Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects  

Science Conference Proceedings (OSTI)

In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, FRT, Institut Jean Le Rond D'Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l'Ecole (France); Guibert, Philippe [UPMC Universite Paris 06, FRT, Institut Jean Le Rond D'Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l'Ecole (France)

2008-11-15T23:59:59.000Z

2

Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Waste Hauler with Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T. Reppert Mack Trucks, Inc. Allentown, Pennsylvania J. Chiu Southwest Research Institute San Antonio, Texas Subcontract Report NREL/SR-540-38222 September 2005 Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst Final Report February 24, 2004 - February 23, 2006 T. Reppert Mack Trucks, Inc. Allentown, Pennsylvania J. Chiu Southwest Research Institute San Antonio, Texas NREL Technical Monitor: R. Parish Prepared under Subcontract No. ZCI-4-32049-01 Subcontract Report NREL/SR-540-38222 September 2005 National Renewable Energy Laboratory

3

Translation of dilution tolerance for gasoline SI engine  

E-Print Network (OSTI)

There are a variety of fuel improvement strategies being developed for spark ignition engines which use dilution. Many of these technologies use a combination of different diluents. It is impractical in optimizing these ...

Niekamp, Troy S. (Troy Steven)

2013-01-01T23:59:59.000Z

4

NUCLEAR GAS ENGINE  

SciTech Connect

A preliminary design study of the nuclear gas engine, consisting of a gas-cooled reactor directly coupled to a reciprocating engine, is presented. The principles of operation of the proposed gas engine are outlined and typical variations anre discussed. The nuclear gas engine is compared with other reciprocating engines and air compressors. A comparison between the ideal and actual cycles is made, with particular attention given to pumping, heat, and other losses to be expected. The applications and development of the nuclear gas engine are discussed. (W.D.M.)

Fraas, A.P.

1958-09-25T23:59:59.000Z

5

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

6

The Propagation of Photons in the Dilute Ionized Gas  

E-Print Network (OSTI)

The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.

Yijia Zheng

2013-05-02T23:59:59.000Z

7

The Propagation of Photons in the Dilute Ionized Gas  

E-Print Network (OSTI)

The dilute ionized gas is very popular in the Universe. Usually only the Compton interactions, the "Sunyaev-Zel'dovich" effect, were considered while photons propagated in this medium. In this paper the "soft-photon process" is considered. Due to the soft photons emitted during the propagation of a photon in the dilute ionized gas, the main photon (propagating in the original direction) will be redshifted. The formula to calculate this redshift is derived.

Zheng, Yijia

2013-01-01T23:59:59.000Z

8

Heavy-Duty Waste Hauler with Chemically Correct Natural Gas Engine Diluted with EGR and Using a Three-Way Catalyst: Final Report, 24 February 2004 -- 23 February 2006  

DOE Green Energy (OSTI)

This report discusses the development of a E7G 12-liter, lean-burn natural gas engine--using stoichiometric combustion, cooled exhaust gas recirculation, and three-way catalyst technologies--for refuse haulers.

Reppert, T.; Chiu, J.

2005-09-01T23:59:59.000Z

9

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems  

Science Conference Proceedings (OSTI)

Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.

He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

2011-12-01T23:59:59.000Z

10

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

Science Conference Proceedings (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

11

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory Chapters Glossary Bibliography Biographical Sketch Summary Underground storage of natural gas

Mohaghegh, Shahab

12

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

13

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

14

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

15

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

16

Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste  

DOE Green Energy (OSTI)

Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

Person, J.C.

1996-05-30T23:59:59.000Z

17

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

18

A quadrature-based third-order moment method for dilute gas-particle flows  

Science Conference Proceedings (OSTI)

Dilute gas-particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid drag, and particle-particle collisions. However, the direct numerical solution of the kinetic equation is intractable for most applications ... Keywords: Boltzmann equation, Gas-particle flows, Kinetic equation, Quadrature method of moments, Velocity distribution function

R. O. Fox

2008-06-01T23:59:59.000Z

19

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

20

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Regenerator for gas turbine engine  

DOE Patents (OSTI)

A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.

Lewakowski, John J. (Warren, MI)

1979-01-01T23:59:59.000Z

22

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

23

Multiple volume compressor for hot gas engine  

DOE Patents (OSTI)

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

24

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

25

Time-dependent gas phase kinetics in a hydrogen diluted silane plasma  

SciTech Connect

The gas phase kinetics in a high-pressure hydrogen diluted silane plasma has been studied at time scales of 10{sup -2}-6x10{sup 2} s. The time-resolved gas phase composition shows the following kinetics at different time scales: silane decomposition and polysilane generation in < or approx. 2x10{sup -1} s, nanoparticle formation and plasma density reduction in 10{sup -1}-10{sup 0} s, polysilane accumulation in 10{sup 0}-10{sup 2} s, and silane depletion and electrode heating in > or approx. 10{sup 1} s. Disilane radicals are implied to be the dominant film precursors in addition to silyl radicals.

Nunomura, S.; Kondo, M. [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yoshida, I. [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Advanced Photovoltaics Development Center, Advanced Energy Research Center, Sanyo Electric Co., Ltd., 108 Ohmori, Anpachi-cho, Anpachi-gun, Gifu 503-0195 (Japan)

2009-02-16T23:59:59.000Z

26

Gas turbine engines with particle traps  

DOE Patents (OSTI)

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

27

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

28

Small gas-turbine-engine technology  

SciTech Connect

Performance of small gas turbine engines in the 250 to 1000 hp size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for lower efficiencies of smaller engines are well known: Component efficiencies are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it has been recognized that a focused effort addressing technologies for small engines was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. This paper presents results of both in-house research and contract studies, conducted with Allison, AVCO Lycoming, Garrett, Teledyne CAE, and Williams International Rotorcraft results are emphasized. Projected fuel savings of 22-42% could be attained. Accompanying direct operating cost reductions of 11-17%, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

Niedwiecki, R.W.; Meitner, P.L.

1991-01-01T23:59:59.000Z

29

The Lyapunov spectrum of the many-dimensional dilute random Lorentz gas  

E-Print Network (OSTI)

For a better understanding of the chaotic behavior of systems of many moving particles it is useful to look at other systems with many degrees of freedom. An interesting example is the high-dimensional Lorentz gas, which, just like a system of moving hard spheres, may be interpreted as a dynamical system consisting of a point particle in a high-dimensional phase space, moving among fixed scatterers. In this paper, we calculate the full spectrum of Lyapunov exponents for the dilute random Lorentz gas in an arbitrary number of dimensions. We find that the spectrum becomes flatter with increasing dimensionality. Furthermore, for fixed collision frequency the separation between the largest Lyapunov exponent and the second largest one increases logarithmically with dimensionality, whereas the separations between Lyapunov exponents of given indices not involving the largest one, go to fixed limits.

Astrid S. de Wijn; Henk van Beijeren

2004-04-16T23:59:59.000Z

30

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network (OSTI)

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

31

Integrated Computational Materials Engineering from a Gas Turbine ...  

Science Conference Proceedings (OSTI)

Presentation Title, Integrated Computational Materials Engineering from a Gas Turbine Engine Perspective. Author(s), John F Matlik, Ann Bolcavage. On-Site...

32

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network (OSTI)

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

33

Symbolic identification for fault detection in aircraft gas turbine engines  

E-Print Network (OSTI)

Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

Ray, Asok

34

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network (OSTI)

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

35

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

36

External combustor for gas turbine engine  

DOE Patents (OSTI)

An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

Santanam, Chandran B. (Indianapolis, IN); Thomas, William H. (Indianapolis, IN); DeJulio, Emil R. (Columbus, IN)

1991-01-01T23:59:59.000Z

37

Combustor assembly in a gas turbine engine  

Science Conference Proceedings (OSTI)

A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

Wiebe, David J; Fox, Timothy A

2013-02-19T23:59:59.000Z

38

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

39

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

40

West Virginia University 1 Department of Petroleum & Natural Gas Engineering  

E-Print Network (OSTI)

of the petroleum and natural gas industry in meaningful and important jobs, continue their education towardsWest Virginia University 1 Department of Petroleum & Natural Gas Engineering Department of Petroleum and Natural Gas Engineering E-mail: samuel.ameri@mail.wvu.edu Degree Offered · Bachelor of Science

Mohaghegh, Shahab

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Development of Direct Age 718 for Gas Turbine Engine Disk ...  

Science Conference Proceedings (OSTI)

as a commercial gas turbine aircraft engine disk material are described. Initial ... Engines (GEAE) in the production of gas turbine engine components (1).

42

Natural Gas Engine Development: July 2003--July 2005  

DOE Green Energy (OSTI)

Describes project to develop natural gas engines that would be certifiable to nitrogen oxide and nonmethane hydrocarbon emission levels below 2004 federal standards.

Lekar, T. C.; Martin, T. J.

2006-03-01T23:59:59.000Z

43

ARTICLE: Abradable Coatings Increase Gas Turbine Engine Efficiency  

Science Conference Proceedings (OSTI)

Oct 11, 2007 ... Topic Title: ARTICLE: Abradable Coatings Increase Gas Turbine Engine Efficiency Topic Summary: F. Ghasripoor et. al. article from Materials...

44

Faradayic EPD of YSZ TBCs for Gas Turbine Engines  

Science Conference Proceedings (OSTI)

Presentation Title, Faradayic EPD of YSZ TBCs for Gas Turbine Engines. Author( s), Heather McCrabb, Joseph Kell. On-Site Speaker (Planned), Joseph Kell.

45

COMPRESSIVE STRESS SYSTEM FOR A GAS TURBINE ENGINE - Energy ...  

The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket ...

46

Natural Gas Engine Development: July 2003 -- July 2005  

SciTech Connect

Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

Lekar, T. C.; Martin, T. J.

2006-11-01T23:59:59.000Z

47

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

48

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

49

Stirling engine with integrated gas combustor  

SciTech Connect

This paper discusses a Stirling engine. It comprises heat transfer stacks having a cooler, regenerator and heat exchanger stacked end-to-end with a working cylinder adjacent each of the stacks and connected therewith by a hot connecting duct, the heat exchangers including an annular cluster of circumferentially spaced tubes extending from the regenerator in a substantially axial direction to an annular manifold axially spaced from the regenerator such that at any given time during operation of the Stirling engine working fluid in the tubes is flowing in a single axial direction through the heat exchanger, a combustion chamber on an end of each of the stacks having a gas flow outlet communicating with the interior of the heat exchanger tube cluster, air inlets for each of the combustion chambers for allowing air to enter the interior of the chambers, and a nozzle within the combustion chambers for introducing a combustible fuel within the combustion chambers, whereby the combustible fuel and air combust in the combustion chambers and generate hot gases which pass between the tubes applying heat to the heat exchanger.

Meijer, R.J.

1990-12-18T23:59:59.000Z

50

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

51

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

52

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network (OSTI)

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered in as many projects as are Absorption. units. Where once the only studies being analyzed were absorption vs. electric chiller operation costs. Now, the choice is: Why, Where, and How to choose between gas fired Absorption and GED chillers. WHY Absorption or Engine ? . Absorption uses the most environmentally friendly refrigerant - water. . Absorption chillers are chiller/heaters Absorption chillers are manufactured by the four US major manufacturers Absorption chillers have few moving parts . Engine chillers provide "free" hot water Engine chillers retrofit with DX systems . Engine chillers use less gas per ton WHERE Do Absorption And Engine Chillers Belong? . Absorption: Office buildings, restaurants, industries, churches, universities . Engine: Hospitals, universities, hotels, apartments, industries HOW To Choose Between Absorption And Engine Chillers? Energy cost Operation and maintenance costs Equipment cost Environmental concerns Thermal requirements . Space requirements Staff experience

Phillips, J. N.

1996-01-01T23:59:59.000Z

53

Conversion of a diesel engine to a spark ignition natural gas engine  

DOE Green Energy (OSTI)

Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

NONE

1996-09-01T23:59:59.000Z

54

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

55

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

56

West Virginia University 1 Department of Petroleum and Natural Gas Engineering  

E-Print Network (OSTI)

West Virginia University 1 Department of Petroleum and Natural Gas Engineering Samuel Ameri, P.E, M Offered · Master of Science in Petroleum and Natural Gas Engineering · Doctor of Philosophy in Engineering with a major in Petroleum and Natural Gas Engineering The Petroleum and Natural Gas Engineering (PNGE) graduate

Mohaghegh, Shahab

57

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

DOE Green Energy (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

58

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

Science Conference Proceedings (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

59

SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES  

DOE Green Energy (OSTI)

The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

2005-01-01T23:59:59.000Z

60

Serial cooling of a combustor for a gas turbine engine  

DOE Patents (OSTI)

A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydraulically actuated gas exchange valve assembly and engine using same  

DOE Patents (OSTI)

An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

Carroll, Thomas S. (Peoria, IL); Taylor, Gregory O. (Hinsdale, IL)

2002-09-03T23:59:59.000Z

62

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

63

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

64

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents (OSTI)

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

65

On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini  

E-Print Network (OSTI)

On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini Cleveland sets for the problem of aircraft gas turbine engine health parameter estimation. The performance metric for generating an optimal sensor set [3]. 3. Aircraft gas turbine engines An aircraft gas turbine engine

Simon, Dan

66

Method for detecting gas turbine engine flashback  

SciTech Connect

A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

2012-09-04T23:59:59.000Z

67

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

DOE Green Energy (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

68

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

69

Systems and method for delivering liquified gas to an engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

70

Methods For Delivering Liquified Gas To An Engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2003-09-16T23:59:59.000Z

71

Methods For Delivering Liquified Gas To An Engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2005-10-11T23:59:59.000Z

72

Airfoil seal system for gas turbine engine  

SciTech Connect

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25T23:59:59.000Z

73

The Ground State Energy of a Dilute Bose Gas in Dimension n >3  

E-Print Network (OSTI)

We consider a Bose gas in spatial dimension $n>3$ with a repulsive, radially symmetric two-body potential $V$. In the limit of low density $\\rho$, the ground state energy per particle in the thermodynamic limit is shown to be $(n-2)|\\mathbb S^{n-1}|a^{n-2}\\rho$, where $|\\mathbb S^{n-1}|$ denotes the surface measure of the unit sphere in $\\mathbb{R}^n$ and $a$ is the scattering length of $V$. Furthermore, for smooth and compactly supported two-body potentials, we derive upper bounds to the ground state energy with a correction term $(1+\\gamma)8\\pi^4a^6\\rho^2|\\ln(a^4\\rho)|$ in dimension $n=4$, where $0<\\gamma\\leq C\\|V\\|_{\\infty}^{1/2}\\|V\\|_1^{1/2}$, and a correction term which is $\\mathcal{O}(\\rho^2)$ in higher dimensions.

Anders Aaen

2014-01-23T23:59:59.000Z

74

Micro-combustor for gas turbine engine  

SciTech Connect

An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

Martin, Scott M. (Oviedo, FL)

2010-11-30T23:59:59.000Z

75

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

76

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

77

Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation  

DOE Green Energy (OSTI)

We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL

2011-01-01T23:59:59.000Z

78

Experimental study of rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine.  

E-Print Network (OSTI)

??The rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine were investigated experimentally. Rotordynamic model(XLROTOR) for Gas Generator and Power Turbine were (more)

Na, Uhn Joo

2012-01-01T23:59:59.000Z

79

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents (OSTI)

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

80

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures  

E-Print Network (OSTI)

Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the ...

Kar, Kenneth

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing  

SciTech Connect

PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2009-09-30T23:59:59.000Z

82

Exhaust gas purification system for lean burn engine  

DOE Patents (OSTI)

An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

Haines, Leland Milburn (Northville, MI)

2002-02-19T23:59:59.000Z

83

On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.  

DOE Green Energy (OSTI)

Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J. (Energy Systems); (Cummins Technical Center)

2011-01-01T23:59:59.000Z

84

Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept  

E-Print Network (OSTI)

307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

Ray, Asok

85

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3  

E-Print Network (OSTI)

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

86

Gas turbines engines and transmissions for bus demonstration programs  

SciTech Connect

The technical status report fulfills the contractual requirements of Contract EM-78-C-02-4867. The report covers the period from 31 January 1979 through 30 April 1979 and is a summary of DDA activities for the effort performed on the procurement of eleven (11) Allison GT 404-4 gas turbine engines and five (5) HT740CT and siz (6) V730CT Allison automatic transmissions and the required associated software. (TFD)

Nigro, D.N.

