Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

2

Field Experience/Internship Proposal Student's Name:_____________________________________ ID#:_____________________  

E-Print Network [OSTI]

Field Experience/Internship Proposal Student's Name:_____________________________________ ID:________________________ Email:______________________________________________ Internship Site Supervisor's Name and Title:___________________________________________________________ Course Information (Internship/Field Experience/Independent Study) (Where applicable) Course name

New Hampshire, University of

3

,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

4

HC-1 Ideal Gas and Absolute Zero Name_______________________ Lab Worksheet Group member names__________________________________  

E-Print Network [OSTI]

that you always start with the same volume and pressure. 3) Compress the gas in the syringe as slowly as possible clicking at 5cm3 intervals and recording the volume. You can continue to slowly compress the gas reasoning. b) What do we call this process? #12;HC-1 Ideal Gas and Absolute Zero Name

Winokur, Michael

5

Oil and Gas Field Code Master List 1990  

SciTech Connect (OSTI)

This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

Not Available

1991-01-04T23:59:59.000Z

6

Oil and gas field code master list, 1993  

SciTech Connect (OSTI)

This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

Not Available

1993-12-16T23:59:59.000Z

7

Oil and gas field code master list 1997  

SciTech Connect (OSTI)

The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

NONE

1998-02-01T23:59:59.000Z

8

Oil and Gas field code master list 1995  

SciTech Connect (OSTI)

This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

NONE

1995-12-01T23:59:59.000Z

9

,"New York Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

10

Optimization of offshore natural gas field development.  

E-Print Network [OSTI]

?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

Johansen, Gaute Rannem

2011-01-01T23:59:59.000Z

11

Oil and gas field code master list 1994  

SciTech Connect (OSTI)

This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

Not Available

1995-01-01T23:59:59.000Z

12

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector Cocks, Michael BPA Natural Gas (503) 721-2475 randy.friedman@nwnatural.com Distribution Finklea Edward NW Ind. Gas Users (503@ci.tacoma.wa.us Electric Utility Defenbach, Byron Intermountain Gas (208) 377-6080 bdefen@intgas.com Distribution Dahlberg

13

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector June 7  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector June 7 meeting Cocks Friedman, Randy NW Natural Gas (503) 721-2475 randy.friedman@nwnatural.com Distribution Finklea Edward NW-8553 bdickens@ci.tacoma.wa.us Electric Utility Defenbach, Byron Intermountain Gas (208) 377-6080 bdefen

14

NSTX High Field Side Gas Fueling System  

SciTech Connect (OSTI)

Fueling National Spherical Torus Experiment (NSTX) plasmas with gas injected from the high field side (HFS) has produced earlier, more reliable transitions to the H-mode, longer H-mode durations, higher toroidal rotation, and higher edge electron temperature compared with similar discharges using the low field side (LFS) gas fueling injectors. The HFS gas fueling system consists of a Center Stack midplane injector, and an injector at the inner, upper corner of the Center Stack. The challenging design and installation constraints for the HFS gas system involved placing the control components as close as possible to the machine-vacuum interface, devising a special feed-through flange, traversing through vessel regions whose temperatures during bake-out range from 150 to 350 degrees Centigrade, adapting the gas transport tubing size and route to the small instrumentation wire channels behind the existing graphite plasma facing component tiles on the Center Stack, and providing output orifices shielded from excessive plasma power depositions while concentrating the output flow to facilitate fast camera viewing and analysis. Design, recent performance, and future upgrades will be presented.

H.W. Kugel; M. Anderson; G. Barnes; M. Bell; W. Blanchard; L. Dudek; D. Gates; R. Gernhardt; R. Maingi; D. Mueller; T. Provost; R. Raman; V. Soukhanovskii; J. Winston

2003-10-09T23:59:59.000Z

15

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network [OSTI]

the presence of gas hydrates in the Messoyakha field was not a certainty, this current study determined the undeniable presence of gas hydrates in the reservoir. This study uses four models of the Messoyakha field structure and reservoir conditions...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

16

Gas storage and separation by electric field swing adsorption  

DOE Patents [OSTI]

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

17

Name and Contact Information * Indicates a required field * Date of Birth (MM/DD/YYYY)  

E-Print Network [OSTI]

Name and Contact Information * Indicates a required field * Date of Birth (MM/DD/YYYY) * o Female o courses offered as part of a certificate or diploma program are exempt from GST, even if you are only certificates and diplomas for eligible students. If you have any questions or requests about the collection

18

Gas plants, new fields spark production rise  

SciTech Connect (OSTI)

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

19

General Physics II Exam 1 -Chs. 16,17 -Electric Fields & Potential Feb. 2, 2009 Name Rec. Instr. Rec. Time  

E-Print Network [OSTI]

General Physics II Exam 1 - Chs. 16,17 - Electric Fields & Potential Feb. 2, 2009 Name Rec. Instr produce an electric field in the surrounding region. a) (6) Find the electric field that Q1 produces at point A. Draw and label it it as an arrow E1 on the diagram. b) (6) Find the electric field that Q2

Wysin, Gary

20

Polytropic gas scalar field models of dark energy  

E-Print Network [OSTI]

In this work we investigate the polytropic gas dark energy model in the non flat universe. We first calculate the evolution of EoS parameter of the model as well as the cosmological evolution of Hubble parameter in the context of polytropic gas dark energy model. Then we reconstruct the dynamics and the potential of the tachyon and K-essence scalar field models according to the evolutionary behavior of polytropic gas model.

Mohammad Malekjani

2012-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Trip report for field visit to Fayetteville Shale gas wells.  

SciTech Connect (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

22

Lattice gas models derived from effective field theory  

E-Print Network [OSTI]

We start from a low-energy effective field theory for interacting fermions on the lattice and expand in the hopping parameter to derive the nearest-neighbor interactions for a lattice gas model. In this model the renormalization of couplings for different lattice spacings is inherited from the effective field theory, systematic errors can be estimated a priori, and the breakdown of the lattice gas model description at low temperatures can be understood quantitatively. We apply the lattice gas method to neutron matter and compare with results from a recent quantum simulation.

Matthew Hamilton; Iyam Lynch; Dean Lee

2004-12-03T23:59:59.000Z

23

HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES  

SciTech Connect (OSTI)

We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

Mulchaey, John S. [Observatories of the Carnegie Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeltema, Tesla E., E-mail: mulchaey@obs.carnegiescience.ed, E-mail: tesla@ucolick.or [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States)

2010-05-20T23:59:59.000Z

24

Largest US oil and gas fields, August 1993  

SciTech Connect (OSTI)

The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

Not Available

1993-08-06T23:59:59.000Z

25

Geology of new Springdale gas field in northeastern Kansas  

SciTech Connect (OSTI)

The Springdale gas field in Leavenworth County, Kansas, is east of the old McLouth and north of the old Ackerland/Jarbolo fields, both now used for gas storage. Gas production from McLouth sand bodies and the Burgess sand in the Cherokee Group (Pennsylvanian) ranges from 1350 to 1400 ft and extends to the nearby Great Kansas City area. Gas pressures range from 350 to 500 psi and open-flow tests produced up to 675 MCFGD. Structurally, the better wells are high on the flanks of a paleovalley opening toward the north. This structure is reflected on the erosional surface of the Mississippian rocks below and is preserved in the now-deformed base of the Kansas City Group of rocks. The Springdale field is only one of several new Pennsylvanian gas fields in Leavenworth, Wyandotte, and Johnson Counties, Kansas, that are currently commercial. These fields serve as a good example of opening a new frontier in an old area.

Goebel, E.D.; Dow, V.E.

1987-08-01T23:59:59.000Z

26

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas Sampling (PGS)

27

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas Sampling

28

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision Gas

29

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision GasCampaign

30

Reservoir and stimulation analysis of a Devonian Shale gas field  

E-Print Network [OSTI]

. The Gas Research Institute (GRI) which sponsored this work under GRI Contract No. 5084-213-0980, "Analysis of Eastern Devonian Gas Shales Production Data;" 2. Doug Terry and Joe Petty with Union Drilling, Inc. who showed great interest in this study... and enhance productivity. ~St h The Devonian Shales in the Mason County Field study area can be subdivided using gamma ray logs as follows (in descending order): Upper Devonian Undivided, Huron Shale Member of the Ohio Shale, Java Formation, Angola Shale...

Shaw, James Stanley

1986-01-01T23:59:59.000Z

31

Experimentally observed field–gas interaction in intense optical lattices  

SciTech Connect (OSTI)

When a gas perturbed by a laser interference pattern, an optical lattice, exhibits a periodic modulation of its refractive index, strong Bragg diffraction of the perturbing light can occur. This scattering reduces the field's ability to further manipulate the gas. Experimental observations of Bragg scattering, evidence of a two-way coupling, are compared to the evolution of the light fields calculated by solutions to the wave equation. Comparison indicates momentum deposition as a prime contributor to the shape of the scattering function vs. lattice velocity, a rationale further supported through additional direct simulation Monte Carlo simulation.

Graul, Jacob S.; Cornella, Barry M.; Ketsdever, Andrew D.; Lilly, Taylor C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States)] [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

2013-12-09T23:59:59.000Z

32

General Physics II Exam 1 -Chs. 1619 -Electric Fields, Potential, Current Feb. 14, 2011 Name Rec. Instr. Rec. Time  

E-Print Network [OSTI]

General Physics II Exam 1 - Chs. 16­19 - Electric Fields, Potential, Current Feb. 14, 2011 Name Rec.0 µC are separated by 12.0 cm on the x-axis as shown. The charges pro- duce an electric field in the surrounding region. Consider only the electric field along the x-axis. a) (2) T F At any point between

Wysin, Gary

33

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network [OSTI]

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

34

Geology and development of Pitas Point gas field  

SciTech Connect (OSTI)

The Pitas Point field produces gas from the Pliocene Pico and Repetto formations along an east-west-trending anticline located on OCS leases P-0233, P-0234, and P-0346, 9 mi south of Carpinteria in the Santa Barbara Channel, California. The field has produced 84 bcf (through July 1987), at an average daily rate of 60 MMCFGD, from low-resistivity turbidite sandstones. the Pitas Point structure is an asymmetric (steeper north flank), broad, unfaulted anticline. The maximum area of gas accumulation is 1900 ac. In the field area, 15,000 ft of Pliocene-Pleistocene sandstones and shales are present. The major gas pay zones occur between 9900 and 12,000 ft subsea. Shallow pay zones are also present from 3500 to 7500 ft subsea. The deep zone reservoir sandstones are thinly bedded, deep-marine, distal submarine-fan deposits. Bed thickness, grain size, and the sandstone-to-shale ratio all increase upsection, suggesting southwestward progradation of a submarine fan across the field area through time. Pay sandstone resistivities are typically less than 3 ohms and can be less than 2 ohms. Resistivities are suppressed because of (1) high water saturations, (2) conductive pore-lining clays (smectite), and (3) bed thicknesses that are less than logging-tool resolution. Between 1983 and 1986, 17 directional wells were drilled from Platform Habitat (20 slots). In the deep pay zones, seven wells were dually completed and three are single completions. Average initial production for individual completion zones was 4 MMCFGD. Four wells are completed in the shallower gas zones.

Nelson, M.P.; Hart, S.L.; Cavette, G.J.; Ziemianski, W.P.

1988-03-01T23:59:59.000Z

35

Thermodynamics of Modified Chaplygin Gas and Tachyonic Field  

E-Print Network [OSTI]

Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.

Samarpita Bhattacharya; Ujjal Debnath

2010-12-26T23:59:59.000Z

36

Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California  

SciTech Connect (OSTI)

Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

Milton, J.D. [CalResources LLC, Bakersfield, CA (United States); Edwards, E.B. [ Ogle & Heck, Carpinteria, CA (United States); Heck, R.G. [Ogle & Heck, Santa Barbara, CA (United States)] [and others

1996-12-31T23:59:59.000Z

37

Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California  

SciTech Connect (OSTI)

Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

Milton, J.D. (CalResources LLC, Bakersfield, CA (United States)); Edwards, E.B. ( Ogle Heck, Carpinteria, CA (United States)); Heck, R.G. (Ogle Heck, Santa Barbara, CA (United States)) (and others)

1996-01-01T23:59:59.000Z

38

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network [OSTI]

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea...

Miller, Nathan

2010-07-14T23:59:59.000Z

39

SEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO  

E-Print Network [OSTI]

a quarter of the proven natural gas reserves in the United States. Rulison Field, located in the PiceanceSEISMIC ANISOTROPY IN TIGHT GAS SANDSTONES, RULISON FIELD, PICEANCE BASIN, COLORADO by Gerardo J-based rock physics to estimate the seismic anisotropy of the tight gas reservoir at Rulison Field. Seismic

40

Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet) New Field

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet)3,174Feet) New Field

42

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect (OSTI)

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

43

General Physics II Exam 1 -Chs. 16,17,18 -Electric Fields, Potential, Current Feb. 8, 2010 Name Rec. Instr. Rec. Time  

E-Print Network [OSTI]

General Physics II Exam 1 - Chs. 16,17,18 - Electric Fields, Potential, Current Feb. 8, 2010 Name. These charges produce an electric field in the surrounding region. a) (6) Find the x & y components of the electric field E at point A. b) (6) Find the magnitude and direction of the electric field at point A. c

Wysin, Gary

44

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network [OSTI]

1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

Grossmann, Ignacio E.

45

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network [OSTI]

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

46

George T. Basabilvazo Named Assistant Manager for Development and Research at Carlsbad Field Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011 Venezia,Lab George Neil Named

47

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-01-01T23:59:59.000Z

48

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-06-01T23:59:59.000Z

49

22Name ________________________________ Name Lifespan  

E-Print Network [OSTI]

needing replacement. Solar storms and cosmic rays damage the satellite solar panels and cause a 222Name ________________________________ Name Lifespan In years Number of Transponders Cost (million are rented by the satellite owner to TV companies to carry their programs. A typical transponder costs $1

50

Student Name: Advisor Name  

E-Print Network [OSTI]

Student Name: Advisor Name: Date: This form may be submitted for notification related to either * Thesis Advisor Committee Member * EAPS faculty member within program area Committee Member [optional proposal to your committee for approval. Their acceptance of your proposal is indicated by your advisor

Rothman, Daniel

51

Calculation of CO2 column heights in depleted gas fields from known pre-production gas column heights  

E-Print Network [OSTI]

Calculation of CO2 column heights in depleted gas fields from known pre-production gas column that the CO2 is in a dense phase (either liquid or supercritical). Accurate assessment of the storage capacity also requires an estimation of the amount of CO2 that can be safely stored beneath the reservoir seal

52

A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves  

E-Print Network [OSTI]

in reserves Vikas Goel , Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University and operational planning for development of gas fields under uncertainty in gas reserves. Assuming uncertainties models for planning in the oil and gas exploration and production industry. A major challenge

Grossmann, Ignacio E.

53

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network [OSTI]

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

Wang, Jianwei

2010-01-14T23:59:59.000Z

54

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network [OSTI]

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

55

Field tests of probes for detecting internal corrosion of natural gas transmission pipelines  

SciTech Connect (OSTI)

A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Meidinger, Brian (RMOTC-DOE)

2005-01-01T23:59:59.000Z

56

Natural gas pipelines after field price decontrol : a study of risk, return and regulation  

E-Print Network [OSTI]

This is a study of a regulated industry undergoing rapid change. For the first time in its history, following the partial decontrol of field prices in 1978, natural gas is being priced at a level which places it in direct ...

Carpenter, Paul R.

1984-01-01T23:59:59.000Z

57

Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using cyclic voltammetry  

E-Print Network [OSTI]

Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using 2011 Keywords: Megasonic energy Transient cavitation Acoustic streaming Dissolved gases Microelectrode been a significant interest in understanding the phenomena of cavitation and acoustic streaming, which

Deymier, Pierre

58

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network [OSTI]

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

59

Optimization of offshore oil and gas field development using mathematical programming  

E-Print Network [OSTI]

OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT USING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Petroleum Engineering OPTIMIZATION OF OFFSHORE OIL AND GAS FIELD DEVELOPMENT VSING MATHEMATICAL PROGRAMMING A Thesis by TODD THATCHER GRIMMETT Approved as to style and content by: R. A. Startzma...

Grimmett, Todd Thatcher

2012-06-07T23:59:59.000Z

60

General Physics II Exam 1 -Chs. 16,17,18 -Electric Fields, Potential, Current Feb. 11, 2013 Name Rec. Instr. Rec. Time  

E-Print Network [OSTI]

General Physics II Exam 1 - Chs. 16,17,18 - Electric Fields, Potential, Current Feb. 11, 2013 Name charge can experience an electric force. 4. (2) T F The smallest magnitude (non-zero) net charge of the electric force on Q1 due to Q2. b) (3) The direction of the electric force acting on Q1 is a. pushing Q1

Wysin, Gary

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown  

SciTech Connect (OSTI)

The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10??m). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

Li, Yingjie [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

2014-09-14T23:59:59.000Z

62

Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month PreviousThousandCubic0Feet)

63

Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear46 4722252 254

64

Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15ThousandExtensions (Billion

65

Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47Extensions (Billion Cubic

66

Dry Natural Gas New Reservoir Discoveries in Old Fields  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and2,819 143,4362009 2010Year622

67

Dry Natural Gas New Reservoir Discoveries in Old Fields (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and2,819 143,4362009 2010Year622622

68

Dry Natural Gas Proved Reserves New Field Discoveries (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and2,819 143,4362009207 5,098170

69

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.Report No.:GasThe VBA

70

Technologies to characterize natural gas emissions tested in field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and Innovationexperiments Natural gas

71

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

72

Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993  

SciTech Connect (OSTI)

An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

Jones, R.E.; Jirik, L.A.; Hower, T.L.

