gas thickness of over 1000 ft. Eleven development wells and one observation well were completed in 1983, with initial gas delivery to Malaysia LNG in October 1983. Annual TDT surveys are conducted in the observation well to monitor the movement of the GWC in the central area of the field. As of April 1992, a cumulative rise of 25 ft was observed. This contrasts with material balance calculations predicted rise of some 60 ft based on Sgr of 50% inferred from core measurements. Among the potential explanations were irregular bottom-water encroachment, preferential flank water advance, or larger GIIP. As all had potentially important consequences to depletion strategy and ultimate reserves, multidiscipline studies were initiated. Time-lapse seismic data were used to better determine the existing fluid levels across the field and reservoir simulation studies were used to match observation well data and predict future reservoir behavior. Concurrent reservoir and simulation studies suggested that the material balance and observation well data could be reconciled by (1) a reduced aquifer, and/or increased GIIP, and/or a lower residual gas saturation, or (2) preferential flank water influx due to internal low-permeability layers. As (1) would not lead to early water breakthrough, the simulation effort was aimed to investigate (2), the possibility and implications of early edge water breakthrough via the flank zone.

  14. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect (OSTI)

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  15. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect (OSTI)

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  16. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  17. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  18. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  19. High-field plasma acceleration in a high-ionization-potential gas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; et al

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  20. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    SciTech Connect (OSTI)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  1. Kansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 18 14 1980's 3 99 7 5 6 6 2 1 5 4 1990's 1 6 24 3 7 3 3 4 1 1 2000's 0 1 2 0 0 4 3 0 2 0 2010's 1 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 23 23 1980's 22 5 8 3 7 8 37 8 10 4 1990's 1 4 1 11 13 1 0 0 1 6 2000's 3 2 5 0 1 0 0 0 9 0 2010's 4 0 5 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  3. Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 4 5 1980's 21 6 3 6 2 2 4 0 0 1 1990's 0 0 0 0 0 0 0 0 1 0 2000's 0 1 4 0 1 0 19 0 0 0 2010's 0 7 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  4. Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 28 0 1980's 0 2 0 0 0 0 0 0 0 0 1990's 0 1 1 1 0 0 0 0 0 0 2000's 0 0 2 0 0 5 0 0 1 0 2010's 0 0 14 17 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  5. Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alaska Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 15 1980's 0 0 0 0 0 0 0 12 0 0 1990's 0 0 0 0 0 0 61 0 4 56 2000's 0 74 0 20 0 22 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) U.S. Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,173 3,860 3,188 1980's 2,539 3,731 2,687 1,574 2,536 999 1,099 1,089 1,638 1,450 1990's 2,004 848 649 899 1,894 1,666 1,451 2,681 1,074 1,568 2000's 1,983 3,578 1,332 1,222 759 942 409 796 1,170 1,372 2010's 850 947 762 256 632 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,780,700 2000's 6,788,130 6,768,622 6,747,108 6,733,983 6,776,894 6,667,222 6,711,656 6,801,291 6,805,490 6,917,547 2010's 7,074,773 7,104,948 7,038,245 7,074,916 7,085,773 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  8. U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Field

    U.S. Energy Information Administration (EIA) Indexed Site

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,086 1980's 2,264 3,535 2,624 1,408 2,428 897 1,034 1,018 1,610 1,280 1990's 1,900 802 655 682 1,411 1,461 1,269 1,387 1,009 1,228 2000's 1,664 2,378 1,145 805 756 854 385 768 1,122 1,160 2010's 793 376 629 200 344 - = No Data

  9. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  10. The boomerang area: An example of oil and gas fields related to a transfer zone development

    SciTech Connect (OSTI)

    Specht, M.; Colletta, B.; Letouzey, J. ); Baby, P. ); Oller, J.; Montemuro, G. ); Guillier, B. )