1979-04-01T23:59:59.000Z

87

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

DOE Green Energy (OSTI)

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

88

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

89

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

90

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

Victor W. Wong; Tian Tian; Grant Smedley

2003-08-28T23:59:59.000Z

91

Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives  

Science Conference Proceedings (OSTI)

Aero-engine technology has played a major part in the development of both the industrial gas turbine and, more recently, the combined cycle gas turbine (CCGT) plant. A distinction may be drawn between the direct use of developed aero-engine hardware in power generation (and in marine applications), and the more indirect influence of aero-engine technology, particularly in design of heavy-duty gas turbines. Both the direct use of aero-engine hardware, in gas turbines for power generation, and the indirect influence of aero-engine technology, in the design of more conventional heavy-duty plants (including combined cycle gas turbines, CCGTs), are reviewed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1997-01-01T23:59:59.000Z

92

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2005-09-30T23:59:59.000Z

93

Emission and Performance Comparison of the Natural Gas C-Gas Plus Engine in Heavy-Duty Trucks: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details results of on-road development and emissions characteristics of C-Gas Plus natural gas engine in Viking Freight heavy duty trucks. The objective of this project was to develop, on road and in service, a natural gas truck/bus engine (the C-Gas Plus) with higher horsepower, lower cost, and better performance and diagnostics than the previous C8.3G natural gas engine. The engine was to have an advanced engine management control system to enable implementation of proven technologies that improve engine performance and power density (hp/L). The C-Gas Plus engine was designed to meet the following objectives: (1) Higher engine ratings (280 hp and 850 ft-lb torque for the C-Gas Plus) than the C8.3G natural gas engine; (2) Lower capital cost than the C8.3G engine; and (3) Low emission standards: California Air Resources Board (CARB) low-NO{sub x} (oxides of nitrogen) (2.0 g/bhp-h) and U.S. Environmental Protection Agency (EPA) Clean Fuel Fleet Program ultra-low emission vehicle (ULEV) emission certifications.

Lyford-Pike, E. J.

2003-04-01T23:59:59.000Z

94

Large bore natural gas engine performance improvements and combustion stabilization through reformed natural gas precombustion chamber fueling.  

E-Print Network (OSTI)

??Lean combustion is a standard approach used to reduce NOx emissions in large bore natural gas engines. However, at lean operating points, combustion instabilities and (more)

Ruter, Matthew D.

2010-01-01T23:59:59.000Z

95

Profitability Comparison Between Gas Turbines and Gas Engine in Biomass-Based Power Plants Using Binary Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

This paper employs a binary discrete version of the classical Particle Swarm Optimization to compare the maximum net present value achieved by a gas turbines biomass plant and a gas engine biomass plant. The proposed algorithm determines the optimal ...

P. Reche Lpez; M. Gmez Gonzlez; N. Ruiz Reyes; F. Jurado

2007-06-01T23:59:59.000Z

96

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2006-03-31T23:59:59.000Z

97

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

98

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

99

DEVELOPMENT OF A HYDROGEN COMBUSTOR FOR A MICROFABRICATED GAS TURBINE ENGINE  

E-Print Network (OSTI)

DEVELOPMENT OF A HYDROGEN COMBUSTOR FOR A MICROFABRICATED GAS TURBINE ENGINE A. Mehra, I. A. Waitz Gas Turbine Laboratory, Department of Aeronautics and Astronautics Massachusetts Institute, a program is underway to fabricate a gas turbine engine capable of producing 50W of electrical power

Waitz, Ian A.

100

Heterogeneous reactions in aircraft gas turbine engines R. C. Brown and R. C. Miake-Lye  

E-Print Network (OSTI)

Heterogeneous reactions in aircraft gas turbine engines R. C. Brown and R. C. Miake-Lye Aerodyne to estimate the maximum effect of heterogeneous reactions on trace species evolution in aircraft gas turbines species emissions from gas turbine engines are of interest because of environmental and human health

Waitz, Ian A.

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design and component integration of a T63-A-700 gas turbine engine test facility ; .  

E-Print Network (OSTI)

??A gas turbine engine test cell was developed integrating an Allison T63-A-700 helicopter engine with a superflow water brake dynamometer power absorber. Design specifications were (more)

Eckerle, Brian P.

1995-01-01T23:59:59.000Z

102

STM Stirling Engine-Generator at a Hog Manure Digester Gas Facility  

Science Conference Proceedings (OSTI)

Stirling engines have recently been introduced to the distributed generation market. This report summarizes the results of three projects that used Stirling engine-generators from one manufacturer in applications where they were fueled with digester gas.

2007-08-30T23:59:59.000Z

103

Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

2006-11-30T23:59:59.000Z

104

FLAMELESS COMBUSTION APPLICATION FOR GAS TURBINE ENGINES IN THE AEROSPACE INDUSTRY.  

E-Print Network (OSTI)

??The objective of this thesis is to review the potential application of flameless combustion technology in aerospace gas turbine engines. Flameless combustion is a regime (more)

OVERMAN, NICHOLAS

2006-01-01T23:59:59.000Z

105

Flameholding Studies for Lean Premixed Fuel Injectors for Application in Gas Turbine Engines.  

E-Print Network (OSTI)

??Due to the ever-increasing demand for energy, it is likely that stationary gas turbine engines will require the use of fuels with a diverse range (more)

Marzelli, Steven

2010-01-01T23:59:59.000Z

106

Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine  

DOE Green Energy (OSTI)

Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Not Available

2004-08-01T23:59:59.000Z

107

On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles  

Science Conference Proceedings (OSTI)

Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

Not Available

2003-06-01T23:59:59.000Z

108

Dilution physics modeling: Dissolution/precipitation chemistry  

Science Conference Proceedings (OSTI)

This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

Onishi, Y.; Reid, H.C.; Trent, D.S.

1995-09-01T23:59:59.000Z

109

Fuel injector for use in a gas turbine engine  

Science Conference Proceedings (OSTI)

A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

Wiebe, David J.

2012-10-09T23:59:59.000Z

110

Combustor for a low-emissions gas turbine engine  

DOE Patents (OSTI)

Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

2000-01-01T23:59:59.000Z

111

Airfoil for a turbine of a gas turbine engine  

SciTech Connect

An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

Liang, George (Palm City, FL)

2010-12-21T23:59:59.000Z

112

Axially staged combustion system for a gas turbine engine  

DOE Patents (OSTI)

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

113

Fault detection and isolation in aircraft gas turbine engines. Part 2: validation on a simulation test bed  

E-Print Network (OSTI)

319 Fault detection and isolation in aircraft gas turbine engines. Part 2: validation of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms are built upon,onasimulationtestbed.Thetestbedisbuiltuponanintegratedmodelofageneric two-spool turbofan aircraft gas turbine engine including the engine control system. Keywords: aircraft

Ray, Asok

114

Computational Predictions and Experimental Measurements of the Performance of a Louver Particle Separator for Use in Gas Turbine Engines.  

E-Print Network (OSTI)

??Gas turbine engines that power aircraft operate in harsh environments where solid particles, such as sand, are ingested into the engine. Solid particles damage aircraft (more)

Musgrove, Grant

2009-01-01T23:59:59.000Z

115

Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines.  

E-Print Network (OSTI)

??Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between (more)

Cornwell, Michael

2011-01-01T23:59:59.000Z

116

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

117

Technical-Economic Calculation of Gas Pipeline Network Based on Value Engineering  

Science Conference Proceedings (OSTI)

By technical-economic calculation of the gas pipeline network, the economic diameter can be determined and the project investment can be saved. According to the principle of value engineering, a mathematical model is constructed for technical-economic ... Keywords: value engineering, gas pipeline network, function analysis, technical-economic calculation

Liu Jiayou; Zhao Yanxin

2009-12-01T23:59:59.000Z

118

US10 Capable Prototype Volvo MG11 Natural Gas Engine Development: Final Report, December 16, 2003 - July 31, 2006  

Science Conference Proceedings (OSTI)

The report discusses a project to develop a low-emissions natural gas engine with exhaust gas recirculation (EGR) and a three-way catalyst (TWC).

Tai, C.; Reppert, T.; Chiu, J.; Christensen, L.; Knoll, K.; Stewart, J.

2006-10-01T23:59:59.000Z

119

Development of the next generation medium-duty natural gas engine  

DOE Green Energy (OSTI)

This report summarizes the work done under this subcontract in the areas of System Design, System Fabrication, and Experimental Program. The report contains the details of the engine development process for achieving throttleless stratified charge spark ignition (SI) engine operation as well as advanced turbocharging strategies. Engine test results showing the potential of the direct-injection stratified charge combustion strategy for increasing part-load engine efficiency on a John Deere 8.1-liter natural gas engine are also included in this report. In addition, steady state and step transient engine data are presented that quantify the performance of a variable geometry turbocharger (VGT) as well as a modified waste-gated turbocharger on the engine. The benefits of the technologies investigated during this project will be realized in the form of increased drive-cycle efficiency to diesel-like levels, while retaining the low emissions characteristics of a lean-burn natural gas engine.

Podnar, D.J.; Kubesh, J.T.

2000-02-28T23:59:59.000Z

120

American Institute of Aeronautics and Astronautics PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE ENGINES  

E-Print Network (OSTI)

American Institute of Aeronautics and Astronautics 1 PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE and topped engines. INTRODUCTION Gas turbines are typical power sources used in a wide size range, development, and application of small gas turbines yielding high power density and enabling low-cost air

Müller, Norbert

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbines compressor health. Effects of various gas (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

122

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network (OSTI)

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

Paris-Sud XI, Université de

123

OIL and GAS ENGINEERING Page 1 of 2 SEMESTER OFFERED COURSE PRE-and/or CO-REQUISITES  

E-Print Network (OSTI)

OIL and GAS ENGINEERING Page 1 of 2 1st Year SEMESTER OFFERED COURSE PRE- and/or CO-REQUISITES FALL-req: AMAT 219 2nd Year Oil and Gas Engineering: Regular Program SEMESTER OFFERED COURSE PRE- and/or CO Mechanics of Solids ENGG 202 or 205; AMAT 217 3rd Year Oil and Gas Engineering: Regular Program SEMESTER

Calgary, University of

124

Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation  

E-Print Network (OSTI)

A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas engine oils. Governmental and non-governmental published reports and personal interviews with users, suppliers, and manufacturers were utilized in estimating fuel and lubricant consumption figures for the year 1976. Certain important facts emerged: 1) The installed horsepower of reciprocating engines fueled by natural gas was estimated at 38,800,000 hp. 2) Reciprocating engines fueled by natural gas operated an estimated 115.2 billion brake horsepower - hours. 3) Total natural gas consumed to operate these reciprocating engines in 1976 was estimated at 962 billion cubic feet. 4) The estimated crankcase and cylinder lubricants consumed in natural gas reciprocating engines in 1976 was 33.6 million gallons. This figure represents 2% of the total United States lubricant usage. 5) Widespread use of more fuel efficient crankcase and cylinder lubricants (containing stable colloidal additives) could result in a savings of 28,850,000,000 cubic feet of natural gas each year. The natural gas thus saved would be sufficient to serve all residential customers in the metropolitan Houston area for nine (9) months of each year.

Johnson, D. M.

1979-01-01T23:59:59.000Z

125

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network (OSTI)

A Tour of the Aerodynamic and Hydraulic Research Infrastructure, Department of Engineering, University of Leicester A. Rona and P. D. Williams, Department of Engineering, University of Leicester, UK The Department of Engineering, University of Leicester, maintains a range of fluid dynamics test facilities. Dr

Oak Ridge National Laboratory

126

Fundamental Interaction Mechanisms of Engineered ...  

Science Conference Proceedings (OSTI)

Fundamental Interaction Mechanisms of Engineered Nanomaterials with DNA. Summary: We utilized isotope-dilution liquid ...

2012-10-01T23:59:59.000Z

127

Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine  

E-Print Network (OSTI)

As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

Peck, Jhongwoo, 1976-

2003-01-01T23:59:59.000Z

128

A market and engineering study of a 3-kilowatt class gas turbine generator  

E-Print Network (OSTI)

Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

Monroe, Mark A. (Mark Alan)

2003-01-01T23:59:59.000Z

129

Development and assessment of a soot emissions model for aircraft gas turbine engines  

E-Print Network (OSTI)

Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

Martini, Bastien

2008-01-01T23:59:59.000Z

130

Emissions data for stationary reciprocating engines and gas turbines in use by the gas pipeline transmission industry  

SciTech Connect

A.G.A. Project PR-15-613, conducted under the sponsorship of the Pipeline Committee (PRC), involved two phases. This final report for the overall project combines both of the separate phase reports into a single document. The project was entitled ''Compilation of Emissions Data for Stationary Reciprocating Engines and Gas Turbines in Use by the Gas Pipeline Transmission Industry (Update).'' The purpose of this project was to update the 1980 edition of the Compilation of Emissions Data. Phase I involved collection of emissions data from companies in the natural gas industry and from gas engine manufacturers and recommending engine and gas turbine models for testing under Phase II. Phase I was completed in March 1987 and the findings and recommendations were included in an interim report. Phase II involved emissions testing of a number of reciprocating engines and gas turbines. Phase II was completed in April 1988 and the findings are included in this project final report. 9 refs., 5 tabs.

Fanick, E.R.; Dietzmann, H.E.; Urban, C.M.

1988-04-01T23:59:59.000Z

131

An artificial neural network system for diagnosing gas turbine engine fuel faults  

DOE Green Energy (OSTI)

The US Army Ordnance Center & School and Pacific Northwest Laboratories are developing a turbine engine diagnostic system for the M1A1 Abrams tank. This system employs Artificial Neural Network (AN) technology to perform diagnosis and prognosis of the tank`s AGT-1500 gas turbine engine. This paper describes the design and prototype development of the ANN component of the diagnostic system, which we refer to as ``TEDANN`` for Turbine Engine Diagnostic Artificial Neural Networks.

Illi, O.J. Jr. [Army Ordnance Center and School, Aberdeen Proving Ground, MD (United States). Knowledge Engineering Group (KEG); Greitzer, F.L.; Kangas, L.J. [Pacific Northwest Lab., Richland, WA (United States); Reeve, T. [Expert Solutions, Stratford, CT (United States)

1994-04-01T23:59:59.000Z

132

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

133

Controlling engine exhaust gas recirculation and vacuum inverter  

SciTech Connect

Engine manifold vacuum is inverted by an in-line vacuum inverter which provides a power source for an egr valve actuator for providing desired egr flow in a predetermined range of engine power loading and egr flow is cut off outside the range. The invention utilizes a vacuum inverter employing a pair of spaced diaphragms for controlling an atmospheric air bleed valve to a vacuum chamber powered by manifold vacuum. The diaphragms are spring loaded so as to seek equilibrium positions as vacuum in the chamber varies force. The inverter produces a vacuum output signal which changes inversely with changes in engine manifold vacuum.

Bradshaw, C.E.; Uitvlugt, M.W.

1982-12-28T23:59:59.000Z

134

Compilation of emissions data for stationary reciprocating gas engines and gas turbines in use by the natural gas pipeline transmission industry  

SciTech Connect

This publication compiles the available exhaust emission data for stationary reciprocating engines and gas turbines used by the natural gas pipeline transmission industry into a single, easy-to-use source. Data in the original issue and the revisions were obtained from projects sponsored by the A.G.A. PRC and from inhouse projects within a number of the A.G.A. member companies. Additional data included in this reissue were obtained from additional emissions measurement projects sponsored by the A.G.A. PRC, and from A.G.A. member companies and natural gas engine manufacturers.

Urban, C.M.

1988-05-01T23:59:59.000Z

135

Castability of 718Plus Alloy for Structural Gas Turbine Engine ...  

Science Conference Proceedings (OSTI)

This technology will be implemented for the manufacture of gas turbine structural components ... Cast Alloys for Advanced Ultra Supercritical Steam Turbines.

136

Gas turbine engine control using electrically driven fuel metering pumps.  

E-Print Network (OSTI)

??The aim of this thesis, developed in ROLLS ROYCE PLC, has been to investigate the use of an innovative fuel system on aero gas turbine (more)

BERTOLUCCI, ALESSIO

2008-01-01T23:59:59.000Z

137

Modeling Injection and Ignition in Direct Injection Natural Gas Engines.  

E-Print Network (OSTI)

??With increasing concerns about the harmful effects of conventional liquid fossil fuel emissions, natural gas has become a very attractive alternative fuel to power prime (more)

Cheng, Xu Jr.

2008-01-01T23:59:59.000Z

138

TWRS hydrogen mitigation gas characterization system design and fabrication engineering task plan  

DOE Green Energy (OSTI)

The flammable gas watch-list (FGWL) tanks, which have demonstrated a gas release event (GRE) exceeding 0.625% hydrogen by volume will require additional characterization. The purpose of this additional characterization is to accurately measure the flammable and hazardous gas compositions and resulting lower flammability limit (LFL) of the tank vapor space during baseline and GRE emissions. Data from this characterization will help determine methods to resolve the unreviewed safety questions for the FGWL tanks. This document details organization responsibilities and engineering requirements for the design and fabrication of two gas characterization systems used to monitor flammable gas watch-list tanks.

Straalsund, E.K.

1995-01-01T23:59:59.000Z

139

Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)  

DOE Green Energy (OSTI)

The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

Hane, G.J.