1993-07-01T23:59:59.000Z

73

Business Name:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Name: AECOM Technology Services, Inc. Business Size: Large Point of Contact: Frank Coffman Email: frank.coffman@aecom.com Phone Number: 714-504-0400 Business Name: AppleOne...

74

A field example of a gas orifice meter with debris-ridden liquid in mist flow  

SciTech Connect (OSTI)

A field example of debris-ridden liquids in an orifice meter is presented in this paper. Flow conditions in gas pipelines containing hydrocarbon liquids and particulate matter are discussed. Known effects on measurement of the presence of these materials in orifice meters is presented. By definition, gas measurement is accurate if performed on a clean and dry flow stream. This paper demonstrates the importance of removing as much liquid and debris as possible prior to measurement.

Chisholm, J.L.; Mooney, C.V. [Texas A and M Univ., Kingsville, TX (United States); Datta-Barua, L.; Feldmann, R.J.

1995-12-31T23:59:59.000Z

75

Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet) New Field

76

Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field  

SciTech Connect (OSTI)

Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

Williams, Alan E.; Copp, John F.

1991-01-01T23:59:59.000Z

77

Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan Basin, South China Sea  

SciTech Connect (OSTI)

The Yacheng gas field is located in the footwall of the No. 1 fault, the boundary fault between the Yinggehai and Qiongdongnan basins. All strata are normally pressured in the gas field except for the Meishan Formation. The Meishan Formation is overpressured near the No. 1 fault in the gas field and in the adjacent Yinggehai Basin. An obvious thermal anomaly occurs below 3600 m in the gas field. This anomaly, characterized by an abrupt increase in drill-stem test and fluid-inclusion homogenization temperatures, vitrinite reflectance (R{sub o}), and Rock-Eval T{sub max}, and by an abnormally low temperature/R{sub o}/T{sub max} gradient, diminishes away from the Yinggehai Basin. The gases and condensates have abnormally high aromatic hydrocarbon contents and show obvious heterogeneities. Away from the No. 1 fault, the C{sub 2+} hydrocarbon content and C{sub 2+}/{Sigma}C{sub n} increase; carbon dioxide content decreases; {delta}{sup 13}C values for methane, ethane, and carbon dioxide become lighter; the heptane and isoheptane values decrease; and the relative contents of aromatic hydrocarbons, both in C{sub 6}/C{sub 7} light hydrocarbons and in the condensates, decrease. The gas field was charged from both the Qiongdongnan and the Yinggehai basins. Hydrocarbons sourced from the Qiongdongnan Basin have relatively low maturities, whereas hydrocarbons from the Yinggehai Basin have relatively higher maturities and seem to have been in association with hydrothermal fluids. The hydrothermal fluids from the Yinggehai Basin, in which methane, ethane, carbon dioxide, and especially aromatic hydrocarbons dissolved under the high-temperature and high-pressure subsurface conditions, migrated along the No. 1 fault and caused the abnormally high concentration of aromatic hydrocarbons, as well as the thermal anomalies in the gas field, especially near the No. 1 fault.

Hao, F.; Li, S.; Sun, Y. [China Univ. of Geosciences, Wuhan, Hubei (China). Dept. of Petroleum Geology; Zhang, Q. [Nanhai West Oil Corp., Guangdong (China). Inst. of Petroleum Exploration and Development

1998-07-01T23:59:59.000Z

78

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

SciTech Connect (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

79

Thermodynamic functions of a nonrelativistic degenerate neutron gas in a magnetic field  

SciTech Connect (OSTI)

The Fermi energy, partial concentrations of polarized neutrons, pressure, and volume energy density of a degenerate nonrelativistic neutron gas in a magnetic field are calculated using numerical methods taking into account the anomalous magnetic moment of a neutron. The results of calculations are a generalization of relations underlying the Oppenheimer-Volkov model of a neutron star to the case of an applied magnetic field. An ultrastrong (up to 10{sup 17} G) magnetic field changes the pressure and internal energy of the star and affects it static configuration and evolution. It is shown that a degenerate neutron gas in ultrastrong and weak magnetic fields is paramagnetic; the corresponding values of magnetic susceptibility differ by a factor on the order of unity. The possibility of experimentally verifying the results from analysis of pulsar-emitted radiation is discussed.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2010-01-15T23:59:59.000Z

80

Hydrodynamic flow in lower Cretaceous Muddy sandstone, Gas Draw Field, Powder River Basin, Wyoming  

E-Print Network [OSTI]

control readily available for analysis of rock properties and fluid pressures. The nine-township area surrounding the Gas Draw field is well-suited for study of hydrodynamic effects on oil accumulation. Regional Geology Structure The citations... of southeastern Montana. It is bounded by the Miles City arch and Black Hills uplift on the east, the Hartville uplift on the southeast, and Bighorn Mountains and Casper arch on the west. Muddy stratigraphic oil fields are located on the east flank...

Lin, Joseph Tien-Chin

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Shallow gas in Arkoma basin - Pine Hollow and South Ashland fields  

SciTech Connect (OSTI)

The Pine Hollow and South Ashland fields located in Pittsburg and Coal Counties, Oklahoma, established a combined reserve exceeding 200 bcf of gas. The Hartshorne Sandstone of early Desmoinesian (Pennsylvanian) age is the producing zone at a depth of 4000 ft (1200 m). Gas, probably of biogenic origin, migrated into the reservoir shortly after deposition. Subsequent folding and faulting of the Ashland anticline resulted in repositioning of the gas in a downthrown fault trap. The upthrown anticline portion of the Hartshorne is water-bearing. Moderate well costs and high individual reserves have resulted in excellent economics. Competitive bidding on federal leases has resulted in a high bid exceeding $1 million for one tract in the South Ashland field.

Woncik, J.

1983-08-01T23:59:59.000Z

82

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect (OSTI)

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

83

Field studies of leaf gas exchanges in oil palm tree (Elaeis guineensis Jacq.)  

E-Print Network [OSTI]

Field studies of leaf gas exchanges in oil palm tree (Elaeis guineensis Jacq.) E. Dufrene B This study is part of a larger research pro- gram on climatic and biological factors affecting oil palm yield (A) in oil palm. Most of them have used young plants under laboratory conditions to study effects

Paris-Sud XI, Université de

84

Requestor's Name: Organization  

E-Print Network [OSTI]

Requestor's Name: Organization: Address: (No PO BOX) City, State, Zip: Cell: Phone: Fax: E showing major natural gas pipelines identified by owner and pipe diameter. 6) California Wind Resource Annual Wind Speed, Annual Wind Power, and Seasonal Wind Speed measured at various elevations (meters

85

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbedShale Proved ReservesField

86

Letter of Recommendation Release Form Directory Information (student name, email address, major field(s) of study, dates of attendance, class or student level, enrollment  

E-Print Network [OSTI]

Letter of Recommendation Release Form Directory Information (student name, email address, major be included in a letter of recommendation without a student's written authorization. Non-directory information contains any non-directory information (i.e. birth date, religion, citizenship, disciplinary status

87

Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994  

SciTech Connect (OSTI)

A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

Hower, T.L.; Obernyer, S.L.

1994-01-01T23:59:59.000Z

88

Study of Inflationary Generalized Cosmic Chaplygin Gas for Standard and Tachyon Scalar Fields  

E-Print Network [OSTI]

We consider an inflationary universe model in the context of generalized cosmic Chaplygin gas by taking matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index and important observational parameter, i.e., tensor-scalar ratio in terms of inflatons. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case.

M. Sharif; Rabia Saleem

2014-06-18T23:59:59.000Z

89

Case study of a horizontal well in a layered Rotliegendes gas field  

SciTech Connect (OSTI)

A horizontal well was drilled in the Ravenspurn North field to drain a thin gas column above the aquifer. The field has a significant variation in reservoir quality, with most of the wells requiring stimulation by hydraulic fracturing. The reservoir is formed from a stacked sequence of aeolian dune and fluvial sandstones with a wide permeability range. The horizontal well was chosen as an alternative to stimulation by hydraulic fracturing to avoid water production from the aquifer. The well was successful, flowing at higher gas rates than expected with no water production. Production, core, and production logging data were used to demonstrate greater than expected lateral heterogeneity in the field. The horizontal well was found to be appropriate for the very specific conditions found in one part of the reservoir; however, the overall development strategy of using hydraulic fracture remains the preferred technique.

Catterall, S.J.A.; Yaliz, A. (Hamilton Oil Co. Ltd., London (United Kingdom))

1995-02-01T23:59:59.000Z

90

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

91

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect (OSTI)

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

92

Lyapunov Exponents from Kinetic Theory for a Dilute, Field-driven Lorentz Gas  

E-Print Network [OSTI]

Positive and negative Lyapunov exponents for a dilute, random, two-dimensional Lorentz gas in an applied field, $\\vec{E}$, in a steady state at constant energy are computed to order $E^{2}$. The results are: $\\lambda_{\\pm}=\\lambda_{\\pm}^{0}-a_{\\pm}(qE/mv)^{2}t_{0}$ where $\\lambda_{\\pm}^{0}$ are the exponents for the field-free Lorentz gas, $a_{+}=11/48, a_{-}=7/48$, $t_{0}$ is the mean free time between collisions, $q$ is the charge, $m$ the mass and $v$ is the speed of the particle. The calculation is based on an extended Boltzmann equation in which a radius of curvature, characterizing the separation of two nearby trajectories, is one of the variables in the distribution function. The analytical results are in excellent agreement with computer simulations. These simulations provide additional evidence for logarithmic terms in the density expansion of the diffusion coefficient.

H. van Beijeren; J. R. Dorfman; E. G. D. Cohen; H. A. Posch; Ch. Dellago

1996-06-14T23:59:59.000Z

93

Semiclassical Approximation for Non-Abelian Field Strength Correlators in the Instanton Dilute Gas Model  

E-Print Network [OSTI]

Field strength correlators are semi-classically evaluated in the dilute gas model of non-Abelian sources (instantons) and compared with lattice data for QCD at zero temperature. We show that one of the Euclidean invariant, tensorial structures vanishes for configurations being purely selfdual or anti-selfdual. We compute the invariant functions contributing to the correlators within the two lowest orders in an instanton density expansion. Fitting instanton size and density for quenched and full QCD, we obtain a reasonable description.

E. -M. Ilgenfritz; B. V. Martemyanov; S. V. Molodtsov; M. Müller--Preussker; Yu. A. Simonov

1997-12-26T23:59:59.000Z

94

A New Variable Modified Chaplygin Gas Model Interacting with Scalar Field  

E-Print Network [OSTI]

In this letter we present a new form of the well known Chaplygin gas model by introducing inhomogeneity in the EOS. This model explains $\\omega=-1$ crossing. Also we have given a graphical representation of the model using $\\{r,s\\}$ parameters. We have also considered an interaction of this model with the scalar field by introducing a phenomenological coupling function and have shown that the potential decays with time.

Writambhara Chakraborty; Ujjal Debnath

2010-06-11T23:59:59.000Z

95

Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

Hower, T.L.; Uttley, S.J.

1993-07-01T23:59:59.000Z

96

Modified Chaplygin Gas as Scalar Field and Holographic Dark Energy Model  

E-Print Network [OSTI]

We study the correspondence between field theoretic and holographic dark energy density of the universe with the modified Chaplygin gas (MCG) respectively both in a flat and non-flat FRW universe. We present an equivalent representation of the MCG with a homogeneous minimally coupled scalar field by constructing the corresponding potential. A new scalar field potential is obtained here which is physically realistic and important for cosmological model building. In addition we also present holographic dark energy model described by the MCG. The dynamics of the corresponding holographic dark energy field is determined by reconstructing the potential in a non-flat universe. The stability of the holographic dark energy in this case in a non-flat universe is also discussed.

B. C. Paul; P. Thakur; A. Saha

2008-09-20T23:59:59.000Z

97

Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations  

E-Print Network [OSTI]

The Chaplygin gas model, characterized by an equation of state of the type $p = - \\frac{A}{\\rho}$ emerges naturally from the Nambu-Goto action of string theory. This fluid representation can be recast under the form of a tachyonic field given by a Born-Infeld type Lagrangian. At the same time, the Chaplygin gas equation of state can be obtained from a self-interacting scalar field. We show that, from the point of view of the supernova type Ia data, the three representations (fluid, tachyonic, scalar field) lead to the same results. However, concerning the matter power spectra, while the fluid and tachyonic descriptions lead to exactly the same results, the self-interacting scalar field representation implies different statistical estimations for the parameters. In particular, the estimation for the dark matter density parameter in the fluid representation favors a universe dominated almost completely by dark matter, while in the self-interacting scalar field representation the prediction is very closed to that obtained in the $\\Lambda$CDM model.

C. E. M. Batista; J. C. Fabris; M. Morita

2009-04-24T23:59:59.000Z

98

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

SciTech Connect (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

99

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

100

Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations  

E-Print Network [OSTI]

We give an estimate for the skewness and the kurtosis of the baryon number distribution in two representative models; i.e., models of a hadron resonance gas and relativistic mean-field nuclear matter. We emphasize formal similarity between these two descriptions. The hadron resonance gas leads to a deviation from the Skellam distribution if quantum statistical correlation is taken into account at high baryon density, but this effect is not strong enough to explain fluctuation data seen in the beam-energy scan at RHIC/STAR. In the calculation of mean-field nuclear matter the density correlation with the vector \\omega-field rather than the effective mass with the scalar \\sigma-field renders the kurtosis suppressed at higher baryon density so as to account for the experimentally observed behavior of the kurtosis. We finally discuss the difference between the baryon number and the proton number fluctuations from correlation effects in isospin space. Our numerical results suggest that such effects are only minor even in the case of complete randomization of isospin.

Kenji Fukushima

2014-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Influence of spatially varying pseudo-magnetic field on a 2D electron gas in graphene  

E-Print Network [OSTI]

The effect of a varying pseudo-magnetic field, which falls as $1/x^2$, on a two dimensional electron gas in graphene is investigated. By considering the second order Dirac equation, we show that its correct general solution is that which might present singular wavefunctions since such field induced by elastic deformations diverges as $x\\rightarrow0$. We show that only this consideration yields the known relativistic Landau levels when we remove such elastic field. We have observed that the zero Landau level fails to develop for certain values of it. We then speculate about the consequences of these facts to the quantum Hall effect on graphene. We also analyze the changes in the relativistic cyclotron frequency. We hope our work being probed in these contexts, since graphene has great potential for electronic applications.

L. G. da Silva Leite; D. Cogollo; C. Filgueiras; Edilberto O. Silva

2015-01-28T23:59:59.000Z

102

Hydrodynamic flow in lower cretaceous muddy sandstone, Gas Draw field, Powder River basin, Wyoming  

SciTech Connect (OSTI)

Lower Cretaceous Muddy sandstones form a simple stratigraphic trap at Gas Draw field, northeast Power River Basin. The Muddy at Gas Draw can be subdivided into six zones. The lowest, sixth Muddy sandstone is fluvial in origin, and the overlying fifth sandstone is a transgressive marine deposit. The fourth zone represents a fluvial origin below to shallow marine above. The third zone is interpreted to be of fluvial-overbank origin with possibly a bay-lagoonal association. The second sandstone is suggested to be a deposit of a fluvial or deltaic environment. The first zone was deposited in a lagoonal and poorly-drained marsh environment. At Gas Draw, the second Muddy sandstone is the major producing zone and has the highest average porosity and permeability of 22.6% and 209 md. It had high initial production rates of up to 1200 BOPD (191 m/sup 3//day). From correlation of well logs, the Muddy reservoirs appear to be separated by thin shales, but analysis of drill stem tests show that these reservoirs are connected at some points within the area. Analysis of drill-stem test pressures provides the basis for interpreting fluid potential relationships. The average potentiometric gradient of 32 ft/mi across the field results in a hydrodynamic oil column of 210 feet, whereas capillary-pressure differences due to permeability changes can account for only 38 feet of oil column. The observed oil column over most of the field has a height somewhat greater than 250 feet which agrees well with total calculated oil column of about 248 feet. Furthermore, local decrease in permeability to oil may be responsible for water production at any place within the field, even updip from the producing area.

Lin, J.T.C.

1981-10-01T23:59:59.000Z

103

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents [OSTI]

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

Cookson, A.H.; Dale, S.J.; Bolin, P.C.

