Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utah Natural Gas in Underground Storage - Change in Working Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2...

2

,"Miscellaneous Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

3

Market Impacts of Changing Natural Gas Infrastructure  

Science Conference Proceedings (OSTI)

The United States is in the midst of a multifaceted and rapid expansion of its natural gas supply infrastructure, spanning every segment of the industry from drilling and production to transportation, storage, and capabilities to import liquefied natural gas (LNG). This report takes stock of these many developments at a time of great change, pointing to their implications for the gas and electric industries.

2008-10-20T23:59:59.000Z

4

Changes related to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

5

Figure 5. Percentage change in natural gas dry production and ...  

U.S. Energy Information Administration (EIA)

Figure 5. Percentage change in natural gas dry production and number of gas wells in the United States, 2007?2011 annual ...

6

Introduction to Sustainability, Climate Change and Greenhouse Gas ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Introduction to Sustainability, Climate Change and Greenhouse Gas Emissions Reductions Knowledge Package by Halvor Kvande ...

7

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815 27,780 16,330 1993 16,748 -23,871 -27,342 -13,729 -7,043 -138 11,093 8,174 14,808 2,868 -4,885 -9,642 1994 -45,776 -23,124 8,987 25,048 32,148 34,360 39,360 43,202 18,502 20,447 7,409 15,602 1995 60,371 42,037 36,507 9,811 2,098 -569 -19,226 -25,702 -1,403 1,156 -23,733 -57,737

8

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5 1.3 -0.3 -7.1 -8.1 -0.4 0.3 -7.1 -19.6 1996 -32.3 -32.6 -49.9 -39.0 -28.4 -18.3 -0.5 4.4 0.7 -0.2 3.9 26.8 1997 31.1 63.7 89.6 41.7 24.2 9.7 -4.5 -6.2 -2.2 -2.4 -0.3 -8.7 1998 5.7 9.8 22.4 52.3 49.3 32.7 23.0 11.1 3.1 4.1 12.5 17.6

9

California Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Percent) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5.1...

10

Michigan Natural Gas in Underground Storage - Change in Working...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

11

Natural Gas Markets: Recent Changes and Key Drivers  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Natural Gas Markets: Recent Changes and Key Drivers for

12

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

The Energy Information Administration (EIA) is changing the Weekly Natural Gas Storage Report (WNGSR) for the following: The table will now include a column for implied flow...

13

,"TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

14

,"California Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

15

,"NM, West Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

16

,"Alaska Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

17

,"Alabama Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

18

,"NM, East Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

19

,"TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

20

,"TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"North Dakota Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

22

,"West Virginia Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

23

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

24

,"Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

25

,"Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

26

,"Montana Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

27

,"TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

28

,"TX, State Offshore Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

29

,"Texas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

30

,"LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

31

,"North Louisiana Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

32

,"TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

33

,"Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

34

,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

35

,"Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

36

,"Michigan Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

37

,"Colorado Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

38

,"TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

39

Assess Potential Changes in Business Travel that Impact Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changes in Business Travel that Impact Greenhouse Changes in Business Travel that Impact Greenhouse Gas Emissions Assess Potential Changes in Business Travel that Impact Greenhouse Gas Emissions October 7, 2013 - 1:22pm Addthis YOU ARE HERE Step 1 For a Federal agency, changes in the demand for business travel can be difficult to predict. Changes in the nature of the agency's work may have a substantial impact on the demand for business travel. It is therefore important to account for these changes when planning for greenhouse gas (GHG) emissions reduction. Conditions that may contribute to a significant increase or decrease in the agency's business travel, beyond specific efforts to reduce business travel demand, include: Significant changes in the agency's budget Addition or completion of major program activities that require

40

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

Released: September 23, 2013 Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing changes to the format of its Weekly Natural Gas Storage Report (WNGSR) to better serve its customers who make use of automated computer systems to collate information on changes in natural gas storage. Specifically, EIA intends to enhance the WNGSR summary table. In addition to what is currently presented, EIA plans to provide an estimate of the "implied flow" of working natural gas into or out of underground natural gas storage facilities that excludes reportable reclassifications-those totaling 7 billion cubic feet (Bcf) or more-from the weekly "net change" in

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Detection of Greenhouse-Gas-Induced Climatic Change  

SciTech Connect

The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

Jones, P.D.; Wigley, T.M.L.

1998-05-26T23:59:59.000Z

42

Detection of greenhouse-gas-induced climatic change  

SciTech Connect

The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO[sub 2] and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

43

Research on Greenhouse-Gas-Induced Climate Change  

Science Conference Proceedings (OSTI)

During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

Schlesinger, M. E.

2001-07-15T23:59:59.000Z

44

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Emissions Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions October 7, 2013 - 10:12am Addthis Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. Such changes could represent either an additional significant hurdle to overcome or a significant reduction in the effort required to drive emissions down-in the absence of any direct GHG mitigation reduction strategies. This will help each organization establish its "business as usual" emission profile in 2020, the year agencies are expected to meet their Scope 1 and 2 and Scope 3 GHG emission-reduction goals.

45

Lower 48 States Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Lower 48 States Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,985 38,541 -75,406 -222,622 -232,805 -210,409 -190,434 -133,607 -91,948 -46,812 73,978 350,936 2012 778,578 852,002 1,047,322 994,769 911,345 800,040 655,845 556,041 481,190 406,811 271,902 259,915 2013 -216,792 -360,517 -763,506 -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

46

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

47

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

Originally Released: November 26, 2013 Originally Released: November 26, 2013 Updated: December 11, 2013 The Energy Information Administration (EIA) is changing the Weekly Natural Gas Storage Report (WNGSR) for the following: The table will now include a column for implied flow Columns for reclassification flags - to be indicated by an upper case C - are added to the table New filenames for the text (wngsr.txt) and csv (wngsr.csv) file formats The web address and EIA's Gatekeeper delivery methodology will remain unchanged. For more background on the changes to the report please review previous notice from September 23, 2013. Testing will be provided. Dates and times are listed below. We ask that customers who normally access the data at 10:30 a.m. on Thursdays for their participation. Files that will contain the new columns for implied flow and

48

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842 -1,862 -1,456 -552 -338 -348 -285 -294 58 -85 1995 598 848 1,085 2,969 2,136 772 445 487 680 597 533 197 1996 -642 -262 -655 -677 21 290 541 398 140 226 -244 12 1997 309 461 -279 -42 -162 -311 -119 55 90 95 607 453

49

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop  

E-Print Network (OSTI)

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes

DeLucia, Evan H.

50

Figure 10. Annual change in U.S. wet natural gas proved reserves ...  

U.S. Energy Information Administration (EIA)

Figure 8 Bcf Shale Total Other Shale % Total Proved Reserves Change in Natural Gas Proved Reserves Tcf Natural Gas Proved Reserves shale other 2006.00 14182.00

51

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

Shale Gas (Billion Cubic Feet) Area: ... Annual : Download Series History: ... Estimated Production : 0: 0: 0: 0: 0: 2007-2011

52

Oregon Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86 454 -69 1994 587 858 640 -1,359 -1,793 -1,593 -1,578 -1,544 -1,438 -1,674 -1,380 -915 1995 -1,331 -589 -83 3,208 3,177 2,713 2,212 1,136 939 685 1,065 880 1996 1,306 751 539 -460 -916 -777 -340 97 -286 -492 -987 -1,405

53

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,714 -2,484 2,221 9,026 9,501 3,159 1,926 1,511 539 1,182 1,803 9,892 1991 10,604 5,727 4,873 6,047 4,879 3,728 -584 -3,344 -2,211 -1,535 -10,107 -9,904 1992 -2,980 443 -1,846 -7,642 -6,984 -4,083 -1,435 -2,987 -1,706 -4,499 3,130 1,793 1993 5,569 -864 -4,596 -2,260 694 -12 478 3,249 2,672 1,131 -20,850 -21,299 1994 -24,589 -21,355 -12,019 -10,157 -12,687 -15,926 -14,545 -12,608 -16,289 -13,079 10,221 12,176 1995 11,100 9,566 2,283 2,636 4,862 5,526 3,149 -1,367 2,792 2,492 -7,807 -11,038

54

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993 -51,572 -52,876 -51,081 -40,760 -41,229 -40,132 -39,867 -44,533 -43,110 -44,873 -36,080 -34,184 1994 -6,101 -1,289 8,929 5,795 -3,558 -6,807 -4,948 -4,181 -3,006 -678 -77 11,376 1995 20,962 7,104 -805 -3,970 -29,257 -30,038 -32,571 -35,022 -40,472 -36,406 -41,858 -53,433

55

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160 1,462 1,893 876 -679 -25 903 1994 -79 1,426 2,111 236 -856 -462 215 -22 -226 1,272 3,701 3,372 1995 4,108 1,921 1,440 1,503 2,033 1,379 -847 -1,547 -1,105 305 239 -1,594 1996 -2,809 -931 -2,059 -2,296 -2,608 -2,010 -508 2,016 1,499 -9 283 1,806

56

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854 -42,967 1994 3,868 4,407 3,612 1,225 -15 -1,608 -2,255 -1,606 -2,529 977 3,064 2,918 1995 662 -725 -2,062 -4,549 -6,346 -4,768 -4,875 -978 -985 -2,955 -9,054 -6,318 1996 -2,596 -433 -1,982 -2,204 -5,609 -6,677 -4,290 -5,912 -4,983 -1,206 3,642 151

57

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520 1,087 -522 -4,673 -5,378 -3,812 1994 -4,380 -4,192 -4,417 -6,105 -3,313 -6,446 -4,523 -3,052 -2,203 74 2,261 53 1995 699 2,115 -131 605 -2,947 1,448 2,167 881 -1,537 -592 2,731 756 1996 -3,583 -1,460 -1,587 1,297 1,828 892 223 -114 831 -332 -2,174 183

58

West Virginia Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,093 -693 -375 128 493 786 2 -447 -512 -333 -99 1,138 1991 6,825 -2,677 -1,109 134 -3,564 -4,731 -6,487 -12,806 -17,650 -17,773 -28,530 -34,101 1992 -15,454 -21,567 -46,663 -52,768 -43,995 -42,430 -35,909 -27,164 -22,183 -12,950 -7,815 22,584 1993 24,960 9,394 9,292 12,636 27,031 36,232 34,023 34,755 41,628 34,399 26,968 -14,222 1994 -40,501 -30,621 -21,008 -4,595 -17,438 -13,653 -5,670 -2,609 -2,058 -1,674 4,099 10,639 1995 25,027 16,310 22,537 6,655 5,546 -896 -5,421 -18,718 -21,810 -13,288 -28,780 -41,453

59

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -4,944 -5,851 -5,300 -3,038 -4,576 -4,057 77 1,820 2,686 6,478 7,515 9,209 1991 7,941 6,810 4,962 -4,017 2,723 1,139 -1,388 -6,536 -5,453 -8,726 -9,976 -6,483 1992 -5,057 -3,765 -2,333 3,222 202 -2,266 -5,420 -1,519 -2,964 -294 -1,093 -1,638 1993 -2,265 -5,717 -5,105 -6,433 -3,632 -2,953 -584 -4,847 -5,056 -5,431 -7,107 -7,436 1994 -7,752 -4,567 -4,829 -2,234 -4,170 -4,700 -4,598 -2,062 352 281 2,443 1,820 1995 2,638 3,615 4,436 4,991 5,445 5,859 5,506 4,197 1,314 -768 -1,294 -2,244

60

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425 -16,165 1993 -16,925 -24,778 -32,596 -36,290 -19,699 -4,049 12,259 23,601 37,502 33,152 26,345 20,728 1994 8,768 26,882 32,899 51,830 47,357 34,388 35,682 31,067 18,680 12,257 22,195 26,643 1995 33,319 12,790 17,621 6,203 -8,067 -1,243 -9,994 -31,430 -31,368 -26,406 -46,809 -55,574

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219 -9,773 -9,196 -8,590 -7,100 -6,215 -4,763 -4,433 -2,461 -3,475 -1,939 1994 834 524 1,455 1,850 2,436 1,126 195 143 389 396 2,707 3,074 1995 723 2,101 128 -1,538 -2,661 -1,884 -1,303 -1,135 -665 -416 -680 -807 1996 -1,225 -2,881 -2,568 -1,148 1,099 1,302 1,744 832 -482 -1,417 -3,593 -5,063