1983-09-01T23:59:59.000Z

140

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

NONE

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

NONE

1998-07-01T23:59:59.000Z

142

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

NONE

1998-05-01T23:59:59.000Z

143

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

NONE

2000-02-01T23:59:59.000Z

144

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

NONE

1999-11-01T23:59:59.000Z

145

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

NONE

1999-12-01T23:59:59.000Z

146

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

NONE

1999-03-01T23:59:59.000Z

147

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

NONE

1999-10-01T23:59:59.000Z

148

Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991  

Science Conference Proceedings (OSTI)

Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

Ernst, W.; Moryl, J.; Riecke, G.

1991-02-01T23:59:59.000Z

149

Engineering analysis of biomass gasifier product gas cleaning technology  

DOE Green Energy (OSTI)

For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

1986-08-01T23:59:59.000Z

150

Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

2003-08-01T23:59:59.000Z

151

The effect of prechambers on flame propagation in a natural-gas powered engine  

DOE Green Energy (OSTI)

Large-bore two-stroke natural-gas-fueled engines commonly are located along natural gas pipelines, siphoning off a small portion of gas from the pipeline for use as a fuel, in order to pump the remaining gas along the pipeline. The KIVA-3 computational fluid dynamics program was used to simulate the compression stroke, combustion, and power stroke in a natural-gas-fueled engine by solving the full Navier-Stokes equations. These calculations include cases with and without prechambers. Prechamber stoichiometry and spark locations were independently varied with the goal of understanding how various prechamber parameters influence the ignition of the fuel-air charge in the main chamber. The goal is to allow the use of very lean main-chamber charges to minimize nitrogen oxide (NO{sub x}) production. These calculations were performed in both two and three dimensions.

Tonse, S.R.; Cloutman, L.D.

1995-08-01T23:59:59.000Z

152

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect

Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

Nigel N. Clark

2006-12-31T23:59:59.000Z

153

Control method for turbocharged diesel engines having exhaust gas recirculation  

SciTech Connect

A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

2000-03-14T23:59:59.000Z

154

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

155

HCCI engine control and optimization  

E-Print Network (OSTI)

natural gas engine setup for stationary power generation. . . . . . . . . . .natural gas engine setup for stationary power generation.

Killingsworth, Nicholas J.

2007-01-01T23:59:59.000Z

156

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

157

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

158

STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES  

DOE Green Energy (OSTI)

Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of VOCs [2], and that lubricating oil is a major contributor. Fitting an oxidation catalyst to the natural gas engine leads to a reduction in nanoparticles emissions in comparison to engines without aftertreatment [2,3,4]. In 2001, the Cummins Westport Plus technology was introduced with the C Gas Plus engine, a popular choice for transit bus applications. This incorporates drive by wire, fully integrated, closed loop electronic controls and a standard oxidation catalyst for all applications. The B Gas Plus and the B Propane Plus engines, with application in shuttle and school buses were launched in 2002 and 2003. The gas-specific oxidation catalyst operates in concert with an optimized ring-pack and liner combination to reduce total particulate mass below 0.01g/bhphr, combat ultrafine particles and control VOC emissions.

Dunn, M

2003-08-24T23:59:59.000Z

159

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

160

Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great  

E-Print Network (OSTI)

gas, is used by companies to produce ethylene gas through a process known as steam cracking. Ethylene for generation, transmission, and distribution of energy, including development of smart electrical grids, to storage, to distribution, and utilization. They develop energy-efficient equipment that burns shale gas

Mohaghegh, Shahab

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Traction drive automatic transmission for gas turbine engine driveline  

SciTech Connect

A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

Carriere, Donald L. (Livonia, MI)

1984-01-01T23:59:59.000Z

162

Computational study of homogeneous and stratified combustion in a compressed natural gas direct injection engine  

Science Conference Proceedings (OSTI)

In recent years, the type of combustion occurred within engine cylinder plays an important role determining the performance and emissions. In the present study, the computational investigation was performed in order to compare characteristics of homogeneous ... Keywords: compressed natural gas, direct injection, exhaust emissions, homogeneous combustion, stratified combustion

S. Abdullah; W. H. Kurniawan; M. A. Al-Rawi; Y. Ali; T. I. Mohamad

2009-02-01T23:59:59.000Z

163

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

164

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

165

On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001  

Science Conference Proceedings (OSTI)

Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

McCaw, D. L.; Horrell, W. A. (Deere and Company)

2001-09-24T23:59:59.000Z

166

An investigation of lean combustion in a natural gas-fueled spark-ignited engine  

SciTech Connect

The objective of this work was to investigate the performance and emission characteristics of natural gas in an original equipment manufacturer (OEM), light-duty, spark-ignited engine being operated in the lean fueling regime and compare the operation with gasoline fueling cases. Data were acquired for several operating conditions of speed, throttle position, air-fuel equivalence ratio, and spark timing for both fuels. Results showed that for stoichiometric fueling, with a naturally aspirated engine, a power loss of 10 to 15 percent can be expected for natural gas over gasoline fueling. For lean operation, however, power increases can be expected for equivalence ratios below about {phi} = 0.80 with natural gas fueling as compared to gasoline. Higher brake thermal efficiencies can also be expected with natural gas fueling with maximum brake torque (MBT) timings over the range of equivalence ratios investigated in this work. Coefficient of variation (COV) data based on the indicated mean effective pressure (IMEP) demonstrated that the engine is much less sensitive to equivalence ratio leaning for natural gas fueling as compared to gasoline cases. The lean limit for a COV of 10 percent was about {phi} = 0.72 for gasoline and {phi} = 0.63 for natural gas. Lean fueling resulted in significantly reduced NO{sub x} levels where a lower plateau for NO{sub x} concentrations was reached at {phi} near or below 0.70, which corresponded to about 220 ppm. For natural gas fueling, this corresponded to about 1.21 gm/kW-h. Finally, with MBT timings, relatively short heat release durations were obtained for lean fueling with natural gas compared to gasoline.

Gupta, M.; Bell, S.R.; Tillman, S.T. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1996-06-01T23:59:59.000Z

167

Engineering Report on the Fission Gas Getter Concept  

SciTech Connect

In 2010, the Department of Energy (DOE) requested that a Brookhaven National Laboratory (BNL)-led team research the possibility of using a getter material to reduce the pressure in the plenum region of a light water reactor fuel rod. During the first two years of the project, several candidate materials were identified and tested using a variety of experimental techniques, most with xenon as a simulant for fission products. Earlier promising results for candidate getter materials were found to be incorrect, caused by poor experimental techniques. In May 2012, it had become clear that none of the initial materials had demonstrated the ability to adsorb xenon in the quantities and under the conditions needed. Moreover, the proposed corrective action plan could not meet the schedule needed by the project manager. BNL initiated an internal project review which examined three questions: 1. Which materials, based on accepted materials models, might be capable of absorbing xenon? 2. Which experimental techniques are capable of not only detecting if xenon has been absorbed but also determine by what mechanism and the resulting molecular structure? 3. Are the results from the previous techniques useable now and in the future? As part of the second question, the project review team evaluated the previous experimental technique to determine why incorrect results were reported in early 2012. This engineering report is a summary of the current status of the project review, description of newly recommended experiments and results from feasibility studies at the National Synchrotron Light Source (NSLS).

Ecker, Lynne; Ghose, Sanjit; Gill, Simerjeet; Thallapally, Praveen K.; Strachan, Denis M.

2012-11-01T23:59:59.000Z

168

Laboratory investigation of the performance of a Holden engine operating on liquified petroleum gas  

SciTech Connect

A laboratory investigation into the relative performances of an engine when operated on both liquified petroleum gas (LPG) and petrol showed that the engine operated at higher termal efficiency on LPG and also that it would operate satisfactorily at leaner air-fuel mixtures on this fuel. Engine performance was less affected by retarded ignition for LPG than for petrol. Furthermore a large increase in dwell angle from the recommended setting had no significant effect on LPG performance. The LPG carburettor when installed in its normal configuration maintained an essentially constant mixture strength with no part throttle leaning of mixtures to give better efficiency nor corresponding full throttle enrichment to give best engine torque.

Webb, N.

1979-08-01T23:59:59.000Z

169

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

170

GLHN Architects & Engineers, Inc. Natural Gas System New Mexico State University Not For Construction 0874.00 Utility Development Plan  

E-Print Network (OSTI)

GLHN Architects & Engineers, Inc. Natural Gas System New Mexico State University Not For Construction 0874.00 Utility Development Plan June 16, 2009 Stage Two Report NATURAL GAS SYSTEM INTRODUCTION New Mexico State University currently uses natural gas, provided by the City of Las Cruces

Castillo, Steven P.

171

The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas sector service company  

E-Print Network (OSTI)

and process flow from high-value oil and gas wells, from exploration and appraisal through to mature fieldThe Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas for the development and delivery of innovative technologies to meet the needs of the oil and gas industry globally

Painter, Kevin

172

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

173

NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment  

SciTech Connect

Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

Parks, JE

2005-02-11T23:59:59.000Z

174

Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition  

Science Conference Proceedings (OSTI)

Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

Azer Yalin; Bryan Willson

2008-06-30T23:59:59.000Z

175

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

Science Conference Proceedings (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

176

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network (OSTI)

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

177

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

178

Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?  

Science Conference Proceedings (OSTI)

The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

Clarkson, Christopher R [ORNL

2011-01-01T23:59:59.000Z

179

Engineering task plan for flammable gas atmosphere mobile color video camera systems  

DOE Green Energy (OSTI)

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

Kohlman, E.H.

1995-01-25T23:59:59.000Z

180

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analysis and synthesis of logical-dynamic systems of automatic control of a gas-turbine engine  

Science Conference Proceedings (OSTI)

Specific features of analysis and synthesis of logical-dynamic automatic control systems with algebraic selectors for gas-turbine engines are considered. Equivalent nonlinear structures of these systems are obtained. Methods for providing stability, ...

V. I. Petunin; A. I. Frid

2012-11-01T23:59:59.000Z

182

Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

Wong, H. C.

2003-07-01T23:59:59.000Z

183

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGLs) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical LNG like fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

184

Utilizing a cycle simulation to examine the use of exhaust gas recirculation (EGR) for a spark-ignition engine: including the second law of thermodynamics  

E-Print Network (OSTI)

The exhaust gas recirculation (EGR) system has been widely used to reduce nitrogen oxide (NOx) emission, improve fuel economy and suppress knock by using the characteristics of charge dilution. However, previous studies have shown that as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and increasing hydrocarbon emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. A thermodynamic cycle simulation of the four-stroke spark-ignition engine was used to determine the effects of EGR on engine performance, emission characteristics and second law parameters, considering combustion instability issues as EGR level increases. A parameter, called 'Fuel Fraction Burned,' was introduced as a function of the EGR percentage and used in the simulation to incorporate the combustion instability effects. A comprehensive parametric investigation was conducted to examine the effects of variations in EGR, load and speed for a 5.7 liter spark-ignition automotive engine. Variations in the thermal efficiencies, brake specific NOx emissions, average combustion temperature, mean exhaust temperature, maximum temperature and relative heat transfer as functions of exhaust gas recycle were determined for both cooled and adiabatic EGR configurations. Also effects of variations in the load and speed on thermal efficiencies, relative heat transfers and destruction of availability due to combustion were determined for 0% EGR and 20% EGR cases with both cooled and adiabatic configurations. For both EGR configurations, thermal efficiencies first increase, reach a maximum at about 16% EGR and then decrease as the EGR level increases. Thermal efficiencies are slightly higher for cooled EGR configuration than that for adiabatic configuration. Concentration of nitric oxide emissions decreases from about 2950 ppm to 200 ppm as EGR level increases from 0% to 20% for cooled EGR configuration. The cooled EGR configuration results in lower nitric oxide emissions relative to the adiabatic EGR configuration. Also second law parameters show the expected trends as functions of EGR. Brake thermal efficiency is higher for the 20% EGR case than that for the no EGR case over the range of load (0 to WOT) and speed (600 rpm to 6000 rpm). Predictions made from the simulation were compared with some of the available experimental results. Predicted thermal efficiencies showed a similar trend when compared to the available experimental data. Also, percentage of unused fuel availability increases as the EGR level increases, and it can be seen as one of the effects of deteriorating combustion quality as the EGR level increases.

Shyani, Rajeshkumar Ghanshyambhai

2008-08-01T23:59:59.000Z

185

Evaluation of local content strategies to plan large engineering projects in the oil & gas industry in high risk country areas  

Science Conference Proceedings (OSTI)

The Local content of a complex project is an important variable to create value and increase the overall sustainability of large engineering projects in the Oil & Gas industry, especially in the developing countries. The paper proposes a method to ... Keywords: causal knowledge map, large engineering projects, local content, scenario analysis

Troncone Enzo Piermichele; De Falco Massimo; Gallo Mos; Santillo Liberatina Carmela; Pier Alberto Viecelli

2012-01-01T23:59:59.000Z

186

Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode  

E-Print Network (OSTI)

The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

Lopez, David M

2007-01-01T23:59:59.000Z

187

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

Science Conference Proceedings (OSTI)

Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

2005-12-28T23:59:59.000Z

188

ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL  

Science Conference Proceedings (OSTI)

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen

2004-04-01T23:59:59.000Z

189

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2006-04-01T23:59:59.000Z

190

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2005-04-01T23:59:59.000Z

191

The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and Multi-dimensional Simulations  

E-Print Network (OSTI)

With the depletion of petroleum based fuels and the corresponding concerns of national energy security issues, natural gas as an alternative fuel in IC engine applications has become an attractive option. Natural gas requires minimum mixture preparation, and is chemically stable, both of which make it a suitable fuel for homogeneous charged compression ignition (HCCI) engines. Compared to petroleum based fuels, natural gas produces less green-house emissions. However, natural gas is hard to auto-ignite and therefore requires a higher compression ratio, some amount of intake heating, or some type of pre-ignition. In addition, natural gas usually has large differences in fuel composition from field to field, which adds more uncertainties for engine applications. The current study determines the auto-ignition characteristics, engine performance, and nitric oxides emissions as functions of major operating parameters for a natural gas fueled HCCI engine, and determines differences relative to gasoline fueled HCCI engines which have been studied for many years. These tasks have been done using both zero- and multi-dimensional engine simulations. By zero-dimensional simulation, the effects of varying equivalence ratios, engine speeds, compression ratio, EGR level, intake pressure and fuel compositions are determined and analyzed in detail. To be able to account for the in-cylinder inhomogeneous effect on the HCCI combustion, multi-zone models coupled with cold-flow CFD simulations are employed in addition to the single-zone model. The effects of non-homogeneous temperature and equivalence ratio stratification on the ignition timing, combustion phasing, and emissions formation have been studied and discussed. Finally, the preliminary two-dimensional axial-symmetric CFD simulations have been conducted to study the in-cylinder temperature and the species distributions, which provide better visualization of the natural gas auto-ignition process.

Zheng, Junnian

2012-05-01T23:59:59.000Z

192

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

193

Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME  

DOE Green Energy (OSTI)

The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

John Pratapas; Daniel Mather; Anton Kozlovsky

2007-03-31T23:59:59.000Z

194

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

195

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

196

Performance and emission studies on biodiesel-liquefied petroleum gas dual fuel engine with exhaust gas recirculation  

Science Conference Proceedings (OSTI)

Biodiesel is an alternative fuel to diesel derived from vegetable oils by transesterification process. It can be used in diesel engines with/without any modification in the engine system. Biodiesel engines emit slightly higher NO x emissions

A. S. Ramadhas; S. Jayaraj; C. Muraleedharan

2010-01-01T23:59:59.000Z

197

ODC/EPA 17 elimination from DOD technical data and gas turbine engines  

SciTech Connect

In response to the 1990 Clean Air Act Amendments, DOD and USAF policy, the Environment Systems Division of the Human Systems Program Office, Human Systems Center, Brooks AFB TX has developed a program to systematically eliminate references to particularly active Class I Ozone Depleting Chemicals (ODC) from gas turbine engine technical data. Additionally, Executive Order 12856 and subsequent DOD directives drive the reduction in volume usage of Environmental Protection Agency (EPA) 17 toxins. Program scope includes the validation of requirements for usage, examination of commercially available alternatives, identification of solutions implemented by manufacturers, and qualification of potential alternatives where necessary. Technical and management approaches are discussed. In response to the 1990 Clean Air Act Amendments, DOD and USAF policy, the Environment Systems Division of the Human Systems Program Office, Human Systems Center, Brooks AFB TX has developed a program to systematically eliminate references to particularly active Class I Ozone Depleting Chemicals (ODC) from gas turbine engine technical data. Additionally, Executive Order 12856 and subsequent DOD directives drive the reduction in volume usage of Environmental Protection Agency (EPA) 17 toxins. Program scope includes the validation of requirements for usage, examination of commercially available alternatives, identification of solutions implemented by manufacturers, and qualification of potential alternatives where necessary. Technical and management approaches are discussed.

Manty, B.A.; McCall, M.P.; DeGarmo, L.A.

1995-08-01T23:59:59.000Z

198

THE EFFECTS OF HYDROGEN ADDITION AND INTAKE-INDUCED SWIRL ON THE CHARACTERISTICS OF NATURAL GAS COMBUSTION IN A SINGLE-CYLINDER SPARK-IGNITED ENGINE.  