    1993-02-01

    We present results of a study realized from petroleum data of Yacimientos Petroliferos Fiscales Bolivianos of the most important transfer zone of the Bolivian Andean belt: the Santa Cruz transfer zone. Frontal part of the Bolivian Andean belt consists of a thick series (6 to 8 km) of paleozoic to cenozoic sedimentary rocks thrusted eastwards on a sole thrust located in paleozoic series. The frontal part of the belt, globally N-S oriented, undergoes an important deviation East of Santa Cruz with a left lateral offset of 100 Km. Taking into account the E-W shortening direction, this transfer zone can be interpreted as a lateral ramp. The Santa Cruz transfer zone coincide with a set of small oil and gas fields whereas frontal structures lack hydrocarbon occurrences. We are then faced with a two-fold problem: (1) what is the origin of the transfer zone (2) why are the oil and gas concentrated in the transfer zone Our synthesis shows that the transfer zone is superimposed on the limit of a detached Paleozoic basin whose border direction is oblique to the regional shortening direction. We then interpret the oil and gas formation in two steps: (1) source rock maturation and hydrocarbon migration towards the top of the Paleozoic sedimentary wedge before Andean deformation. (2) hydrocarbon dismigration towards anticlinal structures developed during the lateral ramp propagation. In order to test our interpretation we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  11. Daniel Hoag Named Y-12 Site Office Deputy Manager | National...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Daniel Hoag Named Y-12 Site Office Deputy Manager Daniel Hoag Named Y-12 Site Office Deputy...

  12. Bryson Named Acting Manager for CBFO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 29, 2015 Bryson Named Acting Manager for CBFO Today Mark Whitney, Acting Assistant Secretary for the U.S. Department of Energy (DOE) Office of Environmental Management (EM), named Dana Bryson the Acting Manager for the DOE Carlsbad Field Office (CBFO). He is replacing Joe Franco, who recently returned to a position in DOE's Richland Operations Office in Washington. Bryson has more than 30 years of experience in the nuclear industry and served as the CBFO Deputy Manager since December 2013.

  13. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Rothgeb, S.; Brand, L.

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  14. Technology Solutions Case Study: Improving the Field Performance of Natural Gas Furnaces

    SciTech Connect (OSTI)

    2013-11-01

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  15. Control of NO/sub x/ emissions in gas engines using pre-stratified charge - Applications and field experience

    SciTech Connect (OSTI)

    Tice, J.K.; Nalim, M.R.

    1988-01-01

    Since 1983, development of the Pre-Stratified Charge (PSC) means of NO/sub x/ control has focused upon gas fueled industrial engines following a decade of development in automobile-type liquid fueled engines. The early test results indicated exceptional potential and wre previously reported. In the two years following the initial tests of PSC on in-field gas engines, over 140 units have been installed in a wide range of applications including compression, generation, and pumping service. Importantly, the applications have demonstrated PSC effectiveness and longevity where other means of emissions control are either not applicable or ineffective. These include higher digester gas, landfill gas, and sour natural gas (containing substantial H/sub 2/S). This work is concerned with the Field experience in general, but with emphasis on particular applications and specific results.

  16. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect (OSTI)

    Munoz, N.G.; Mompart, L.; Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  17. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial

    SciTech Connect (OSTI)

    Anderson, Brian J.; Boswell, Ray; Collett, Tim S.; Farrell, Helen; Ohtsuka, Satoshi; White, Mark D.

    2014-08-01

    The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical well (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of free water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the potential for

  18. "GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). ...

  19. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  20. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    SciTech Connect (OSTI)

    Brand, L.; Yee, S.; Baker, J.

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is provided by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.

  1. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  2. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  3. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  4. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  5. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  6. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  7. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  8. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  9. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  10. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  11. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  12. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  13. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  14. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  15. Explosive Formulation Code Naming SOP

    SciTech Connect (OSTI)

    Martz, H. E.

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  16. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    SciTech Connect (OSTI)

    R. Baker; T. Hofmann; J. Kaschemekat; K.A. Lokhandwala; Membrane Group; Module Group; Systems Group

    2001-01-11

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world conditions is required to convince industry users of the efficiency and reliability of the process. The system will be designed and fabricated by Membrane Technology and Research, Inc. (MTR) and then installed and operated at British Petroleum (BP)-Amoco's Pascagoula, MS plant. The Gas Research Institute will partially support the field demonstration and BP-Amoco will help install the unit and provide onsite operators and utilities. The gas processed by the membrane system will meet pipeline specifications for dewpoint and Btu value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. At the end of this demonstration project the process will be ready for commercialization. The route to commercialization will be developed during this project and may involve collaboration with other companies already servicing the natural gas processing industry.

  17. NAME

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cambrel, Shirley MA-70 Office of the Executive Secretariat 202-586-3173 shirley.cambrel@hq.doe.gov Campbell, Kevin SC Office of Science 301-903-1215 kevin.campbell@science.doe.gov ...

  18. NAME

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Accounting (301) 903-6299 Mitch.Hembree@nnsa.doe.gov Gary Hirsch NRC Licensees Reconciliation, Training (301) 903-6870 Gary.Hirsch@nnsa.doe.gov Mark Huffman...