1982-12-28T23:59:59.000Z

104

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

SciTech Connect (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

105

DDT Certification Status Last Name First Name  

E-Print Network [OSTI]

DDT Certification Status Last Name First Name DDT Expire Date Abdelsamad Ramy 6-Jan-2016 16-Nov-2013 #12;Last Name First Name DDT Expire Date Arica Aimee Mintu 8-Apr-2015 Armstrong Gretchen #12;Last Name First Name DDT Expire Date Beckman Paul Allan 26-Apr-2015 Bejar Matthew Philip 22-Sep

106

Estimated gas reserves and availability of the Viking-Kinsella Field, Alberta, Canada  

E-Print Network [OSTI]

by the author. h study of thi. s field was a part of a pro, ]act in which T~s- canada pipe Lines Limited cojmsissioned the firm oi' DeGolyer and thc?aughton to determine the resez-its and the a-, nilability of gas of the Pe&vince of Alberta, Canada i..., ' aa ths kogpxiteL %egs. Operating. pzessmze cf the pips ~ "%asst ef the pme~? ' The smyaztsg pressers drep psr maft of ~metfcef mast be dieted- Xf mdaymba, ssd aee~ ptzessmms verses ~foa dsga sea ~le foz a peodseing reaervofr fer i+feh She...

Meyer, Lawrence Joffre

1952-01-01T23:59:59.000Z

107

Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413New Field Discoveries

108

Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV  

E-Print Network [OSTI]

The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

Barbosa, Séverine; Ducruix, Sébastien

2008-01-01T23:59:59.000Z

109

Bianchi Models with Chaplygin Gas  

E-Print Network [OSTI]

Einstein Gravitational Field Equations (EFE) of Chaplygin gas dominated Bianchi-type models are obtained by using metric approximation. The solutions of equations for a special case, namely Bianchi I model which is a generalization of isotropic Friedmann-Robertson-Walker (FRW) cosmology, are obtained. The early and late behaviours of some kinematic parameters in model are presented in graphically.

Gülçin; Uluyazi; Özgür Sevinc

2012-09-13T23:59:59.000Z

110

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

111

Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field  

SciTech Connect (OSTI)

Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

1996-08-01T23:59:59.000Z

112

Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement  

SciTech Connect (OSTI)

A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

2005-01-01T23:59:59.000Z

113

Numerical, Laboratory And Field Studies of Gas Production From Natural Hydrate Accumulations in Geologic Media  

E-Print Network [OSTI]

hydrate (Class 1W) or gas and hydrate (Class 1G). In Class 1Economic Geology of Natural Gas Hydrates, M. Max, A.H. John-of the thermal test of gas hydrate dissociation in the

Moridis, George J.; Kneafsey, Timothy J.; Kowalsky, Michael; Reagan, Matthew

2006-01-01T23:59:59.000Z

114

OE Contributors Named IEEE Fellows  

Broader source: Energy.gov [DOE]

Dr. Ram Adapa, technical leader for transmission systems, and Mark McGranaghan, vice president of Power Delivery & Utilization for EPRI were name IEEE Fellows in recognition of their contributions to IEEE fields of interest.

115

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect (OSTI)

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

116

Exciton Bose condensation : the ground state of an electron-hole gas I. Mean field description of a simplified model  

E-Print Network [OSTI]

1069 Exciton Bose condensation : the ground state of an electron-hole gas I. Mean field description dégénérées. Nous étudions la condensation de Bose de ce système en fonction de la densité, négligeant dans-hole gas in a simple model semiconductor, with direct gap and isotropic, non degenerate bands. We study

Boyer, Edmond

117

Field evaluation of natural gas and dry sorbent injection for MWC emissions control  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

1993-10-01T23:59:59.000Z

118

Long Cycles in a Perturbed Mean Field Model of a Boson Gas  

E-Print Network [OSTI]

In this paper we give a precise mathematical formulation of the relation between Bose condensation and long cycles and prove its validity for the perturbed mean field model of a Bose gas. We decompose the total density $\\rho=\\rho_{{\\rm short}}+\\rho_{{\\rm long}}$ into the number density of particles belonging to cycles of finite length ($\\rho_{{\\rm short}}$) and to infinitely long cycles ($\\rho_{{\\rm long}}$) in the thermodynamic limit. For this model we prove that when there is Bose condensation, $\\rho_{{\\rm long}}$ is different from zero and identical to the condensate density. This is achieved through an application of the theory of large deviations. We discuss the possible equivalence of $\\rho_{{\\rm long}}\

Teunis C. Dorlas; Philippe A. Martin; Joseph V. Pulé

2005-04-22T23:59:59.000Z

119

Field Demonstration of a Membrane Process to Recover Heavy Hydrocarbons and to Remove Water from Natural Gas  

SciTech Connect (OSTI)

The objective of this project is to design, construct and field demonstrate a membrane system to recover natural gas liquids (NGL) and remove water from raw natural gas. An extended field test to demonstrate system performance under real-world high-pressure conditions is being conducted to convince industry users of the efficiency and reliability of the process. The system was designed and fabricated by Membrane Technology and Research, Inc. (MTR) and installed and operated at BP Amoco's Pascagoula, MS plant. The Gas Research Institute is partially supporting the field demonstration and BP-Amoco helped install the unit and provides onsite operators and utilities. The gas processed by the membrane system meets pipeline specifications for dew point and BTU value and can be delivered without further treatment to the pipeline. Based on data from prior membrane module tests, the process is likely to be significantly less expensive than glycol dehydration followed by propane refrigeration, the principal competitive technology. During the course of this project, MTR has sold 13 commercial units related to the field test technology, and by the end of this demonstration project the process will be ready for broader commercialization. A route to commercialization has been developed during this project and involves collaboration with other companies already servicing the natural gas processing industry.

R. Baker; T. Hofmann; K. A. Lokhandwala

2006-09-29T23:59:59.000Z

120

Reserves determination using type-curve matching and EMB methods in the Medicine Hat shallow gas field  

SciTech Connect (OSTI)

Tight, shallow gas reservoirs in the Western Canada basin present a number of unique challenges in determining reserves accurately. Traditional methods such as decline analysis and material balance are inaccurate owing to the formation`s low permeabilities and poor pressure data. The low permeabilities cause long transient periods that are not separated easily from production decline with conventional decline analysis, resulting in lower confidence in selecting the appropriate decline characteristics (exponential or harmonic), which effects recovery factors and remaining reserves significantly. Limited, poor-quality pressure data and commingled production from the three producing zones results in nonrepresentative pressure data and hence inaccurate material-balance analysis. This paper presents two new methods of reserve evaluation that address the problems described above for tight, shallow gas in the Medicine Hat field. The first method applies type-curve matching, which combines the analytical pressure solutions of the diffusivity equation (transient) with the empirical decline equation. The second method is an extended material balance (EMB), which incorporates the gas deliverability theory to allow selection of appropriate p/z derivatives without relying on pressure data. Excellent results were obtained when these two methods were applied to 10 properties that gather gas from 2,300 wells. The two independent techniques resulted in similar production forecasts and reserves, confirming their validity. They proved to be valuable, practical tools in overcoming the various challenges of tight, shallow gas and in improving the accuracy in gas-reserves determination in the Medicine Hat field.

West, S.L. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Cochrane, P.J.R. [Imperial Oil Resources Ltd., Cold Lake, Alberta (Canada)

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimizing the efficiency of cylindrical cyclone gas/liquid separators for field applications  

E-Print Network [OSTI]

Problems associated with the use of compact cylindrical cyclone gas/liquid (CCGL) separators can be attributed to two physical phenomena: gas carry-under and liquid carryover (LCO). Inadequate understanding of the complex multiphase hydrodynamic...

Adebare, Adedeji

2006-10-30T23:59:59.000Z

122

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia.  

E-Print Network [OSTI]

??The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time,… (more)

Rueda Silva, Carlos Fernando

2012-01-01T23:59:59.000Z

123

Production management techniques for water-drive gas reservoirs. Field number 1, onshore gulf coast over-pressured, high yield condensate reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoirs, the study conducted on an overpressured high yield gas condensate reservoir is reported. The base recovery factor for the field was projected to be only 47.8%, due to high residual gas saturation and a relatively strong aquifer which maintained reservoir pressure.

Hower, T.L.

1993-07-01T23:59:59.000Z

124

Release model for in situ vitrification large-field test off-gas treatment system  

SciTech Connect (OSTI)

A conceptual model for the vapor and aerosol transport and deposition in the in situ vitrification large-field test off-gas system (OGS) has been developed. This model can be used to predict the emissions from the OGS under normal and off-normal conditions. Results generated by the model can be used to evaluate design and/or procedural modifications, define tests, and predict results. The OGS vapor and aerosol transport and deposition is modeled using the PULSE/MOD-ISV/VER 1.0.0 developmental computer code. Input data requirements for this code include the specific geometries of the OGS components; the composition, rate, and temperature of the vapors and aerosols entering the OGS; and the OGS component surface temperatures or heat fluxes. Currently, not all of these model inputs are available. Therefore, conceptual input parameters are developed. Using this input data, preliminary calculations with the code have been performed. These calculations include a demonstration that the code predicts convergent results, a comparison of predicted results with performance data for one of the OGS components, and a preliminary sensitivity study of the complete model.

Pafford, D.J.; Tung, V.X.

1992-03-01T23:59:59.000Z

125

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect (OSTI)

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

126

DMBC: Domain Names & Web Hosting Domain Names  

E-Print Network [OSTI]

DMBC: Domain Names & Web Hosting Domain Names Top Level Domains · .com · .net · .org · .edu · .gov.9% of the web-viewing audience is used to typing in. Chances are, a visitor will type in ".com" even if you tell and simple · Try to avoid dashes or underscores in the domain name unless there is no other option Web

Stowell, Michael

127

Effect on cavity optomechanics of the interaction between a cavity field and a one-dimensional interacting bosonic gas  

SciTech Connect (OSTI)

We investigate optomechanical coupling between one-dimensional interacting bosons and the electromagnetic field in a high-finesse optical cavity. We show that by tuning interatomic interactions, one can realize effective optomechanics with mechanical resonators ranging from side-mode excitations of a Bose-Einstein condensate (BEC) to particle-hole excitations of a Tonks-Girardeau (TG) gas. We propose that this unique feature can be formulated to detect the BEC-TG gas crossover and measure the sine-Gordon transition continuously and nondestructively.

Sun Qing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Hu Xinghua; Liu, W. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Xie, X. C. [International Center for Quantum Materials, Peking University, Beijing 100871 (China); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Ji Anchun [Center of Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2011-08-15T23:59:59.000Z

128

Field Description Source Who is providing this information? Please provide Name, telephone number, affiliation, email so that we may contact you if clarification is needed  

E-Print Network [OSTI]

the source to the crop Cultivation ­ Activities involved with maintaining growth such as fertilization and weed control Harvesting ­ Reaping the energy crop (biostock product) Collect/Transport to Processor descriptive name for this model Crop What biostock crops or other inputs into the bioenergy conversion

129

Liquid-gas phase transition in a two-components isospin lattice gas model for asymmetric nuclear matter  

E-Print Network [OSTI]

A two-components isospin lattice gas model has been employed to study the liquid-gas phase transition for asymmetric nuclear matter. An additional degree of freedom, namely, the asymmetry parameter alpha has been considered carefully for studying the phase transition. We have shown that under the mean field approximation, the liquid-gas phase transition given by this model is of second order. The entropy continues at the phase transition point. The binodal surface is addressed.

Wei Liang Qian; Ru-Keng Su

2002-10-04T23:59:59.000Z

130

Liquid-gas phase transition in hot asymmetric nuclear matter with density-dependent relativistic mean-field models  

E-Print Network [OSTI]

The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.

Guang-Hua Zhang; Wei-Zhou Jiang

2012-03-17T23:59:59.000Z

131

A critical review of methods used in the estimation of natural gas reserves: Natural gas reserves in the state of Texas. Some educational prerequisites in the field of petroleum economics and evaluation.  

E-Print Network [OSTI]

for oil. In order to make an a- urete determination of the recovery factor, it is necessary to pre-determine the pressure history of the field. by material balance and water influx calculations, or by extra- polatutg a curve cf pressure agatnst...-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne...

Crichton, John Alston

1953-01-01T23:59:59.000Z

132

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

133

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

134

Tracer Gas as a Practical Field Diagnostic Tool for Assessing Duct System Leaks  

E-Print Network [OSTI]

diagnostic tools for detecting and locating leaks in the air distribution system. The tracer gas tests described are a good complement to these tools in the detection, location, and measurement of duct leakage. Testing for house infiltration once with the air...

Cummings, J. B.

1989-01-01T23:59:59.000Z

135

Long-time-tail Effects on Lyapunov Exponents of a Random, Two-dimensional Field-driven Lorentz Gas  

E-Print Network [OSTI]

We study the Lyapunov exponents for a moving, charged particle in a two-dimensional Lorentz gas with randomly placed, non-overlapping hard disk scatterers placed in a thermostatted electric field, $\\vec{E}$. The low density values of the Lyapunov exponents have been calculated with the use of an extended Lorentz-Boltzmann equation. In this paper we develop a method to extend these results to higher density, using the BBGKY hierarchy equations and extending them to include the additional variables needed for calculation of Lyapunov exponents. We then consider the effects of correlated collision sequences, due to the so-called ring events, on the Lyapunov exponents. For small values of the applied electric field, the ring terms lead to non-analytic, field dependent, contributions to both the positive and negative Lyapunov exponents which are of the form ${\\tilde{\\epsilon}}^{2} \\ln\\tilde{\\epsilon}$, where $\\tilde{\\epsilon}$ is a dimensionless parameter proportional to the strength of the applied field. We show that these non-analytic terms can be understood as resulting from the change in the collision frequency from its equilibrium value, due to the presence of the thermostatted field, and that the collision frequency also contains such non-analytic terms.

D. Panja; J. R. Dorfman; Henk van Beijeren

2000-02-09T23:59:59.000Z

136

Geometrical Field Representation of Solid, Fluid, and Gas as Continuum in Rational Mechanics  

E-Print Network [OSTI]

Based on the points-set transformation concept about the motion transformation in continuum, the macro classical strain is expressed by the additive addition of the intrinsic stretching of material element and its intrinsic local rotation. For zero classical strain (no macro deformation observed on its configuration surface, suitable container is required for liquid and gas to make up macro invariant configuration), the results show that: (1) For solid, the local rotation angular is zero. The material element has no intrinsic stretching. (2) For liquid, the local rotation will not change the basic gauge tensor. The material element has intrinsic plane stretching on the rotation plane. (3) For gas state, the intrinsic local rotation will amplify the basic gauge tensor. The material element has intrinsic stretching along the rotation direction. Hence, under the condition of no macro classical strain be observed, the material element has three different physical states: solid (no intrinsic stretching), fluid (plane intrinsic stretching), and gas (directional intrinsic stretching). Furthermore, for the three states, the free conditions are defined by zero intrinsic stretching. Referring to this free condition, the constitutive equations for the materials at multiple states are established.

Jianhua Xiao

2009-11-07T23:59:59.000Z

137

The thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields  

E-Print Network [OSTI]

The thermodynamical partition function for a gas of color-singlet bags consisting of fundamental and adjoint particles in both $U(N_c)$ and $SU(N_c)$ group representations is reviewed in detail. The constituent particle species are assumed to satisfy various thermodynamical statistics. The gas of bags is probed to study the phase transition for a nuclear matter in the extreme conditions. These bags are interpreted as the Hagedorn states and they are the highly excited hadronic states which are produced below the phase transition point to the quark-gluon plasma. The hadronic density of states has the Gross-Witten critical point and exhibits a third order phase transition from a hadronic phase dominated by the discrete low-lying hadronic mass spectrum particles to another hadronic phase dominated by the continuous Hagedorn states. The Hagedorn threshold production is found just above the highest known experimental discrete low-lying hadronic mass spectrum. The subsequent Hagedorn phase undergoes a first order deconfinement phase transition to an explosive quark-gluon plasma. The role of the chiral phase transition in the phases of the discrete low-lying mass spectrum and the continuous Hagedorn mass spectrum is also considered. It is found crucial in the phase transition diagram. Alternate scenarios are briefly discussed for the Hagedorn gas undergoes a higher order phase transition through multi-processes of internal color-flavor structure modification.

Ismail Zakout; Carsten Greiner

2008-08-11T23:59:59.000Z

138

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season  

SciTech Connect (OSTI)

The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-11-01T23:59:59.000Z

139

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

SciTech Connect (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

140

Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions  

E-Print Network [OSTI]

Generalized mean-field approach for thermodynamic description of relativistic single- and multi-component gas in the grand canonical ensemble is formulated. In the framework of the proposed approach different phenomenological excluded-volume procedures are presented and compared to the existing ones. The mean-field approach is then used to effectively include hard-core repulsion in hadron-resonance gas model for description of chemical freeze-out in heavy-ion collisions. We calculate the collision energy dependence of several quantities for different values of hard-core hadron radius and for different excluded-volume procedures such as van der Waals and Carnahan-Starling models. It is shown that a choice of the excluded-volume model becomes important for large particle densities, and for large enough values of hadron radii ($r\\gtrsim0.9$ fm) there can be a sizable difference between different excluded-volume procedures used to describe the chemical freeze-out in heavy-ion collisions. For the smaller and more commonly used values of hard-core hadron radii ($r\\lesssim0.5$ fm) the van der Waals excluded-volume procedure is shown to be sufficient.