E-Print Network (OSTI)

??Compressed natural gas (CNG) is an alternative fuel of interest for internal combustion engines (ICEs) in the mass transit and vocational applications. Increasingly, due to (more)

Corrigan, Melanie

2011-01-01T23:59:59.000Z

199

Helium dilution refrigeration system  

DOE Patents (OSTI)

A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

Roach, P.R.; Gray, K.E.

1988-09-13T23:59:59.000Z

200

Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine  

Science Conference Proceedings (OSTI)

The operational envelope of gas turbine engines such as those employed in the Army Blackhawk helicopter is constrained by the stability limit of the compression system. Technologies developed to improve the stable operating range of gas turbine compressors ...

Michael D. Hathaway; Greg Herrick; Jenping Chen; Robert Webster

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Title I preliminary engineering for: A. S. E. F. solid waste to methane gas  

DOE Green Energy (OSTI)

An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec. 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.

None

1976-01-01T23:59:59.000Z

202

A compact rotating dilution refrigerator  

E-Print Network (OSTI)

We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 0.001 rad/s up to angular velocities in excess of 2.5 rad/s. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

Fear, M J; Chorlton, D A; Zmeev, D E; Gillott, S J; Sellers, M C; Richardson, P P; Agrawal, H; Batey, G; Golov, A I

2013-01-01T23:59:59.000Z

203

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

204

Materials review for improved automotive gas-turbine engine. Final report  

DOE Green Energy (OSTI)

Advanced materials are the key to achieving the performance and fuel economy goals of improved automotive gas turbine engines. The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of future engines that may be required to operate with turbine inlet temperatures as high as 1370/sup 0/C (2500/sup 0/F) is examined. These high temperature materials are reviewed. The characteristics of the best modern conventional superalloys, directionally solidified eutectics, oxide dispersion strengthened alloys, and tungsten fiber reinforced superalloys are reviewed; and the most promising alloys in each system are compared on the basis of maximum turbine blade temperature capability. The requirements for improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are reviewed. On the basis of properties, cost, availability, and strategic importance, molybdenum alloys are found to be the most suitable refractory material for turbine wheels for mass produced engines. Ceramic material candidates are reviewed and ranked according to their probability of success in particular applications. Various forms of, and fabrication processes for both silicon nitride and silicon carbide, along with SiAlON's are investigated for use in high-stress and medium-stress high temperature environments. Low-stress glass-ceramic regenerator materials are also investigated. Treatment is given to processing requirements, such as coatings for oxidation/corrosion protection, joining methods, and machining technology. Economics of ceramic raw materials, and of various processing methods are discussed. Conclusions are drawn, and recommendations for areas of further research are proposed for consideration and/or adoption.

Belleau, C.; Ehlers, W.L.; Hagen, F.A.

1978-04-01T23:59:59.000Z

205

Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)  

SciTech Connect

Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

Chad Smutzer

2006-01-01T23:59:59.000Z

206

Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer  

DOE Green Energy (OSTI)

It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

2000-06-19T23:59:59.000Z

207

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

DOE Green Energy (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

208

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

209

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

210

Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow  

SciTech Connect

Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

Steward, W. Gene

1999-11-14T23:59:59.000Z

211

System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

Jeffrey Bryan

2009-06-01T23:59:59.000Z

212

Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow  

DOE Green Energy (OSTI)

Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

Steward, W. Gene

1999-11-14T23:59:59.000Z

213

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

DOE Green Energy (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

214

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE  

SciTech Connect

This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

2005-12-01T23:59:59.000Z

215

CEC-500-2010-FS-XXX Natural Gas Engine and  

E-Print Network (OSTI)

. to develop and optimize a sparkignited CNG Powered Refuse Truck Photo Credit: Cummings Westport, Inc. 11.9 liter CNG engine suitable for refuse and other vocational Class 8 applications. The engine conventional CNG engine to a more efficient and higher performance engine, and integrate it into a refuse

216

Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump  

SciTech Connect

Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

Miller, J.D.

1994-08-01T23:59:59.000Z

217

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1  

DOE Green Energy (OSTI)

The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

NONE

2000-03-02T23:59:59.000Z

218

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

219

Design and performance of a gas-turbine engine from an automobile turbocharger  

E-Print Network (OSTI)

The Massachusetts Institute of Technology Department of Mechanical Engineering teaches thermodynamics and fluid mechanics through a pair of classes, Thermal Fluids Engineering I & II. The purpose of this project was to ...

Tsai, Lauren (Lauren Elizabeth)

2004-01-01T23:59:59.000Z

220

Design, fabrication, and performance of a gas-turbine engine from an automobile turbocharger  

E-Print Network (OSTI)

Thermal-Fluids Engineering is taught in two semesters in the Department of Mechanical Engineering at the Massachusetts Institute of Technology. To emphasize the course material, running experiments of thermodynamic plants ...

Padilla, Jorge, 1983-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

222

Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design  

E-Print Network (OSTI)

It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only. Since a high second-law efficiency of a gas-turbine engine is necessary to have high overall system efficiency, the decision maker may thus make use of the procedure presented in this work to quickly identify those gas-turbine engines that could be good candidates for combined-cycle operation.

Huang, F. F.; Naumowicz, T.

2001-05-01T23:59:59.000Z

223

Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose............................................................................................................................................. 1 2.0 Background...................................................................................................................................... 1 3.0 Scope................................................................................................................................................ 1

224

Development of Advanced Natural Gas Reciprocating Engines for the DR Market  

Science Conference Proceedings (OSTI)

Currently, reciprocating engines are a key facet of the distributed resources (DR) market, ranging from residential, commercial, and industrial standby generators to peaking, peakshaving, prime power, and cogeneration units used in commercial, institutional, and industrial applications. Reciprocating engines have over 100 years of development and application experience for mobile and stationary uses, with several million engines produced annually. In more recent time, forecasts have been made about decre...

2000-12-19T23:59:59.000Z

225

Biogas upgrade through exhaust gas reforming process for use in CI engines.  

E-Print Network (OSTI)

??Biogas is not ideal for combustion in diesel engines mainly due to its low energy content. The upgrading of biogas into high quality syngas through (more)

Lau, Chia Sheng

2012-01-01T23:59:59.000Z

226

A proposed new energy source: The mixing energy of engine exhaust gas  

Science Conference Proceedings (OSTI)

One potential source of useful energy that seems to be unrecognized and overlooked is the entropy of mixing of engine exhaust gases with the atmosphere. In particular

Martin Gellender

2010-01-01T23:59:59.000Z

227

OIL and GAS ENGINEERING Page 1 of 2 Pre-and/or Co-Requisites  

E-Print Network (OSTI)

of unconventional oil and gas development at the John Wesley Powell Center for Analysis and Synthesis. Peer Reviewer-water and groundwater quality in areas of unconventional oil and gas development at the John Wesley Powell Center

Calgary, University of

228

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications  

DOE Green Energy (OSTI)

Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

2002-08-25T23:59:59.000Z

229

THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS  

Science Conference Proceedings (OSTI)

We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

Devlen, Ebru, E-mail: ebru.devlen@ege.edu.tr [Department of Astronomy and Space Sciences, Faculty of Science, University of Ege, Bornova 35100, Izmir (Turkey)

2011-04-20T23:59:59.000Z

230

Application Of The Mold Sdm Process To The Fabrication Of Ceramic Parts For A Micro Gas Turbine Engine  

E-Print Network (OSTI)

... engine with silicon nitcon part is being developed. Inty1 project t he Mold Shape Deposit8fl Manufact23yP (Mold SDM) process is usedt fabricat highqualit yceramicpart wit complex shapes such ast herot/ group. The merit of micro gastsy1:W engines in general are described before focusing on processing and fabricat3C issues. Theobt23C: silicon nitcon part are charactCWWFfl concerningtonc mechanical and microstyPCWWFfl property12 The surface roughness, shrinkage during sinty1281 finaldensit yand achievablefeat /2 sizes have beendet/8fl8yPC Using Mold SDM a functPC81 rott group has been successfully fabricatul During spin tiny at roomt emperat/1 wit nit/1/ as driving gas 456,000 rpm rot28F:yP speed has been achieved.

Sangkyun Kang; Jrgen Stampfl; Alexander G. Cooper; Fritz B. Prinz

2000-01-01T23:59:59.000Z

231

Reduction of natural gas engine emissions using a novel aftertreatment system.  

E-Print Network (OSTI)

??The global objective of this study was to develop an exhaust aftertreatment system to reduce gaseous and particulate matter emissions from natural gas fueled vehicles. (more)

Burlingame, Timothy S.

2004-01-01T23:59:59.000Z

232

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

233

The gas emissions variation of diesel engine from the combustion of used vegetable oils  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: biofuels, gas emissions, vegetable oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2009-02-01T23:59:59.000Z

234

Shockwave Engine: Wave Disk Engine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engines pistons to pump and powers the car. MSUs engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engines rotors causing them to turn, which generates electricity. MSUs redesigned engine would be the size of a cooking pot and contain fewer moving partsreducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

None

2010-01-14T23:59:59.000Z

235

Study and program plan for improved heavy duty gas turbine engine ceramic component development  

DOE Green Energy (OSTI)

A five-year program plan was generated from the study activities with the objectives of demonstrating a fuel economy of 213 mg/W . h (0.35 lb/hp-hr) brake specific fuel consumption by 1981 through use of ceramic materials, with conformance to current and projected Federal noise and emission standards, and to demonstrate a commercially viable engine. Study results show that increased turbine inlet and regenerator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Further, improved component efficiencies (for the compressor, gasifier turbine, power turbine, and regenerator disks show significant additional gains in fuel economy. Fuel saved in a 500,000-mile engine life, risk levels involved in development, and engine-related life cycle costs for fleets (100 units) of trucks and buses were used as criteria to select work goals for the planned program.

Helms, H.E.

1977-05-01T23:59:59.000Z

236

Dilute Oxygen Combustion - Phase 3 Report  

Science Conference Proceedings (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, Michael F.

2000-05-31T23:59:59.000Z

237

Dilute Oxygen Combustion Phase 3 Final Report  

SciTech Connect

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, M.F.; Ryan, H.M.

2000-05-31T23:59:59.000Z

238

Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.  

DOE Green Energy (OSTI)

Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R. (Energy Systems)

2008-01-01T23:59:59.000Z

239

Evaluation of wear resistant ceramic valve seats in gas-fueled power generation engines. Topical report, December 1991-April 1994  

SciTech Connect

This project is directed at the reduction of valve recession in natural gas-fueled engines. Ceramic valve seat inserts have been procured, installed in a Caterpillar G3516 natural gas generator set, and tested for 1000 hours. Two different silicon nitride materials are being utilized for the valve seats in addition to stock Eatonite metallic inserts. Three valve face materials are being tested. These include stock Caterpillar stellite 1 faced, stellite 6 faced, and unfaced valves. A test matrix was used to allow comparison of all three valve face materials in combination with all three insert materials. The testing is scheduled to continue for an additional 7000 hours. No problems have been encountered with the test materials. In general, it has been shown that two types of silicon nitride materials have at least short term durability in engine operation. Neither material has exhibited any deficiencies thus far. An economic analysis spreadsheet has been created to calculate potential cost savings potential using ceramic valve seat inserts. Valve recession data for the first 1000 hours shows expected trends. Exhaust valve positions are wearing more than intake valve positions. If the intake positions and all positions with unfaced valve are ignored, then ceramic inserts paired with Stellite 1 valves show the most wear.

Burrahm, R.W.; Branecky, R.J.; Sui, P.C.; Latusek, J.P.; Hsu, S.M.

1994-12-01T23:59:59.000Z

240

Mutual Design Considerations for Overhead AC Transmission Lines and Gas Transmission Pipelines, Volume 1: Engineering Analysis  

Science Conference Proceedings (OSTI)

This reference book presents data on an investigation into the mutual effects of electric power transmission lines and natural gas transmission pipelines sharing rights-of-way. Information is useful to both power and pipeline industry users.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

Science Conference Proceedings (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

242

Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization  

DOE Patents (OSTI)

A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

Serres, Nicolas (Epinal, FR)

2010-11-09T23:59:59.000Z

243

Near and long term efficiency improvements to natural gas heavy duty engines. Quarterly technical progress report, July 1, 1997--September 30, 1997  

DOE Green Energy (OSTI)

Trucking Research Institute (TRI) in cooperation with the Department of Energy Office of Heavy Vehicle Technologies (DOE), South Coast Air Quality Management District (SCAQMD), and Gas Research Institute (GRI), requests proposals designed to support the Natural Gas Engine Enhanced Efficiency Program. This effort, which contains Programs A & B, is designed to fund projects that advance both the part and full load fuel efficiency of heavy-duty (250 hp plus) natural gas engines. Approximately $1.2 million will be available in Program A to fund up to three projects. These projects may target either or both near-term, and longer-term engine efficiency goals in addition, it is possible that one of the projects funded under Program A will be selected for additional funding for up to 42 months under Program B funding amounts are to be determined.

NONE

1997-10-10T23:59:59.000Z

244

LNG Engine Delivery  

This is a method of improved delivery of liquid natural gas (LNG) within an engine delivery system. The LNG gas is first be pumped into the insulated ...

245

OIL and GAS ENGINEERING Page 1 of 3 2009/2010 Curriculum  

E-Print Network (OSTI)

% of unconventional resources (blue) Figure 1 helps make clear why the tar sands and other unconventional fossil fuels are important. The purple bars show the total emissions to date from the conventional fossil fuels (oil, gas of the CO2 increase from 280 to 391 ppm. The blue bar is 50% of known unconventional fossil fuel (UFF

Calgary, University of

246

Proven reliability of the gas-turbine engine. BIPS Phase 1  

SciTech Connect

The background, capabilities and experience of the Garrett Corp. in designing, developing, manufacturing and testing gas turbines and related systems are described, and the requirements for and components of the Brayton Isotope Power System (BIPS) for space vehicles are outlined. Data on the compressor and turbine, alternator, bearings, recuperator, radiator, heat source assembly, and control systems are presented. (LCL)

1976-11-01T23:59:59.000Z

247

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

248

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

249

Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug  

DOE Green Energy (OSTI)

To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

2008-04-01T23:59:59.000Z

250

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

251

Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control  

Science Conference Proceedings (OSTI)

Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability-including significant numbers of misfires-that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles. The presence of determinism implies that an increased understanding the dynamics of such systems could lead to effective control approaches that allow operation near the edge of stability, effectively extending the dilution limit. This nonlinear dependence has been characterized previously for homogeneous charge, port fuel-injected (PFI) SI engines operating fuel-lean as well as with inert diluents such as bottled N2 gas. In this paper, cyclic dispersion in a modern boosted gasoline direct injection (GDI) engine using a cooled external EGR loop is examined, and the potential for improvement with effective control is evaluated through the use of symbol sequence statistics and other techniques from chaos theory. Observations related to the potential implications of these results for control approaches that could effectively enable engine operation at the edge of combustion stability are noted.

Kaul, Brian C [ORNL; Wagner, Robert M [ORNL; Green Jr, Johney Boyd [ORNL

2013-01-01T23:59:59.000Z

252

Application of Cryocoolers to a Vintage Dilution Refrigerator  

SciTech Connect

A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

Schmitt, Richard; Smith, Gary; Ruschman, Mark; /Fermilab; Beaty, Jim; /Minnesota U.

2011-06-06T23:59:59.000Z

253

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Atmospheric dispersion of dense gases, Ann. Rev. Fluidtransport and dispersion capability for dilute gases basedmake a dilute gas assumption. 4.2.4 Dispersion Model For the

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

254

The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine  

E-Print Network (OSTI)

A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage, current, power, energy and duration), electrode design, electrode gap and compression ratio were the control variables and A/F lean limit, fuel consumption and hydrocarbon and oxides of nitrogen emission concentrations were the response variables. Experiments were performed on a General Motors' 2.2 liter four cylinder engine. Spark electrical characteristics were varied by applying various primary voltages and secondary resistances to the production inductive ignition system, with the engine operating at two operating conditions, a light load and a road load, and with two compression ratios. Cylinder pressure data was acquired to quantify load and combustion stability. Spark electrical characteristics were acquired with a digital oscilloscope to quantify secondary spark electrical characteristics. The results indicated that the response variables were generally insensitive to all the control variables, except for compression ratio. However, contrary to the literature, the A/F lean limit and fuel efficiency degraded with a higher compression ratio. Single and multi-variant linear regressions were studied between the A/F lean limit and the spark electrical characteristics. The only statistically significant and notable finding was a multi-variant linear regression of the A/F lean limit to increasing spark duration and decreasing spark energy at the road load operating condition. Statistical significance of the effect of the ignition system control variables on the response variables was higher at the road load than the light load operating condition. Emissions responded as expected with the higher compression ratio.