62

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -72 452 283 -1,858 -801 699 -1,353 41 108 1,167 -1,339 1991 -2,326 1,196 205 3,977 26,799 5,575 4,775 1,778 703 1,958 2,917 5,687 1992 6,208 3,332 5,695 1,986 1,815 275 -839 679 1,880 -138 -1,840 -5,179 1993 -6,689 -7,057 -5,245 -3,367 -188 -497 627 -212 975 -626 -3,745 1,760 1994 3,597 2,471 806 1,906 -20 879 539 371 -878 1,499 4,890 1,609 1995 1,078 3,321 3,503 1,633 1,599 1,386 990 268 1,628 1,312 1,767 -15 1996 -4,203 -3,033 -3,595 -3,720 -4,328 -2,562 -2,690 1,336 -2,014 -3,767 -4,591 -3,144

63

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437 -17,034 -19,377 -21,219 -23,373 -24,811 -24,628 -25,093 -24,213 -22,944 -22,384 -19,989 1994 -18,713 -19,954 -18,358 -17,429 -15,333 -12,802 -12,658 -11,874 -10,555 -9,434 -8,353 -7,819 1995 -7,494 -3,827 -3,353 -1,774 -1,433 -1,101 464 2,584 1,908 321 -1,020 -3,599

64

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525 -6,948 -28,550 1993 -119,345 -120,895 -123,412 -110,528 -102,328 -100,860 -113,541 -118,288 -125,086 -122,661 -114,692 -94,084 1994 -21,524 -45,478 -29,527 -21,615 -15,311 -16,358 -113 6,609 32,786 38,411 56,777 41,703 1995 71,748 88,600 72,969 70,544 59,709 56,910 31,618 8,138 5,482 4,572 -18,623 -35,336

65

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418 -30,129 -26,038 -22,202 -4,247 4,828 6,211 5,963 10,199 10,284 14,158 14,727 1994 8,105 8,620 12,116 13,982 2,713 -3,469 465 1,613 -3,134 -1,516 -2,683 -1,820 1995 6,294 5,619 -1,798 -1,708 -758 5,090 429 -12,148 -5,167 2,571 6,337 -382

66

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 69 134 440 435 425 385 -24 236 67 -179 2001 -7 -19 -282 -100 -165 21 46 202 453 58 469 975 2002 1,038 533 436 127 151 30 68 -94 -46 187 -153 -439 2003 -987 -810 -600 -430 -520 -317 -187 388 616 443 608 557 2004 528 649 498 364 599 408 194 216 6 834 916 456 2005 201 391 -60 22 -116 -186 -62 -780 -679 -910 1,097 1,608 2006 3,081 2,559 3,389 3,163 2,744 2,220 2,009 2,014 2,869 2,415 531 784

67

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133 -1,700 -270 -379 -1,170 1994 -4,444 -2,565 -113 1,629 1,482 1,771 2,779 2,519 1,569 658 -517 1,249 1995 5,583 3,808 3,166 1,674 1,629 2,195 -93 -369 129 -488 -247 -2,056 1996 -3,630 -2,064 -3,459 -3,286 -3,097 -2,473 -372 315 -34 394 -346 1,808

68

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000 152,000 174,000 265,000 413,000 549,000 1978 532,000 147,000 -92,000 -196,000 -240,000 -194,000 -184,000 -98,000 -11,000 29,000 106,000 72,000 1979 71,000 39,000 113,000 104,000 128,000 114,000 120,000 127,000 107,000 121,000 118,000 207,000

69

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967 -21,375 -21,809 -21,634 -20,069 -20,488 -16,719 -11,806 -1,499 -5,717 -13,058 -21,422 1994 -39,036 -30,048 -9,070 4,162 7,033 5,081 8,939 7,976 3,961 7,543 16,019 30,397 1995 36,925 34,571 29,611 9,077 7,499 9,345 6,077 2,682 -942 -2,597 -22,632 -39,593

70

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196 -533 -430 2001 155 398 -521 -260 -395 -413 -352 -239 -111 -89 1,403 1,499 2002 1,415 858 1,192 1,255 1,399 692 788 772 755 314 -578 -731 2003 -2,107 -1,207 -476 304 1,194 2,067 2,346 2,392 3,132 4,421 4,005 3,823

71

,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

72

,"TX, RRC District 7C Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

73

,"TX, RRC District 7B Shale Gas Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

74

Oil, gas tanker industry responding to demand, contract changes  

SciTech Connect

Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

True, W.R.

1998-03-02T23:59:59.000Z

75

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11  

E-Print Network (OSTI)

ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic. If the objective of a policy were the reduction of GHG emissions using a limited supply of natural gas, the bestNATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural

76

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0 10.5 16.3 17.9 8.4 -3.2 6.2 5.2 -16.1 -25.5 1996 -25.7 -20.7 -31.6 -29.8 -36.9 -21.2 -9.3 8.1 9.4 9.4 21.0 38.5 1997 33.4 39.7 105.3 64.1 71.0 44.2 10.9 -1.2 -5.3 -6.4 1.9 -7.4 1998 6.1 2.0 -13.3 -3.6 -8.6 -10.1 5.8 7.1 -4.2 10.9 11.9 23.7

77

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3 0.8 0.7 -4.8 1996 -10.1 -4.2 -10.5 -12.2 -13.6 -9.6 -2.1 7.3 4.7 0.0 0.8 5.7 1997 5.1 6.0 13.3 1.9 2.2 -0.6 -6.1 -12.4 -8.9 -7.0 -6.5 -9.3 1998 0.6 3.3 -5.1 6.1 8.3 -0.3 -0.9 -0.2 -0.4 -0.8 2.9 3.4

78

California Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600 -28,127 1993 -18,888 -21,388 7,592 2,646 4,145 -4,114 5,805 2,657 2,580 3,170 1,004 23,856 1994 14,332 -10,557 -24,707 -14,896 -15,082 -8,607 -14,837 -14,903 -8,310 -6,861 -11,874 -3,316 1995 9,020 48,536 41,487 19,773 18,032 23,794 20,147 9,074 3,393 9,305 28,072 27,725

79

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8 35.6 24.2 26.7 -0.9 -3.1 1.0 -3.2 -1.7 -15.6 1996 -33.1 -30.7 -52.3 -51.6 -37.0 -23.8 0.0 0.0 -0.3 2.7 -2.5 16.3 1997 -3.8 -5.7 -21.1 -23.6 -25.2 -29.3 -27.9 -19.8 -9.3 -3.7 4.9 1.1 1998 39.5 61.5 119.5 179.6 87.5 54.4 63.0 38.2 13.2 4.1 3.6 -1.8

80

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9 1979 3.9 3.0 10.1 8.4 8.6 6.2 5.5 5.1 3.8 4.1 4.0 8.1 1980 23.0 37.3 29.0 26.7 23.4 17.9 13.3 8.6 6.1 3.5 -0.6 -3.6 1981 -7.4 -1.5 2.3 4.3 -1.1 -2.0 -1.1 1.0 1.7 1.9 5.8 6.1 1982 1.4 -2.0 -1.7 -5.0 2.9 5.2 5.7 4.0 3.1 3.6 3.4 9.0

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 16.1 26.9 39.6 25.2 13.9 3.6 5.7 -3.4 1.3 0.3 -3.5 -10.0 2000 -34.3 -21.3 9.2 14.4 36.6 30.7 25.9 21.0 -1.1 10.0 3.1 -10.5 2001 -0.7 -2.3 -34.6 -9.4 -10.1 1.1 2.2 9.1 20.4 2.2 20.9 63.8 2002 104.8 64.7 81.8 13.2 10.2 1.6 3.2 -3.9 -1.7 7.0 -5.6 -17.5 2003 -48.6 -59.7 -62.0 -39.4 -32.0 -16.7 -8.6 16.7 23.4 15.6 23.8 27.0 2004 50.7 118.7 135.4 55.0 54.1 25.8 9.7 8.0 0.2 25.4 28.9 17.4

82

Minnesota Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 15.0 -0.3 -19.3 -19.7 -9.3 -1.7 -4.1 -2.7 -5.2 -8.5 6.3 1992 8.7 18.6 1.8 -25.1 -13.0 -11.2 -9.4 -1.0 0.5 1.8 5.3 -1.4 1993 1.3 -17.1 -29.0 -19.2 -19.0 -13.4 -5.9 -7.8 -2.5 1.2 -1.7 -7.0 1994 -16.3 -4.2 19.8 7.9 8.4 10.5 6.2 9.4 4.5 0.7 3.9 16.7 1995 23.8 4.8 -0.7 11.5 6.8 -3.5 -6.0 -4.1 0.0 0.3 0.4 -7.6 1996 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.8 -1.7 -2.9 -1.9 1997 11.5 27.8 39.0 29.2 13.8 12.4 12.3 7.6 3.7 2.3 3.5 14.6 1998 30.1 26.3 11.2 -4.8 -22.3 -26.4 -23.9 -19.0 -11.9 -4.1 -0.3 -18.6

83

Arkansas Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3 -6.6 1995 17.7 53.9 163.4 177.6 64.0 80.9 96.0 105.5 99.3 96.9 80.2 20.9 1996 -23.6 -51.7 -97.8 -92.0 -31.2 -23.8 -31.6 -36.6 -21.2 -16.7 -17.7 8.9 1997 22.6 54.8 3,707.8 830.5 36.2 47.9 57.3 62.7 46.5 34.5 36.1 21.2

84

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6 -12.3 -8.4 -5.5 -4.5 -2.5 -1.5 -2.5 -3.2 1996 -5.5 -13.9 -13.3 -6.2 5.8 6.3 7.8 3.5 -1.9 -5.2 -13.7 -20.9 1997 -28.6 -33.1 -34.9 -38.1 -41.3 -35.8 -27.4 -18.7 -11.1 -9.6 -6.5 -5.2 1998 -4.6 1.6 0.9 -10.6 -7.1 2.5 -1.3 -4.6 -3.6 0.4 12.4 16.6

85

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3 65.2 52.0 35.4 31.3 15.3 3.6 2.2 1.8 -7.0 -15.0 1996 -39.6 -55.6 -63.2 -60.9 -56.4 -52.4 -54.0 -45.4 -36.2 -30.4 -29.0 -23.9 1997 -22.9 -11.1 43.9 42.6 36.6 44.1 39.4 29.5 14.7 19.6 15.0 -3.0 1998 10.4 54.6 29.7 45.6 40.4 30.3 52.1 51.3 37.5 31.2 44.1 72.7

86

Michigan Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8 3.1 -2.0 -4.1 -3.7 -11.8 -24.0 1996 -36.3 -39.8 -47.6 -41.4 -32.3 -22.7 -17.5 -9.7 -4.1 -0.9 -0.2 9.0 1997 16.9 31.2 41.0 40.5 23.5 15.4 11.0 6.8 3.1 0.2 1.9 3.7 1998 17.4 33.0 41.3 43.7 44.2 36.0 22.0 14.2 6.0 4.5 11.4 17.1

87

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0 14.8 11.6 5.3 1.9 -0.6 -1.5 -13.5 -28.0 1996 -36.6 -54.9 -83.2 -46.6 -20.6 -7.3 -0.6 4.2 6.7 8.8 9.2 20.8 1997 11.5 50.2 163.8 -2.8 8.0 4.9 2.0 2.8 2.3 -0.2 6.1 3.3 1998 43.1 60.2 92.8 193.9 65.5 24.3 15.1 8.6 5.6 7.5 12.7 20.9

88

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3 -14.5 -2.2 -1.7 -4.5 -14.9 -14.6 1996 -11.5 0.0 -26.6 -32.1 -52.8 -35.7 -14.9 -13.5 -9.0 -1.9 7.0 0.4 1997 5.1 11.2 76.8 72.4 129.0 65.0 16.6 4.6 3.7 -1.1 8.3 16.8 1998 15.2 41.6 15.6 34.6 25.3 14.9 48.5 17.4 12.0 8.3 9.4 4.7

89

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5 35.8 13.9 11.2 0.6 -12.2 -8.9 -2.2 -7.8 -15.8 1996 -31.5 -51.7 -63.0 -57.6 -49.9 -45.9 -42.1 -26.5 -18.0 -15.4 -23.0 -27.6 1997 -28.4 -3.5 62.3 59.0 49.7 32.7 17.2 5.5 0.1 6.6 12.9 11.8 1998 34.3 61.5 15.9 41.1 37.9 45.5 53.2 46.9 37.6 31.0 46.7 62.1