D. Anchishkin; V. Vovchenko

2015-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342 1,298 1,210 1,006

142

Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342 1,298ExtensionsNew

143

Kansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0YearDecadeThousand Cubic7

144

Kansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion Cubic Feet)New

145

Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month PreviousThousandCubic0 0 0 0 0

146

Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0 0 2005-2013Cubic

147

Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet) Vehicle3Commercial52

148

Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413 2009-2013

149

Florida Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31ES5CommercialCubic

150

Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec.Adjustments

151

Associated-Dissolved Natural Gas New Field Discoveries, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008 2009 2010Separation,

152

Associated-Dissolved Natural Gas New Reservoir Discoveries in Old Fields,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008 2009

153

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

154

Gas productivity related to cleat volumes derived from focused resistivity tools in coalbed methane (CBM) fields  

SciTech Connect (OSTI)

Cleats are critical for coal-bed methane (CBM) production, but operators usually lack a viable method to determine productivity except for costly well tests. Wireline logs, run over the CBM deposits of the Drunkards Wash Unit located in the Uinta Basin of Utah, were used to develop a new method to relate productivity to the cleat volume. The latter is derived from a focused resistivity log and the wellbore-fluid resistivity. Induction tools are unsuitable for this method, because they are dominated by borehole effects in high resistivity coals and low resistivity mud. Moreover, they read too deep to be significantly affected by the substitution of formation fluid by borehole fluid in the cleats on which the method is based. The method was demonstrated by relating cleat volume to CBM gas productivity in 24 wells, an exercise that clearly separated good from poor producers.

Yang, Y.H.; Peeters, M.; Cloud, T.A.; Van Kirk, C.W. [Kerr McGee Rocky Mountain Corporation, Denver, CO (United States)

2006-06-15T23:59:59.000Z

155

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

156

Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995  

SciTech Connect (OSTI)

The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

1995-07-01T23:59:59.000Z

157

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

158

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

159

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

160

Directory of awardee names  

SciTech Connect (OSTI)

Standardization of grant and contract awardee names has been an area of concern since the development of the Department`s Procurement and Assistance Data System (PADS). A joint effort was begun in 1983 by the Office of Scientific and Technical Information (OSTI) and the Office of Procurement and Assistance Management/Information Systems and Analysis Division to develop a means for providing uniformity of awardee names. As a result of this effort, a method of assigning vendor identification codes to each unique awardee name, division, city, and state combination was developed and is maintained by OSTI. Changes to vendor identification codes or awardee names contained in PADS can be made only by OSTI. Awardee names in the Directory indicate that the awardee has had a prime contract (excluding purchase orders of $10,000 or less) with, or a financial assistance award from, the Department. Award status--active, inactive, or retired--is not shown. The Directory is in alphabetic sequence based on awardee name and reflects the OSTI-assigned vendor identification code to the right of the name. A vendor identification code is assigned to each unique awardee name, division, city, and state (for place of performance). The same vendor identification code is used for awards throughout the Department.

Not Available

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18Feet) New Field Discoveries

162

Ohio Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year JanDecadeEstimatedNew Field

163

U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14DeliveriesProvedBarrels) New Field

164

Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631New Field Discoveries

165

,"New Mexico Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Prices",8,"Monthly","12015","1151989" ,"Release Date:","331...

166

,"New York Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Prices",8,"Monthly","102014","1151989" ,"Release Date:","12312014"...

167

Organization Name Date Submitted File Name ACEEE Steve Nadel  

Broader source: Energy.gov (indexed) [DOE]

Michael L. Weinstein 4152011 AEP 4.15.2011 American Gas Association, American Gas Foundation, American Public Gas Association, American Public Gas Association Research...

168

,"International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

169

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

170

,"Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

171

,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

172

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

173

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

174

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

175

,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

176

,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

177

Rank Project Name Directorate,  

E-Print Network [OSTI]

Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 NATIONAL LABORATORY FY02 Funded Pollution Prevention Projects 0.4 Years (~5 months) #12;

178

Name: ) Section: ' PID:  

E-Print Network [OSTI]

MATH 173 ' Quiz 4 Thursday Sep. 23. Name: ) Section: ' PID: Solve the problem systematically and neatly and show all your work. 1.(3pts) Find the length of the ...

179

Name:______________________________________ _ Unit:___________________________________ Address:_ ___________________________________________________________________________  

E-Print Network [OSTI]

Poultry Name:______________________________________ _ Unit_Project_Began:_ __________________________ _ Ended:_________________________________ (Check All That Apply) Type of Project: Type of Poultry Raised: _____ Raising and Rearing Poultry _____ Commercial Egg Chickens _____ Poultry and Egg Consumer Projects

Liskiewicz, Maciej

180

Name Eligible candidates Field of study  

E-Print Network [OSTI]

Scholarship Foundation) ASEAN International Student Scholarships (From 2010) Persons wishing to enter a Tokyo Five ASEAN countries- Thailand, Indonesia, the Philippines, Malaysia, and Viet Nam Students in science or engineering (excluding medicine, dentistry, and veterinary medicine) 1 person from each ASEAN country

Miyashita, Yasushi

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

182

Absolute Biodiesel Potential Country Name  

E-Print Network [OSTI]

Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume,234 0% 0% #12;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters

Wisconsin at Madison, University of

183

REQUEST FOR REPLACEMENT DIPLOMA Name: ________________________________________________________________________  

E-Print Network [OSTI]

REQUEST FOR REPLACEMENT DIPLOMA Name. ________________________________________________________________________ First Middle Maiden Last REPLACEMENT DIPLOMA INFORMATION Please print your name exactly as you want it to appear on your replacement diploma. If your name has changed since your degree was awarded, and if you

Gering, Jon C.

184

HOLLINGS SCHOLARS 2008 Last Name First Name Field of Study Name of School  

E-Print Network [OSTI]

) Michigan State University Beaver Melanie Environmental Science Studies Washington College Beri Jr Douglas Biology Smith College Henthorn Justin Applied Mathematics and Chemistry Ohio University Hines Coral Marine

185

Arts & Sciences Dean's List, Fall 2010 Last Name First Name Middle Name Department Major  

E-Print Network [OSTI]

Arts & Sciences Dean's List, Fall 2010 Last Name First Name Middle Name Department Major Abbott Brian PSCI PSCI Colvett Margaret Grace ENGL LILA Commero Vincent Anthony PHYS PHYS Conduff Corey Patrick

Karsai, Istvan

186

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...  

Open Energy Info (EERE)

Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

187

Petroleum Technology (AS) Curriculum Guide Student Name: PS#  

E-Print Network [OSTI]

Petroleum Technology (AS) ­ Curriculum Guide Student Name: PS# GENERAL EDUCATION REQUIREMENTS ENG Introduction to Petroleum Industry PET 0102 Environment and Safety PET 0103 Introduction to Petroleum Geology PET 0201 Petroleum & Natural Gas Chemistry PET 0203 Oil & Gas Gathering & Transportation PET 0204 Well

Jiang, Huiqiang

188

In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas  

SciTech Connect (OSTI)

A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

NONE

2008-04-01T23:59:59.000Z

189

Name:_____________________________ (Web Exercise)  

E-Print Network [OSTI]

Name:_____________________________ (Web Exercise) Model quality, validation exercise. You will need a web link to MolProbity (with Java), and the file 1JIRon1S83_Arg66_supr.kin download- ed from the kinemage.biochem.duke.edu BCH681 web site, or from Sakai. Part 1: MolProbity Go to the MolProbity web

Richardson, David

190

Fluid pressure arrival time tomography: Estimation and assessment in the presence of inequality constraints, with an application to a producing gas field at Krechba, Algeria  

SciTech Connect (OSTI)

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based upon these changes we estimate diffusive travel times associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage an approach based upon travel times, as opposed to one based upon the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. We apply the formulation to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is approximately 0.5 cm, overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly-spaced images of range change, we calculate the diffusive travel times associated with the startup of a gas production well. The inequality constraints are incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30 to 40%.

Rucci, A.; Vasco, D.W.; Novali, F.

2010-04-01T23:59:59.000Z

191

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect (OSTI)

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

192

ADULT WINNERS LAST NAME FIRST NAME ENTRY AWARD  

E-Print Network [OSTI]

ADULT WINNERS LAST NAME FIRST NAME ENTRY AWARD Beal Cheryl Basketry, Cross Stitch Blue, Best in Class Beal Cheryl Basketry, Sweet Grass Red Beal Cheryl Basketry, Pink Ribbon Blue Beasley Marjorie

Liskiewicz, Maciej

193

Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow  

SciTech Connect (OSTI)

The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

Schweigert, I. V., E-mail: ischweig@itam.nsc.ru [Russian Academy of Sciences, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch (Russian Federation)

2012-08-15T23:59:59.000Z

194

Primary Author Last Name  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Author Last Name A Achterhold, K.

195

SITE NAME: CITY:  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62 &REFHRYO-@-Y?NAME:

196

TO: FILE SITE NAME:  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM: I .-FR0t-k 5:NAME: f

197

Property:ProjectName | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description Property NameProjectName Jump to:

198

Property:PublicationName | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description Property NameProjectName

199

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

200

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Utah Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

202

,"Louisiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

203

,"California Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

204

,"Oklahoma Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

205

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

206

,"Texas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

207

,"Kansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

208

,"Oregon Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151991" ,"Release...

209

,"Colorado Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","112014","1152013" ,"Release...

210

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

211

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

212

,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

213

Student Declaration of Absence Last Name First Name Middle Name U of S Student Number  

E-Print Network [OSTI]

Student Declaration of Absence Last Name First Name Middle Name U of S Student Number 1 Address, number and section Reason for missed academic requirement(s) STUDENT DECLARATION I certify that I missed the academic requirements of the course listed above. I understand that (per Article II (o) of the Student

Saskatchewan, University of

214

Comparative laboratory selection and field testing of polymers for selective control of water production in gas wells  

SciTech Connect (OSTI)

Intensive comparative feasibility studies were performed in different laboratories in order to select the most promising polymer based technology for water control in gas production and storage wells exhibiting low matrix permeability, high temperature and high produced brine salinity. Core flow experiments performed under reservoir conditions with different commercially available chemical systems have pointed to the superiority of two relatively low-molecular-weight vinyl sulfonated/vinyl amide/acrylamide terpolymers over other polymers to decrease selectively and effectively the water permeability without affecting the gas flow. These polymers have excellent compatibility with all types of reservoir brines and good thermal stability up to 150 C. Furthermore, because of their high shear resistance, and excellent injectability even in low permeability cores, solutions of these polymers can be pumped at high injection rates with a moderate wellhead pressure.

Ranjbar, M. [Technical Univ., Clausthal (Germany); Czolbe, P. [DBI-GUT, Freiberg (Germany); Kohler, N. [IFP, Rueil-Malmaison (France)

1995-11-01T23:59:59.000Z

215

Nick Wright Named Advanced Technologies Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

216

Contract Major Report Form Name __________________________  

E-Print Network [OSTI]

Contract Major Report Form 12/1/94 Name __________________________ Degree __________________________ College __________________________ Descriptive title of contract major _______________________________________________ Current GAP is ___________ in ___________________ hours attempted. Summary of Proposed contract Major 1

Kostic, Milivoje M.

217

Last Name First Name Company Apicella Doug Henkel  

E-Print Network [OSTI]

Nicholas Construction Engineering Research Laboratory, US Army Kelly Bob Air Products and Chemicals Kirkland Chris US Air Force Laffen Melissa Alliance Technical Services Lee Jean Apple Inc. Leiby Paul ORNL California Air Resources Board Tomuro Jinichi ENAA Verma Puneet Chevron #12;3 Last Name First Name Company

218

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San34

219

Vendor Name: Drury Hotels, LLC.  

E-Print Network [OSTI]

Vendor Name: Drury Hotels, LLC. Bid Name: Hotel Accommodations Bid Number: P00104 Award Term Texas properties, call or see web site for exact prices #12;VENDOR INFORMATION Vendor: Drury Hotels, LLC: 888-547-1518 Email: irene.lodge@druryhotels.com Vendor Website: www.druryhotels.com MWBE/HUB: #12;

Rock, Chris

220

Curriculum vitae Name: SALVADOR CARRANZA  

E-Print Network [OSTI]

1 Curriculum vitae Name: SALVADOR CARRANZA Date: 12-09-2008 #12;2 Personal data Surname: Carranza Name: Salvador Sex: Male DNI: 38510283A Passport number: AD955041 Date of Birth: 20th of April 1968: +34 932309644 Fax: +34 932309555 Email: salvador.carranza@ibe.upf-csic.es Research interests Phylogeny

Carranza, Salvador

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Personal Names: Function and Significance  

E-Print Network [OSTI]

referring to his wife, “ Nfr-Htp-1wt-1r is (her) major name,neither of them, as in PtH-Htp/Jj-n- anx (Hassan 1975: 90 -beautiful name is 3nmw-Htp (or 1tp- 3nmw ) 1pj ” (Lepsius

Vittmann, Günter

2013-01-01T23:59:59.000Z

222

Your name, address and date Employer's name, title, and address  

E-Print Network [OSTI]

FROM YOUR RESUME. Prove that you are an ideal candidate. Paragraph 4: Refer the reader to your resume Name Enclosure Use the same header as you use for your resume. If you absolutely cannot find

223

Undergraduate Internship Course Approval Student's Name: __________________________ Internship Organization Name: _______________________  

E-Print Network [OSTI]

Undergraduate Internship Course Approval Student's Name: __________________________ Internship: ______________________________ Term of Undergraduate Internship: Fall Spring Summer Undergraduate Standing during term of Internship: ____________________ (Note: 3 Hours in the internship work per week are required for 1 credit of coursework.) Are you

Sherrill, David

224

Chem 350 Jasperse Ch. 3 Handouts 1 ALKANE NAMES (Memorize) (Sections 3.2)  

E-Print Network [OSTI]

"Petroleum Gas" C2-C4 Gas Propane C3 -42º Propane tanks, camping, etc. Gasoline C4-C9 30-180º Industrial Alkanes (Sections 3.5) Name # C's Boiling Range Use Natural Gas C1-C3 (70% methane) Gas Fuel Car fuel Kerosene C8-C16 160-230º Jet fuel Diesel C10-C18 200-320º Truck fuel Heavy Oils C16-C30 300

Jasperse, Craig P.

225

CIP-Pool-Name: Vertragsnummer  

E-Print Network [OSTI]

CIP-Pool-Name: Laufzeit: Vertragsnummer: Interne Felder zur Bearbeitung durch das RRZE. Diese: ........................................................................................................................................................... Ort des CIP-Pools: .................................................................................................................................................................. .................................................................................................................................................................. Zusatzvereinbarungen gem. Anlage: ja nein Kosten derzeit, Stand 01.04.2010 (Kostengruppe I) · CIP-Pool-Betreuung: 42

Fiebig, Peter

226

Personal Names: Function and Significance  

E-Print Network [OSTI]

177. Leiden: Brill. 2009 Late Egypt and her neighbours:Foreign population in Egypt in the first millennium BC. TheFonctions et usage In ancient Egypt, an individual’s name

Vittmann, Günter

2013-01-01T23:59:59.000Z

227

Item # Item Description Unit Size Supplier # Supplier Name Price Busch Stockroom Product List  

E-Print Network [OSTI]

Item # Item Description Unit Size Supplier # Supplier Name Price Qty On Hand Last Price Update;Item # Item Description Unit Size Supplier # Supplier Name Price Qty On Hand Last Price Update BuschGas 1.00 3,559 03/20/2014 797 Oil Vacuum Pump - 1 Liter S41455 Fisher 9.48 0 03/27/2008 796 Oil Vacuum

Garfunkel, Eric

228

Property:Foaf/Name | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures Jump to:FirstWellTemp Jump to:Name Jump to:

229

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

230

,"New Mexico Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12015","1151989" ,"Release...

231

,"New Mexico Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Consumed",1,"Monthly","12015","1152013"...

232

,"New Mexico Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12015","1151989"...

233

,"New York Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",6,"Monthly","102014","1151989" ,"Release...

234

,"New York Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Consumed",1,"Monthly","102014","1152013" ,"Release...

235

California Department of Conservation, Division of Oil, Gas,...  

Open Energy Info (EERE)

Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Place: Sacramento, California Coordinates: 38.5815719,...

236

The Greenhouse Gas Protocol Initiative: Allocation of Emissions...  

Open Energy Info (EERE)

Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of...

237

Navigating the Numbers: Greenhouse Gas Data and International...  

Open Energy Info (EERE)

Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy AgencyCompany Organization: World Resources Institute Sector: Energy, Land Topics:...

238

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...  

Open Energy Info (EERE)

Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas...

239

South Africa - Greenhouse Gas Emission Baselines and Reduction...  

Open Energy Info (EERE)

Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings AgencyCompany Organization...

240

,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

242

,"New York Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

243

,"New York Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

244

,"New York Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2013 ,"Release Date:","227...

245

,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

246

,"New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013...

247

,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

248

,"New York Natural Gas LNG Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","227...

249

,"New York Natural Gas LNG Storage Additions (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

250

,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic...

251

,"New York Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

252

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

253

,"New York Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013 ,"Release...

254

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

255

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...  