Chlubiski, Vincent Daniel

1997-01-01T23:59:59.000Z

255

New Gas Standard Reference Materials  

Science Conference Proceedings (OSTI)

... inventories of required gas SRMs that consist of dilute mixtures of key pollutants such as carbon dioxide, carbon monoxide, hydrocarbons, and ...

2012-10-22T23:59:59.000Z

256

200 The Institute of Electrical Engineers of Japan. 1 Micro gas preconcentrator made of a film of single-walled carbon nanotubes  

E-Print Network (OSTI)

© 200 The Institute of Electrical Engineers of Japan. 1 Micro gas preconcentrator made of a film of the flow channel were 9 mm and 3.6 mm, respectively. Finally, the Pyrex glass loaded with an SWNT film in environmental monitoring and forecasting systems. Ichiro Yamada (Member) received the Ph.D. degree in mechanical

Maruyama, Shigeo

257

Development of a Cummins ISL Natural Gas Engine at 1.4g/bhp-hr NOx + NMHC Using PLUS Technology: Final Report  

DOE Green Energy (OSTI)

NREL subcontractor report describes Cummins Westport, Inc.'s development of an 8.9 L natural gas engine (320 hp, 1,000 ft-lb peak torque) with CARB emissions certification of 1.4 g/bhp-hr NOx + NMHC.

Kamel, M. M.

2005-07-01T23:59:59.000Z

258

Prediction of Helicoper Engine Deterioration: A Data Mining Approach.  

E-Print Network (OSTI)

??Use of a gas turbine engine as the primary power source has been popular in light and heavy industries, aerospace engineering, marine engineering, etc. Gas (more)

Chu, Wen-Hsiung

2006-01-01T23:59:59.000Z

259

Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot  

SciTech Connect

This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

Al-Qurashi, Khalid; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, 405 Academic Activities Bldg., University Park, PA 16802 (United States)

2008-12-15T23:59:59.000Z

260

Test results from the GA technologies engineering-scale off-gas treatment system  

SciTech Connect

One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO/sub 2/, CO, O/sub 2/, and SO/sub 2/. The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO/sub 2/ adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO/sub 2/. Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO/sub 2/ removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO/sub 3/-impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective.

Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines  

DOE Green Energy (OSTI)

This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

1999-01-01T23:59:59.000Z

262

Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas  

SciTech Connect

It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

2009-09-21T23:59:59.000Z

263

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

SciTech Connect

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

264

Dilute Oxygen Combustion Phase I Final Report  

Science Conference Proceedings (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

1997-10-31T23:59:59.000Z

265

Dilute Oxygen Combustion Phase I Final Report  

SciTech Connect

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

1997-10-31T23:59:59.000Z

266

Dilute Oxygen Combustion Phase 2 Final Report  

SciTech Connect

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

2005-09-30T23:59:59.000Z

267

Dilute Oxygen Combustion Phase 2 Final Report  

Science Conference Proceedings (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

2005-09-30T23:59:59.000Z

268

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

269

Stirling engine heating system  

SciTech Connect

A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

Johansson, L.N.; Houtman, W.H.; Percival, W.H.

1988-06-28T23:59:59.000Z

270

Development of a closed-loop, lean-burn natural gas engine control system. Final report, February 1993-December 1995  

SciTech Connect

The overall objective of this project was to develop a closed-loop, lean-burn control system for medium and heavy duty, lean-burn, gaseous fueled engines. The closed-loop F/A ratio control system was designed to provide diesel engine-like performance and fuel economy, and take advantage of the emissions benefits of a gaseous fueled engine. The control system was designed to have the processing power and I/O capacity to accommodate the engine Original Equipment Manufacturers (OEM`s).

Morris, D.A.

1996-06-01T23:59:59.000Z

271

An assessment of the dilution required to mitigate Hanford tank 241-SY-101  

Science Conference Proceedings (OSTI)

A group of experts from PNL and WHC convened November 2 and 3, 1994, to screen the current state of knowledge about dilution and reach a consensus on the minimum dilution ratio that will achieve passive mitigation of Tank 241-SY-101 wastes and the dilution ratio that would satisfy the given cross-site transfer criteria with reasonable assurance. The panel evaluated the effects of dilution on the parameters important in gas generation, retention, and release and reached the following conclusions, which are deduced from the existing body of data, experience, and analyses: (1) Dissolution of solids is the single most important aspect of mitigation by dilution. We are confident that diluting until nitrates, nitrites, and aluminum salts are dissolved will mitigate Hanford flammable gas tanks; (2) Sufficient solids dissolution can be achieved in Tank 241-SY-101 at a dilution ratio of 1:1, which will result in a average specific gravity of approximately 1.35. It is likely that a 0.5:1 dilution will also mitigate 241-SY-101, but the current uncertainty is too high to recommend this dilution ratio; (3) The recommended dilution requires a diluent with at least 2 molar free hydroxide, because aluminum probably precipitates at lower hydroxide concentrations. The transfer criteria for Tank 241-SY-101 waste were also evaluated. These criteria have been specified as solids content {<=}30% (volume), viscosity {<=}30% cP and density <1.5 g/mL. (1) Solids content is the limiting criterion if it is defined as volume fraction of settled solids. A 1:1 dilution will satisfy this criterion at nominal premixing conditions in Tank 241-SY-101; however, analysis of Window E core samples suggests that up to 1.5:1 might be required. If the solids content is interpreted simply as solids volume fraction no further dilution is necessary, because Tank 241-SY-101 waste (excluding the crust) is already below 30%; (2) Bulk density is the next limiting criterion and is met at 0.4:1 dilution.

Hudson, J.D.; Bredt, P.R.; Felmy, A.R.; Stewart, C.W.; Tingey, J.M.; Trent, D.S. [Pacific Northwest Lab., Richland, WA (United States); Barney, G.S.; Herting, D.L.; Larrick, A.P.; Reynolds, D.A. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

272

Engineering study - alternatives for SHMS high temperature/moisture gas sample conditioners for the aging waste facility  

SciTech Connect

The Standard Hydrogen Monitoring Systems have been experiencing high temperature/moisture problems with gas samples from the Aging Waste Tanks. These moist hot gas samples have stopped the operation of the SHMS units on tanks AZ-101, AZ-102, and AY-102. This study looks at alternatives for gas sample conditioners for the Aging Waste Facility.

THOMPSON, J.F.

1999-06-02T23:59:59.000Z

273

Band engineering in dilute nitride and bismide semiconductor lasers  

E-Print Network (OSTI)

Highly mismatched semiconductor alloys such as GaNAs and GaBiAs have several novel electronic properties, including a rapid reduction in energy gap with increasing x and also, for GaBiAs, a strong increase in spin orbit- splitting energy with increasing Bi composition. We review here the electronic structure of such alloys and their consequences for ideal lasers. We then describe the substantial progress made in the demonstration of actual GaInNAs telecomm lasers. These have characteristics comparable to conventional InP-based devices. This includes a strong Auger contribution to the threshold current. We show, however, that the large spin-orbit-splitting energy in GaBiAs and GaBiNAs could lead to the suppression of the dominant Auger recombination loss mechanism, finally opening the route to e?fficient temperature-stable telecomm and longer wavelength lasers with significantly reduced power consumption.

Christopher A. Broderick; Muhammad Usman; Stephen J. Sweeney; Eoin P. O'Reilly

2012-08-31T23:59:59.000Z

274

Analysis of several hazardous conditions for large transfer and back-dilution sequences in Tank 241-SY-101  

Science Conference Proceedings (OSTI)

The first transfer of 89 kgal of waste and back-dilution of 61 kgal of water in Hanford Tank 241-SY-101 was accomplished December 18--20, 1999. Limits were placed on the transfer and back-dilution volumes because of concerns about potential gas release, crust sinking, and degradation of mixer pump performance. Additional transfers and back-dilutions are being planned that will bring the total to 500 kgal, which should dissolve a large fraction of the solids in the tank and dilute it well beyond the point where significant gas retention can occur. This report provides the technical bases for removing the limits on transfer and back-dilution volume by evaluating the potential consequences of several postulated hazardous conditions in view of the results of the first campaign and results of additional analyses of waste behavior.

CW Stewart; LA Mahoney; WB Barton

2000-01-28T23:59:59.000Z

275

Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines  

SciTech Connect

The effect of reformer gas addition to gasoline in internal combustion engines is assessed based on in-cylinder measurement techniques. These include ion sensors, an optical spark plug and heat release analysis from the cylinder pressure. A detailed analysis of these measurements is presented, giving insight into the combustion process and into the energy release. The flame front shape and propagation in the combustion chamber are reconstructed and the flame speed is estimated. The laminar flame speed has been observed to increase linearly with the energy fraction of reformer gas in the fuel blend. From pure gasoline to pure reformer gas the laminar flame speed increases by a factor of 4.4. The relative increase in the turbulent flame speed is lower. These results confirm what can be observed from the heat release analysis, that reformer gas addition mainly shortens the first phase of the combustion process. Different reformer gas compositions were tested, varying the ratio of hydrogen to inert species. Finally, flame propagation and flame speed at EGR-burn limit and at lean-burn limit are investigated. (author)

Conte, Enrico; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory (LAV), ETH Zurich, CH-8092 (Switzerland)

2006-07-15T23:59:59.000Z

276

A coupled model for ring dynamics, gas flow, and oil flow through the ring grooves in IC engines  

E-Print Network (OSTI)

Oil flows through ring/groove interface play a critical role in oil transport among different regions the piston ring pack of internal combustion engines. This thesis work is intended to improve the understanding and ...

Jia, Ke, S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

277

Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102  

Science Conference Proceedings (OSTI)

This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed.

LA Mahoney; ZI Antoniak; WB Barton; JM Conner; NW Kirch; CW Stewart; BE Wells

2000-07-26T23:59:59.000Z

278

Toughened Silcomp composites for gas turbine engine applications. Continuous fiber ceramic composites program: Phase I final report, April 1992--June 1994  

DOE Green Energy (OSTI)

The two main factors driving the development of new industrial gas turbine engine systems are fuel efficiency and reduced emissions. One method of providing improvements in both areas is to reduce the cooling air requirements of the hot gas path components. For this reason ceramic components are becoming increasingly attractive for gas turbine applications because of their greater refractoriness and oxidation resistance. Among the ceramics being considered, continuous fiber ceramic composites (CFCCs) are leading candidates because they combine the high temperature stability of ceramics with the toughness and damage tolerance of composites. The purpose of this program, which is part of DOE`s CFCC initiative, is to evaluate the use of CFCC materials as gas turbine engine components, and to demonstrate the feasibility of producing such components from Toughened Silcomp composites. Toughened silcomp is a CFCC material made by a reactive melt infiltration process, and consists of continuous SiC reinforcing fibers, with an appropriate fiber coating, in a fully dense matrix of SiC and Si. Based on the material physical properties, the material/process improvements realized in Phase 1, and the preliminary design analyses from Task 1, they feel the feasibility of fabricating Toughened Silcomp with the requisite physical and mechanical properties for the intended applications has been demonstrated. Remaining work for Phase 2 is to further improve the system for enhanced oxidation resistance, incorporate additional process controls to enhance the reproducibility of the material, transition the fabrication process to the selected vendors for scale-up, develop a more complete material property data base, including long-term mechanical behavior, and fabricate and test preliminary ``representative part`` specimens.

Corman, G.S.; Luthra, K.L.; Brun, M.K.; Meschter, P.J.

1994-07-01T23:59:59.000Z

279

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

280

In-cylinder gas velocity measurements comparing crankcase and blower scavenging in a fired two-stroke cycle engine  

Science Conference Proceedings (OSTI)

The in-cylinder flow field of a Schnuerle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied.

Miles, P.C.; Green, R.M.; Witze, P.O.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Department of Chemical and Petroleum Engineering  

E-Print Network (OSTI)

World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed ­ Oil & Gas Engineering General Department Information ­ Faculty & Student Numbers ­ Scholarships, Labs of Chemical & Petroleum Engineering 4 Our Programs Chemical Engineering Biomedical Specialization Oil and Gas

Calgary, University of

282

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

283

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

284

AMO Industrial Distributed Energy: Advanced Reciprocating Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas fueled engines for power generation that combine high efficiency, low emissions, fuel flexibility, and reduced cost of ownership. Phase I of the Cummins reciprocating engine...

285

Biofuel Characteristics in Micro Turbojet Engine Application.  

E-Print Network (OSTI)

?? The engine performance and fuel consumption of a micro gas turbojet engine running mixtures of B1OO biodiesel fuel and kerosene are reported in this (more)

Tan, Ing Huang

2012-01-01T23:59:59.000Z

286

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

: COM 199, CME 455, CME 550 and engineering standing. CME 462 PROCESS CONTROL. (3) Basic theory. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

287

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

288

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

289

STM Stirling Engine-Generators  

Science Conference Proceedings (OSTI)

Stirling engines have recently been introduced to the distributed generation market. This project summarizes the experience of three projects implementing Stirling engine-generators from one manufacturer in applications where they are fueled with digester gas.

2007-03-23T23:59:59.000Z

290

Hybrid simulation of a free piston engine  

Science Conference Proceedings (OSTI)

The free piston engine principle is one which has intrigued mechanical engineers for decades. Indeed, the original gas engine of Otto and Langden employed a piston assembly which did not contain the now conventional connecting rod and camshaft arrangement ...

R. E. Gagne; E. J. Wright

1966-04-01T23:59:59.000Z

291

Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept  

E-Print Network (OSTI)

Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

Ayala, Ferran A. (Ferran Alberto), 1976-

2006-01-01T23:59:59.000Z

292

Understanding the Potential and Limitations of Dilute Nitride Alloys for Solar Cells  

DOE Green Energy (OSTI)

Dilute nitride alloys provide a powerful tool for engineering the band gap and lattice constant of III-V alloys. However, nitrogen degrades the performance of GaAs solar cells. This project seeks to understand and demonstrate the limits of performance of GaInNAs alloys by (a) correlating deep-level transient spectroscopy (DLTS) data with device performance and (b) using molecular beam epitaxy (MBE) to reduce background impurity concentrations.

Kurtz, S.; Ptak, A.; Johnston, S.; Kramer, C.; Young, M.; Friedman, D.; Geisz, J.; McMahon, W.; Kibbler, A.; Olson, J.; Crandall, R.; Branz, H.

2005-11-01T23:59:59.000Z

293

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

294

Recycling of Engine Serviced Superalloys  

Science Conference Proceedings (OSTI)

of gas turbine engines and other high temperature applications. Elements such ... processes and tight controls have limited the use of large amounts of available.

295

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

296

Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components  

DOE Green Energy (OSTI)

Tensile creep-rupture of a commercial gas pressure sintered Si3N4 and a sintered SiC is examined at 1038, 1150, and 1350 C. These 2 ceramics are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and there is interest in their high temperature performance over service times {ge} 10,000 h (14 months). For this long lifetime, a static tensile stress of 300 MPa at 1038/1150 C and 125 Mpa at 1350 C cannot be exceeded for Si3N4; for SiC, the corresponding numbers are 300 Mpa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C. Creep-stress exponents for Si3N4 are 33, 17, and 8 for 1038, 1150, 1350 C; fatigue- stress exponents are equivalent to creep exponents, suggesting that the fatigue mechanism causing fracture is related to the creep mechanism. Little success was obtained in producing failure in SiC after several decades of time through exposure to appropriate tensile stress; if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. Creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that initiated from the surface.

Wereszczak, A.A.; Kirkland, T.P.

1996-03-01T23:59:59.000Z

297

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

298

A Laboratory Study of Hydrated Lime Properties in Dilute Phase Conveyance  

Science Conference Proceedings (OSTI)

Recent regulatory actions are reducing allowable emissions of sulfur trioxide (SO3) from coal-fired power plants. Therefore, the need to economically and reliably remove SO3 from flue gas streams is taking on additional urgency. Three sorbents are commonly used for SO3 removal151hydrated lime, trisodium hydrogendicarbonate dihydrate (trona), and sodium bisulfate. Hydrated lime has been shown to be an economical choice; however, dilute phase conveyance from storage hoppers to duct injection lances has bee...

2010-12-31T23:59:59.000Z

299

Nuclear Isotopic Dilution of Highly-Enriched Uranium-235 and Uranium-233 by Dry Blending via the RM-2 Mill Technology  

SciTech Connect

The United States Department of Energy has initiated numerous activities to identify strategies to disposition various excess fissile materials. Two such materials are the off-specification highly enriched uranium-235 oxide powder and the uranium-233 contained in unirradiated nuclear fuel both currently stored at the Idaho National Engineering and Environmental Laboratory. This report describes the development of a technology that could dilute these materials to levels categorized as low-enriched uranium, or further dilute the materials to a level categorized as waste. This dilution technology opens additional pathways for the disposition of these excess fissile materials as existing processing infrastructure continues to be retired.