90

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7 -15.7 -6.0 2.8 7.5 -0.5 1996 -22.8 -19.2 -23.4 -13.2 -16.5 -13.8 -4.8 7.7 -4.5 -10.7 -22.9 -23.0 1997 -0.9 -1.0 19.1 6.4 12.1 9.5 -2.4 2.6 9.6 12.4 23.3 28.2 1998 26.0 30.6 4.0 18.0 34.9 19.3 33.7 29.6 20.8 18.7 25.3 28.3

91

Tennessee Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6 99.9 12.1 -3.5 2002 3.9 15.1 32.5 54.2 19.0 -2.5 -9.0 -17.3 -22.6 -28.6 -14.4 -14.2 2003 -37.6 -54.6 -65.2 -72.4 -65.7 -53.4 -40.1 -24.0 -23.2 -15.3 -0.8 -12.8 2004 -15.0 -0.5 24.1 74.4 61.1 82.6 24.4 10.6 11.2 6.1 3.7 8.9

92

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3 -6.9 -10.7 -27.1 -24.2 2001 17.9 46.2 -44.2 -23.4 -32.8 -23.0 -18.6 -12.6 -6.3 -5.4 97.8 111.1 2002 138.8 68.1 181.5 147.4 173.3 50.0 51.2 46.8 45.2 20.3 -20.4 -25.7 2003 -86.5 -57.0 -25.7 14.4 54.1 99.5 100.8 98.7 129.2 237.3 177.3 180.6

93

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5 1995 -9.6 -5.3 -4.7 -2.5 -2.0 -1.5 0.6 3.4 2.5 0.4 -1.3 -4.9 1996 -9.0 -11.4 -16.2 -18.1 -20.7 -19.2 -18.0 -16.9 -13.6 -13.4 -16.2 -17.7 1997 -18.5 -20.5 -19.6 -21.9 -19.3 -20.3 -20.1 -20.8 -22.7 -23.8 -22.5 -20.6

94

Utah Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722 6,012 6,934 10,321 7,849 7,551 8,609 1995 5,458 10,271 8,870 8,362 6,546 8,164 11,552 10,230 4,613 2,012 5,484 -708 1996 -5,185 -10,201 -9,074 -10,256 -8,313 -7,322 -7,566 -7,192 -6,606 -8,327 -14,146 -13,483 1997 -10,123 -4,260 296 2,223 969 2,109 3,330 4,725 5,811 8,139 10,145 6,148

95

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8 9.2 3.0 -4.5 -1.7 8.4 2.6 1996 -14.4 -6.8 -9.6 10.7 13.0 4.5 0.0 0.0 2.6 -1.0 -6.1 0.6 1997 15.7 -0.6 19.6 -8.7 10.6 9.4 9.1 10.7 13.9 12.4 3.0 -2.1 1998 1.5 1.9 -7.3 5.5 7.3 -0.1 -5.5 -0.6 1.5 8.0 23.7 18.0

96

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432 -3,859 -5,235 -12,631 -8,772 -10,235 -10,273 -3,149 1994 -2,517 -470 1,289 6,015 4,590 5,915 4,963 11,457 6,824 6,269 6,981 7,667 1995 6,381 6,272 8,818 437 309 -648 -2,521 -3,178 786 1,081 -5,984 -14,997 1996 -14,592 -13,733 -14,382 -13,026 -10,421 -9,742 -4,162 368 -1,791 -848 2,368 11,761

97

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0 -19.8 -17.7 -16.0 -15.8 -12.9 -15.3 -22.1 1996 -32.4 -34.1 -42.5 -37.1 -6.6 -2.1 2.0 3.5 5.3 3.1 3.2 8.3 1997 15.3 24.7 33.5 27.3 14.8 7.4 3.9 3.6 2.9 2.4 8.6 5.5 1998 12.9 22.3 23.5 24.2 18.8 14.7 8.2 4.3 2.2 2.3 -0.8 0.8

98

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0 6.1 -6.0 -0.8 -5.4 -15.2 -13.6 -11.0 -19.9 -28.2 1996 -31.0 -28.8 -47.1 -50.7 -48.5 -47.6 -37.5 -19.6 -12.8 -11.9 -14.6 -6.4 1997 -14.5 -14.9 61.5 61.3 62.8 54.4 24.7 7.8 3.7 7.4 13.1 7.3 1998 40.7 86.3 35.5 55.9 46.9 35.0 42.0 40.1 22.5 26.5 40.7 56.9

99

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 65.7 60.7 45.6 -31.6 30.6 8.4 -8.1 -32.2 -25.0 -34.9 -38.4 -27.6 1992 -25.3 -20.9 -14.7 37.0 1.7 -15.5 -34.5 -11.1 -18.1 -1.8 -6.8 -9.6 1993 -15.1 -40.1 -37.8 -54.0 -30.7 -23.9 -5.7 -39.7 -37.7 -34.0 -47.6 -48.4 1994 -61.0 -53.5 -57.4 -40.7 -50.9 -49.9 -47.5 -28.0 4.2 2.7 31.2 23.0 1995 53.3 91.0 123.6 153.3 135.3 124.2 108.2 79.1 15.1 -7.1 -12.6 -23.1 1996 -18.6 -34.9 -47.0 -53.1 -55.5 -60.1 -60.4 -54.7 -45.7 -41.7 -44.0 -38.5 1997 -33.5 -29.5 0.6 10.4 4.4 10.4 13.4 27.8 18.1 14.5 24.1 19.8

100

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4 -4.8 1.1 1.5 -8.6 -24.7 1996 -31.2 -42.1 -53.7 -47.7 -29.0 -20.4 -7.4 0.8 -1.8 -1.2 3.8 25.9 1997 23.3 57.3 67.6 58.2 25.1 3.5 -0.3 -3.1 -5.1 -5.3 -2.6 -2.0 1998 13.7 23.0 38.5 46.2 37.9 33.6 18.6 6.4 6.6 9.4 15.5 25.9

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -26.2 22.8 6.2 168.1 -141.5 111.4 60.1 16.3 5.9 16.1 23.8 63.1 1992 94.7 51.6 162.3 31.3 23.1 2.6 -6.6 5.4 14.9 -1.0 -12.1 -35.2 1993 -52.4 -72.1 -57.0 -40.4 -1.9 -4.6 5.3 -1.6 6.7 -4.5 -28.1 18.5 1994 59.2 90.5 20.4 38.4 -0.2 8.5 4.3 2.8 -5.7 11.2 51.1 14.3 1995 11.1 63.9 73.5 23.8 16.9 12.3 7.6 2.0 11.1 8.8 12.2 -0.1 1996 -39.1 -35.6 -43.5 -43.8 -39.1 -20.3 -19.2 9.7 -12.4 -23.3 -28.3 -24.4 1997 25.9 17.4 -31.4 -31.5 35.7 28.4 19.3 -17.0 3.9 13.8 20.4 11.4 1998 30.6 2.6 2.4 -47.6 -38.3 -33.5 -34.2 0.1 -2.9 -3.1 3.0 3.4

102

Nebraska Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1 11.6 -40.3 -40.8 -50.5 -62.9 -79.4 -94.0 1996 -100.0 -100.0 -100.0 -100.0 -100.0 -85.2 -50.1 -20.8 -10.9 -7.8 41.1 301.9 1997 0.0 0.0 0.0 0.0 0.0 193.8 26.0 6.0 13.6 34.7 51.4 79.3 1998 188.1 377.6 104.3 6.6 14.8 -1.5 28.0 9.9 2.4 8.9 -0.1 -7.9

103

Kentucky Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2 7.3 3.3 6.6 5.5 -4.6 -8.7 1996 -14.5 -16.8 -24.3 -29.4 -33.2 -22.0 -13.0 -5.9 -3.8 -3.6 0.9 5.3 1997 5.8 15.5 27.1 28.5 28.0 13.5 3.6 -0.7 -1.1 -0.7 0.2 -3.1 1998 7.5 5.2 -1.0 3.5 9.7 9.1 12.7 12.8 7.3 9.4 12.3 14.5

104

U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)  

Reports and Publications (EIA)

On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative [91]. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18 percent over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

Information Center

2005-02-01T23:59:59.000Z

105

LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California CA,...

106

Table 14. Shale Gas Proved Reserves, Reserves Changes, and ...  

U.S. Energy Information Administration (EIA)

aIncludes Indiana, Missouri, and Tennessee. Note: The above table is based on shale gas proved reserves and production volumes as reported to the EIA on Form EIA-23 ...

107

Modelling the natural gas consumption in a changing environment  

Science Conference Proceedings (OSTI)

A composite function was used successfully for modelling the Natural Gas (NG) consumption in 16 European energy markets. Background of the model is a logistic function where the upper limit is also a logistic function of time, with secondary parameters ...

F. A. Batzias; N. P. Nikolaou; A. S. Kakos; I. Michailides

2003-09-01T23:59:59.000Z

108

Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

109

Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

110

North Louisiana Shale Gas Proved Reserves, Reserves Changes,...  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

111

Colorado Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

112

Montana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

113

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

114

California Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

115

Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

116

NM, West Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

117

Ohio Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

118

Alaska Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

119

New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

120

Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

122

Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

123

West Virginia Shale Gas Proved Reserves, Reserves Changes, and...  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

124

NM, East Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

125

North Dakota Shale Gas Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

126

Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and...  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

127

Alabama Shale Gas Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

128

Michigan Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Area: U.S. Alaska Lower 48 States Alabama Arkansas California...

129

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

130

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

131

Table 10: Total natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in reserves during 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

132

Table 12: Nonassociated natural gas proved reserves, reserves changes, and produ  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

133

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0 8.2 7.0 6.1 2.2 1996 -7.8 0.0 -8.3 -8.9 0.0 0.0 6.6 0.0 1.6 2.5 -2.6 0.1 1997 4.1 6.0 -3.9 -0.6 -2.0 -3.7 -1.4 0.6 1.0 1.0 6.7 5.0 1998 14.2 10.6 23.2 23.5 10.9 7.6 2.1 0.1 2.0 1.8 1.8 -1.8 1999 1.3 -2.4 0.6 1.5 4.1 5.7 5.7 4.0 3.8 3.7 3.3 6.0

134

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 EIA Home > Natural Gas > Natural Gas Analysis Publications Expansion and Change on the U.S. Natural Gas Pipeline Network 2002 Printer-Friendly Version Expansion and Change on the U.S. Natural Gas Pipeline Network - 2002 Text Box: This special report looks at the level of new capacity added to the national natural gas pipeline network in 2002 and the current capability of that network to transport supplies from production areas to U.S. markets. In addition, it examines the amount of additional capacity proposed for development during the next several years and to what degree various proposed projects will improve the deliverability of natural gas to key market areas. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. james.tobin@eia.doe.gov

135

The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and  

E-Print Network (OSTI)

by order 12% per decade, with smaller reductions in winter. Coupled models suggest that under greenhouse-gasThe ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing John Marshall, Kyle Armour, Jeffery Scott and Yavor Kostov (MIT) David Ferreira

Wirosoetisno, Djoko

136

Changes in Natural Gas Monthly Consumption Data Collection and the Short-Term Energy Outlook  

Reports and Publications (EIA)

Beginning with the December 2010 issue of the Short-Term Energy Outlook (STEO), the EnergyInformation Administration (EIA) will present natural gas consumption forecasts for theresidential and commercial sectors that are consistent with recent changes to the Form EIA-857monthly natural gas survey.

Information Center

2010-12-01T23:59:59.000Z

137

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

138

Modeling Greenhouse Gas Energy Technology Responses to Climate Change  

Science Conference Proceedings (OSTI)

Models of the global energy system can help shed light on the competition and complementarities among technologies and energy systems both in the presence and absence of actions to affect the concentration of greenhouse gases. This paper explores the role of modeling in the analysis of technology deployment in addressing climate change. It examines the competition among technologies in a variety of markets, and explores conditions under which new markets, such as for hydrogen and carbon disposal, or modern commercial biomass, could emerge. Carbon capture and disposal technologies are shown have the potential to play a central role in controlling the cost of stabilizing the concentration of greenhouse gases, the goal of the UN Framework Convention on Climate Change.

Edmonds, James A.; Clarke, John F.; Dooley, James J.; Kim, Son H.; Smith, Steven J.

2004-07-01T23:59:59.000Z

139

Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation  

SciTech Connect

NH3 gas treatment of low water content sediments resulted in a significant decrease in aqueous and adsorbed uranium, which is attributed to incorporation into precipitates. Uranium associated with carbonates showed little change. Uranium associated with hydrous silicates such as Na-boltwoodite showed a significant decrease in mobility but no change in Na-boltwoodite concentration (by EXAFS/XANES), so is most likely caused by non-U precipitate coatings. Complex resistivity changes occurred in the sediment during NH3 and subsequent N2 gas injection, indicating ERT/IP could be used at field scale for injection monitoring.

Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Johnson, Timothy C.; Qafoku, Nikolla; Williams, Mark D.; Greenwood, William J.; Wallin, Erin L.; Bargar, John R.; Faurie, Danielle K.

2012-10-30T23:59:59.000Z

140

Land-use change and greenhouse gas emissions from corn and cellulosic  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pore structure and reactivity changes in hot coal gas desulfurization sorbents  

Science Conference Proceedings (OSTI)

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

142

Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry  

E-Print Network (OSTI)

Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas;Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas Mitigation in U Model, Carbon Sequestration, Economic Potential, Greenhouse Gas Emission, Mathematical Programming

McCarl, Bruce A.

143

Reducing greenhouse gas emissions from deforestation : the United Nations Framework Convention on Climate Change and policy-making in Panama.  

E-Print Network (OSTI)

??The Framework Convention on Climate Change has yet to deal with tropical deforestation although it represents an important source of greenhouse gas emissions. In December… (more)

Guay, Bruno.

2007-01-01T23:59:59.000Z

144

CMI\\Emissions\\CC policy and gas 10/12/05 1Climate change policy and its effect on market power in the gas market  

E-Print Network (OSTI)

The European Emissions Trading Scheme (ETS) limits CO2 emissions from covered sectors, especially electricity until December 2007, after which a new set of Allowances will be issued. The paper demonstrates that the impact of controlling the quantity rather than the price of carbon is to reduce the elasticity of demand for gas, amplifying the market power of gas suppliers, and also amplifying the impact of gas price increases on the price of electricity. A rough estimate using just British data suggests that this could increase gas market power by 50%. Key words Climate change, emissions trading, market power, gas, quotas vs taxes JEL classification

David Newbery; David Newbery

2005-01-01T23:59:59.000Z

145

Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995  

SciTech Connect

The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

Jones, P.D.; Wigley, T.M.L.

1995-07-21T23:59:59.000Z

146

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

147

Basin scale assessment of gas hydrate dissociation in response to climate change  

SciTech Connect

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

2011-07-01T23:59:59.000Z

148

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

NDRC), 2007. Natural Gas Use Policy [??? ????]. NDRC EnergyNDRC), 2007. Natural Gas Use Policy [??? ????]. NDRC Energypolicy. In its 2007 Natural Gas Use Policy, the NDRC listed

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

149

Assessing the Changes In Safety Risk Arising From the Use of Natural Gas Infrastructure For Mixtures of Hydrogen and Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

6/02/2005 6/02/2005 Assessing the changes in safety risk arising from the use of natural gas infrastructures for mixtures of hydrogen and natural gas NATURALHY G. Hankinson Loughborough University, UK 2 16/02/2005 Naturalhy project safety work package NATURALHY 3 16/02/2005 Outline NATURALHY To identify and quantify the major factors influencing safety in the transportation, distribution, and delivery of hydrogen/natural gas mixtures by means of existing natural gas infrastructures. 4 16/02/2005 Purpose NATURALHY To provide information to allow risk assessments to be performed to assist decisions concerning: * The amount of hydrogen that can be introduced into natural gas systems * The conditions under which such systems should be operated, and * The identification of vulnerable locations where

150

Trend in Atmospheric Angular Momentum in a Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing  

Science Conference Proceedings (OSTI)

The authors investigate the change of atmospheric angular momentum (AAM) in long, transient, coupled atmosphere–ocean model simulations with increasing atmospheric greenhouse gas concentration and sulfate aerosol loading. A significant increase ...

Huei-Ping Huang; Klaus M. Weickmann; C. Juno Hsu

2001-04-01T23:59:59.000Z

151

Changes in Gas Bubble Disease Signs for Migrating Juvenile Salmonids Experimentally Exposed to Supersaturated Gasses, 1996-1997 Progress Report.  

DOE Green Energy (OSTI)

This study was designed to answer the question of whether gas bubble disease (GBD) signs change as a result of the hydrostatic conditions juvenile salmonids encounter when they enter the turbine intake of hydroelectric projects during their downstream migration.

Absolon, Randall F.

1999-03-01T23:59:59.000Z

152

Signposts of Change in Evolving Natural Gas Markets: Key Factors Affecting Expected Future Supply and Demand for Natural Gas in the United States  

Science Conference Proceedings (OSTI)

In recent years, the North American natural gas industry has undergone a major restructuring as a result of the so-called “shale revolution.” This is an amazing situation when one considers the magnitude of the changes the shale revolution has spurred not only in domestic natural gas markets, but across many sectors of the overall economy. In essence, the shale revolution is a “black swan” event that many industry observers consider to have been a once in more than ...

2013-12-18T23:59:59.000Z

153

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

SciTech Connect

There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

2008-07-04T23:59:59.000Z

154

"Liquid-gas" transition in the supercritical region: Fundamental changes in the particle dynamics  

E-Print Network (OSTI)

Recently, we have proposed a new dynamic line on the phase diagram in the supercritical region. Crossing this line corresponds to the radical changes of the fluid properties. Here, we focus on the dynamics of model Lennard-Jones and Soft-Sphere fluids. We show that the change of the dynamics from the liquid-like to gas-like can be established on the basis of the velocity autocorrelation function and mean-square displacement. Using the rigorous criterion, we show that the crossover of particle dynamics and key liquid properties occurs at the same line. We further show that positive sound dispersion disappears in the vicinity of this line in both kinds of systems. The dynamic line bears no relationship to the existence of the critical point. We find that the region of existence of liquid-like dynamics narrows with the increase of the exponent of the repulsive part of inter-particle potential.

V. V. Brazhkin; Yu. D. Fomin; A. G. Lyapin; V. N. Ryzhov; E. N. Tsiok; Kostya Trachenko

2013-05-16T23:59:59.000Z

155

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

156

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

157

Table 11. Dry natural gas proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Dry natural gas proved reserves, reserves changes, and production, 2011 : Dry natural gas proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,838 -1 928 206 36 221 4 0 3 327 9,424 Lower 48 States 295,787 1,732 52,673 53,267 43,150 46,020 45,905 947 1,224 23,228 324,643 Alabama 2,629 -49 455 157 573 383 3 2 0 218 2,475 Arkansas 14,178 728 631 324 6,760 6,880 2,093 0 23 1,079 16,370 California 2,647 923 1,486 1,889 47 52 73 0 0 311 2,934 Coastal Region Onshore 173 13 20 31 0 0 1 0 0 11 165 Los Angeles Basin Onshore 87 7 11 4 0 2 0 0 0 6 97 San Joaquin Basin Onshore 2,321 902 1,444 1,854 45 42 69 0 0 289 2,590 State Offshore

158

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

159

Alternative Approaches to Analyzing Greenhouse Gas Emissions and Global Climate Change in CEQA Documents  

E-Print Network (OSTI)

Global climate change (GCC) is a change in the average weather of the earth that can be measured by wind patterns, storms, precipitation, and temperature. This paper is not a scientific analysis of the existence or potential causes of GCC. Further, this paper does not address National Environmental Policy Act (NEPA) requirements. Instead, the intent of this paper is to provide practical, interim information to California Environmental Quality Act (CEQA) practitioners to help Lead Agencies determine how to address GCC in CEQA documents prior to the development and adoption of guidance by appropriate government agencies. A typical individual project does not generate enough greenhouse gas emissions to influence GCC significantly on its own; the issue of GCC is by definition a cumulative environmental impact. Therefore, if the Lead Agency chooses to address GCC effects in a CEQA document, it should be discussed in the context of a cumulative impact. A complicating factor, however, is that there are currently no published CEQA thresholds or approved methods for determining whether a project’s potential contribution to a cumulative GCC impact is considerable. This paper provides a summary of background information on GCC, the current regulatory environment surrounding greenhouse gas (GHG) emissions, and the various approaches that a Lead

Tony Held, Ph.D.; Terry Rivasplata; Tim Rimpo; Kenneth M. Bogdan

2007-01-01T23:59:59.000Z

160

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1992  

SciTech Connect

The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO{sub 2} and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 301,098 230,240 196,675 75,216 19,017 -596 -42,455 -91,460 -85,538 -74,452 -211,340 -356,599 1996 -393,813 -294,573 -322,708 -276,653 -237,719 -195,517 -107,487 -30,832 5,418 27,829 56,363 190,892 1997 151,925 190,812 179,512 141,118 121,384 95,560 38,018 18,500 6,728 -22,132 41,987 -7,213 1998 141,659 165,790 146,881 232,098 280,479 261,197 229,504 167,031 91,649 98,416 168,658 213,013

162

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

163

AGA Western Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 8,494 61,987 50,414 30,372 22,397 34,462 36,108 23,444 10,774 13,127 37,918 24,549 1996 -8,287 -34,078 -30,040 -14,465 -15,479 -28,752 -49,420 -58,971 -68,328 -85,471 -97,348 -84,552 1997 -64,507 -57,811 -49,808 -47,271 -41,056 -26,112 -6,095 16,328 21,859 30,055 27,605 -18,937 1998 -4,131 -15,983 -20,640 -29,152 -21,709 -18,864 -25,220 -24,329 -5,839 16,729 38,273 67,451

164

2012 by the American Academy of Arts & Sciences Is Shale Gas Good for Climate Change?  

E-Print Network (OSTI)

concern is the impact of low-priced natural gas on the electrici- ty sector for technologies beyond coal gas for coal in the elec- tricity sector. Even with an increase in natural gas price because employment by the coal industry. A price on carbon would be in the best interests of the natural gas industry

Schrag, Daniel

165

Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions  

SciTech Connect

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associated carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor Fargione et al. consider fire as an ongoing land-management tool. In addition, deep-rooted perennial biofuel feedstocks in the tropics could enhance soil carbon storage by 0.5 to 1 metric ton per hectare per year. An improved understanding of the forces behind land-use change leads to more favorable conclusions regarding the potential for biofuels to reduce greenhouse gas emissions.

Kline, Keith L [ORNL; Dale, Virginia H [ORNL

2008-07-01T23:59:59.000Z

166

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

167

AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.70 -36.20 -48.60 -41.00 -28.00 -18.00 -8.30 -2.10 0.30 1.50 3.50 15.50 1997 18.80 36.80 52.90 35.70 20.10 10.70 3.20 1.30 0.40 -1.20 2.50 -0.50 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.10 15.10 1999 6.40 4.40 -1.40 -6.50 -7.30 -8.50 -9.70 -7.10 -3.20 -3.60 0.00 0.00 2000 -17.00 -24.70 -13.90 -19.40 -18.90 -15.40 -9.60 -9.00 -8.10 -5.20 -14.70 -25.50 2001 -17.00 -21.80 -33.80 -12.20 2.10 7.30 7.80 8.30 8.40 7.20 22.40 51.40 2002 71.20 82.00 97.70 55.40 23.00 15.30 7.90 5.20 2.40 -2.20 -10.20 -18.10

168

Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991  

SciTech Connect

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

169

Major Changes in Natural Gas Pipeline Transportation Capacity, 1998-2008  

Reports and Publications (EIA)

This presentation graphically illustrates the areas of major growth on the national natural gas pipeline transmission network between 1998 and the end of 2008.

Information Center

2008-11-18T23:59:59.000Z

170

How Smart is CEQA About Climate Change? An Evaluation of CEQA's Greenhouse Gas Analysis.  

E-Print Network (OSTI)

?? Analysis of greenhouse gas (GHG) emissions under the California Environmental Quality Act (CEQA) is an emerging practice, which, if done correctly, could contribute significantly… (more)

KOWSHAL, PAPIA

2012-01-01T23:59:59.000Z

171

FERC`s {open_quotes}MegaNOPR{close_quotes} - changes ahead for the natural gas industry  

Science Conference Proceedings (OSTI)

On July 31, 1991 the Federal Energy Regulatory Commission (FERC) issued a notice of proposed rulemaking (NOPR) that would fundamentally change the current scheme of transportation and sales of natural gas by interstate pipelines. FERC`s proposal will result in disparate impacts on the various segments of the natural gas industry. These impacts and the major policy issues sought for implementation by FERC can be grouped into five major points, discussed in this article: unbundling of service; pregrated abandonment; capacity reallocation; rate design; and transition/implementation costs.

Stosser, M.A. [Arnold & Porter, Washington, DC (United States)

1992-12-31T23:59:59.000Z

172

Changes in U.S. Natural Gas Transportation Infrastructure in 2004  

Reports and Publications (EIA)

This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years.