Open Energy Info (EERE)

Purchased Electricity Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity AgencyCompany...

256

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmenta...  

Open Energy Info (EERE)

Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods AgencyCompany...

257

Greenhouse Gas Emissions from Aviation and Marine Transportation...  

Open Energy Info (EERE)

and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...

258

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

259

,"New York Nonassociated Natural Gas Proved Reserves, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2013...

260

,"New York Associated-Dissolved Natural Gas Proved Reserves,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...  

Open Energy Info (EERE)

Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

262

Appl Nbr Full TiFirst Name Middle Name Last Name Sex Category PH Category 00036777 F ADITI GUPTA F GEN N  

E-Print Network [OSTI]

Appl Nbr Full TiFirst Name Middle Name Last Name Sex Category PH Category 00036777 F ADITI GUPTA F 00036674 F SRISHTI VIVEK SHARMA F GEN N Appl Nbr Full TiFirst Name Middle Name Last Name Sex Category PH) Appl Nbr Full TiFirst Name Middle Name Last Name Sex Category PH Category 00032299 F SANDEEP KUMAR

Ribeiro, Vinay

263

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

264

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

Yu, C.M.

1996-12-10T23:59:59.000Z

265

Undergraduate Research Course Approval Student's Name: __________________________ Research Advisor's Name: _______________________  

E-Print Network [OSTI]

Undergraduate Research Course Approval Student's Name: __________________________ Research Advisor performing research with a faculty advisor for Course Credit or Pay? _________ Undergraduates may only work, students are required to submit a research report at the end of the term to their research advisor

Sherrill, David

266

Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity  

SciTech Connect (OSTI)

An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

Kaszuba, John; Sims, Kenneth

2014-09-30T23:59:59.000Z

267

CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Estimated Project End Date  

E-Print Network [OSTI]

CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Phone Numbers: Project Manager: Field Representative: SHEST Representative: List of Hazardous Materials: Estimated Project End Date: Contractor/Service Subcontractor Name: Contractor/Service Subcontractor Address

Pennycook, Steve

268

For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South Louisiana and became accustomed to the oil indus-  

E-Print Network [OSTI]

For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South Louisiana and became accustomed to the oil indus- try and the people involved in this business. I of this world. My father worked for Humble Oil (which was acquired later by Exxon) and we moved from place

Stephens, Jacqueline

269

Name  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUG 2012Nakayasu accepts

270

NAME  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab

271

NAME  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - FermilabSept2011 Page 1

272

Personal Names: Structures and Patterns  

E-Print Network [OSTI]

millénaire: Autour du temple d’Isis dame des pyramides.names was otherwise uncommon); 3 st-wrt “Great Isis,” “Isis the great” (I 4,1; DN 76-77); 8dw-4bk (I 401,19-20),

Vittmann, Günter

2013-01-01T23:59:59.000Z

273

HUTTON NAMED NMFS ASSOCIATE DIRECTOR  

E-Print Network [OSTI]

, Fla.; from 1963 to 1965, Chief of Marine Biol ogy, Massachusetts De- partment of Natural Resource for Resource Utilization, has been named Associate Director. His responsibilities embrace: economic and marketing research on fishery products, including projections of demand and supply; foreign-trade analysis

274

Personal Names: Structures and Patterns  

E-Print Network [OSTI]

appropriated as male proper names ( Jj- m-Htp I 9,2-4;DN 55-56; Jmn-Htp I 30,12; DN 67). Wnn-nfr(w) (later Wn-e.g. , 1tp-PtH , PtH-Htp “Ptah is content” (I 258,6; 141,5;

Vittmann, Günter

2013-01-01T23:59:59.000Z

275

Name: SU ID: Phone: Email  

E-Print Network [OSTI]

Name: SU ID: Phone: Email: Today's Date: Month/YrB.S. expected: Mathematics and Science Requirement for Computer Scientists (see note 3) 5 STAT One of: Stat 141, 203, 205, 215, 225 Mathematics Unit Total (23 (I.e., 22 units min. for track and elective courses). Students who complete STATS 116, MS&E 120

Pratt, Vaughan

276

Name: SU ID: Phone: Email  

E-Print Network [OSTI]

Name: SU ID: Phone: Email: Today's Date: Month/YrB.S. expected: Mathematics and Science Requirement for Computer Scientists(see note 3) 5 STAT One of: Stat 141, 203, 205, 215, 225 3 to 5 Mathematics Unit Total complete STATS 116, MS&E 120, or CME 106 in Winter 2008-09 or earlier may count that course as satisfying

Pratt, Vaughan

277

Sample Internship Posting Department Name  

E-Print Network [OSTI]

Sample Internship Posting Department Name: Internship Title: Location: Description of Organization are examples from other internship postings Interns will: · Analyze potential investments · Shadow team members(s) in ________ is desirable For a list of majors see http://admissions.vanderbilt.edu/major Internship Period: The following

Bordenstein, Seth

278

UK Oil and Gas Collaborative Doctoral Training Centre For applications to the University of Aberdeen  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre For applications. IMPORTANT In section 2 Programme The Oil and Gas projects are all being BOX: PUT Oil and Gas CDT and the name of the project you're interested

Levi, Ran

279

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

280

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump to:

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump to:Washington Second

282

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump to:Washington

283

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump to:WashingtonTIER

284

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump

285

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump23 Systems A123

286

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump23 Systems A1230

287

Cognitive Science Minor Approval Form Name __________________________________________ ID # _________________________  

E-Print Network [OSTI]

Cognitive Science Minor Approval Form Name __________________________________________ ID: ___________________________________________________ _______________ Cognitive Science Minor Committee Date

Gering, Jon C.

288

Curriculum Vitae Name: Basem Yousef Mahmoud Alsadi  

E-Print Network [OSTI]

Curriculum Vitae · Name: Basem Yousef Mahmoud Alsadi · Subject(s) Of Major Teaching Responsibility

289

Employee Accident / Incident Investigation Report Employee Name _________________________________________________________________  

E-Print Network [OSTI]

Employee Accident / Incident Investigation Report Employee Name's Title _________________________________________________________________ Date and Time of Accident accident occurred

Long, Nicholas

290

Fluid Inclusion Gas Analysis  

SciTech Connect (OSTI)

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

291

Fluid Inclusion Gas Analysis  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

292

Holographic Chaplygin gas model  

E-Print Network [OSTI]

In this paper we consider a correspondence between the holographic dark energy density and Chaplygin gas energy density in FRW universe. Then we reconstruct the potential and the dynamics of the scalar field which describe the Chaplygin cosmology.

M R Setare

2007-04-27T23:59:59.000Z

293

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

294

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

295

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

296

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalled GeothermalInstitution Name

297

Excitation in low-current discharges and breakdown in He at low pressures and very high electric field to gas density ratios E/N  

SciTech Connect (OSTI)

We investigate optical emission from low-current discharges in He at very high electric field to gas density ratios E/N between parallel plate electrodes. We also determine the electrical breakdown and the voltage-current behavior at low currents. The E/N are 300 Td to 9 kTd (1 Td=10{sup -21} V m{sup 2}) at pressures times electrode separations p{sub 0}d from 3 to 0.9 Torr cm. Absolute optical emission probabilities versus distance are determined for the 501.6 nm line (3 {sup 1}P{yields}2 {sup 1}S) and for the 587.6 nm line (3 {sup 3}D{yields}2 {sup 3}P) by reference to Boltzmann calculations at our lowest E/N and to published pressure dependent electron beam experiments. At E/N below 1 kTd, the emission follows the exponential growth of the electron density, while at above 7 kTd heavy particle excitation is evident near the cathode. Collisional transfer of excitation from the singlet to the triplet system dominates the 587.6 nm excitation. Comparisons of models with experiments show the importance of excitation and of electron production at the cathode by fast He atoms produced by charge transfer collisions of He{sup +} with He. The breakdown voltage versus p{sub 0}d is multivalued for p{sub 0}d{approx}1.5 Torr cm. At currents below 100 {mu}A and our lower E/N, the discharge voltage decreases linearly with current as expected for an increasing electron yield with ion energy and E/N at the cathode.

Jelenkovic, B.M.; Phelps, A.V. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States); Institute of Physics, P.O. Box 75, Belgrade (Serbia and Montenegro); JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440 (United States)

2005-01-01T23:59:59.000Z

298

Fast-growing willow shrub named `Canastota`  

DOE Patents [OSTI]

A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-15T23:59:59.000Z

299

Page 1/3 -Curriculum vitae of Surname(s) First name(s) Curriculum Vitae  

E-Print Network [OSTI]

Page 1/3 - Curriculum vitae of Surname(s) First name(s) Europass Curriculum Vitae Personal/3 - Curriculum vitae of Surname(s) First name(s) Dates 1989 to present Name and Address of emplyee National Engineering, NTUA Principal subjects/occupational skills covered 5 years curriculum for a Chemical Engineer

300

Decay of an ultracold fermionic lithium gas near a Feshbach resonance The interactions between atoms can be strongly modified by tuning magnetic fields to  

E-Print Network [OSTI]

Decay of an ultracold fermionic lithium gas near a Feshbach resonance The interactions between the interaction strength is crucial in the search for a superfluid phase transition. Otherwise, the phase lithium gas near a Feshbach resonance, Phys. Rev. Lett. 89, 203201 (2002). 2. K.M. O'Hara, S.L. Hemmer, S

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sepia : semantic parsing for named entities  

E-Print Network [OSTI]

People's names, dates, locations, organizations, and various numeric expressions, collectively called Named Entities, are used to convey specific meanings to humans in the same way that identifiers and constants convey ...

Marton, Gregory A. (Gregory Adam), 1977-

2004-01-01T23:59:59.000Z

302

M.T. Thomas Recipient Named | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M.T. Thomas Recipient Named M.T. Thomas Recipient Named EMSL Recognizes Patrick Roach for Postdoc Achievement Dr. Patrick Roach Patrick Roach, now an environmental scientist at...

303

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

304

University of Michigan -Traveler Contact Information Name __________________________________  

E-Print Network [OSTI]

University of Michigan - Traveler Contact Information Name __________________________________ Phone __________________________________ Email __________________________________ University of Michigan/Clinic __________________________________ Address __________________________________ Phone __________________________________ University of Michigan

Eustice, Ryan

305

REQUEST FOR CHANGE OF RECORD Name Change  

E-Print Network [OSTI]

(ex. from variation to legal name) or Add Middle Name/Initial ­ Copy of birth certificate, or valid U. Documentation Required for Date of Birth Changes: Copy of birth certificate, or valid U.S. passportREQUEST FOR CHANGE OF RECORD Name Change Social Security Number Change Date of Birth Change

306

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

SciTech Connect (OSTI)

In May and July, 1997, a consortia of operators and service companies conducted a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker, 1997). Microseismic data were collected and processed for six hydraulic fracture treatments in two wells (3 completion intervals per well) (Mayerhofer et al., 2000). One well was completed with gel-proppant treatments in which a viscous crosslink gel was injected to entrain high concentrations of sand proppant into formation. The second well was completed using treated water and very low proppant concentrations (waterfracs). Waterfracs have been shown to be just as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost. Mayerhofer and Meehan (1998) suggest two possible reasons why waterfracs are successful: (1) Induced shear displacement along natural and hydraulic fractures results in self-propping (shear dilation enhanced by fracture branching, proppant and spalled rock fragments), and (2) Fracture extension and cleanup is easier to achieve with low-viscosity fluids. With improved source location precision and focal mechanism determination (fracture plane orientation and sense of slip), we have reexamined the Cotton Valley data, comparing the seismicity induced by water and gel-proppant treatments at common depth intervals. We have improved the location precision and computed focal mechanism of microearthquakes induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas. Conventional gel-proppant treatments and treatments using treated water and very low proppant concentrations (waterfracs) were monitored. Waterfracs have been shown to be just as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost (Mayerhofer and Meehan, 1998). Comparison of the seismicity induced by the two treatment types show similar distributions of event locations and focal mechanisms for common depth intervals. We interpret the induced seismicity to be primarily controlled by the natural fracture geometry and independent of treatment design. By implication, we expect the effectiveness of shear-induced fracture propping to be independent of the treatment fluid in Cotton Valley reservoirs.

Rutledge, J. T. (James T.); Phillips, W. S. (William Scott)

2002-01-01T23:59:59.000Z

307

Natural Gas Discovery and Development Impacts on Rio Vista and Its Community  

E-Print Network [OSTI]

60 3. Rio Vista Natural Gas Field: The 193677 4. Calpine Natural Gas Company…………………………………………….82 5.Company [B0120] 4. Calpine Natural Gas, L.P. [C1330] ******

Gbedema, Tometi Koku

2006-01-01T23:59:59.000Z

308

Name of Lecture Intensive Thermal Engineering  

E-Print Network [OSTI]

gas, Carnot cycle 2. Available energy (Exergy) 3. Gas power cycles (Otto cycle, Diesel cycle, Gas turbine, etc.) 4. Vapor power cycles (Rankin cycle, Heat pump) 5. Basic concepts of heat transfer

309

Vernon Daub Named Carlsbad Field Office Deputy Manager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles -winsVenue and6.34 6.54

310

Note Field Name Worksheet Cell Status Definition Report Table Tab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 andNot So Permafrost Under FERC

311

SAFETY ACKNOWLEDGEMENT Field Trip Name: __________________________ Trip Dates from:_________ to:_________  

E-Print Network [OSTI]

, plant or insect allergies, medical conditions (heart trouble, breathing problems, diabetes, etc.) Do you

Rothman, Daniel

312

CONTACT LIST Records Management Field Officers (RMFOs) NAME  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, JuneDid y ou knowof

313

Vendor Phone Vendor Fax Last Name First Name Middle Initial Phone Number  

E-Print Network [OSTI]

Vendor Phone Vendor Fax Last Name First Name Middle Initial Phone Number Vendor Name/Contact Name of Household Goods Vendor Quotation # Rooms to Move Preparer Fax INSTRUCTIONS 2. Select a vendor from the approved vendor list on the Travel Operations website http

de Lijser, Peter

314

Personal Advisors Last Name First Name Personal Advisor  

E-Print Network [OSTI]

Diana Pedro Bordalo Barbier-Mueller Zoe Pedro Bordalo Barendson Lorenzo Pedro Bordalo Barnes James Pedro Maris Goldmanis Field Alexander Maris Goldmanis Fisayo Mary Maris Goldmanis Foley Amy Maris Goldmanis Vinay Nundlall Katz James Vinay Nundlall Khatami Sarah Vinay Nundlall Khositpaphada Raphiphorn Vinay

Royal Holloway, University of London

315

B.Sc. Specialization in Environmental Earth Sciences 2014-2015 Name ____________________________  

E-Print Network [OSTI]

B.Sc. Specialization in Environmental Earth Sciences 2014-2015 Name ____________________________ I Analysis _______ EAS 354 Env. Earth Science Field School _______ *6 of EAS 327 Environmental discuss their optional courses with the Environmental Earth Sciences advisor. For students entering

Machel, Hans

316

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect (OSTI)

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

317

Company Name Majors recruiting Authorizatio  

E-Print Network [OSTI]

CCC Information Services Inc http://ccc.cccis.com / All areas of Engineering, All IT - related fields - Computer Science, Computer Engineering, Software Engineering, Information Technology Management Cert US PTI - Computer Science, Computer Engineering, Software Engineering, Information Technology Management BS, MS US

Heller, Barbara

318

Crop and Soil Science Degree Checklist Name: ____________________________  

E-Print Network [OSTI]

and Soil Science Degree Checklist Name: ____________________________ ID Intensive (SOIL 325) (3) _______ HHS 231 ­ Lifetime Fitness for Health (2. Global Issues (3) (*soil science electives meeting requirement) _______ Science

Grünwald, Niklaus J.

319

National Hispanic engineering organization names Sandia manager...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hispanic engineering organization names Sandia manager Engineer of the Year | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

320

Name of Module: Optical Remote Sensing  

E-Print Network [OSTI]

calibration, pre-processing of satellite images, arithmetic image operations, principal axis transform, image textures, microwave systems, radar with synthetic aperture (SAR) 3. Module Components Course Name

Wichmann, Felix

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

GEOL 5303 Project Presentations Presenter name: ______________________________________________  

E-Print Network [OSTI]

pertinent materials. 10 7 4 0 Conclusion: What did you learn? Presenter summarizes total project (triumphsGEOL 5303 Project Presentations Presenter name: ______________________________________________ Project title: ___________________________________________________________ Project content Superb

Smith-Konter, Bridget

322

-UNIT NAME C-728 Motor Cleaning Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNIT NUMBER 33 -UNIT NAME C-728 Motor Cleaning Facility -REGULATORY STATUS--3:.:::.0:..04(--u) -LOCATION North of C-720 (Map...

323

Patterns of Royal Name-giving  

E-Print Network [OSTI]

Namensform des Konigs mnTw-Htp nb-Hpt-ra . Mitteilungen desHe also took a Golden Horus name Htp nTrw , “The gods are

Leprohon, Ronald

2010-01-01T23:59:59.000Z

324

Daniel Lee Cloyd named Counterintelligence Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FBI officer accepts LANL counterintelligence post November 10, 2010 Daniel Lee Cloyd named Counterintelligence Office leader LOS ALAMOS, New Mexico, November 10, 2010-Daniel Lee...