N. A. Chipman; R. N. Henry; R. K. Rajamani; S. Latchireddi; V. Devrani; H. Sethi; J. L. Malhotra

2004-02-01T23:59:59.000Z

300

Mechanical engineering Department Seminar  

E-Print Network (OSTI)

power generation gas turbines and jet engines. As the energy efficiency of gas turbines in- creases to pro- vide thermal protection to turbine blades and vanes in the hottest sections of both electric with turbine inlet turbine, advances in turbine efficiency depend on improved ther- mal barrier coatings

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network (OSTI)

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

302

RAMAN AND IR STUDY OF NARROW BANDGAP A-SIGE AND C-SIGE FILMS DEPOSITED USING DIFFERENT HYDROGEN DILUTION  

E-Print Network (OSTI)

chemical vapor deposition (PECVD) with a fixed germane to disilane ratio of 0.72 and a wide range], cathode deposition [2], and using disilane- germane mixture without H dilution [3] in PECVD process. A gas mixture of disilane, germane and hydrogen was used with a fixed germane to disilane ratio of 0

Deng, Xunming

303

Stirling cycle engine  

DOE Patents (OSTI)

In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

Lundholm, Gunnar (Lund, SE)

1983-01-01T23:59:59.000Z

304

Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

DOE Green Energy (OSTI)

Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

305

Vehicle Technologies Office: 2009 Directions in Engine-Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Engine Combustion Network Lyle Pickett Sandia National Laboratories Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Mostafa Kamel Cummins Westport Inc....

306

Internal combustion engine  

SciTech Connect

An improvement to an internal combustion engine is disclosed that has a fuel system for feeding a fuel-air mixture to the combustion chambers and an electrical generation system, such as an alternator. An electrolytic cell is attached adjacent to the engine to generate hydrogen and oxygen upon the application of a voltage between the cathode and anode of the electrolytic cell. The gas feed connects the electrolytic cell to the engine fuel system for feeding the hydrogen and oxygen to the engine combustion chambers. Improvements include placing the electrolytic cell under a predetermined pressure to prevent the electrolyte from boiling off, a cooling system for the electrolytic cell and safety features.

Valdespino, J.M.

1981-06-09T23:59:59.000Z

307

Buoyancy and Dissolution of the Floating Crust Layer in Tank 241-SY-101 During Transfer and Back-Dilution  

Science Conference Proceedings (OSTI)

To remediate gas retention in the floating crust layer and the potential for buoyant displacement gas releases from below the crust, waste will be transferred out of Hanford Tank 241-SY-101 (SY-101) in the fall of 1999 and back-diluted with water in several steps of about 100,000 gallons each. To evaluate the effects of back-dilution on the crust a static buoyancy model is derived that predicts crust and liquid surface elevations as a function of mixing efficiency and volume of water added during transfer and back-dilution. Experimental results are presented that demonstrate the basic physics involved and verify the operation of the models. A dissolution model is also developed to evaluate the effects of dissolution of solids on crust flotation. The model includes dissolution of solids suspended in the slurry as well as in the crust layers. The inventory and location of insoluble solids after dissolution of the soluble fraction are also tracked. The buoyancy model is applied to predict the crust behavior for the first back-dilution step in SY-101. Specific concerns addressed include conditions that could cause the crust to sink and back-dilution requirements that keep the base of the crust well above the mixer pump inlet.

CW Stewart; JH Sukamto; JM Cuta; SD Rassat

1999-11-22T23:59:59.000Z

308

Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components  

DOE Green Energy (OSTI)

The tensile creep-rupture performance of a commercially available gas pressure sintered silicon nitride (Si{sub 3}N{sub 4}) and a sintered silicon carbide (SiC) is examined at 1038, 1150, and 1350 C. These two ceramic materials are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and interest exists to investigate their high-temperature mechanical performance over service times up to, and in excess of, 10,000 hours ({approx}14 months). To achieve lifetimes approaching 10,000 hours for the candidate Si{sub 3}N{sub 4} ceramic, it was found (or it was estimated based on ongoing test data) that a static tensile stress of 300 MPa at 1038 and 1150 C, and a stress of 125 MPa at 1350 C cannot be exceeded. For the SiC ceramic, it was estimated from ongoing test data that a static tensile stress of 300 MPa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C cannot be exceeded. The creep-stress exponents for this Si{sub 3}N{sub 4} were determined to be 33, 17, and 8 for 1038, 1150, and 1350 C, respectively. The fatigue-stress exponents for the Si{sub 3}N{sub 4} were found to be equivalent to the creep exponents, suggesting that the fatigue mechanism that ultimately causes fracture is controlled and related to the creep mechanisms. Little success was experienced at generating failures in the SiC after several decades of time through exposure to appropriate tensile stress; it was typically observed that if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. However, creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C, respectively. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that was initiated from the specimen`s surface.

Wereszczak, A.A.; Kirkland, T.P. [Oak Ridge National Lab., TN (United States). High Temperature Materials Lab.

1997-10-01T23:59:59.000Z

309

Silver Uptake from Dilute Cyanide Solution Using Activated Charcoal  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , General Poster Session. Presentation Title, W-95: Silver Uptake from Dilute...

310

Dilute acid/metal salt hydrolysis of lignocellulosics  

DOE Patents (OSTI)

A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

Nguyen, Quang A. (Golden, CO); Tucker, Melvin P. (Lakewood, CO)

2002-01-01T23:59:59.000Z

311

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

550andengineeringstanding. CME 462 PROCESS CONTROL. (3) Basic theory of automatic control devices. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

312

OATINGS FOR GAS TUR INE LADES  

Power generation Marine propulsion Advanced fusion plants Gas turbine engines Industrial regeneration ENEFITS For more information or licensing

313

Low Temperature Photoluminescence from Dilute Bismides  

SciTech Connect

We report on photoluminescence measurements of GaAs{sub (1?x)}Bi{sub x} thin films containing dilute concentration (x {le} 0.045%) of isoelectronic impurity Bi. At a temperature of 4 K, we observed a sharp emission line at {approx}1.510 eV and a series of undulations in an energy range of {approx}20 meV below it. We attribute the sharp line at {approx}1.510 eV to the recombination of excitons bound to a complex formed by unintentionally incorporated acceptor or donor atoms in the samples. Undulations observed below the sharp line at 1.510 eV are assigned to the vibronic levels of the acceptors, generated by the dynamic Jahn-Teller effect due to the coupling between the holes bound to Bi and acceptors. The sharp line at {approx}1.510 eV and the undulation peaks show a redshift with increasing Bi concentration due to the decrease in band gap as a result of the strong perturbation to the GaAs band structure induced by isoelectronic Bi impurities. No spectral evidence for isolated Bi forming a bound state in GaAs was seen and similar to the case of Bi in GaP, no Bi-Bi pair states were observed.

Kini, R. N.; Mascarenhas, A.; France, R.; Ptak, A. J.

2008-01-01T23:59:59.000Z

314

DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS  

Science Conference Proceedings (OSTI)

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

315

DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS  

SciTech Connect

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

316

DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS  

SciTech Connect

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

Kishore K. Mohanty

2003-10-01T23:59:59.000Z

317

Dilute Surfactant Methods for Carbonate Formations  

Science Conference Proceedings (OSTI)

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the best hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (35-62% OOIP) for initially oil-wet cores through wettability alteration and IFT reduction. Core-scale simulation results match those of the experiments. Initial capillarity-driven imbibition gives way to a final gravity-driven process. As the matrix block height increases, surfactant alters wettability to a lesser degree, or permeability decreases, oil production rate decreases. The scale-up to field scale will be further studied in the next quarter.

Kishore K. Mohanty

2005-10-01T23:59:59.000Z

318

Engineered Nanoparticles as Improved Oil Recovery and Flow ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Advanced Materials and Reservoir Engineering for Extreme Oil & Gas...

319

Stirling engine power control  

DOE Patents (OSTI)

A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

Fraser, James P. (Scotia, NY)

1983-01-01T23:59:59.000Z

320

Engineering Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Institute Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, LANL Charles Farrar Email Leader, UCSD Michael Todd Email LANL Program Administrator Jutta Kayser (505) 663-5649 Email Collaboration for conducting mission-driven, multidisciplinary engineering research and recruiting, revitalization, and retention of current & future staff The Engineering Institute is a collaboration between LANL and the University of California at San Diego (UCSD) Jacobs School of Engineering, whose mission is to develop a comprehensive approach for conducting mission-driven, multidisciplinary engineering research

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multiphase Stirling Engines  

E-Print Network (OSTI)

Analysis, design, fabrication, and experimental assessment of a symmetric three-phase free-piston Stirling engine system is discussed in this paper. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and to provide appropriate seals. In addition, low loss diaphragm pistons, etched and woven-wire screen heat exchangers, and plastic flexures, as the main components of the system, are outlined. The experimental results are presented and compared with design analysis. Experiments successfully confirm the design models for heat exchanger flow friction losses and gas spring hysteresis dissipation. Furthermore, it is revealed that gas spring hysteresis loss is an important dissipation phenomenon for low-power Stirling engines and should be carefully addressed in design. Analysis shows that the gas hysteresis dissipation is reduced drastically by increasing the number of phases in a multiphase Stirling engine system. It is further shown that for an even number of phases, half of the engine chambers could be eliminated by utilizing a reversing mechanism within the multiphase system. The mathematical formulation and modal analysis of multiphase Stirling engine system are then extended to a system that incorporates a reverser. By introducing a reverser to the fabricated prototype, the system successfully operates in engine mode. The system proves its self-starting capability and validates the computed start-up temperature. ?DOI: 10.1115/1.3097274? 1

Artin Der Minassians; Seth R. Sanders

2009-01-01T23:59:59.000Z

322

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

a computerized database inventory of compressor engines used in the oil and natural gas exploration and production (E&P) industry. This database will be used to evaluate...

323

NETL Researchers Chosen as Science & Engineering Ambassadors...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

challenges including CO2 storage, unconventional fossil-fuel production, and shale-gas production. Dr. Bryan Morreale, NETL's acting Materials Science and Engineering...

324

Status and Prognosis for Alternative Engine Materials  

Science Conference Proceedings (OSTI)

Nickel-base and to some extent cobalt-base superalloys have been the primary materials in the hot zone of gas turbine engines since their commer- cialization.

325

The Melt-Dilute Treatment of Al-Base Highly Enriched DOE Spent Nuclear Fuels: Principles and Practices  

SciTech Connect

The melt-dilute treatment technology program is focused on the development and implementation of a treatment technology for diluting highly enriched (>20 percent 235U) aluminum spent nuclear fuel to low enriched levels (<20 percent 235U) and qualifying the LEU Al-SNF form for geologic repository storage. In order to reduce the enrichment of these assemblies prior to ultimate geologic repository disposal, the melt-dilute technology proposes to melt these SNF assemblies and then dilute with additions of depleted uranium. The benefits accrued from this treatment process include the potential for significant volume reduction, reduced criticality potential, and the potential for enhanced SNF form characteristics. The emphasis within the development program to date has been on determining the process metallurgy and off-gas system design for the treatment of all types of Al SNF (UAlx, Al-U3O8, and Al-U3Si2). In determining the process metallurgy a wide range of alloys, representative of those expected in the Al-SNF form, have been fabricated and their product characteristics, namely microstructure, homogeneity, phase composition, and "ternary" constituent effects have been analyzed. As a result of the presence of species within the melt which will possess significant vapor pressures in the desired operating temperature range an off-gas system is necessary. Of the volitile species the one of greatest concern is 137Cs.

Adams, T.M.

1998-11-25T23:59:59.000Z

326

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 130 C. K.Journal of Engineering for Gas Turbines and Power, 130 (2) (of Engineering for Gas Turbines and Power-Transactions of

Cheng, R. K.

2009-01-01T23:59:59.000Z

327

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

328

Two-stage dilute acid prehydrolysis of biomass  

DOE Patents (OSTI)

A two-stage dilute acid prehydrolysis process on xylan containing hemicellulose in biomass is effected by: treating feedstock of hemicellulosic material comprising xylan that is slow hydrolyzable and xylan that is fast hydrolyzable under predetermined low temperature conditions with a dilute acid for a residence time sufficient to hydrolyze the fast hydrolyzable xylan to xylose; removing said xylose from said fast hydrolyzable xylan and leaving a residue; and treating said residue having a slow hydrolyzable xylan with a dilute acid under predetermined high temperature conditions for a residence time required to hydrolyze said slow hydrolyzable xylan to xylose.

Grohmann, Karel (Winter Haven, FL); Torget, Robert W. (Littleton, CO)

1992-01-01T23:59:59.000Z

329

Engineering Project Solar-Boosted  

E-Print Network (OSTI)

Assessment of CTL · Coal & the Department of Defense · Fischer-Tropsch Fuel & EngineTesting · Coal & Biomass Methanol Methyl Acetate Acetic Anhydride Naphtha Waxes Fischer Tropsch Liquids Diesel/Jet/Gas Fuels

330

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

331

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

332

Are software engineers true engineers?  

Science Conference Proceedings (OSTI)

Software engineering is an often used term to describe the activities, methods, and tools of large scale software development. There is an ongoing discussion whether Software Engineering can be considered as an engineering discipline. In ...

Claus Lewerentz; Heinrich Rust

2000-01-01T23:59:59.000Z

333

Dilute Oxygen Combustion Phase IV Final Report  

Science Conference Proceedings (OSTI)

Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

Riley, M.F.

2003-04-30T23:59:59.000Z

334

Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute Multiphase Flows In Magmatic Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute Multiphase Flows In Magmatic Systems Details Activities (0) Areas (0) Regions (0) Abstract: The kinematic and dynamic scaling of dilute multiphase mixtures in magmatic systems is the only guarantee for the geological verisimilitude of laboratory experiments. We present scaling relations that can provide a more complete framework to scale dilute magmatic systems because they

335

Separation processes using expulsion from dilute supercritical solutions  

DOE Patents (OSTI)

A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

Cochran, Jr., Henry D. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

336

Separation processes using expulsion from dilute supercritical solutions  

DOE Patents (OSTI)

A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

Cochran, H.D. Jr.

1993-04-20T23:59:59.000Z

337

Quantitation of Glycidyl Esters via Stable Isotope Dilution Analysis  

Science Conference Proceedings (OSTI)

Quantitation of Glycidyl Esters via Stable Isotope Dilution Analysis Michael Granvogl and Peter Schieberle Technical University of Munich, Chair for Food Chemistry and German Research Centre for Food Chemistry, Lise-Meitner-Str. 34, Freising, Germ

338

Anatomy of symmetry energy of dilute nuclear matter  

E-Print Network (OSTI)

The symmetry energy coefficients of dilute clusterized nuclear matter are evaluated in the $S$-matrix framework. Employing a few different definitions commonly used in the literature for uniform nuclear matter, it is seen that the different definitions lead to perceptibly different results for the symmetry coefficients for dilute nuclear matter. They are found to be higher compared to those obtained for uniform matter in the low density domain. The calculated results are in reasonable consonance with those extracted recently from experimental data.

J. N. De; S. K. Samaddar; B. K. Agrawal

2010-09-23T23:59:59.000Z

339

Petroleum engineering the Petroleum engineering  

E-Print Network (OSTI)

in the form of oil and natural gas will still constitute about 50%of the total energy supply throughout, new domestic natural gas production capabilities (from deep shale gas production and other formations Chemistry . . .3 PETR 5350 Natural Gas . . . . . . . . . . . . . . . . . . . .3

Glowinski, Roland

340

Dilution Refrigeration of Multi-Ton Cold Masses  

E-Print Network (OSTI)

Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

Wikus, P; CERN. Geneva

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed num- ber, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to...

342

Potential for Waste Stratification from Back-Dilution in Tank 241-SY-101  

SciTech Connect

Since late 1997, the floating crust layer in Hanford Tank 241-SY-101 (SY-101) has grown about two meters by gas accumulation. To reverse crust growth and reduce its retained gas volume, the waste in SY-101 will be diluted by transferring at least 300,000 gal of waste out of the tank and replacing it with water. In the fall of 1999, approximately 100,000 gal of this waste will be transferred into Tank SY-102; within a few days of that initial transfer, approximately 100,000 gal of water will be added to SY-101. This initial back-dilution is being planned to ensure that the base of the floating crust layer will be lifted away from the mixer pump inlet with minimal effect on the crust itself. The concern is that the added water will pool under the crust, so the resulting fluid mixture will be too light to lift the crust away from the mixer pump and dissolution at the crust base could cause unwanted gas release. To ensure sufficient mixing to prevent such stratification, water will be added near the tank bottom either through an existing sparge ring on the base of the mixer pump or through the dilution line at the inlet of the transfer pump. A number of simulations using the TEMPEST code showed that the mixing of the water and waste by this method is rapid, and the water does not pool under the crust. Although a density gradient is present, its magnitude is small compared with the difference between the slurry and water density. The result is essentially the same whether water is introduced at the base of the mixer pump or at the transfer pump. There is little effect of water flowrate up to the 500 gpm studied. In all cases, the minimum density remained above that required to float the crust and well above the density of saturated liquid. This indicates that the base of the crust will rise during back-dilution and there will be little or no dissolution of the crust base because the water will be close to saturation from the dissolution of solids in the mixed slurry.