Information Center

2005-06-01T23:59:59.000Z

173

Climate Change Standards Working Group, SUDS Policy and Planning Committee Quantifying Greenhouse Gas Emissions  

E-Print Network (OSTI)

from Transit Abstract: This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement by laying out a standard methodology for transit agencies to report their greenhouse gas emissions in a transparent, consistent and cost-effective manner.

unknown authors

2009-01-01T23:59:59.000Z

174

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

change and scale change. Energy Policy, 33, 319 –335. doi:rebound effect—a survey. Energy Policy, 28(6-7), 389–401.climate change and energy policy. Washington DC. : Economic

Sathaye, Jayant

2010-01-01T23:59:59.000Z

175

Climate change policy and its effect on market power in the gas market  

E-Print Network (OSTI)

emitted per MWh of electricity produced in a combined cycle gas turbine (CCGT) of 50% efficiency. (The spark spread is the base-load price of electricity for the month ahead less the cost of the gas needed at 50% efficiency to CMI\\Emissions\\CC policy... about 35 €/MWh to over 70 €/MWh, prompting a spate of complaints to the European Commission, who in response announced a sector inquiry into gas and electricity in June 2005 (European Commission, 2005). A considerable part of the price rise could...

Newbery, David

2006-03-14T23:59:59.000Z

176

Greenhouse Gas Mitigation as a Structural Change and Policies that Offset Its Depressing Effects  

E-Print Network (OSTI)

The current economic modeling of emissions limitations does not embody economic features that are likely to be particularly important in the short term, yet the politics of limiting greenhouse gas emissions are often ...

Babiker, Mustafa H.M.

177

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

China’s energy-related CO 2 emissions from 1996 to 1999: thefoot: In measuring carbon emissions, it’s easy to confuseChina’s greenhouse gas emissions. Science, 294, 1835– 1837.

Sathaye, Jayant

2010-01-01T23:59:59.000Z

178

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

Science Conference Proceedings (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

179

Residential response to price changes in natural gas service: A short-run analysis  

Science Conference Proceedings (OSTI)

Residential consumer demand for natural gas services is determined by numerous components including natural gas and competing fuel prices, weather patterns, appliance ownership characteristics, income, and energy conservation measure implementation. This study utilizes household-level data on a set of the determinants of residential natural gas demand, combined with corresponding consumption observations, to analyze the price response over the [open quotes]short-run[close quotes] period, in which primary natural gas-consuming appliances are fixed. Two model specifications are employed in this study to model the natural gas demand function and derive short-run price elasticity estimates. These are the Error Components (EC) and Fixed Effects (FE) models. These specifications result in elastic short-run responses estimates ranging between [minus]2.164 and [minus]7.015. These values contrast with the inelastic short-run estimated responses presented in previous empirical work, and the likelihood of actually observing such large short-run responses is expected to be small. The large estimates developed in the current study are evidently due to the use of household-specific data that incorporates disaggregated factors that influence monthly fluctuations in demand. This level of detail is subsumed within the aggregated data employed in prior studies. The price elasticity estimates developed in this study are directly applicable to short-run fuel demand analyses. The estimates are also applicable to the development, implementation, and evaluation of energy conservation programs.

Wilson, P.A.

1992-01-01T23:59:59.000Z

180

Natural Gas Regulation in Transition: The Effects of Geopolitics and Prerequisites for Change in Transition Economies  

Science Conference Proceedings (OSTI)

Natural gas has become a major geopolitical concern in relations among transition countries and other European states. Transition economies have embarked on very different paths in using and regulating natural gas. Countries to the East, like Russia, by and large have undertaken few market-oriented reforms of their natural gas sectors. The new European Union member states have undertaken much broader reforms. These differences often lead to tension. Two factors seem particularly important in understanding when countries may embark on natural gas reforms. The first is energy efficiency, since low energy efficiency can make energy reforms socially and economically difficult. The second is corruption: vested interested and a captive state can play powerful roles in inhibiting reform. The article looks at the arguments behind each of these potential prerequisites for reform, and also examines comparative data on energy intensity and corruption. Interestingly, the countries with the lowest energy intensity and the lowest levels of corruption (and the fastest improvements in these areas) also undertook the most extensive natural gas reforms. The article concludes with a few brief examples of the cost with the status quo.

Evans, Meredydd

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Greenhouse Gas–Induced Changes in Summer Precipitation over Colorado in NARCCAP Regional Climate Models  

Science Conference Proceedings (OSTI)

Precipitation changes between 32-yr periods in the late twentieth and mid-twenty-first centuries are investigated using regional climate model simulations provided by the North American Regional Climate Change Assessment Program (NARCCAP). The ...

Michael A. Alexander; James D. Scott; Kelly Mahoney; Joseph Barsugli

2013-11-01T23:59:59.000Z

182

Greenhouse Gas Induced Changes in Summer Precipitation over Colorado in NARCCAP Regional Climate Models  

Science Conference Proceedings (OSTI)

Precipitation changes between 32-year periods in the late-20th and mid-21st centuries are investigated using regional climate model simulations provided by the North American Regional Climate Change Assessment Program (NARCCAP). The simulations ...

Michael A. Alexander; James D. Scott; Kelly Mahoney; Joseph Barsugli

183

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994  

SciTech Connect

In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.

Wigley, T.M.L.; Jones, P.D.

1994-07-01T23:59:59.000Z

184

Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system  

Science Conference Proceedings (OSTI)

The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

2006-05-03T23:59:59.000Z

185

Carbon and Greenhouse Gas Dynamics in Annual Grasslands: Effects of Management and Potential for Climate Change Mitigation  

E-Print Network (OSTI)

D.A. Angers. 2005. Greenhouse gas contributions ofchange and the impact on greenhouse gas exchange in northprimary productivity and greenhouse gas emissions in annual

Ryals, Rebecca

2012-01-01T23:59:59.000Z

186

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Global Climate Change: Electric Power Options in China.Board of the China Electric Power Yearbook (EBCEPY), variousyears. China Electric Power Yearbook. Beijing: China

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

187

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change.  

E-Print Network (OSTI)

??Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be,… (more)

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

188

U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)  

Reports and Publications (EIA)

On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative [80]. A key goal of the Climate Change Initiative is to reduce U.S. GHG intensitydefined as the ratio of total U.S. GHG emissions to economic outputby 18 percent over the 2002 to 2012 time frame.

Information Center

2006-02-01T23:59:59.000Z

189

It's Not Too Late to Change Global Warming's Course - NERSC Science News  

NLE Websites -- All DOE Office Websites (Extended Search)

It's Not Too Late to It's Not Too Late to Change Global Warming's Course It's Not Too Late to Change Global Warming's Course Simulations Show That Cuts in Greenhouse Gas Emissions Would Save Arctic Ice, Reduce Sea Level Rise October 27, 2009 | Tags: Climate Research mitigation1.jpg Computer simulations show the extent that average air temperatures at Earth's surface could warm by 2080-2099 compared to 1980-1999, if (top) greenhouse gases emissions continue to climb at current rates, or if (middle) society cuts emissions by 70 percent. In the latter case, temperatures rise by less than 2°C (3.6°F) across nearly all of Earth's populated areas (the bottom panel shows warming averted). However, unchecked emissions could lead to warming of 3°C (5.4°F) or more across parts of Europe, Asia, North America, and Australia. (Image: Geophysical

190

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1992--30 June 1993  

SciTech Connect

The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. The main research areas covered by this proposal are (b), First Detection and (c) Supporting Data. The project will also include work under area (a), Modeling: specifically, analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulating Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1993-07-09T23:59:59.000Z

191

Invited Article: A materials investigation of a phase-change micro-valve for greenhouse gas collection and other potential applications  

Science Conference Proceedings (OSTI)

The deleterious consequences of climate change are well documented. Future climate treaties might mandate greenhouse gas(GHG) emissions measurement from signatories in order to verify compliance. The acquisition of atmospheric chemistry would benefit from low cost

Ronald P. Manginell; Matthew W. Moorman; Jerome A. Rejent; Paul T. Vianco; Mark J. Grazier; Brian D. Wroblewski; Curtis D. Mowry; Komandoor E. Achyuthan

2012-01-01T23:59:59.000Z

192

Greenhouse Gas Policy Development in the Land Use, Land-Use Change...  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Development in the Land Use, Land-Use Change and Forestry (LULUCF) Sector J. Kinsman (jkinsman@eei.org; 202-508-5711) Edison Electric Institute 701 Pennsylvania Avenue, N.W....

193

The Amazon Frontier of Land-Use Change: Croplands and Consequences for Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using ...

Gillian L. Galford; Jerry Melillo; John F. Mustard; Carlos E. P. Cerri; Carlos C. Cerri

2010-10-01T23:59:59.000Z

194

Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change  

Science Conference Proceedings (OSTI)

Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for phase 5 of the Coupled Model Intercomparison Project (CMIP5) representative ...

Andrew D. Jones; William D. Collins; James Edmonds; Margaret S. Torn; Anthony Janetos; Katherine V. Calvin; Allison Thomson; Louise P. Chini; Jiafu Mao; Xiaoying Shi; Peter Thornton; George C. Hurtt; Marshall Wise

2013-06-01T23:59:59.000Z

195

Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method  

Science Conference Proceedings (OSTI)

A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and applied to near-surface temperature trends. The components of this strategy include observations, information about natural climate ...

Gabriele C. Hegerl; Hans von Storch; Klaus Hasselmann; Benjamin D. Santer; Ulrich Cubasch; Philip D. Jones

1996-10-01T23:59:59.000Z

196

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

197

Implied marketing covenant in oil and gas leases: some needed changes for the 80's  

SciTech Connect

Anticipating an increase in litigation on the lessee's duty to market natural gas which has been discovered on the leasehold, the authors review the lessee's obligation under the implied covenant to market. In light of the increased pressures on the lessee by federal regulations and the downturn in demand, any reevaluation of the nearly 100-year-old covenant should focus on the standard of conduct and standard of proof by which a lessee's marketing activities are to be judged; i.e., a review of the continued viability of the reasonably prudent operator standard. A review of case law finds that in those instances where the parties to a lease share a common interest in production, the lessee should be allowed to exercise his business judgement without fear of second guessing by judge or jury. The increase of the standard of proof to a clear and convincing evidence level achieves an acceptable compromise.

Kramer, B.M.; Pearson, C.

1986-03-01T23:59:59.000Z

198

Trans-Planckian physics and signature change events in Bose gas hydrodynamics  

E-Print Network (OSTI)

We present an example of emergent spacetime as the hydrodynamic limit of a more fundamental microscopic theory. The low-energy, long-wavelength limit in our model is dominated by collective variables that generate an effective Lorentzian metric. This system naturally exhibits a microscopic mechanism allowing us to perform controlled signature change between Lorentzian and Riemannian geometries. We calculate the number of particles produced from a finite-duration Euclidean-signature event, where we take the position that to a good approximation the dynamics is dominated by the evolution of the linearized perturbations, as suggested by Calzetta and Hu [Phys. Rev. A 68 (2003) 043625]. We adapt the ideas presented by Dray et al. [Gen. Rel. Grav. 23 (1991) 967], such that the field and its canonical momentum are continuous at the signature-change event. We investigate the interplay between the underlying microscopic structure and the emergent gravitational field, focussing on its impact on particle production in the ultraviolet regime. In general, this can be thought of as the combination of trans-Planckian physics and signature-change physics. Further we investigate the possibility of using the proposed signature change event as an amplifier for analogue "cosmological particle production" in condensed matter experiments.

Silke Weinfurtner; Angela White; Matt Visser

2007-03-23T23:59:59.000Z

199

Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions  

SciTech Connect

Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.

Schlosser, Courtney Adam [MIT; Walter-Anthony, Katey [University of Alaska; Zhuang, Qianlai [Purdue University; Melillo, Jerry [Marine Biological Laboratory

2013-04-26T23:59:59.000Z

200

Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions  

SciTech Connect

During the three-year project period, Purdue University has specifically accomplished the following: revised the existing Methane Dynamics Model (MDM) to consider the effects of changes of atmospheric pressure; applied the methane dynamics model (MDM) to Siberian region to demonstrate that ebullition estimates could increase previous estimates of regional terrestrial CH{sub 4} emissions 3- to 7-fold in Siberia; Conducted an analysis of the carbon balance of the Arctic Basin from 1997 to 2006 to show that terrestrial areas of the Arctic were a net source of 41.5 Tg CH{sub 4} yr{sup â??1} that increased by 0.6 Tg CH{sub 4} yr{sup â??1} during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH{sub 4}; improved the quantification of CH{sub 4} fluxes in the Arctic with inversion methods; evaluated AIRS CH4 retrieval data with a transport and inversion model and surface flux and aircraft data; to better quantify methane emissions from wetlands, we extended the MDM within a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to include a large-scale hydrology model, the variable infiltration capacity (VIC) model; more recently, we developed a single box atmospheric chemistry model involving atmospheric methane (CH{sub 4}), carbon monoxide (CO) and radical hydroxyl (OH) to analyze atmospheric CH{sub 4} concentrations from 1984 to 2008.