325

Athletic Training 2013-14 Name: ______________________________________________________________________  

E-Print Network [OSTI]

Curriculum Athletic Training 2013-14 Name ______________ ______________ __________________ Pre-Athletic Training F Sp ATP 280 ______________ ______________ __________________ Basic Recognition ______________ ______________ __________________ Counseling Psychology F Sp PSY 405 ______________ ______________ __________________ Athletic Training Courses

Boyce, Richard L.

326

Fast-growing willow shrub named `Canastota`  

DOE Patents [OSTI]

A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-05-15T23:59:59.000Z

327

A method for evaluating a gas reservoir using a digital computer  

E-Print Network [OSTI]

RESERVOIR SHP ~ ~ PSIG EVALUATION DATE WHP ~ ePSIG GAS ORIGINALLY IN PLACEeHMCF ~ EVALUATION DATE CUH PROD HMCF 442 442 ' 2662 F 03 -3 WELL ASANDONHENT RATEeMMCFD ~ 10000 WELL NAMES EVALUAI'ION TIME 5[RCHFIELD 1-4 GRIFFIN ESTATE 1-17 KOELSCH 1... OWNER FIELD XX COUNTY AND STATE SAHPLE GAS FIELD BACA COUNTYe COLORADO X DR XX NYR X 0. 06000 15 X NIL XX NIW( I) XX NIW(2) XX NIW(3) XX NIW(4) XX NIW(5) X -0 -0 X Cl 1) XX C(2) XX C(3) XX C(4) XX C(5) XX C(6) XX C(7) X 7 ~ 00140 -0 ~ 16660 0...

Garb, Forrest Allan

1963-01-01T23:59:59.000Z

328

VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies I. Atlas of the 2D gas structure  

E-Print Network [OSTI]

We present an atlas of a sample of local (U)LIRGs covering the luminosity range log(L_IR/L_sun)=11.1-12.4. The atlas is based on near-infrared H and K-band VLT-SINFONI IFS, and presents the ionised, partially ionised, and warm molecular gas 2D flux distributions and kinematics over a FoV of 3x3 kpc (LIRGs) and 12x12kpc (ULIRGs) and with average linear resolutions of 0.2kpc and 0.9kpc, respectively. The different phases of the gas show a wide morphological variety with the nucleus as the brightest Br_g source for 33% of the LIRGs and 71% of the ULIRGs, whereas all the (U)LIRGs have their maximum H_2 emission in their nuclear regions. In LIRGs, the ionised gas distribution is dominated by the emission from the star-forming rings or giant HII regions in the spiral arms. The Br_g and [FeII] line at 1.644 micron trace the same structures, although the emission peaks at different locations in some of the objects, and the [FeII] seems to be more extended and diffuse. The ULIRG subsample contains mainly pre-coalescen...

López, J Piqueras; Arribas, S; Alonso-Herrero, A; Bedregal, A G

2012-01-01T23:59:59.000Z

329

Field ionization from carbon nanofibers  

E-Print Network [OSTI]

The Micro Gas Analyzer project aims to develop power-efficient, high resolution, high sensitivity, portable and real-time gas sensors. We developed a field ionizer array based on gated CNTs. Arrays of CNTs are used because ...

Adeoti, Bosun J

2008-01-01T23:59:59.000Z

330

Two-Phase Fluid-Solid Flow Name of Supervisor: Dr D. Harris  

E-Print Network [OSTI]

in the fluid and the dispersion may be maintained by a fluid flow. There is a mechanical interaction between of discrete particles, (2) as a fluid, (3) as a dense gas and using the statistical mechanics of granular flowTwo-Phase Fluid-Solid Flow Name of Supervisor: Dr D. Harris Email: david

Sidorov, Nikita

331

Faculty name Faculty lab website (if available)  

E-Print Network [OSTI]

://www.umass.edu/comparativegenomics/index.html Name of person to directly oversee apprentice LiJun Ma Position of person overseeing apprentice Faculty://www.umass.edu/turfpathology/ Name of person to directly oversee apprentice Geunhwa Jung Position of person overseeing apprentice of person to directly oversee apprentice Gina Davis Position of person overseeing apprentice Postdoc Title

Wadsworth, Patricia

332

Energy Department Names Elliot Mainzer Bonneville Power Administration...  

Energy Savers [EERE]

Energy Department Names Elliot Mainzer Bonneville Power Administration Administrator Energy Department Names Elliot Mainzer Bonneville Power Administration Administrator January...

333

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network [OSTI]

occurring at the field. Further, the controlling parameters for hydrate dissociation in porous media are quantified and a sensitivity study is presented. Chapter VI presents the results of a simulation experiment done to evaluate the performance of a..., the location iv of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed...

Grover, Tarun

2008-10-10T23:59:59.000Z

334

First Name Last Name Affiliation Title/Position Amanda Abbott Student Sustainability Initiative Waste Reduction Coordinator  

E-Print Network [OSTI]

University of Oregon Student Sustainability Coordinator Alexander de Roode Portland Community College Coordinator Amy Dvorak Lewis & Clark College Sustainability Manager Christel Eichner Portland StateFirst Name Last Name Affiliation Title/Position Amanda Abbott Student Sustainability Initiative

Escher, Christine

335

First Name Last Name Email Address Christopher Aleshire caleshire@gmail.com  

E-Print Network [OSTI]

First Name Last Name Email Address Christopher Aleshire caleshire@gmail.com Rosalind Allen rallen2 gm266@hw.ac.uk Keith Mathieson keith.mathieson@strath.ac.uk Alison McDonald am306@st

Greenaway, Alan

336

What's in a Name: A Study of Names, Gender Inference, and Gender Behavior in Facebook  

E-Print Network [OSTI]

What's in a Name: A Study of Names, Gender Inference, and Gender Behavior in Facebook Cong Tang-SWS, Kaiserslautern, Germany Email: rchen@mpi-sws.org Abstract. In this paper, by crawling Facebook public profile probability. First, we use the name list as part of a novel and powerful technique for inferring Facebook

Saxena, Nitesh

337

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

338

08/26/09 PHYSICS 223 NAME__________________  

E-Print Network [OSTI]

-B. The container-B has a volume four times the volume of container-A. Container B holds the same type of ideal gas ______ ______________________________________________________________________________ 3. One mol of nitrogen gas (assume to behave as an ideal gas) is initially confined to a volume V1 the entropy change of the gas when it undergoes a reversible process from state "f "to state "g". a) - 2.6 J

La Rosa, Andres H.

339

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

340

Detecting Networks Employing Algorithmically Generated Domain Names  

E-Print Network [OSTI]

and hence has no com- mon IP address or a common domain name. Let ip = I be the total number of IP-addresses that are present after the F1 stage. and let d = D be total number of domain names that are present after the F1 stage. The vertices of graph G... for the second level domain name of xyz.com. At times a few of the IP addresses would end up in this component class because of a shortage in the 27 analysis period, given enough time ideally all the IP addresses (hosting server) of a single business unit...

Ashwath Kumar Krishna Reddy

2011-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High potential recovery -- Gas repressurization  

SciTech Connect (OSTI)

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

342

APPOINTMENT TO STUDENT'S COMMITTEE STUDENT NAME  

E-Print Network [OSTI]

APPOINTMENT TO STUDENT'S COMMITTEE STUDENT NAME: I understand and take responsibility for carrying out the obligations of serving on the above MPS student's committee: · Provide guidance and assistance with student internship selection and acquisition; · Approve

Miami, University of

343

Advisor's name: ______________________________________ SPRING 2014 SOJ ADVISING SURVEY  

E-Print Network [OSTI]

Advisor's name: ______________________________________ SPRING 2014 SOJ ADVISING SURVEY appointments to see your advisor? _________Current online scheduler _________A new online scheduling system would you like to meet with your advisor? _________Once per month _________Once per semester

Mohaghegh, Shahab

344

ACCOUNTS PAYABLE CHECK REQUEST FORM Vendor Name  

E-Print Network [OSTI]

ACCOUNTS PAYABLE CHECK REQUEST FORM Vendor Name Remit to Address City State Zip Code SECTION 2 INSTRUCTIONS Use the link to view approved categories. Vendor Number (if known) DP Requester AP Entry Check

de Lijser, Peter

345

Name: PeopleSoft#: University of Pittsburgh  

E-Print Network [OSTI]

Name: PeopleSoft#: 1 University of Pittsburgh HOUSING/FOOD SERVICES CONTRACT This Housing/Food Services Contract (this "Contract") is made by and between the University of Pittsburgh

Sibille, Etienne

346

Listing of awardee names: Active awards  

SciTech Connect (OSTI)

This catalog/directory presents DOE`s procurement and assistance data system, arranged according to awardee name, bin, completion date, description of work, division, vendor ID, city, state, congressional district, contract value, obligations to date, P/S.

Not Available

1994-07-01T23:59:59.000Z

347

NAME/TEAM: ______________________________________ LIBS postlab -1  

E-Print Network [OSTI]

). The heat of vaporization for water is 2270 kJ/kg. #12;NAME, or white monitor screen truly "white"? d. Why do you think a TV remote is manufactured to emit

Nizkorodov, Sergey

348

Bradbury Science Museum -Scavenger Hunt Group Names-___________________________  

E-Print Network [OSTI]

Bradbury Science Museum - Scavenger Hunt Group Names- ___________________________ Try to find all of these things somewhere in the museum. a satellite: What does a satellite do? Soma Cube: How many small cubes

349

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

1996-05-07T23:59:59.000Z

350

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

351

A density functional tight binding/force field approach to the interaction of molecules with rare gas clusters: Application to (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters  

SciTech Connect (OSTI)

We propose in the present paper a SCC-DFTB/FF (Self-Consistent-Charge Density Functional based Tight Binding/Force-Field) scheme adapted to the investigation of molecules trapped in rare gas environments. With respect to usual FF descriptions, the model involves the interaction of quantum electrons in a molecule with rare gas atoms in an anisotropic scheme. It includes polarization and dispersion contributions and can be used for both neutral and charged species. Parameters for this model are determined for hydrocarbon-argon complexes and the model is validated for small hydrocarbons. With the future aim of studying polycyclic aromatic hydrocarbons in Ar matrices, extensive benchmark calculations are performed on (C{sub 6}H{sub 6}){sup +/0}Ar{sub n} clusters against DFT and CCSD(T) calculations for the smaller sizes, and more generally against other experimental and theoretical data. Results on the structures and energetics (isomer ordering and energy separation, cohesion energy per Ar atom) are presented in detail for n = 1–8, 13, 20, 27, and 30, for both neutrals and cations. We confirm that the clustering of Ar atoms leads to a monotonous decrease of the ionization potential of benzene for n ? 20, in line with previous experimental and FF data.

Iftner, Christophe; Simon, Aude; Korchagina, Kseniia; Rapacioli, Mathias; Spiegelman, Fernand [Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse (France)] [Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse (France)

2014-01-21T23:59:59.000Z

352

The Intense Radiation Gas  

E-Print Network [OSTI]

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2005-03-08T23:59:59.000Z

353

To be completed by the applicant: Name: Print or type your full legal name as it appears on your birth certificate and other legal documents  

E-Print Network [OSTI]

birth certificate and other legal documents: __________________________________________________________________________________________ Last or Family Name First Name Middle Name Date of Birth: _________________________ (Month

354

SLE($?,?$)and Boundary Coulomb Gas  

E-Print Network [OSTI]

We consider the coulomb gas model on the upper half plane with different boundary conditions, namely Drichlet, Neuman and mixed. We related this model to SLE($\\kappa,\\rho$) theories. We derive a set of conditions connecting the total charge of the coulomb gas, the boundary charges, the parameters $\\kappa$ and $\\rho$. Also we study a free fermion theory in presence of a boundary and show with the same methods that it would lead to logarithmic boundary changing operators.

S. Moghimi-Araghi; M. A. Rajabpour; S. Rouhani

2005-08-07T23:59:59.000Z

355

Ligand field photofragmentation spectroscopy of [Ag(L){sub N}]{sup 2+} complexes in the gas phase: Experiment and theory  

SciTech Connect (OSTI)

Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L){sub N}]{sup 2+} complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO{sub 2} as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.

Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O.; Cox, Hazel; Stace, Anthony J. [Department of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ (United Kingdom)

2007-08-14T23:59:59.000Z

356

Standardizing Naming Conventions in Radiation Oncology  

SciTech Connect (OSTI)

Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).

Santanam, Lakshmi [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Hurkmans, Coen [Department of Radiation Oncology, Catharina Hospital, Eindhoven (Netherlands); Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brame, Scott; Straube, William [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Tripuraneni, Prabhakar [Department of Radiation Oncology, Scripps Clinic, LaJolla, CA (United States); Michalski, Jeff [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Bosch, Walter, E-mail: wbosch@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (United States); Advanced Technology Consortium, Image-guided Therapy QA Center, St. Louis, MO (United States)

2012-07-15T23:59:59.000Z

357

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

SciTech Connect (OSTI)

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

358

Daniel Hoag Named Y-12 Site Office Deputy Manager | National...  

National Nuclear Security Administration (NNSA)

Named Y-12 Site Office Deputy Manager Daniel hoag named y-12 site office deputy manager. OAK RIDGE, Tenn. -- Daniel K. Hoag has been named Deputy Manager for the National Nuclear...

359

Naming, Reference, and Sense: Theoretical and Practical Attitudes at Odds  

E-Print Network [OSTI]

Naming, Reference, and Sense: Theoretical and Practical Attitudes at Odds ANDREW NORMAN Northwestern University Three questions lie at the center of the philosophical controversy over proper names: 1) Do proper names have a sense? 2) If so...

Norman, Andrew

360

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

362

Critical Temperature Associated to Symmetry Breaking of Klein--Gordon fields versus Condensation Temperature in a Weakly interacting Bose--Einstein Gas  

E-Print Network [OSTI]

We deduce the relation between the critical temperature associated to the symmetry breaking of scalar fields with one--loop correction potential immersed in a thermal bath and the condensation temperature of the aforementioned system, assuming a harmonic oscillator type potential. We show that these two temperatures are related through the \\emph{scale} associated to the system. In this aim, we infer the order of magnitude for the \\emph{scale} as a function of the corresponding healing length, in order to give a criterium to compare both temperatures. Additionally, we prove that the condensation temperature is independent of the thermal bath within the semiclassical approximation, for a positive coupling constant, assuming that the thermal bath contribution is the lowest energy associated to the system.

Elias Castellanos; Tonatiuh Matos

2012-07-09T23:59:59.000Z

363

Daniel Hoag Named NNSA Production Office Deputy Manager | National...  

National Nuclear Security Administration (NNSA)

Production Office Deputy Manager Daniel Hoag Named NNSA Production Office Deputy Manager OAK RIDGE, Tenn. - Daniel Hoag has been named deputy manager for the National Nuclear...

364

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

365

Emergency Work Y N LBNL Subcontractor Pre-Task Hazard Analysis Company Name: Project Name: Location: Date: .  

E-Print Network [OSTI]

Emergency Work Y N LBNL Subcontractor Pre-Task Hazard Analysis Company Name: Project Name: Location: Company Name: Date: LBNL P/M: LBNL LBNL CSE: LBNL Pg 1 of 2 -Over- 12/12 #12;PTHA Guide Hazards Controls

Eisen, Michael

366

Classes Entering Fall 2009 and Fall 2010 Last Name: First Name: Middle Ini2al  

E-Print Network [OSTI]

Classes Entering Fall 2009 and Fall 2010 Last Name: First Name: Middle Ini2 ini2als for agreement: Date: From the courses listed in the tables above, iden2fy Wri2ng Advisor Approved Ini2als: Date: Probability & Sta2s2cs Final ECE Approval: Advanced

Afshari, Ehsan

367

SAFETY CHECKLIST FOR STUDENT PROJECTS AND EXPERIMENTS First Name: Last Name  

E-Print Network [OSTI]

1 SAFETY CHECKLIST FOR STUDENT PROJECTS AND EXPERIMENTS First Name: Last Name: Faculty Advisor __ Recombinant DNA __ Research animals __ Other: Hazardous Chemicals (Attach a Material Safety Data Sheet Clothing (e.g., laboratory coat, laboratory gown, leather apron, leggings) Protective Eyewear (e.g., safety

New Hampshire, University of

368

Ultrafast gas switching experiments  

SciTech Connect (OSTI)

We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

1996-11-01T23:59:59.000Z

369

Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery  

SciTech Connect (OSTI)

This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

2006-09-30T23:59:59.000Z

370

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",10,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",11,0,0,,,,,," " 41305,"ATLANTIC TRADING MARKETING ",11,130,"Motor Gas, Conventional,...

371

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",16,130,"MOTOR GAS, CONVENTIONAL, OTHER",1004,"PERTH AMBOY, NJ","NEW JERSEY",1,428,"GERMANY",72,0,0,,,,, 38748,"BP PRODUCTS N AMERICA INC ",1,121,"MOTOR GAS BLENDING COMPONENTS,...