Antoniak, Z.I.; Meyer, P.A.

1999-10-20T23:59:59.000Z

343

Heat conductivity of a pion gas  

E-Print Network (OSTI)

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

344

Stirling engines  

Science Conference Proceedings (OSTI)

The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

Reader, G.T.; Hooper

1983-01-01T23:59:59.000Z

345

Universal phase structure of dilute Bose gases with Rashba spin-orbit coupling  

SciTech Connect

A Bose gas subject to a light-induced Rashba spin-orbit coupling possesses a dispersion minimum on a circle in momentum space; we show that kinematic constraints due to this dispersion cause interactions to renormalize to universal, angle-dependent values that govern the phase structure in the dilute-gas limit. We find that, regardless of microscopic interactions, (a) the ground state involves condensation at two opposite momenta and is, in finite systems, a fragmented condensate and and (b) there is a nonzero-temperature instability toward the condensation of pairs of bosons. We discuss how our results can be reconciled with the qualitatively different mean-field phase diagram, which is appropriate for dense gases.

Gopalakrishnan, Sarang [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Lamacraft, Austen [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Goldbart, Paul M. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2011-12-15T23:59:59.000Z

346

Capabilities Briefingp g Engineering Division  

E-Print Network (OSTI)

engines · Geothermal water heater at a l bcommercial businesses · Zero emission natural gas wellhead gas, Electrical Resistivity Water/Wastewater Analysis and Remediation National Carbon Capture Center (Wilsonville;Electro-Mechanical SystemsElectro Mechanical Systems · Design, Modeling, Fabrication, Integration, Test

347

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

348

Electron-beam-controlled gas lasers: discussion from the engineering viewpoint. Part II. Problems in the electrical design of very high energy systems  

SciTech Connect

Some problem areas in the design of very-high-energy electronbeam- controlled short-pulse gas lasers are discussed. One of the prime areas of interest is the high-voltage pulse generators for driving the electron gun and gas pumping. The use of pulse-forming networks for improving energy-transfer efficiency is discussed. The use of thermionic cathode devices will require a large ac power installation. The properties of alternate electron sources (cold cathode and plasma cathode devices) are reviewed. The impact of laser beam energy density limitations on system geometry and electrical design are discussed last. (auth)

Riepe, K.B.; Stapleton, R.E.

1973-01-01T23:59:59.000Z

349

Optical engineering  

SciTech Connect

The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

Saito, T T

1998-01-01T23:59:59.000Z

350

Advance Materials & Innovative Solutions for Oil and Gas II  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Advanced Materials and Reservoir Engineering for Extreme Oil & Gas Environments: Advance Materials & Innovative Solutions for Oil and Gas...

351

Isotope dilution study of exchangeable oxygen in premium coal samples  

Science Conference Proceedings (OSTI)

A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

Finseth, D.

1987-01-01T23:59:59.000Z

352

Polarized target with dilution refrigerator: why and how  

DOE Green Energy (OSTI)

Polarized targets using dilution refrigerators have several advantages over targets of He/sup 3/ cryostats for some polarization experiments. One of the advantages is in the long nuclear spin lattice relaxation time in quite low temperatures. It permits holding the target polarization in a magnetic field different from the polarizing field. Another merit is in the fact that one can obtain higher polarization in a dilution refrigerator than in a He/sup 3/ cryostat, especially in the case of deuterons. These facts suggest various applications of the target with a dilution refrigerator, such as a spin-frozen target for spin-rotation parameter measurements, a target for spin effects in inelastic scattering, high polarized deuteron target, and so on. Furthermore, one can hopefully make a highly polarized HD target with further improvements of the dilution refrigerator. The possibility of the solid hydrogen polarization is also discussed. Finally, the principle of the dilution refrigerator and the special features of the refrigerator for the polarized target are briefly described. 7 figures.

Masaike, A.

1977-09-01T23:59:59.000Z

353

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gasfired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

354

Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets  

Science Conference Proceedings (OSTI)

The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

Bunting, Bruce G [ORNL

2012-10-01T23:59:59.000Z

355

Engines - Compression-Ignition - Locomotive Engines - emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Locomotive Engine Research Program Drives Down Train Emissions General Motors Electromotive Division locomotive engine EMD Engine Locomotive engine manufacturers face a unique...

356

Dilution cycle control for an absorption refrigeration system  

DOE Patents (OSTI)

A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

Reimann, Robert C. (Lafayette, NY)

1984-01-01T23:59:59.000Z

357

Process of concentrating ethanol from dilute aqueous solutions thereof  

DOE Patents (OSTI)

Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

Oulman, C.S.; Chriswell, C.D.

1981-07-07T23:59:59.000Z

358

Process of concentrating ethanol from dilute aqueous solutions thereof  

DOE Patents (OSTI)

Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

Oulman, Charles S. (Ames, IA); Chriswell, Colin D. (Slater, IA)

1981-07-07T23:59:59.000Z

359

Two-stage dilute acid prehydrolysis of biomass  

DOE Patents (OSTI)

The invention relates to a two stage dilute acid prehydrolysis of biomass for solubilization of hemicellulosic sugars and a pretreatment for enzymatic hydrolysis of cellulose. In particular, the invention pertains to a two stage dilute acid prehydrolysis treatment of a feedstock of hemicellulosic material comprising xylan that is slow hydrolyzable and xylan that is fast hydrolyzable under low temperature conditions to hydrolyze said fast hydrolyzable xylan to xylose; removing said xylose and leaving a feedstock residue containing said slow hydrolyzable xylan; treating said residue containing said slow hydrolyzable xylan with a dilute organic or inorganic acid under temperature conditions higher than said low temperature conditions to hydrolyze said slow hydrolyzable xylan to xylose, and removing said xylose.

Grohmann, K.; Torget, R.W.

1991-04-08T23:59:59.000Z

360

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

Littlejohn, David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Strength Nickel Alloys for Extreme Oil and Gas Environments  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Advanced Materials and Reservoir Engineering for Extreme Oil & Gas...

362

Corrosion of Mild Steel in Extreme Oil and Gas Environments  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Advanced Materials and Reservoir Engineering for Extreme Oil & Gas...

363

Power Line-Induced AC Potential on Natural Gas Pipelines for Complex Rights-of-Way Configurations, Volume 1: Engineering Analysis  

Science Conference Proceedings (OSTI)

This report addresses complex common corridor coupling problems for overhead electric power transmission lines and buried natural gas pipelines. Volume 1 describes the development of analytic methods for solving such problems and presents field data used in verification efforts. Volume 2 is a handbook for graphic analysis designed for use by field personnel or others without access to a computer. Volume 3 is a user's guide for the PIPELINE computer code.

1983-05-01T23:59:59.000Z

364

Author manuscript, published in "8th World Congress of Chemical Engineering, Montral: Canada (2009)" A SIMPLE GAS-LIQUID MASS TRANSFER JET SYSTEM,  

E-Print Network (OSTI)

Abstract: An original gas-liquid contacting system is proposed, consisting of a pump, an orifice, a vertical tube coaxial to the orifice and an impinging plate. The pump generates a downward vertical liquid jet through the orifice situated above the gas-liquid dispersion level. The two phase jet is directed towards an impinging plate near the bottom of the tank and dispersed in the volume of the liquid. Liquid is withdrawn below the impinging plate and recycled. This reactor may be used for gas-liquid reactions (ie hydrogenations) and also to mix liquids, to disperse particles, to oxygenate waste water etc. Performances and design rules of this equipment are proposed. Then, the results are compared to performances of bubble columns, stirred tanks, and other academic and industrial jet systems. It is shown that, at a given energy dissipation, this system yields much higher mass transfer densities than a classical stirred tank provided with a Rushton turbine. Finally some suggestions about mass transfer mechanisms and efficiency of dissipated power are given.

Roger Botton; Dominique Cosserat; Souhila Poncin; Gabriel Wild

2009-01-01T23:59:59.000Z

365

The Second Colloquium on Petroleum Engineering Education  

SciTech Connect

This paper describes findings from the Second Colloquium on Petroleum engineering Education. The purpose of this colloquium was to provide a forum for petroleum engineering educators and representatives from industry and government to explore critical issues facing petroleum engineering education as we move into the 21st Century. It was expected that the colloquium would identify areas where changes are needed in petroleum engineering education, to best prepare students for careers in the oil and gas industry or other, related industries.

Willhite, G.P.; Forney, R.H.

1993-11-30T23:59:59.000Z

366

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

367

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

368

Engine Removal Projection Tool  

DOE Green Energy (OSTI)

The US Navy has over 3500 gas turbine engines used throughout the surface fleet for propulsion and the generation of electrical power. Past data is used to forecast the number of engine removals for the next ten years and determine engine down times between removals. Currently this is done via a FORTRAN program created in the early 1970s. This paper presents results of R&D associated with creating a new algorithm and software program. We tested over 60 techniques on data spanning 20 years from over 3100 engines and 120 ships. Investigated techniques for the forecast basis including moving averages, empirical negative binomial, generalized linear models, Cox regression, and Kaplan Meier survival curves, most of which are documented in engineering, medical and scientific research literature. We applied those techniques to the data, and chose the best algorithm based on its performance on real-world data. The software uses the best algorithm in combination with user-friendly interfaces and intuitively understandable displays. The user can select a specific engine type, forecast time period, and op-tempo. Graphical displays and numerical tables present forecasts and uncertainty intervals. The technology developed for the project is applicable to other logistic forecasting challenges.

Ferryman, Thomas A.; Matzke, Brett D.; Wilson, John E.; Sharp, Julia L.; Greitzer, Frank L.

2005-06-02T23:59:59.000Z

369

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

370

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

371

Electrical resistivity imaging of conductive plume dilution in fractured rock  

E-Print Network (OSTI)

was injected into an injection well for 34 days to dilute a pre-existing potassium chloride (KCl) plume was conducted between the injection well and each of seven surrounding monitoring wells. Polar plots of the injection-well resistivity data in the direction of each monitoring well delineate specific locations where

Binley, Andrew

372

Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics  

DOE Patents (OSTI)

A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

2003-12-09T23:59:59.000Z

373

Engines - Spark Ignition Engines - Hydrogen Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale hydrogen infrastructure by using the well-known and widely used internal combustion engine as the device that transforms the energy stored in hydrogen into motion. The...

374

Information engineering  

SciTech Connect

The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

Hunt, D.N.

1997-02-01T23:59:59.000Z

375

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

376

CFD Modelling of Generic Gas Turbine Combustor.  

E-Print Network (OSTI)

??New computational methods are continuously developed in order to solve problems in different engineering fields. One of these fields is gas turbines, where the challenge (more)

KHODABANDEH, AMIR

2011-01-01T23:59:59.000Z

377

WEB RESOURCE: Chromalloy Gas Turbine Corporation - TMS  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... Chromalloy Gas Turbine Corporation is a pioneer in the high temperature coating of jet aircraft engine vanes and blades. Through...

378

Advanced Materials and Processes for Gas Turbines  

Science Conference Proceedings (OSTI)

Jul 1, 2003 ... Out of Print. Description These proceedings from the United Engineering Foundation's Advanced Materials and Processes for Gas Turbines...

379

Comparison of engine simulation software for development of control system  

Science Conference Proceedings (OSTI)

Most commonly used commercial engine simulation packages generate detailed estimation of the combustion and gas flow parameters. These parameters are required for advanced research on fluid flow and heat transfer and development of geometries of engine ...

KinYip Chan, Andrzej Ordys, Konstantin Volkov, Olga Duran

2013-01-01T23:59:59.000Z

380

NETL: Releases & Briefs - Laser ignition for lean-burn engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technology Laboratory have successfully operated a laser-spark lean-burn natural gas reciprocating engine. Development of lean-burn engines is driven by demand for higher...

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Assessment of Small Reciprocating Engine Manufacturers and Generator Set Packagers  

Science Conference Proceedings (OSTI)

This report presents an overview of reciprocating engine manufacturers and packagers of generators less that 300 kW in North America, Western Europe and Japan. This includes diesel (or compression ignition) engines as well as spark ignited engines fueled by gasoline, natural gas, liquid petroleum gas, and other similar fuels. Chapter 1 provides an overview of the market for smaller reciprocating engines, including a discussion of market channels and production levels. Chapter 2 primarily lists reciprocat...

2000-12-08T23:59:59.000Z

382

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973  

E-Print Network (OSTI)

depend on vari- ous factors: engine temperature and load, aftertreatment de- vices and dilution-11545-2010 © Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Impact of aftertreatment aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one ve- hicle was equipped

Entekhabi, Dara

383

Web engineering  

Science Conference Proceedings (OSTI)

Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research ... Keywords: development methodologies, taxonomy of Web applications, web Engineering, web application development, web-based information systems

Yogesh Deshpande; San Murugesan; Athula Ginige; Steve Hansen; Daniel Schwabe; Martin Gaedke; Bebo White

2002-10-01T23:59:59.000Z

384

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

385

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

386

Separation and concentration of lower alcohols from dilute aqueous solutions  

DOE Patents (OSTI)

A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

Moore, Raymond H. (Richland, WA); Eakin, David E. (Kennewick, WA); Baker, Eddie G. (Richland, WA); Hallen, Richard T. (Richland, WA)

1991-01-01T23:59:59.000Z

387

Challenges and Solutions to TGO Stress Measurement in Engine ...  

Science Conference Proceedings (OSTI)

Presentation Title, Challenges and Solutions to TGO Stress Measurement in Engine Run Gas Turbine Components. Author(s), Eric H Jordan, Mark S Majewski,...

388

An Integrated Life Cycle Engineering Model: Energy and Greenhouse...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Life Cycle Engineering Model: Energy and Greenhouse Gas Performance of Residential Heritage Buildings, and the Influence of Retrofit Strategies and Appliance...

389

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

390

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

391

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

392

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

393

Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass  

Science Conference Proceedings (OSTI)

The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here, we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to sub-micron length scales resulting from the industrially-relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of Rg ~ 135 lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 , and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the break down process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.

Pingali, Sai Venkatesh [ORNL; Urban, Volker S [ORNL; Heller, William T [ORNL; McGaughey, Joseph [ORNL; O'Neill, Hugh Michael [ORNL; Foston, Marcus B [ORNL; Myles, Dean A A [ORNL; Ragauskas, Arthur J [ORNL; Evans, Barbara R [ORNL

2010-01-01T23:59:59.000Z

394

NEWTON's Engineering References  

NLE Websites -- All DOE Office Websites (Extended Search)

engineering content for K-12 teachers. There are activities, lessons, and curriculum designed to introduce your students to engineering. ENGINEERING.com ENGINEERING.com...

395

Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer  

E-Print Network (OSTI)

and finally air. A special technique for sealing in whichsealing end. ple times by reverse isotope dilution with air.

Hamme, Roberta C; Emerson, Steven R

2004-01-01T23:59:59.000Z

396

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

397

College of Engineering Profile The College of Engineering at Colorado  

E-Print Network (OSTI)

College of Engineering Profile 2007-2008 The College of Engineering at Colorado State has a strong and Biological Engineering Civil and Environmental Engineering Electrical and Computer Engineering Mechanical Programs: Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering

398

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

399

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

and at temperature. "The nickel-based superalloy materials that are currently used in our gas-turbine engines have reached the absolute limit of their temperature range," says...

400

10 Solar powerplants. gas turbines packaged for offshore gas platform  

SciTech Connect

Weatherby Engineering Co. neared completion recently of 8 modules mounting a total of 9 gas turbine engines, all destined for an offshore gas injection platform. The platform capacity is 80 MMcfd. The inlet pressure on the platform is 45 psig and the discharge pressure is 3,410 psig. The system constitutes a complete gas dehydration and compressor station and the modules house the gas turbines which drive the centrifugal and reciprocating compressors for gas injection service, and 2 gas turbine-powered generating units to supply electric power for the platform complex. The gas turbines and compressors are installed in sound attenuated enclosures. These complete power packages are built up by Solar and supplied to Weatherby for the project. The complete module is described.

Alberte, T.

1976-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Harmonic engine  

Science Conference Proceedings (OSTI)

A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

Bennett, Charles L. (Livermore, CA)

2009-10-20T23:59:59.000Z

402

Engineering Emergence  

Science Conference Proceedings (OSTI)

We explore various definitions and characteristics of emergence, how we might recognise and measure emergence, and how we might engineer emergent systems. We discuss the TUNA ("Theory Underpinning Nanotech Assemblers") project, which is investigating ...

Susan Stepney; Fiona A. C. Polack; Heather R. Turner

2006-08-01T23:59:59.000Z

403

Department of Aeronautics and Astronautics School of Engineering  

E-Print Network (OSTI)

is conducted at the Gas Turbine Laboratory (GTL) which has had a worldwide reputation for research and teaching at the forefront of gas turbine technology for over 50 years. The concept of an MIT Gas Turbine Laboratory control, (3) heat transfer in turbine blading, (4) gas turbine engine noise reduction and aero

de Weck, Olivier L.