Qianlai Zhuang

2012-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions  

E-Print Network (OSTI)

and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong production and trade model with a greenhouse gas model to assess leakage associated with modified beef

Zhou, Yaoqi

202

Climate Change Commitment Task Force Charter To advise the President on strategies to reduce greenhouse gas emissions generated  

E-Print Network (OSTI)

to reduce greenhouse gas emissions generated by the campus community, to engage the campus community in efforts to reduce greenhouse gas emissions, and to promote and support instruction and research on the impact of greenhouse gas emissions. Background: In August, President Hrabowski signed the American

Maryland, Baltimore County, University of

203

Impact of Greenhouse Gas Concentration Changes on Surface Energetics in IPSL-CM4: Regional Warming Patterns, Land–Sea Warming Ratios, and Glacial–Interglacial Differences  

Science Conference Proceedings (OSTI)

The temperature response to a greenhouse gas (GHG) concentration change is studied in an ocean–atmosphere coupled model—L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4)—for both a glacial and an interglacial context. The ...

Alexandre Laîné; Masa Kageyama; Pascale Braconnot; Ramdane Alkama

2009-09-01T23:59:59.000Z

204

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

E-Print Network (OSTI)

underestimate natural gas prices. The trends changed afterestimate natural gas prices. These trends suggest that

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-01-01T23:59:59.000Z

205

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network (OSTI)

and global oil peak. ("Peak" refers to a peak in extraction, followed by inexorable decline. Peak production you know that: · Natural Gas (NG) is the second most important energy source after oil; · In the U that of oil. To the extent that the so-called War on Terror is a cover for increasingly desper- ate moves

Keeling, Stephen L.

206

8/25/07 11:49 PMCLIMATE CHANGE: Equity and Greenhouse Gas Responsibility --Baer et al. 289 (5488): 2287 --Science Page 1 of 4http://www.sciencemag.org/cgi/content/full/289/5488/2287  

E-Print Network (OSTI)

8/25/07 11:49 PMCLIMATE CHANGE: Equity and Greenhouse Gas Responsibility -- Baer et al. 289 (5488: Equity and Greenhouse Gas Responsibility Paul Baer, John Harte, Barbara Haya, Antonia V. Herzog, John, industrialized nations have approved commitments to reduce greenhouse gas (GHG) emissions. These commitments

Kammen, Daniel M.

207

Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate change  

E-Print Network (OSTI)

Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland microbial community profiling in a network of natural peatland ecosystems spanning large-scale climate the drivers of microbial community composition via metagenomic and metatranscriptomic analysis of samples from

208

Carbon and Greenhouse Gas Dynamics in Annual Grasslands: Effects of Management and Potential for Climate Change Mitigation  

E-Print Network (OSTI)

2005. Regional patterns in carbon cycling across the Greatand J. Kadyszewski. 2004. Carbon supply from changes inof annual grassland carbon cycling to the quantity and

Ryals, Rebecca

2012-01-01T23:59:59.000Z

209

NIST Testimony on Climate Change  

Science Conference Proceedings (OSTI)

NIST Testimony on Climate Change. 2009. Monitoring, Measurement and Verification of Greenhouse Gas Emissions II: The ...

2010-10-05T23:59:59.000Z

210

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

Because shale gas production is projected to be a large proportion of U.S. and North American gas production, changes in the cost and productivity of U.S. shale gas ...

211

Greenhouse Gas Emission Measurements  

Science Conference Proceedings (OSTI)

... climate change as a serious problem and that greenhouse gas (GHG ... models to determine the baselines of GHG emissions and the effect of GHG ...

2010-10-05T23:59:59.000Z

212

2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life is change. Our  

E-Print Network (OSTI)

2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life to improve gas turbines over the last 50 years, it has also played an active role in fostering a global our community. One area of discussion has been the role of turbomachinery outside of the gas turbine

Daraio, Chiara

213

Natural Gas Data Collection and Estimation  

Reports and Publications (EIA)

This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology.

Information Center

2010-06-09T23:59:59.000Z

214

Greenhouse Gas Management: Local Efforts to Curb a Global Phenomenon  

E-Print Network (OSTI)

SB 375 seeks to lower greenhouse gas emissions by changing2020 and 2035 greenhouse gas targets. The regional targetsburden to accomplish its greenhouse gas target. But setting

Matute, Juan

2013-01-01T23:59:59.000Z

215

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Authors: Moridis,...

216

Climate Change and Aluminum - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Softcover book: Carbon Dioxide Reduction Metallurgy. Knowledge Product: Sustainability, Climate Change, and Greenhouse Gas Emissions ...

217

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network (OSTI)

the Changing U.S. Natural Gas Supply. Dallas, TX, Americanthe Changing U.S. Natural Gas Supply. Dallas, TX, Tiax LLC.LNG and Changing U.S. Natural Gas Supply. Dallas, TX, Gas

Lekov, Alex

2010-01-01T23:59:59.000Z

218

national carbon accounting system Greenhouse Gas Emissions from Land Use Change in Australia: Results of the National Carbon Accounting System 1988-2001 Australian Greenhouse Office  

E-Print Network (OSTI)

• Supports Australia’s position in the international development of policy and guidelines on sinks activity and greenhouse gas emissions mitigation from land based systems. • Reduces the scientific uncertainties that surround estimates of land based greenhouse gas emissions and sequestration in the Australian context. • Provides monitoring capabilities for existing land based emissions and sinks, and scenario development and modelling capabilities that support greenhouse gas mitigation and the sinks development agenda through to 2012 and beyond. • Provides the scientific and technical basis for international negotiations and promotes Australia’s national interests in international fora.

unknown authors

2003-01-01T23:59:59.000Z

219

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2011" "Contents" "Table 1: Changes to Proved Reserves, 2011" "Table 2: Principal Tight Oil Plays: Oil...

220

Opportunities to change development pathways toward lower greenhouse...  

NLE Websites -- All DOE Office Websites (Extended Search)

to change development pathways toward lower greenhouse gas emissions through energy efficiency Title Opportunities to change development pathways toward lower greenhouse gas...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network (OSTI)

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

222

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

223

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

224

Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming  

Science Conference Proceedings (OSTI)

The role of direct radiative forcing of desert dust aerosol in the change from wet to dry climate observed in the African Sahel region in the last half of the twentieth century is investigated using simulations with an atmospheric general ...

Masaru Yoshioka; Natalie M. Mahowald; Andrew J. Conley; William D. Collins; David W. Fillmore; Charles S. Zender; Dani B. Coleman

2007-04-01T23:59:59.000Z

225

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

226

Metadata compiled and distributed by the Carbon Dioxide Information Analysis Center for global climate change and greenhouse gas-related data bases  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC) compiles and provides information to help international researchers, policymakers, and educators evaluate complex environmental issues associated with elevated levels of atmospheric carbon dioxide (CO{sub 2}) and other trace gases, including potential climate change. CDIAC is located within the Environmental Sciences Division of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee and is line funded by the U. S. Department of Energy`s (DOE) Global Change Research Program (GCRP). CDIAC is an information analysis center (IAC). In operation since 1982, CDIAC identifies sources of primary data at national and international levels; obtains, archives, evaluates and distributes data and computer models; fully documents select data sets and computer models and offers them as numeric data packages (NDPs) and computer model packages (CMPs); distributes data and computer models on a variety of magnetic and electronic medias including 9-track magnetic tapes; IBM-formatted floppy diskettes; CD-ROM; and over Internet, Omnet, and Bitnet electronic networks; develops derived, often multidisciplinary data products useful for carbon cycle and climate-change research; distributes reports pertinent to greenhouse effect and climate change issues; produces the newsletter, CDIAC Communications; and in general acts as the information focus for the GCRPs research projects. Since its inception, CDIAC has responded to thousands of requests for information, and since 1985 has distributed more than 70,000 reports, NDPs and CMPs to 97 countries worldwide.

Boden, T.A.

1992-12-31T23:59:59.000Z

227

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and...

228

Bringing Better Planning and Energy Efficiency to Gas Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

being accelerated by recent policy changes at the Federal Energy Regulatory Commission. FERC Order 636 requires gas utilities to become active managers of their gas portfolios....

229

EIA - Natural Gas Exploration & Reserves Data and Analysis  

Annual Energy Outlook 2012 (EIA)

Exploration & Reserves Reserves Summary Proved reserves for natural gas and natural gas liquids by U.S., region, and State (annual). Proved Reserves, Reserves Changes, and...

230

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

231

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

232

An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation  

DOE Green Energy (OSTI)

Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

Greene, D.L.

1999-11-01T23:59:59.000Z

233

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

234

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

235

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

236

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

SciTech Connect

Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

Oldenburg, Curtis M.

2003-04-08T23:59:59.000Z

237

Global Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

When President Bush announced his Global Climate Change Initiative in February 2002, he committed the United States to a new strategy to cut greenhouse gas emissions over the next...

238

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

239

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

240

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

242

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

243

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

244

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

245

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

246

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

247

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

248

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

249

Natural gas market under the Natural Gas Policy Act  

Science Conference Proceedings (OSTI)

This first of a series of analyses presents data on the exploration, development, production, and pricing of US natural gas since the passage of the Natural Gas Policy Act in 1978. Designed to give pricing incentives for new-well activity, the NGPA has apparently eliminated many of the pricing differences that existed between interstate and intrastate markets. Estimates of the annual production volumes in trillion CF/yr of gas for the categories defined by the NGPA include new gas 4.5, new onshore wells 4.1, high-cost unconventional gas 0.7, and stripper wells 0.4. Preliminary statistics on the end-use pricing of natural gas suggest that significant changes in the average wellhead prices have not caused correspondingly large increases in the price of delivered gas.

Carlson, M.; Ody, N.; O'Neill, R.; Rodekohr, M.; Shambaugh, P.; Thrasher, R.; Trapmann, W.

1981-06-01T23:59:59.000Z

250

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

251

Natural Gas Purchasing Options  

E-Print Network (OSTI)

As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower energy costs and to secure supply.

Watkins, G.

1988-09-01T23:59:59.000Z

252

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliersÂ’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

253

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

254

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

255

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic gas hydrate dissociation in response to climate change and the fate of hydrate-derived methane Oceanic gas hydrate dissociation in response to climate change and the fate...

256

The Weak Tie Between Natural Gas and Oil Prices  

E-Print Network (OSTI)

Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

Ramberg, David J.

257

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

258

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

259

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

260

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE data on natural gas pipeline expansion  

U.S. Energy Information Administration (EIA)

Major Changes in Natural Gas Transportation Capacity, 1998 – 2008 The following presentation was prepared to illustrate graphically the areas of major growth on the ...

262

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

263

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

264

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network (OSTI)

Change in Consumer Electricity Bills Net Impact of RPS onon Natural Gas and Electricity Bills (2003-2020, 7% realelectricity sector should consider the potentially beneficial cross-sector impact of that diversification on natural gas prices and bills.