372

MATLAB Quick Guide Name Description Example  

E-Print Network [OSTI]

MATLAB Quick Guide Symbol/ Command Name Description Example help help Help menu for any command or symbol in MATLAB Help : Help sum % comment MATLAB comment symbol; MATLAB will skip any line beginning for multiplication a = 5 * 5 ; / divide Symbol for division b = 5 / 1 ; ; semi-colon (1) Tells MATLAB to suppress

Smith-Konter, Bridget

373

Using the Web for Name Authority Work  

E-Print Network [OSTI]

While many catalogers are using the Web to find the information they need to perform authority work quickly and accurately, the full potential of the Web to assist catalogers in name authority work has yet to be realized. The ever-growing nature...

Whittaker, Beth M.; Spillane, Jodi Lynn

2001-01-01T23:59:59.000Z

374

Summer Academy Scholarship Application Name: Date  

E-Print Network [OSTI]

Summer Academy Scholarship Application Name: Date: Address: City: State: Zip Code: Please for this scholarship? In the spirit of St. Vincent DePaul, Summer Academy scholarships are distributed based on both Date Apply online to the Summer Academy before submitting your scholarship application. You must first

Schaefer, Marcus

375

Name : Joe Doe California State University, Fullerton  

E-Print Network [OSTI]

Information (Please enter CWID to retrieve employee information) SAM PLE #12;Name : Joe Doe California State addition to Online Search) Update Enrollment Limit Place Registration Permits Update Service Indicators Center Classes Commencement Degree Checkout Enrollment End of Term Financial Aid Security (select any

de Lijser, Peter

376

Name _____________________________ Semester Student Enrolled ____________________ Advisor: ___________________________ Degree ___________________________________  

E-Print Network [OSTI]

Name _____________________________ Semester Student Enrolled ____________________ Advisor holding a Doctorate degree; 2. the chair (advisor) must be NRESS faculty; 3. 3 members, including chair. and off-campus members must hold a Doctorate degree and be approved by the student's advisor, the NRESS

Pringle, James "Jamie"

377

Company Name: JobsInNH.com  

E-Print Network [OSTI]

Company Name: JobsInNH.com Web Site: www.jobsinnh.com Industry: Advertising & Marketing Brief Company Overview: "Since 2002, JobsInNH.com has been New Hampshire?s #1 employment resource. As recruiting and accelerate your job search. Connect with the best employers in the state who are hiring now" Majors

New Hampshire, University of

378

PHILOSOPHY MINOR (NON-TEACHING) Student Name:____________________________________________  

E-Print Network [OSTI]

PHILOSOPHY MINOR (NON-TEACHING) 2012-2014 Student Name 361RH Hist of Philosophy: Ancient / Medieval (3 cr) ___ PHL 362 History of Philosophy: Modern (3 cr) ___ PHL 310 Moral Theory (3 cr) ___ PHL 312 Ethics (3 cr) ___ PHL 321 Philosophy & Bio-Medical Ethics (3

Lawrence, Rick L.

379

PHILOSOPHY MINOR (NON-TEACHING) Student Name:____________________________________________  

E-Print Network [OSTI]

PHILOSOPHY MINOR (NON-TEACHING) 2010-2012 Student Name 361RH Hist of Philosophy: Ancient / Medieval (3 cr) ___ PHL 362 History of Philosophy: Modern (3 cr) ___ PHL 310 Moral Theory (3 cr) ___ PHL 312 Ethics (3 cr) ___ PHL 321 Philosophy & Bio-Medical Ethics (3

Maxwell, Bruce D.

380

Project Name Project Number Tagging Type  

E-Print Network [OSTI]

Project Name Project Number Primary Tagging Type Secondary Tagging Type Fish Species Tagging/ Secondary Legal Driver (BiOp, MOA, Accord, etc.) Tagging Purpose Funded Entity Tagging Location Retrieval CWT Recovery Project 2010-036-00 CWT PIT Chinook, coho retrieval, analysis, address PSMFC sampling

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Name Institution Anderson, Christopher Iowa State University  

E-Print Network [OSTI]

Name Institution Anderson, Christopher Iowa State University Anderson, Don NOAA/CPO Baker, Ian;Li, Hongyi PNNL Lindsay, Keith NCAR Lo, Min-Hui National Taiwan University Lombardozzi, Danica Portland Water Bureau Still, Christopher UC Santa Barbara Subin, Zachary Lawrence Berkeley National Lab

382

Name: SU ID: Email: Local Phone  

E-Print Network [OSTI]

Name: SU ID: Email: Local Phone: Date: Date B.S. expected: Mathematics and Science Requirement (see note 3) 5 STAT One of: Stat 141, 203, 205, 215, 225 3 to 5 Mathematics Unit Total (23 units office. Students who complete STATS 116, MS&E 120, or CME 106 in Winter 2008-09 or earlier may count

Pratt, Vaughan

383

Name: SU ID: Email: Local Phone  

E-Print Network [OSTI]

Name: SU ID: Email: Local Phone: Date: Date B.S. expected: Mathematics and Science Requirement (see note 3) 5 STAT One of: Stat 141, 203, 205, 215, 225 3 to 5 Mathematics Unit Total (23 units by the Computer Science undergraduate program office. Students who complete STATS 116, MS&E 120, or CME 106

Pratt, Vaughan

384

Name: SU ID: Email: Local Phone  

E-Print Network [OSTI]

Name: SU ID: Email: Local Phone: Date: Date B.S. expected: Mathematics and Science Requirement Introduction to Probability for Computer Scientists (see note 3) 5 STAT One of: Stat 141, 203, 205, 215, 225 3. Students who complete STATS 116, MS&E 120, or CME 106 in Winter 2008-09 or earlier may count that course

Pratt, Vaughan

385

Date: --20 1. Name (BLOCK LETTERS)  

E-Print Network [OSTI]

Date: - - 20 1. Name (BLOCK LETTERS) : 2. E-Mail ID : 3. Contact Number : +91_____________________ 4. Unit: Eco. & PLANNING STAT-MATH SQC & OR 5. Category you belong : Faculty Visiting Scientist Research Scholar (JRF/SRF/SDP) Student M. Stat MSQE Technical Staff (JTA/STA) Project Staff 6. Duration

Bandyopadhyay, Antar

386

POLICY NAME 1ST READING BY  

E-Print Network [OSTI]

POLICY NAME 1ST READING BY FACULTY SENATE APPROVED BY FACULTY SENATE POSTED FOR PUBLIC COMMENT APPROVED BY PRES or PROVOST ADOPTED FINAL POLICY DESTINATION Student Pregnancy Leave Pending Regents Professor (Version 1) 01/26/2011 04/27/2011 Regents Professor (Version 2) 04/12/2012 Revised Policy

Maxwell, Bruce D.

387

NAME/TEAM: ______________________________________ GCMS postlab -1  

E-Print Network [OSTI]

NAME/TEAM: ______________________________________ GCMS postlab - 1 GC/MS of Gasoline Postlab Last (%) (w/w) % Ethanol Benzene ________ Convert your v/v % ethanol in gasoline to units of mass % (w/w %) of oxygen in gasoline. (Density of ethanol = 0.789 g/mL, Density of gasoline = 0.66 g/mL). Use dimensional

Nizkorodov, Sergey

388

CURRICULUM VITAE Name: John Charles Priscu  

E-Print Network [OSTI]

and Oceanography winter meeting, Salt Lake City. February 2003. Participant and discussion leader, National ScienceCURRICULUM VITAE Name: John Charles Priscu Birthdate: September 20, 1952 Citizenship: U-present. Chair, SCAR-SALE (Subglacial Antarctic Lake Environments) International Scientific Planning Group

Lawrence, Rick L.

389

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

390

Building Name 100 Antoinette 191 DTE  

E-Print Network [OSTI]

2-Jul-13 Building Name Bldg No Utility 100 Antoinette 191 DTE 1011 Ferry East 527 DTE 110 E. Warren Hancock West 074 DTE Academic/Administrative Building 062 DTE Alex Manoogian Hall 155 PLD Alumni House 042 PLD Art Building 040 PLD Atchison (South) Hall 104 DTE Athletic Multi-purpose Indoor Facility 091 PLD

Cinabro, David

391

Written Report 2 Name: Lee Tsakh  

E-Print Network [OSTI]

this very difficult shot in an indoor environment. Integrated System Ball-E will be based around routine before firing at the target. Ball-E's systems will be based on a Calibrate to determine timeWritten Report 2 Name: Lee Tsakh Robot: Ball-E Course: EEL5666C IMDL Instructors: Dr. A. Antonio

Fang, Yuguang "Michael"

392

Name, title of the presentation Decision Support  

E-Print Network [OSTI]

-off Analysis · Trade-off tool BBN topology · Aggregate information as input to the trade-off tool ­ Trust aggregation schema #12;9 Security Solution Trade-Off Analysis Risk-driven analysis Trade-off analysis best1 Name, title of the presentation Decision Support for Choice of Security Solution: The AORDD

393

Module name: Interactive computer graphics Abbreviation: ICG  

E-Print Network [OSTI]

Module name: Interactive computer graphics Abbreviation: ICG Study semester: 2 nd semester (SS majoring in "Graphics and Visualization" Teaching methods/SWS: 2 SWS lecture with approx. 15 students 2 SWS: Computer Vision, cryptography and algorithms, computer graphics lecture in Bachelor study program Learning

Ahlers, Volker - Fakultät IV

394

Monthly Tank Inspection Log Name of Campus  

E-Print Network [OSTI]

Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

Rosen, Jay

395

Payment list S.No Names Country  

E-Print Network [OSTI]

Payment list S.No Names Country 1 A. Bueck Germany 2 A. Kronenburg Germany 3 Achintya Mukhopadhyay Chennai 4 Christoph Kirse Germany 5 Heiko Briesen Germany 6 Jitendra Kumar Germany 7 Mahesh V . Panchagnula Chennai 8 Marchisio, D. L. Italy 9 Markus Kraft UK 10 Martin. A. J. Hartig Germany 11 Menwer M

Srinivasan, N.

396

Rank Project Name Directorate, Dept/Div  

E-Print Network [OSTI]

Devalver High Energy Nuclear Physics, CAD (M. Van Essendelft) $953 $4,000.00 0.24 20 cylinders (haz waste,000 $830.00 7.23 6 liters of industrial waste 8 Disposal of #6 Fuel Oil * EENS (Yousif Celebi $500 $4Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1

397

Hough Transform Common Names: Hough transform  

E-Print Network [OSTI]

Hough Transform Common Names: Hough transform Brief Description The Hough transform is a technique that the desired features be specified in some parametric form, the classical Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, etc. A generalized Hough transform can

Masci, Frank

398

Rank Project Name Directorate, Dept/Div  

E-Print Network [OSTI]

waste 2 Motion Lights Energy Sciences & Technology, EENS (Dave Elling) $3,200 $7,000.00 0.46 Energy Light Source, NSLS (John Aloi) $1,500 $5,200.00 0.29 200 gallons corrosive waste 6 Electronic RecyclingRank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1

399

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-Verdín, Carlos

400

OTC NAMES 2013 DISTINGUISHED ACHIEVEMENT AWARD RECIPIENTS  

E-Print Network [OSTI]

Conference on Gas Hydrates. Two decades later, the conference has grown to more, professor and researcher in the area of hydrates for four decades. The modeling books on hydrates

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS  

SciTech Connect (OSTI)

Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least for the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.

Clark, E.

2013-08-31T23:59:59.000Z

402

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 WeekMarketProduct:

403

Rarefied gas dynamics and its applications to vacuum technology F. Sharipov  

E-Print Network [OSTI]

Rarefied gas dynamics and its applications to vacuum technology F. Sharipov Universidade Federal do Paraná, Curitiba, 81531-990, Brazil Abstract Basic concepts of rarefied gas dynamics are given in a concise form. Some problems of rarefied gas flows are considered, namely, calculations of velocity slip

Sharipov, Felix

404

Part 1: To be completed by the student Last Name: First Name  

E-Print Network [OSTI]

named experienced any of the following symptoms: Yes No 1. New, productive cough for more than 2 weeks 2. Coughing up blood 3. Hoarseness lasting more than 3 weeks 4. Night sweats lasting more than

Galles, David

405

Ames Lab Named an Industry Safety Leader  

ScienceCinema (OSTI)

The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

Wessels, Tom

2013-03-01T23:59:59.000Z

406

Los Alamos National Laboratory names cleanup subcontractors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A BCleanup subcontractors named Los

407

Improved gas mixtures for gas-filled radiation detectors  

DOE Patents [OSTI]

Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

1980-03-28T23:59:59.000Z

408

CONTROL ID: 427251 CONTACT (NAME ONLY): Suguru Noda  

E-Print Network [OSTI]

cooled and then supplied to the substrates. Not the gas-phase temperature itself but the gas was then realized not only when heated gas was supplied to the substrates, but also when the heated gas was once

Maruyama, Shigeo

409

A Distributed Web-based Naming System for Smart Ger^ome Bovet and Jean Hennebert  

E-Print Network [OSTI]

A Distributed Web-based Naming System for Smart Buildings G´er^ome Bovet and Jean Hennebert LTCI momentum. The field of smart buildings is a promising playground where the use of sensors allows. This is especially true for smart buildings applications where pervasive devices can appear and disappear, as well

Paris-Sud XI, Université de

410

Bachelor of Science in Health Sciences with a NAME: Concentration in Health Services Administration UIN#  

E-Print Network [OSTI]

credentials to practice in their field, and have experiences as a health care provider. This program builds or supervisory position in a health care agency or to establish a professional business. 2. Students mustBachelor of Science in Health Sciences with a NAME: Concentration in Health Services Administration

411

Bachelor of Science, Mechanical Engineering, 2014-2015 Name ID# Date  

E-Print Network [OSTI]

Equations with Matrix Theory 4 MATH 360 Engineering Statistics or MATH 361 Probability and Statistics I 3 MEBachelor of Science, Mechanical Engineering, 2014-2015 Name ID# Date General Degree Requirements Communication 3 DLS Social Sciences course in a second field 3 ENGR 120 Introduction to Engineering or ENGR 130

Barrash, Warren

412

Name: Donald P. Greenberg Title: Director, Program of Computer Graphics; Jacob Schurman Professor of Computer Graphics  

E-Print Network [OSTI]

Name: Donald P. Greenberg Title: Director, Program of Computer Graphics; Jacob Schurman Professor of Computer Graphics Office: 580 Rhodes Hall Phone: 6072557444 Email: dpg5@cornell.edu University Activities · Director, Program of Computer Graphics Graduate Fields · Architecture Science, Computer

Keinan, Alon

413

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect (OSTI)

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

414

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",201...

415

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

416

Hot Gas Halos in Galaxies  

SciTech Connect (OSTI)

We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

2010-06-08T23:59:59.000Z

417

Design of an electronically-actuated gas lift safety valve  

E-Print Network [OSTI]

Gas lift valves are widely used in oil production fields to pump recycled gas and nitrogen into the production tubing, to sustain production by aerating the oil and lifting it to the ground or sea surface. Today's industry ...

Yu, Changkuan, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

418

Wet-gas compression in twin-screw multiphase pumps  

E-Print Network [OSTI]

encountered when operating under conditions with high gas volume fractions (GVF). Twin-screw multiphase pumps experience a severe decrease in efficiency when operating under wet-gas conditions, GVF over 95%. Field operations have revealed severe vibration...

Chan, Evan

2009-05-15T23:59:59.000Z

419

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

420

Fast-growing willow shrub named `Tully Champion`  

DOE Patents [OSTI]

A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

422

Page 1 of 7 Installation Name ____________________________________________________________  

E-Print Network [OSTI]

chlorine q liquid flow q ammonia (NH3) q other: _______________ q gas velocity q carbon dioxide (CO2) q other: _______________ q liquid velocity q carbon monoxide (CO) q other: _______________ b) Have any modular q loop q other:______________ #12;06/07/99 Page 3 of 7 c) The system is q 4-20 mA control wiring q

US Army Corps of Engineers

423

Working Gas Capacity of Depleted Fields  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009

424

Natural Gas Depleted Fields Storage Capacity  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough 1996) inthroughthrough 1996)

425

Natural Gas Liquids New Field Discoveries  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History802 82735

426

Hobart named American Chemical Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History Publications HistoryHistoryHobart named

427

Company Name Tax Credit* Manufacturing Facility's  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat Two AluminumWHAT:Energy1Company Name

428

Jia named Materials Research Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologies |Jennifer Dunn JenniferGraduatesJia named

429

Baer named a 2015 APS Fellow | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High Energy Physics (HEP)Baer named a 2015

430

Hobart named American Chemical Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlasticsreduction TheHistoryHobart named

431

Lienert named American Welding Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser TheLessonsLienert Named American

432

Property:Incentive/Name | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation, searchExpireDtString JumpName Property

433

JLab Scientist Named Fellowship Winner | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/SurfacePump-TestingJEDI: JobsTimothy|Scientist Named

434

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

435

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

436

LOST/STOLEN WALLET INVENTORY & EMERGENCY CHECKLIST Don't Lose These Names & Numbers: Fill out this personal guide & keep it in a safe place. If your wallet/purse is lost or stolen  

E-Print Network [OSTI]

LOST/STOLEN WALLET INVENTORY & EMERGENCY CHECKLIST Don't Lose These Names & Numbers: Fill out-mail: Phone: Electric Company (24-hr # for emergency electrical supply problems) - Phone: Gas/Propane/Heating-Oil

Oklahoma, University of

437

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by

438

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecision

439

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign govCampaignsPrecisionCampaign

440

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) byCampaign

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FY12 -NEW AWARDS BY INVESTIGATOR Name/Project  

E-Print Network [OSTI]

FY12 - NEW AWARDS BY INVESTIGATOR Name/Project Number Agency Name Project Title % Credit Project MEASUREMENTS OF RATE CONSTANTS AND PROJECT DISTRIBUTIONS FOR ION-MOLECULE REACTIONS AND ..R...... 100 105

Arnold, Jonathan

442

WHAT'S IN A NAME? GLOBAL WARMING VERSUS CLIMATE CHANGE  

E-Print Network [OSTI]

WHAT'S IN A NAME? GLOBAL WARMING VERSUS CLIMATE CHANGE May 2014 #12;What's In A Name? Global Warming vs. Climate Change 1 TABLE OF CONTENTS PREFACE NATIONAL SURVEY STUDY 2: GLOBAL WARMING VS. CLIMATE CHANGE............................ 10 Is global

Haller, Gary L.