404

Editorial Manager(tm) for Optimization and Engineering Manuscript Draft  

E-Print Network (OSTI)

that are used on a natural gas mainline transmission system are usually of the centrifugal (turbine: Optimal structure of gas transmission trunklines Article Type: EngOpt 2008 Keywords: Gas Network; Pipeline and Engineering manuscript No. (will be inserted by the editor) Optimal structure of gas transmission trunklines

Bonnans, Frédéric

405

Biogas engines for agricultural motor-generators  

SciTech Connect

Tests were run on biogas, natural gas and liquid fuel with four engines of 1.1 and 2.8 L displacement at 1800 rpm, intended for motor-generators. One engine was diesel engine modified to high compression spark-ignition. Optimum timing, fuel consumption and knocking were determined at various load levels between full load and idling. Considerable differences in efficiency were found. Recommendations are given on choice, equipment and operation. 13 refs.

Persson, S.P.E.; Bartlett, H.D.

1981-01-01T23:59:59.000Z

406

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Conference Proceedings (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

407

Cellulase Accessibility of Dilute-Acid Pretreated Corn Stover  

SciTech Connect

The conclusions of this presentation are: (1) The dilute-acid pretreatment reduces xylan content in corn stover. This reduction in xylan content appears to render the substrate less recalcitrant. Below {approx}8%, xylan content is no longer the dominant factor in biomass recalcitrance. (2) Decreasing xylan content of corn stover also created more binding sites for Cel7A, but no strong correlation with actual xylan content. (3) We found no correlation between bound Cel7A concentration and lignin content. Maybe lignin is blocking the way for Cel7A? The contribution of lignin to biomass recalcitrance requires further investigation.

Jeoh, T.; Johnson, D. K.; Adney, W. S.; Himmel, M. E.

2005-01-01T23:59:59.000Z

408

Electrical conductivity of dispersions: from dry foams to dilute suspensions  

E-Print Network (OSTI)

We present new data for the electrical conductivity of foams in which the liquid fraction ranges from two to eighty percent. We compare with a comprehensive collection of prior data, and we model all results with simple empirical formul\\ae. We achieve a unified description that applies equally to dry foams and emulsions, where the droplets are highly compressed, as well as to dilute suspensions of spherical particles, where the particle separation is large. In the former limit, Lemlich's result is recovered; in the latter limit, Maxwell's result is recovered.

K. Feitosa; S. Marze; A. Saint-Jalmes; D. J. Durian

2005-07-18T23:59:59.000Z

409

COMPUTER ENGINEERING EECS Department  

E-Print Network (OSTI)

COMPUTER ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers Master of Science degrees in computer science, electrical engineering

410

Guide to natural gas cogeneration. [Glossary included  

SciTech Connect

Guide to natural gas cogeneration is the most extensive reference ever written on the engineering and economic aspects of gas fired cogeneration systems. Forty-one chapters cover equipment considerations and applications for gas engines, gas turbines, stem engines, electrical switchgear, and packaged systems. The text is thoroughly illustrated with case studies for both commercial and industrial applications of all sizes, as well as for packaged systems for restaurants and hospitals. A special chapter illustrates market opportunities and keys to successful development. Separate abstracts of most chapters and several appendices have been prepared.

Hay, N.E. (ed.)

1988-01-01T23:59:59.000Z

411

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

412

No Evidence of Gas-Liquid Coexistence in Dipolar Hard Spheres Lorenzo Rovigatti and John Russo  

E-Print Network (OSTI)

No Evidence of Gas-Liquid Coexistence in Dipolar Hard Spheres Lorenzo Rovigatti and John Russo separation between a dilute gas of chain ends and a high-density liquid of chain junctions has been predicted of the model (a point dipole at the center of a hard sphere) contrasting opinions exist about its putative gas-liquid

Sciortino, Francesco

413

Exhaust gas provides alternative gas source for cyclic EOR  

SciTech Connect

Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

Stoeppelwerth, G.P.

1993-04-26T23:59:59.000Z

414

Clean and Efficient Diesel Engine  

DOE Green Energy (OSTI)

Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

None

2010-12-31T23:59:59.000Z

415

Dilute magnetic semiconductors in spin-polarized electronics (invited)  

SciTech Connect

Dilute magnetic semiconductors have proven to be very useful in building an all-semiconductor platform for spintronics{emdash}so far they provide the only viable route to establish spin-polarized current injection into a nonmagnetic semiconductor. The reasons for this become apparent from a simple spin-channel model, which predicts that spin injection into a semiconductor can, within linear response, only readily be achieved from a ferromagnetic injector that has: (i) a resistivity that is comparable to the semiconductor and (ii) preferably is 100% spin polarized. Both of these criteria can be met in magnetic semiconductors, but (so far) are hard to achieve using other materials. Experimentally, we demonstrate how dilute magnetic II{endash}VI semiconductors can be used to inject a strongly (up to 90%) spin-polarized current into a light emitting diode. In addition, we discuss the implications of the spin-channel model for the observation of giant magnetoresistance-like effects in the magnetoresistance of an all-semiconductor device. {copyright} 2001 American Institute of Physics.

Schmidt, Georg; Molenkamp, Laurens W.

2001-06-01T23:59:59.000Z

416

Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

SciTech Connect

One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

417

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

DOE Green Energy (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

418

Development of PC 4 dual-fuel engine  

SciTech Connect

Recently, utilization of natural gas, which is considered to be one of most important alternative fuels for petroleum, has been marked. As thermal efficiency of dual-fuel engine is higher than those of other prime movers with gaseous fuel, i.e., spark-ignited gas engine or gas turbine, it is possible to construct fuel-economical gas power plants with dual-fuel engines. However, its horsepower has been limited to the rather lower range. In 1984, NKK succeeded in developing large-sized dual-fuel engines based on the Pielstick PC4 diesel engine. The horsepower is 1200 HP/cyl, i.e. 21,600 HP for 18-cyclinder engine.

Nishikawa, T.; Utsuyama, S.; Maruyama, S.; Ono, T.; Kitahara, S.

1985-01-01T23:59:59.000Z

419

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

420

Business Engineering (B.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Business Engineering (B.Sc.) Summer Term 2013 Long version Date: 05.03.2013 Faculty of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research Center

Stein, Oliver

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Economics Engineering (M.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Economics Engineering (M.Sc.) Summer Term 2013 Long version Date: 05.03.2013 Faculty of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research Center

Stein, Oliver

422

Economics Engineering (B.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Economics Engineering (B.Sc.) Summer Term 2013 Long version Date: 06.03.2013 Department of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research

Stein, Oliver

423

Automobile air pollution: new automotive engines and engine improvements. 1978-March, 1981 (Citations from the NTIS data base). Report for 1978-March 1981  

SciTech Connect

This bibliography cites reports on new designs of automobile engines. The engine types include gas turbines, stratified charged engines, steam engines, hybrid engines using electric motors or flywheels, and rotary engines. Many of these studies also cover the problem of improving fuel economy while lowering emissions. Retrofit devices are excluded. (This updated bibliography contains 205 citations, 58 of which are new entries to the previous edition.)

1981-04-01T23:59:59.000Z

424

Automobile air pollution: new automotive engines and engine improvements. Volume 1. 1970-1977 (a bibliography with abstracts). Report for 1970-1977  

SciTech Connect

This bibliography cites reports on new designs of automobile engines. The engine types include gas turbines, stratified charge engines, steam engines, hybrid engines using electric motors or flywheels, and rotary engines. Many of these studies also cover the problem of improving fuel economy while lowering emissions. Retrofit devices are excluded. (This updated bibliography contains 176 abstracts, none of which are new entries to the previous edition.)

Habercom, G.E. Jr

1979-04-01T23:59:59.000Z

425

Automobile air pollution: new automotive engines and engine improvements. Volume 2. 1978-March, 1979 (a bibliography with abstracts). Report for 1978-March 1979  

SciTech Connect

This bibliography cites reports on new designs of automobile engines. The engine types include gas turbines, stratified charged engines, steam engines, hybrid engines using electric motors or flywheels, and rotary engines. Many of these studies also cover the problem of improving fuel economy while lowering emissions. Retrofit devices are excluded. (This updated bibliography contains 100 abstracts, 94 of which are new entries to the previous edition.)

Habercom, G.E. Jr

1979-04-01T23:59:59.000Z

426

Abradable Coatings Increase Gas Turbine Engine Efficiency  

Science Conference Proceedings (OSTI)

Oct 11, 2007 ... This brief article covers the uses of abradable coatings, their development and their function. Wear at high speed, effect of tip width and coating...

427

Brookhaven Women Engineers' Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Mission | Other links BWEN Brookhaven Women Engineers' Network BNLlogo Brookhaven Women Engineers' Network Network for professionals in engineering, computing and...

428

Meta search engine.  

E-Print Network (OSTI)

??Meta search engines allow multiple engine searches to minimize biased information and improve the quality of the results it generates. However, existing meta engine applications (more)

Chan, Kwok-Pun

2007-01-01T23:59:59.000Z

429

University Reciprocating Engine Program Review  

NLE Websites -- All DOE Office Websites (Extended Search)

University Reciprocating Engine Program Review University Reciprocating Engine Program Review April 9-10, 2003 Table of Contents Disclaimer Papers and Presentations Meeting Overview & Outcomes [PDF-192KB] Agenda [PDF-143KB] DOE/EERE/DER Natural Gas Reciprocating Engines Program The Advanced University Reciprocating Engine Research Program (AUREP) is a Distributed Energy Resources (DER) Program managed within DOE's Office of Energy Efficiency and Renewable Energy (EERE). Click on the link above to find abundant information on the natural gas reciprocating engine program (Technology Primer, Related Programs, Documents & Resources, News & Events, Solicitations and the DER Site Map). Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

430

Critical masses of uranium diluted with matrix material  

SciTech Connect

Critical masses of square-prisms of highly enriched uranium diluted in various X/235U ratios with matrix material and polyethylene were measured. The Configuration cores were 22.86-cm and 45.72-cm square and were reflected with 8.1 3-cm and 10.1 6-cm thick side polyethylene reflectors, respectively. The configurations had 10.1 6-cm thick top and bottom polyethylene reflectors. For some configurations, the Rossi-a, which is an eigenvalue value characteristic for a particular configuration, was measured to establish a reactivity scale based on the degree of subcriticality . Finally, the critical mass experiments are compared with values calculated with MCNP and ENDF/B-VI cross-sections.

Sanchez, R. G. (Rene G.); Loaiza, D. J. (David J.); Kimpland, R. H. (Robert H.)

2002-01-01T23:59:59.000Z

431

Dilution and resonance-enhanced repulsion in nonequilibrium fluctuation forces  

SciTech Connect

In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable objects (microscopic or macroscopic) in vacuum are generically attractive. The force may, however, become repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that this nonequilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the thermal region and by (ii) reducing the dielectric contrast due to ''dilution''. This can lead to stable equilibrium positions. We discuss the realization of these effects for aerogels, yielding repulsion down to submicron distances at realistic porosities.

Bimonte, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario MSA, Via Cintia, I-80126 Napoli (Italy); INFN Sezione di Napoli, I-80126 Napoli (Italy); Emig, Thorsten [Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Bat. 100, Universite Paris-Sud, F-91405 Orsay cedex (France); Krueger, Matthias; Kardar, Mehran [Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139 (United States)

2011-10-15T23:59:59.000Z

432

The Engineer of 2020: Global Visions of Engineering Practice and Education  

E-Print Network (OSTI)

40% more electrical capacity, 40% more gasoline, and 20% more natural gas than in 2000. · 50, less-technical engineering work (e.g., management, finance, marketing, policy) · The shift- technical and operational context #12;6 Results from a Survey of NAE Frontiers of Engineering Alumni

Agogino, Alice M.

433

ENSC 461: Four-Stroke Diesel Engine School of Engineering Science  

E-Print Network (OSTI)

Objective - Determining characteristic curve of a four-stroke Diesel engine - Calculating thermal efficiency digitally. Additional connections and displays for measurements of exhaust-gas temperature and the engine for various fuel tanks (1); a pipeline (not visible here) is used to fill the measurement tube (7) for fuel

Bahrami, Majid

434

Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells  

Science Conference Proceedings (OSTI)

Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing {sup 203}Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of {+-}2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

Sugiharto [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Centre for Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No 49, Jakarta 12440 (Indonesia); Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Santoso, Sigit Budi; Abidin, Zainal [Centre for Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No 49, Jakarta 12440 (Indonesia); Santoso, Gatot Budi [PT. Industri Soda Indonesia, Jl. Raya Waru 31, Sidoarjo 61256 (Indonesia)

2010-06-22T23:59:59.000Z

435

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

engines are re-optimized for CNG and are calculated on amanufacturing the engine), then CNG would produce even moreChina natural gas (CNG). The taxi fleet is currently being

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

436

Forecasting and strategic inventory placement for gas turbine aftermarket spares  

E-Print Network (OSTI)

This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

Simmons, Joshua T. (Joshua Thomas)

2007-01-01T23:59:59.000Z

437

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

438

Engineers Constructors  

Office of Legacy Management (LM)

Engineers Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear Mr. Benavides: The following are clarifications to the referenced contract specification. The need for clarification to the specification arises from the fact that the Bayo Canyon site is transected by a corporate boundary, the Los Alamos County-Santa Fe County line. This condition affects three items in the specification Scope Of Work: Item 1.2.5, the as-built site plan of the Bayo

439

Solid fuel applications to transportation engines  

SciTech Connect

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

1980-06-01T23:59:59.000Z

440

Thermal engine driven heat pump for recovery of volatile organic compounds  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

Drake, Richard L. (Schenectady, NY)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas engine diluted" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of alternative mitigation concepts for Hanford flammable gas tanks  

Science Conference Proceedings (OSTI)

This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations.

Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

1994-09-01T23:59:59.000Z

442

Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using ``safe`` silicon source gas  

DOE Patents (OSTI)

A method is described for producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament. 7 figs.

Mahan, A.H.; Molenbroek, E.C.; Nelson, B.P.

1998-07-07T23:59:59.000Z

443

Engineered Fire Safety Group  

Science Conference Proceedings (OSTI)

Engineered Fire Safety Group. Welcome. ... Employment/Research Opportunities. Contact. Jason Averill, Leader. Engineered Fire Safety Group. ...

2012-06-05T23:59:59.000Z

444

Laser Doppler Anemometry Measurements of Dilute Pneumatic Transport in a Vertical Lifter  

E-Print Network (OSTI)

Vertical pneumatic transport in a lab-scale vertical lifter has been studied using Laser Doppler Anemometry (LDA). The experimental system consists of a lower fluidized silo, an upper receiving tank and a connecting vertical transport pipe made of clear glass. The experimental study has been performed in order to get detailed information of the complex gas-particle flow behavior in a dilute vertical conveying system. Axial and tangential particle velocities, as well as root mean square velocities are measured simultanously for different flow conditions. The particulate material transported is Zirconium Oxide (ZrO2) solids. Measurements is obtained using transport air flow rate of 24, 36, 48 and 60 m3/h. The air is feeded into the tranport air through a nozzle. The length this nozzle is sticking into the transport pipe is varied in order to study the nozzle position influence on the flow behavior. The receiving tank is equipped with weighing cells, so that solids mass fluxes also can be measured for different flow conditions.

Telemark Technological R; D Centre (tel-tek; Vidar Mathiesen; Vidar Mathiesen; Tron Solberg; Tron Solberg

2000-01-01T23:59:59.000Z

445

Feasibility of SF6 Gas-Insulated Transformers  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ...

446

The Development of ODS Superalloys for Industrial Gas Turbines  

Science Conference Proceedings (OSTI)

of advanced gas turbine engines, these alloys display long-term strength beyond the capabilities of conventional superalloys. The increasing use of ODS alloys,.

447

Development of Gatorized MERL 76 for Gas Turbine Disk Applications  

Science Conference Proceedings (OSTI)

FOR GAS TURBINE DISK APPLICATIONS. R. H. Caless and D. F. Paulonis. Materials. Engineering. Pratt & Whitney. 400 Main Street. East Hartford,. CT 06108.

448

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to create a computerized database inventory of compressor engines being used in the oil and natural gas exploration and production industry to evaluate emissions control...

449

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Geology, Mining, and Minerals. Venue: Society of Petroleum Engineers Asia Pacific Oil & Gas Conference in Jakarta, Indonesia, October 30November 1, 2007 (http:...

450

The Fundamentals of Gas Bubbling into Liquid Metals  

Science Conference Proceedings (OSTI)

Presentation Title, The Fundamentals of Gas Bubbling into Liquid Metals ... Engineering and Human Resource Development: Design as a Common Language ... Tundish Process Performance Improvement: Some Indian Case Studies.

451

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

452

Dept. of Mechanical Engineering 1500 Engineering Dr.  

E-Print Network (OSTI)

of Diesel Engine, Exhaust System, Engine Emissions and Aftertreatment Device Models," SAE Paper 2005 Engine, Emissions, and Exhaust Aftertreatment System Level Model to Simulate Diesel Particulate Filter Diesel