Wiser, Ryan

2005-01-01T23:59:59.000Z

265

Waste and Climate Change ISWA WHITE PAPER  

E-Print Network (OSTI)

recovery 18 Clean Development Mechanism 20 Policy and regulation 26 Greenhouse gas accounting 34 References fuels such as coal, oil and natural gas. Climate change has already had a measurable impact on many-site electrical generation. Landfill gas may also be upgraded to a substitute natural gas or compressed natural

Columbia University

266

The contribution that reporting of greenhouse gas  

E-Print Network (OSTI)

The contribution that reporting of greenhouse gas emissions makes to the UK meeting its climate that reporting of greenhouse gas emissions makes to the UK meeting its climate change objectives: A review leadership. The UK has published guidance on how organisations should measure and report their greenhouse gas

267

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

268

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

269

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

270

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

271

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

272

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

273

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

274

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

275

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

276

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

277

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

278

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

279

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

280

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

282

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

283

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

284

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

285

Working Gas Volume Change from Year Ago  

U.S. Energy Information Administration (EIA) Indexed Site

-753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 -753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 2011-2013 Alabama 131 998 -1,015 -975 -35 2,852 1996-2013 Arkansas -1,386 -1,403 -1,240 -1,239 -1,024 -1,050 1990-2013 California -6,702 -5,997 -10,684 274 24,044 28,854 1990-2013 Colorado -2,531 537 892 1,473 1,528 1,179 1990-2013 Illinois -11,767 -14,974 -8,820 -7,918 -12,002 -6,916 1990-2013 Indiana -4,126 -2,948 -2,927 -2,773 -1,025 -212 1990-2013 Iowa -6,614 -1,173 3,389 6,425 6,747 3,169 1991-2013 Kansas -38,081 -31,497 -26,449 -17,344 -10,369 -9,217 1990-2013 Kentucky -26,238 -26,922 -21,826 -15,927 -14,959 -12,801 1990-2013

286

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 Alaska NA NA NA NA NA NA 2013-2013 Lower 48 States -21.9 -15.7 -10.0 -6.3 -4.0 -3.5 2011-2013 Alabama 5.0 -4.8 -4.5 -0.2 15.5 -12.0 1996-2013 Arkansas -42.1 -34.7 -31.2 -24.4 -23.7 -23.0 1991-2013 California -2.0 -3.3 0.1 7.9 9.3 3.4 1991-2013 Colorado 2.8 3.6 4.7 3.9 2.6 3.0 1991-2013 Illinois -16.5 -7.4 -5.2 -6.3 -3.1 -3.2 1991-2013 Indiana -21.2 -17.8 -14.8 -5.0 -0.9 -5.2 1991-2013 Iowa -6.2 16.6 24.3 16.6 5.2 -1.8 1991-2013 Kansas -38.9 -29.7 -17.9 -10.2 -8.3 -7.6 1991-2013 Kentucky -30.6 -24.1 -17.7 -15.8 -12.7 -10.5 1991-2013 Louisiana -26.6 -21.0 -10.2 -4.3 -2.3 1.0 1991-2013 Maryland -40.2 -26.0 -17.1 -4.8 1.5 0.8 1991-2013 Michigan -35.7 -26.7 -19.2 -13.9 -9.7 -6.9 1991-2013

287

Unconventional gas: truly a game changer?  

Science Conference Proceedings (OSTI)

If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

NONE

2009-08-15T23:59:59.000Z

288

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, September 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 8, 2010) Price changes during the week were mixed, but in most areas, these changes were moderate. The Henry Hub price rose slightly from $3.73 per million Btu (MMBtu) on Wednesday, September 1, to $3.81 per MMBtu yesterday. The report week was shortened due to the Labor Day holiday. At the New York Mercantile Exchange, the price of the October 2010 futures contract rose about 5 cents, from $3.762 per MMBtu on September 1 to $3.814 per MMBtu on September 8. Working natural gas in storage as of Friday, September 3, was 3,164 Bcf, following an implied net injection of 58 Bcf, according to EIAÂ’s

289

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 7. Total U.S. Proved Reserves of Crude Oil, Dry Natural Gas, and Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

290

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

291

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

292

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

293

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

294

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

295

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

296

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

297

BC gas takes new approach to gas supply optimization  

Science Conference Proceedings (OSTI)

Wide-ranging changes have taken place in the US and Canada since the mid-1980s in the way that local gas distribution utilities and large industrial customers contract for their gas supplies. This paper reports that these changes have been brought about by open-access policies, the intent of which was to allow customers more latitude to make their gas purchase and transportation arrangements and to improve the access of shippers to available gas transmission capacity. The effects of the new open-access regime have been profound on both sides of the border. More than 70% of North American gas supplies are now sold under unbundled arrangements in which gas supply is contracted under separate commodity and transportation agreements. For local distribution utilities, the numbers of potential supply options have become extremely large. Analysis of these options has become increasingly complex with the need to take account of complicated contract provisions, a wider range of storage options and swap arrangements with other utilities, opportunities for some customers to purchase gas directly and uncertainty about future demand, prices and supplier reliability.

Cawdery, J.; Swoveland, C. (Quantalytics Inc., Vancouver, British Columbia (CA))

1992-04-01T23:59:59.000Z

298

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

299

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

300

Transboundary natural gas sales and North American Free Trade  

Science Conference Proceedings (OSTI)

During the last 25 years American natural gas producers have seen wide fluctuations in gas supply, demand and price, and changes in the transboundary natural gas sales regulations have added to the instability. The history of such changes is outlined, and the impact of free trade agreements is discussed. Such agreements may significantly limit the power of the executive branch to restrict natural gas imports with a contracting nation. Topics include: FERC control of transportation and rate design of imported gas; foreign regulatory schemes for the explortation of natural gas; free trade agreements and transboundary natural gas sales; Energy Policy Act of 1992.

Dzienkowski, J.S. [Univ. of Texas, Austin, TX (United States)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

302

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

303

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

304

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

305

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

306

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

307

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

308

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

309

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

310

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

311

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

312

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

313

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

314

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

315

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

316

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

317

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

318

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

319

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

320

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

322

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

323

2. Changes in Firm Transportation Capacity Contracting  

U.S. Energy Information Administration (EIA)

Chapter 6). A direct consequence of industry restructuring and regulatory reform is that the mix of various natural gas services has changed.

324

Global Natural Gas Market Trends, 2. edition  

Science Conference Proceedings (OSTI)

The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

NONE

2007-07-15T23:59:59.000Z

325

Experiment 7: Heat Phase Changes  

E-Print Network (OSTI)

Experiment 7: Heat Phase Changes Matter has 4 phases or states: solid, liquid, gas, and plasma. This lab looks at the phase transitions from solid to liquid to gas. 1. Obtain the following materials: 600mL beaker of ice, thermometer, hot plate, timer. 2. Add a very small amount of water to the ice so

Peterson, Blake R.

326

Natural gas storage - end user interaction. Task 2. Topical report  

Science Conference Proceedings (OSTI)

New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. This paper discusses the storage of natural gas, storage facilities, and factors affecting the current, and future situation for natural gas storage.

NONE

1996-01-01T23:59:59.000Z

327

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network (OSTI)

and at past market changes in the energy industry. Both electricity and natural gas distribution are regulated1 DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS Northwest Power Planning Council Issue Paper 94-41 August 11, 1994 Introduction Lower natural gas prices, apparently adequate gas supplies

328

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

No. 1905-0205 No. 1905-0205 Expiration Date: 05/31/2015 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1:

329

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

330

Natural gas 1995: Issues and trends  

SciTech Connect

Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

NONE

1995-11-01T23:59:59.000Z

331

EIA - 2010 International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Natural Gas In the IEO2010 Reference case, natural gas consumption in non-OECD countries grows about three times as fast as in OECD countries. Non-OECD production increases account for 89 percent of the growth in world production from 2007 to 2035. Figure 36. World natural gas consumption 2007-2035. Click to enlarge » Figure source and data excel logo Figure 37. Change in World natural gas production by region, 2007-2035. Click to enlarge » Figure source and data excel logo Figure 38. Natural gas consumption in North America by country, 2007-2035 Click to enlarge » Figure source and data excel logo Figure 39. Natural gas consumption in OECD Europe by end-use sector 2007-2035. Click to enlarge » Figure source and data excel logo

332

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

333

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

334

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

335

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

336

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

337

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

338

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

339

GAS SEAL  

DOE Patents (OSTI)

A seal is described for a cover closing an opening in the top of a pressure vessel that may house a nuclear reactor. The seal comprises a U-shaped trough formed on the pressure vessel around the opening therein, a mass of metal in the trough, and an edge flange on the cover extending loosely into the trough and dipping into the metal mass. The lower portion of the metal mass is kept melted, and the upper portion, solid. The solid pontion of the metal mass prevents pressure surges in the vessel from expelling the liquid portion of the metal mass from the trough; the liquld portion, thus held in place by the solid portion, does not allow gas to go through, and so gas cannot escape through shrinkage holes in the solid portion.

Monson, H.; Hutter, E.

1961-07-11T23:59:59.000Z

340

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

342

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: October 16, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, October 1 to Wednesday, October 8) Natural gas spot prices in the Lower 48 States this report week declined to their lowest levels this year even as disruptions in offshore Gulf of Mexico production continue in the aftermath of Hurricanes Ike and Gustav. During the report week, the Henry Hub spot price decreased $0.83 per million Btu (MMBtu) to $6.58. At the New York Mercantile Exchange (NYMEX), the price of the near-term contract (November 2008) decreased to its lowest price since September 2007, closing at $6.742 per MMBtu yesterday (October 8). The net change during a week in which the price decreased each trading day was

343

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Wednesday, November 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 3, 2010) Price changes were mixed this week, with much regional variation across the country. At the Henry Hub in Erath, Louisiana, prices posted a net decline on the week of 2 cents, falling from $3.37 per million Btu (MMBtu) on Wednesday, October 27, to $3.35 per MMBtu on Wednesday, November 3. At the New York Mercantile Exchange (NYMEX), the December 2010 futures contract (which became the near-month contract on October 28) rose $0.073 from $3.763 per MMBtu last Wednesday to $3.836 yesterday. Working natural gas in storage increased to 3,821 billion cubic feet

344

GAS PHOTOTUBE CIRCUIT  

DOE Patents (OSTI)

This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

Richardson, J.H.

1958-03-01T23:59:59.000Z

345

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: February 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 4, 2009) Natural gas spot prices decreased in half of the trading regions in the Lower 48 States this report week. Generally, areas east of the Rockies and particularly those that experienced frigid temperatures posted weekly price increases. However, there were some exceptions, including the Midcontinent and East Texas. At the New York Mercantile Exchange (NYMEX), futures trading for the near-month contract was fairly volatile, with daily price changes ranging between a 16-cent loss and a 16-cent increase. The March 2009 contract ended trading yesterday 18 cents higher than on the previous Wednesday.

346

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2009 at 2:00 P.M. 7, 2009 at 2:00 P.M. Next Release: Thursday, January 7, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 16, 2009) Changes in natural gas spot prices this report week (December 9-16) reflected extremely cold weather conditions moving across the country. In response to varying levels of demand for space heating, spot prices increased east of the Mississippi River but declined in the West. During the report week, the Henry Hub spot price increased $0.30 to $5.57 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), prices for futures contracts also rose with expectations of higher demand in response to this monthÂ’s trend of colder-than-normal temperatures. The futures contract for

347

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

348

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

349

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

350

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

351

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

352

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

353

Gas Metrology Portal  

Science Conference Proceedings (OSTI)

... automobile industry meeting more stringent … more. Audit of EPA Protocol Gas Suppliers EPA Protocol gas mixture calibration ...

2012-12-19T23:59:59.000Z

354

Manage fuel gas with an expert system  

Science Conference Proceedings (OSTI)

The Star Louisiana refinery has fuel gas header systems throughout the plant that are utilized by fuel gas producers and consumers. The refinery simultaneously exports surplus fuel gas from the export gas header, and maintains a minimum natural gas makeup rates from multiple external suppliers for fuel gas header pressure control. Successfully implementing a fuel gas expert system has facilitated communication of accurate, timely information to all unit control board operators in the refinery when any change or sub-optimal situation occurs in either of these systems. Information provided from the expert system rule knowledge base results in: proper unit operating actions taken when a flaring situation approaches, thus minimizing the negative impact of flaring on the environment and minimizing product loses to the flare; minimizing purchase of makeup natural gas used for fuel gas system pressure control; maximizing export gas capacity to prevent surplus fuel gas production from limiting refinery operation; immediately recognizing an upset in any fuel gas header system and advising the best corrective action for all affected refinery units; and minimizing voice communication required between units in an upset, since the expert system provides the communication immediately in expert advice messages.

Giacone, G.; Toben, S.; Bergeron, G. [Star Enterprise, Convent, LA (United States); Ayral, T. [Key Control Inc., Westlake Village, CA (United States)

1996-09-01T23:59:59.000Z

355

Gas royalty - Vela, Middleton, and Weatherford  

SciTech Connect

The evolution of gas royalties is evident in this review of oil and gas cases dating from 1926. The author describes the decisions and changes in the gas royalty clause over the years in order to determine the intent of the parties in setting the measure of the royalty payment on gas production under Texas law. The Foster, Vela, and Middleton cases were the major vehicles for the legal development. The author also examines subsequent cases involving the market value of price-regulated gas and court decisions on royalty determination in other jurisdictions. Producers need to take protective steps in anticipation of early deregulation of gas prices to make sure there is no exposure to claims of market value in excess of contract proceeds. Corrective measures include contract amendments or negotiations with both the gas purchaser and the royalty owners to secure a lease amendment.