  19. Name

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S o u t h w e s t e r n performs regular patrols to keep its rights-of-way clean and free of trees, underbrush, and other obstacles that could cause power outages or endanger ...

  20. FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO RECOVER HEAVY HYDROCARBONS AND TO REMOVE WATER FROM NATURAL GAS

    SciTech Connect (OSTI)

    Unknown

    2002-04-10

    The objective of this project is to design, construct and field demonstrate a 3-MMscfd membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. The gas processed by the membrane system will meet pipeline specifications for dew point and Btu value, and the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. The BP-Amoco gas processing plant in Pascagoula, MS was finalized as the location for the field demonstration. Detailed drawings of the MTR membrane skid (already constructed) were submitted to the plant in February, 2000. However, problems in reaching an agreement on the specifications of the system compressor delayed the project significantly, so MTR requested (and was subsequently granted) a no-cost extension to the project. Following resolution of the compressor issues, the goal is to order the compressor during the first quarter of 2002, and to start field tests in mid-2002. Information from potential users of the membrane separation process in the natural gas processing industry suggests that applications such as fuel gas conditioning and wellhead gas processing are the most promising initial targets. Therefore, most of our commercialization effort is focused on promoting these applications. Requests for stream evaluations and for design and price quotations have been received through MTR's web site, from direct contact with potential users, and through announcements in industry publications. To date, about 90 commercial quotes have been supplied, and orders totaling about $1.13 million for equipment or rental of membrane units have been received.

  1. First Name: Last Name: David Babineau Thomas Bracke Dean Buchenauer

    Office of Environmental Management (EM)

    Name Last Name EMPLOYEE INFORMATION FORM Date of Birth SSN Married Not Married Male Female Current Home Address Line 1 Current Home Address Line 2 City State Zip Zip+4 Home Phone Number Department/Agency Operating Administration Office Position Title Grade Work Address Line 1 Work Address Line 2 City State Zip Zip+4 Office Phone Number Affidavit Date Appointment Date Apartment # Middle Name Use as Beneficiary Yes No U.S. Department of Energy 1000 Independence Ave. SW Washington DC 20585 STANDARD

  2. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Gasoline and Diesel Fuel Update (EIA)

    Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the

  3. Digital field-bus mode SCADA is key to offshore efficiency. [Automation of offshore gas production platforms

    SciTech Connect (OSTI)

    Cuthbert, P. )

    1994-02-01

    An all-digital SCADA network has been installed in one of the North Sea's largest natural gas fields, controlling the delivery of gas from Shell UK Exploration and Production's souther-area fields to a British Gas Terminal at Bacton, UK. The innovative use of digital technology -- based on the industry-standard HART field protocol -- to complete a digital communications link stretching from the onshore SCADA host right out to the process variable transmitters on the platforms, is playing a key role in the automation of the monitoring and control system by allowing Shell UK Expro to run the majority of the platforms unmanned. The SCADA system is part of a major refit being carried out by Shell Expro on its Leman field. The refit is part of the company's long-term strategy to extend the lifetime of this established field, which started operations in the late 1960s. In order to meet this goal, the prime requirements are to reduce operational costs and risk exposure, and the key element in this area was to reduce the need for resident staff and all of their associated support and equipment costs, through the deployment of automation. The system will achieve the project's cost-cutting aims, but also break new ground in control and monitoring technology for the gas industry, through the use of a smart transmitter scheme as a digital field communications within the wide-area network, using the protocol's all-digital capability in preference to the commonly used 4-20mA-compatible mode, will allow real-time monitoring and control, plus maintenance and diagnostics, to take place remotely. This paper describes the design of this system.

  4. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    com Genifuel Genifuel Carrigan Cir Salt Lake City Utah Biofuels Renewable Natural Gas http www genifuel com Rockies Area Gevo Inc Gevo Inc Inverness Drive South Englewood...