443

FIRST YEAR APPRENTICES Name (15) @uchicago.edu  

E-Print Network [OSTI]

FIRST YEAR APPRENTICES Name (15) @uchicago.edu Ian Alevy ianalevy Joshua Bosshardt jbosshardt Xin Hamming Zhang Hanmingzyy[gmail] SECOND and THIRD YEAR APPRENTICES Name (16) @uchicago.edu Aashirwad Anand

May, J. Peter

444

9 Place-names in north-west Greenland  

E-Print Network [OSTI]

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 9 Length of track 23 minutes Title of track Place-names in north-west Greenland Translation...

Leonard, Stephen Pax

445

Department of Energy Names Director for Office of Indian Energy...  

Office of Environmental Management (EM)

Names Director for Office of Indian Energy Policy and Makes Available 2 Million for Clean Energy Projects on Tribal Lands Department of Energy Names Director for Office of Indian...

446

REFERENCE CHECK QUESTIONS Candidate Name:_____________________ Date of Reference:_____________  

E-Print Network [OSTI]

are the candidate's most significant strengths? Any areas for improvement? If you were in a position to hire:_____________ Reference Name:_____________________ Company:____________________ Conducted by:_______________________ Phone (name) handle conflict? How about pressure? Stress? Describe the candidate's productivity, commitment

Provancher, William

447

Name ID# Date General Degree Credit Requirements  

E-Print Network [OSTI]

field Area III core course in any field 3-5 4 4 MUS 119 Materials of Music I MUS 120 Materials of Music II MUS 121 Ear Training I MUS 122 Ear Training II MUS 219 Materials of Music III MUS 220 Materials 3 MUS-APL 10 Concert Class* MUS-APL 108, 109 Class Piano Senior Recital** OR Senior Project*** *8

Barrash, Warren

448

Gas Model of Gravitons with Light Speed  

E-Print Network [OSTI]

We first review some aspects of gravitational wave and the thermodynamic expression of Einstein field equations, these achieved conclusions allow people to think of Einstein's gravitational wave as a kind of sound wave in ordinary gas which propagates as an adiabatic compression wave. In the following, using the properties of photon gas in "white wall box", we find an analogous relationship between ordinary gas and photon gas through sound velocity formula. At last, by taking the ordinary gas as an intermediary, we find that gravitational wave is analogous to photon gas, or equally, gravitons are analogous to photons although they are different in some ways such as spins and coupling strengths, and these different properties don't affect their propagation speeds. Utilizing this analogous relationship, we achieve the gas model of gravitons and this model naturally gives out the light speed of gravitons

Ming Chen; Yong-Chang Huang

2014-06-17T23:59:59.000Z

449

Interacting holographic generalized Chaplygin gas model  

E-Print Network [OSTI]

In this paper we consider a correspondence between the holographic dark energy density and interacting generalized Chaplygin gas energy density in FRW universe. Then we reconstruct the potential of the scalar field which describe the generalized Chaplygin cosmology.

M. R. Setare

2007-08-01T23:59:59.000Z

450

Is Machine Learning the Wrong Name? Xiaojin Zhu  

E-Print Network [OSTI]

Is Machine Learning the Wrong Name? Xiaojin Zhu Department of Computer Sciences University of Wisconsin-Madison October 2010 (University of Wisconsin) Is Machine Learning the Wrong Name? 1 / 33 #12;Iris Learns "Cow" (University of Wisconsin) Is Machine Learning the Wrong Name? 2 / 33 #12;Iris Learns "Cow

Zhu, Xiaojin "Jerry"

451

Page 1 of 12 CONTRACTOR NAME CONTRACT # CONTRACT  

E-Print Network [OSTI]

Page 1 of 12 CONTRACTOR NAME CONTRACT # CONTRACT START CONTRACT EXPIRE ADDRESS LINE 1 CITY STATE-3-/850/10/31/14 11-01-2011 10-31-2014 21 Griffin Road North Windsor CT 06095 Jennifer Peshka CONTRACTOR NAME CONTRACT # CONTRACT START CONTRACT EXPIRE ADDRESS LINE 1 CITY STATE ZIP CODE CONTACT NAME CDM Smith 005

Holsinger, Kent

452

Vendor Name 0000014830 20th Century Lanes Inc  

E-Print Network [OSTI]

Vendor Name 0000014830 20th Century Lanes Inc 0000014893 3D Systems Inc 0000005941 3M Health Alexander Clark Inc 0000009522 Alibris Inc Most Frequently Used Vendors Rev 05/09 #12;Vendor Name 0000012813 American Resurgens Management Corp Most Frequently Used Vendors #12;Vendor Name 0000005766 American Society

Barrash, Warren

453

Appendix A: The Names of Polymers and Polymeric  

E-Print Network [OSTI]

or methylpentene polymethylpentene vinyl chloride poly(vinyl chloride) co-aminocaproic poly(co-aminocaproic acid MATERIALS For homopolymers Monomer name Polymer name X polyX XY poiy(XY) for example ethylene polyethylene acid) [nylon 6] Where the monomer name consists of two words, it should be bracketed in the polymer

Hall, Christopher

454

Benefits of Windows Small Business Server Code Name "Aurora"  

E-Print Network [OSTI]

Benefits of Windows Small Business Server Code Name "Aurora" includes: Daily automatic backups Business Server Code Name "Aurora" provides an easy-to-use solution ideal for first server small businesses with up to 25 users, Windows Small Business Server Code Name "Aurora" provides a cost-effective and easy

Hunt, Galen

455

Application for Degree or Certificate Last Name: Date of Birth  

E-Print Network [OSTI]

Application for Degree or Certificate Last Name: Date of Birth: First Name: Email: Middle Name: UNI" section at http://registrar.columbia.edu. Degree or Certificate for Which You Are Applying School: Grad Year: Month: Select: Feb, May, June (HS only), or Oct Department: Degree or Certificate: Undergraduates

Adams, Mark

456

August 2012 Who Are Our Dirt Tanks Named After?  

E-Print Network [OSTI]

August 2012 Who Are Our Dirt Tanks Named After? Jornada Experimental Range Maxwell Tank In 2001 as coordinator and pilot. Maxwell Tank was named in her honor in 2002. Although Maxwell enjoys the notoriety of having a dirt tank named after her, she has yet to see her namesake. F. N. Ares F.W. Engholm K

457

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

A. E.; Copp, J. F. . 111991. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field. Proceedings of () ; () : Sixteenth workshop on...

458

Distortive Effects of Initial-Based Name Disambiguation on Measurements of Large-Scale Coauthorship Networks  

E-Print Network [OSTI]

Scholars have often relied on name initials to resolve name ambiguities in large-scale coauthorship network research. This approach bears the risk of incorrectly merging or splitting author identities. The use of initial-based disambiguation has been justified by the assumption that such errors would not affect research findings too much. This paper tests this assumption by analyzing coauthorship networks from five academic fields - biology, computer science, nanoscience, neuroscience, and physics - and an interdisciplinary journal, PNAS. Name instances in datasets of this study were disambiguated based on heuristics gained from previous algorithmic disambiguation solutions. We use disambiguated data as a proxy of ground-truth to test the performance of three types of initial-based disambiguation. Our results show that initial-based disambiguation can misrepresent statistical properties of coauthorship networks: it deflates the number of unique authors, number of component, average shortest paths, clustering ...

Kim, Jinseok

2015-01-01T23:59:59.000Z

459

a r r i o r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION  

E-Print Network [OSTI]

Admissions Parking Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION 7046 70127012 1155 10331033 1150 1039 1038

Carver, Jeffrey C.

460

The Chemistry of Flammable Gas Generation  

SciTech Connect (OSTI)

The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

ZACH, J.J.

2000-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Gauss Bonnet dark energy Chaplygin Gas Model  

E-Print Network [OSTI]

In this work we incorporate GB dark energy density and its modification, MGB, with Chaplygin gas component. We show that, presence of Chaplygin gas provides us a feature to obtain an exact solution for scalar field and potential of scalar field. Investigation on squared of sound speed provides a lower limit for constant parameters of MGB model. Also, we could find some bounds for free parameters of model.

Karimkhani, Elahe; Khodam-Mohammadi, Abdolhossein

2015-01-01T23:59:59.000Z

462

NON-RESIDENT ALIEN DATA COLLECTION FORM Last or Family Name ___________________________________ First Name _____________________________  

E-Print Network [OSTI]

NON-RESIDENT ALIEN DATA COLLECTION FORM Last or Family Name for Nonresident Aliens. A nonresident alien subject to wage withholding must give the employer a completed Form W, nonresident aliens should use the following instructions: 1) Check only "Single" marital status on line 3

Yates, Andrew

463

Page 1/3 -Curriculum vitae of Surname(s) First name(s)  

E-Print Network [OSTI]

(s) James L. Terry Address(es) 12 Eastbourne St., Cambridge, MA 02131 USA Telephone(s) +1 6172538637 Mobile. of Technology ­ Plasma Science and Fusion Center Type of business or sector Scientific research Dates 1978 is various expert and advisory capacities Name and address of employer Massachusetts Inst. of Technology

Terry, Jim

464

Fast-growing willow shrub named `Millbrook`  

DOE Patents [OSTI]

A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-04-24T23:59:59.000Z

465

Fast-growing willow shrub named `Oneida`  

DOE Patents [OSTI]

A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-05-01T23:59:59.000Z

466

Fast-growing willow shrub named `Millbrook`  

DOE Patents [OSTI]

A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

Abrahamson, Lawrence P [Marcellus, NY; Kopp, Richard F [Marietta, NY; Smart, Lawrence B [Geneva, NY; Volk, Timothy A [Syracuse, NY

2007-04-24T23:59:59.000Z

467

Fast-growing willow shrub named `Otisco`  

DOE Patents [OSTI]

A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-09-11T23:59:59.000Z

468

Fast-growing shrub willow named `Owasco`  

DOE Patents [OSTI]

A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-07-03T23:59:59.000Z

469

Fast-growing willow shrub named `Oneida`  

DOE Patents [OSTI]

A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-01T23:59:59.000Z

470

Name ID# Date General Degree Credit Requirements  

E-Print Network [OSTI]

in history ECON 201 Principles of Macroeconomics Area II core course in a third field Area II core course Topics ITM 105 Spreadsheet Topics ITM 106 Database Topics ITM 310 Business Intelligence ITM 315 Database

Barrash, Warren

471

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-Print Network [OSTI]

the injected gas bubble to not have the expected effect, because the cone established may have a greater radius at the original WGC than the maximum radius of the gas bubble. In other words, the cone tends to avoid the low permeability zone by going around... the warm seasons of the year. The best storage sites found up to now are deleted or partly aeleted gas fields close to large consumption areas. In this study, gas storage reservoirs with gas originally left by a water drive are studied. The production/injection...

Haugen, Sigurd Arild

1980-01-01T23:59:59.000Z

472

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",2,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",77,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING...

473

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

INC ",90,840,"Unfinished Oils, Heavy Gas Oils",2812,"RICHMOND, CA","CALIFORNIA",5,428,"GERMANY",247,0,0,"CHEVRON USA INC ",120,"RICHMOND","CA","CALIFORNIA",5 "application...

474

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",1,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",1,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING...

475

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",5,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",22,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING...

476

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

GAS BLENDING COMPONENTS, ALL OTHER",1003,"NEWARK, NJ","NEW JERSEY",1,428,"GERMANY",215,0,0,"KINDER MORGAN ","CARTERET","NJ","NEW JERSEY",1 39478,"BP PRODUCTS NORTH...

477

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",15,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",2,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING...

478

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

INC ",91,134,"MOTOR GAS BLENDING COMPONENTS",1001,"NEW YORK, NY","NEW YORK",1,429,"GERMANY, DR (E)",46,0,0,"BP PRODTS N AMER INC ","CARTERET","NJ","NEW JERSEY",1 37652,"BP...

479

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

CO ",19,840,"UNFINISHED OILS, HEAVY GAS OILS",1003,"NEWARK, NJ","NEW JERSEY",1,428,"GERMANY",108,0,0,"CONOCOPHILLIPS ","BAYWAY","NJ","NEW JERSEY",1 39113,"CONOCOPHILLIPS CO...

480

RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...  

U.S. Energy Information Administration (EIA) Indexed Site

",13,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO RICO",6,428,"GERMANY",17,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING...

Note: This page contains sample records for the topic "gas field names" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect (OSTI)

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

482

"GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.242.6 173.697,1,195,"Alabama

483

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

484

Oil and Gas Production Optimization; Lost Potential due to Uncertainty  

E-Print Network [OSTI]

Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

Johansen, Tor Arne

485

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

486

Fast-growing willow shrub named `Otisco`  

DOE Patents [OSTI]

A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-09-11T23:59:59.000Z

487

Fast-growing shrub willow named `Owasco`  

DOE Patents [OSTI]

A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

2007-07-03T23:59:59.000Z

488

Results of gas monitoring of double-shell flammable gas watch list tanks  

SciTech Connect (OSTI)

Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document.

Wilkins, N.E.

1995-01-19T23:59:59.000Z

489

Revised: 10-2012 NAME: Michael G. Giesselmann  

E-Print Network [OSTI]

, Ignitrons, Utility Power Systems, Gas Discharges, High Voltage and High Current Design, High Speed Optical

Zhuang, Yu

490

Name : Choi, Kyungmin () Date of Birth : January 24, 1982  

E-Print Network [OSTI]

. - Carbon dioxide and methane gas storage 4. Gas storage and separation - Design and synthesis of multi-scale zeolitic imidazolate framework (nanoZIFs) 2. Electrochemical energy storage on porous materials-porous system for high capacity gas storage media - Measurement and analysis for various gas storage

Yaghi, Omar M.

491

Conversion economics for Alaska North Slope natural gas  

SciTech Connect (OSTI)

For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

Thomas, C.P.; Robertson, E.P.

1995-07-01T23:59:59.000Z

492

Critical Dynamics of Spontaneous Symmetry Breaking in a Homogeneous Bose gas  

E-Print Network [OSTI]

We explore the dynamics of spontaneous symmetry breaking in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verify the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirm its underlying hypothesis, the freezing of the correlation length near the transition due to critical slowing down. Our measurements agree with beyond mean-field theory, and support the previously unverified expectation that the dynamical critical exponent for this universality class, which includes the $\\lambda$-transition of liquid $^4$He, is $z=3/2$.

Nir Navon; Alexander L. Gaunt; Robert P. Smith; Zoran Hadzibabic

2014-10-30T23:59:59.000Z

493

Temporal condensed matter physics in gas-filled photonic crystal fibers  

E-Print Network [OSTI]

Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics -- but with the role of space and time reversed -- namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics only, now realized with purely optical means in the temporal domain.

Saleh, Mohammed F; Tran, Truong X; Marini, Andrea; Belli, Federico; Abdolvand, Amir; Biancalana, Fabio

2014-01-01T23:59:59.000Z

494

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

495

Gas Utilities (New York)  

Broader source: Energy.gov [DOE]

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

496

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

497

Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

498

Safety Data Sheet Material Name: OXYGEN, COMPRESSED GAS SDS ID: MAT12831  

E-Print Network [OSTI]

. POTENTIAL HEALTH EFFECTS Inhalation Short Term: irritation, chest pain, cough, changes in body temperature, pain in extremities, tremors, lung congestion, convulsions Long Term: irritation, cough, chest pain

Carpick, Robert W.

499

Richard Lazarus Named as Executive Director of National Commission...  

Office of Environmental Management (EM)

Executive Director of National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling Richard Lazarus Named as Executive Director of National Commission on the BP...

500

UNIT NUMBER SWMU 175 UNIT NAME: Concrete Rubble Pile (28...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

75 UNIT NAME: Concrete Rubble Pile (28) REGULATORY STATUS: AOC LOCATION: Outside Security Fence, East of C-360 Building in KPDES Outfall Ditch 002. APPROXIMATE DIMENSIONS: 400 ft...