  5. ARM - Field Campaign - Full-column Greenhouse Gas Sampling 2012-2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFull-column Greenhouse Gas Sampling 2012-2014 Campaign Links Final Campaign Report ARM Data Discovery Browse Data Related Campaigns Full-column Greenhouse Gas Sampling 2015-2017 2015.03.01, Fischer, SGP Balloon-Borne Full-column Greenhouse Gas Profiling 2014.03.01, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Full-column Greenhouse Gas Sampling 2012-2014 2012.01.13 - 2014.02.28 Lead Scientist : Marc Fischer

  6. Zelenay named Electrochemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zelenay named Electrochemical Society Fellow Zelenay named Electrochemical Society Fellow Zelenay joined Los Alamos as a technical staff member in 1997, becoming project leader in 2001 and electrocatalysis team leader in 2008. June 25, 2014 Piotr Zelenay Piotr Zelenay Zelenay has published over 100 research articles in renowned scientific journals, including Nature, Science, Chemical Reviews, and Accounts of Chemical Research. Piotr Zelenay of Materials Synthesis and Integrated Devices (MPA-11)

  7. Los Alamos National Laboratory named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    named top 50 employer for Latina women August 29, 2016 Latina Style magazine picks the best workplaces LOS ALAMOS, N.M., Aug. 29, 2016-Latina Style magazine today named Los Alamos National Laboratory as a top 50 employer for Latina women, the first national laboratory to achieve the distinction. More than 800 corporations and companies were reviewed. The magazine features the nation's best workplaces in its Latina Style 50 report in this month's issue. "This recognition from Latina Style

  8. Laboratory names new deputy director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    names new deputy director Laboratory names new deputy director Isaac "Ike" Richardson has been selected to be the new deputy director, effective February 1, 2009. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  9. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  10. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect (OSTI)

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  11. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas...

  12. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  13. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska...

  14. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  15. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  16. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

  17. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

  18. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas...

  19. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  20. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  1. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  2. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  3. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

  4. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  5. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  6. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  7. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  8. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

  9. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

  10. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada...

  11. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee...

  12. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  13. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  14. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...

  15. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri...

  16. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. ARM - Field Campaign - Balloon-Borne Full-column Greenhouse Gas Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBalloon-Borne Full-column Greenhouse Gas Profiling ARM Data Discovery Browse Data Related Campaigns Full-column Greenhouse Gas Sampling 2012-2014 2012.01.13, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Balloon-Borne Full-column Greenhouse Gas Profiling 2014.03.01 - 2015.02.28 Lead Scientist : Marc Fischer For data sets, see below. Abstract In this DOE-NOAA collaboration, we produced vertically resolved

  18. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  19. Bio Gas Technologies LTd | Open Energy Information

    Open Energy Info (EERE)

    Gas Technologies LTd Jump to: navigation, search Name: Bio-Gas Technologies LTd Place: Norwalk, Ohio Zip: 44857 Sector: Renewable Energy Product: Bio-gas Technologies is involved...

  20. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  1. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  2. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  3. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  4. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  6. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  7. ,"Federal Offshore California Natural Gas Withdrawals from Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  8. Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas

    SciTech Connect (OSTI)

    Kaaeid Lokhandwala

    2003-09-29

    The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGLs) and remove water from raw natural gas. To convince industry users of the efficiency and reliability of the process, we plan to conduct an extended field test to demonstrate system performance under real-world conditions. The membrane system has been designed and fabricated by Membrane Technology and Research, Inc. (MTR). The MTR membrane system and the compressor are now onsite at BP's Pascagoula, MS plant. The plant is undergoing a very significant expansion and the installation of the membrane unit into the test location is being implemented, albeit at a slower rate than we expected. The startup of the system and conducting of tests will occur in the next six months, depending on the availability of the remaining budget. In the interim, significant commercial progress has been made regarding the introduction of the NGL membrane and systems into the natural gas market.

  9. Mary Hockaday, Cheryl Cabbil named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mary Hockaday, Cheryl Cabbil named new associate directors December 5, 2013 To head Experimental Physics, Nuclear High Hazards programs at Los Alamos LOS ALAMOS, N.M., Dec. 5, 2013-Los Alamos National Laboratory recently announced two new associate directors: Mary Hockaday is the associate director of the Experimental Physical Sciences Directorate and Cheryl Cabbil joined the Laboratory Monday (Dec. 2) as associate director for Nuclear and High Hazard Operations. "Mary is a 30-year veteran

  10. Los Alamos National Laboratory names

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cleanup subcontractors August 14, 2009 Small businesses will perform up to $100 million in environmental work Los Alamos, New Mexico, August 14, 2009-Los Alamos National Laboratory today named three small businesses as subcontractors for up to $100 million in environmental cleanup work. The companies will carry out most of the demolition funded under the American Recovery and Reinvestment Act, as well as other work."We have a commitment to small businesses and to Northern New Mexico,"