Harmon, F.G.

1983-01-01T23:59:59.000Z

356

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

12 (next release 2:00 p.m. on May 19) 12 (next release 2:00 p.m. on May 19) Spot and futures natural gas prices this week (Wednesday-Wednesday, May 4-11) partly recovered from the prior week's sharp decline, owing to warmer temperatures moving into parts of the South and cool temperatures in the Rockies. The Henry Hub spot price increased 14 cents per MMBtu to $6.63. The New York Mercantile Exchange (NYMEX) futures contract for June delivery at the Henry Hub was higher on the week by about 5 cents per MMBtu, closing yesterday (May 11) at $6.683. Natural gas in storage as of Friday, May 6, increased to 1,509 Bcf, which is 22.3 percent above the 5-year average. Before declining sharply yesterday, crude oil spot prices appeared to be supporting higher natural gas prices, with the West Texas Intermediate (WTI) price increasing more than $1.50 per barrel since Wednesday (May 4) to over $52. The net change in the WTI price on the week was 17 cents per MMBtu, or less than 1 percent, as the price dropped $1.37 per barrel yesterday to $50.39 per barrel, or $8.69 per MMBtu.

357

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on March 17) 10 (next release 2:00 p.m. on March 17) Natural gas spot prices increased this week (Wednesday to Wednesday, March 2-9) as a late season cold front moved into major gas-consuming regions of the country, bringing a reminder that the end of winter is still two weeks away. Spot prices climbed 17 to 76 cents per MMBtu at trading locations in the Lower 48 States since last Wednesday. Price changes in the Northeast were at the higher end of the range, while trading in the West resulted in gains at the lower end. The Henry Hub spot price increased 38 cents per MMBtu, or 5.7 percent, to $6.99. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery gained 16.3 cents per MMBtu, settling at $6.880 on Wednesday, March 9. Natural gas in storage as of Friday, March 4, decreased to 1,474 Bcf, which is 25.7 percent above the 5-year (2000-2004) average. The spot price for West Texas Intermediate (WTI) crude oil traded at near-record highs, rising $1.75 per barrel on the week to yesterday's closing price of $54.75 per barrel, or $9.44 per MMBtu.

358

Seeking prospects for enhanced gas recovery  

DOE Green Energy (OSTI)

As part of the Institute of Gas Technology's (IGT) ongoing research on unconventional natural gas sources, a methodology to locate gas wells that had watered-out under over-pressured conditions was developed and implemented. Each year several trillion cubic feet (Tcf) of gas are produced from reservoirs that are basically geopressured aquifers with large gas caps. As the gas is produced, the gas-water interface moves upward in the sandstone body trapping a portion of gas at the producing reservoir pressure. The methodology for identifying such formations consisted of a computer search of a large data base using a series of screening criteria to select or reject wells. The screening criteria consisted of depth cutoff, minimum production volume, minimum pressure gradient, and minimum water production. Wells chosen by the computer search were further screened manually to seek out those wells that exhibited rapid and large increases in water production with an associated quick decline in gas production indicating possible imbibition trapping of gas in the reservoir. The search was performed in an attempt to characterize the watered-out geopressured gas cap resource. Over 475 wells in the Gulf Coast area of Louisiana and Texas were identified as possible candidates representing an estimated potential of up to about 1 Tcf (2.83 x 10/sup 10/ m/sup 3/) of gas production through enhanced recovery operations. A process to determine the suitability of a watered-out geopressured gas cap reservoir for application of enhanced recovery is outlined. This paper addresses the identification of a potential gas source that is considered an unconventional resource. The methodology developed to identify watered-out geopressured gas cap wells can be utilized in seeking other types of watered-out gas reservoirs with the appropriate changes in the screening criteria. 12 references, 2 figures, 5 tables.

Doherty, M.G.; Randolph, P.L.

1982-01-01T23:59:59.000Z

359

EIA - Analysis of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Natural Gas Data Collection and Estimation This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology. Categories: Production (Released, 6/9/2010, ppt format)

360

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Residential Choice Programs - U.S. Summary  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Programs by State. ... such as changes to market structure and operation and to regulatory and legislative guidelines (incentives).

362

,"TX, RRC District 3 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

363

,"TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

364

,"TX, RRC District 2 Onshore Shale Gas Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

365

San Diego's carbon footprint : measuring and mitigating greenhouse gas emissions.  

E-Print Network (OSTI)

??Climate Change is one of the most pressing issues of our time. The best way to measure and mitigate the greenhouse gas emissions causing climate… (more)

Bushman, Tara Rose

2013-01-01T23:59:59.000Z

366

Spheroid-Encapsulated Ionic Liquids for Gas Separation  

Combustion of fossil fuels produces carbon dioxide (CO 2), a greenhouse gas contributing to global climate change. As the demand for energy continues

367

Federal Energy Management Program: Greenhouse Gas Guidance and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance and Reporting Federal agencies are required to inventory and manage their greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Federal...

368

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

possibility. This view began to change in recent years with the realization that this unconventional resource could possibly be developed with existing conventional oil and gas...

369

Avista Utilities (Gas)- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

'''The Washington Utilities and Transportation Commission are currently reviewing the status of natural gas rebate programs. Changes to the program are expected on May 1, 2013. Contact Avista...

370

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Notice: Holiday Notice: Due to the federal holiday in observance of Martin Luther King Day on Monday, January 21, 2002, the next issue of the Natural Gas Weekly Update will be published on Tuesday, January 22, 2002. Overview: Monday, January 14, 2002 Natural gas prices were generally lower last week as the fundamentals of ample working gas in storage and very little temperature-driven swing demand dominated the market. With little in the way of market-changing developments, trading in both the spot and futures markets tended to occur in relatively small price ranges throughout the week. The warming trend begun late in the previous week continued nearly unabated through last week, with the heavy gas-consuming areas of the Midwest and Northeast recording many of the greatest deviations above daily normal temperatures. Philadelphia, New York City, and Buffalo, NY had at least 3 days of temperatures that were 10 or more degrees above normal; Chicago's temperature reached an unusually warm 26 degrees above normal on Wednesday. (See Temperature Map) (See Deviation Map) Spot prices at the Henry Hub moved down moderately from the previous week, ending trading on Friday at $2.31, down 5 cents from the previous Friday. On the NYMEX, the futures contract for February delivery at the Henry Hub declined by $0.071 from the previous Friday, settling on Friday, January 11 at $2.204 per MMBtu. The spot price for West Texas Intermediate crude oil also fell, dipping below $20 per barrel for the first time in the New Year, ending trading last Friday at $19.67 per barrel, or $3.39 per MMBtu, down $1.80 per barrel, or $0.31 per MMBtu, from Friday, January 4.

371

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 2006 (next release 2:00 p.m. on January 19, 2006) 2 2006 (next release 2:00 p.m. on January 19, 2006) Warmer-than-normal temperatures throughout the country led to lower natural gas spot prices at many trading locations in the Lower 48 States, while some markets exhibited modest increases since last Wednesday. For the week (Wednesday-Wednesday, January 4-11), the price for next-day delivery at the Henry Hub decreased 70 cents per MMBtu, or 7.6 percent to $8.55 per MMBtu. The NYMEX futures contract for February delivery at the Henry Hub settled yesterday (January 11) at $9.238 per MMBtu, which was 96 cents less than last Wednesday's price. Natural gas in storage decreased to 2,621 Bcf as of January 6, leaving the inventories at 11.8 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil moved up $0.50 per barrel or about 1 percent since last Wednesday to $63.91 per barrel or $11.02 per MMBtu. As natural gas prices have declined while crude oil prices remain above $60 per barrel, the relative position of these prices has returned to a more typical pattern, where the price of natural gas is below that of crude oil on a Btu basis. The Henry Hub spot price was 24 percent below the WTI crude oil price from the beginning of 2005 up to the point that Hurricane Katrina made landfall in late August. For the remainder of 2005, the Henry Hub spot price exceeded the WTI price by 15 percent. However, that unusual pattern of relative prices was changing by the end of 2005, and the Henry Hub spot price has been 17 percent below the WTI price on average so far in January.

372

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2007 (next release 2:00 p.m. on November 29, 2007) 15, 2007 (next release 2:00 p.m. on November 29, 2007) Natural gas spot prices decreased this week, with the changes at most market locations somewhat more modest than the price changes observed over the past couple weeks. On the week (Wednesday-Wednesday, November 7-14), the price at the Henry Hub decreased 15 cents per MMBtu or about 2 percent. Relatively abundant supplies in the West and high stock levels in storage helped to drive spot prices lower this week. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for December delivery moved up about 21 cents to $7.835 per MMBtu. Natural gas in storage was 3,536 Bcf as of Friday, November 9, which is 8.4 percent higher than the 5-year average of 3,263 Bcf. The spot price for West Texas Intermediate (WTI) crude oil decreased on the week by $2.44 per barrel or about 3 percent to trade yesterday at $94.02 per barrel or $16.21 per MMBtu.

373

Energyenvironment policy modeling of endogenous technological change with personal vehicles  

E-Print Network (OSTI)

reserved. Keywords: Greenhouse gas; Hybrid cost models; Transportation emissions policy; Bottom-up; Top-down; Technological change; Greenhouse gas abatement policy 1. Introduction A major challenge for greenhouse gas (GHGMETHODS Energy­environment policy modeling of endogenous technological change with personal

374

Gas Supply: Outlook for Critical New Sources to Meet Growing Gas Requirements: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The outlook for natural gas supplies is pivotal to long-term changes in the U.S. generation mix and to immediate costs of electricity. The price shock of 2000-01 was followed by another in 2002-03, and prices remain anomalously high. A sea change in expectations for natural gas is taking place, driven primarily by persistent difficulties expanding supplies in the face of accelerating depletion. This report assesses the lackluster recent gas supply response and the outlook for two major emerging sources, ...

2004-01-27T23:59:59.000Z

375

Natural gas 1994: Issues and trends  

SciTech Connect

This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

Not Available

1994-07-01T23:59:59.000Z

376

Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells...

377

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

378

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

379

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

380

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

382

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

383

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

384

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

385

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

386

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

387

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

388

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

389

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

390

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

391

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

392

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

393

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

394

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

395

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

396

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

397

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

398

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

399

South Dakota Natural Gas Withdrawals from Gas Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Gas Wells...

400

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

402

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

403

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

404

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

405

Gas amplified ionization detector for gas chromatography  

DOE Patents (OSTI)

A gas-amplified ionization detector for gas chromatography which possesses increased sensitivity and a very fast response time is described. Solutes eluding from a gas chromatographic column are ionized by uv photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the uv photoionization of at least a portion of each solute passing through the detector. 4 figs.

Huston, G.C.

1989-11-27T23:59:59.000Z

406

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Eligibility...

407

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas...

408

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

409

CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER  

E-Print Network (OSTI)

257 CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER STATES SARAH K. ADAIR Carolina Geological Survey (NCGS) announced the existence of shale gas underlying the Deep and Dan River and the state legislature began to consider policy changes that would be necessary to develop the shale gas

Jackson, Robert B.

410

Weekly Natural Gas Storage Report - EIA  

Gasoline and Diesel Fuel Update (EIA)

‹ See All Natural Gas Reports ‹ See All Natural Gas Reports Weekly Natural Gas Storage Report for week ending December 20, 2013. | Released: December 27, 2013 at 10:30 a.m. | Next Release: January 3, 2014 Working gas in underground storage, lower 48 states Summary text CSV JSN Historical Comparisons Stocks billion cubic feet (Bcf) Year ago (12/20/12) 5-Year average (2008-2012) Region 12/20/13 12/13/13 change (Bcf) % change (Bcf) % change East 1,568 1,683 -115 1,889 -17.0 1,810 -13.4 West 429 450 -21 523 -18.0 462 -7.1 Producing 1,074 1,115 -41 1,251 -14.1 1,111 -3.3 Salt 263 277 -14 310 -15.2 208 26.4 Nonsalt 811 839 -28 940 -13.7 903 -10.2

411

Energetics Responses to Increases in Greenhouse Gas Concentration  

Science Conference Proceedings (OSTI)

Increasing greenhouse gas concentrations warm the troposphere. However, it is not clear whether this implies changes in the energetics. To study the energetics responses to CO2 increases, changes in the Lorenz energy cycle (LEC) are evaluated ...

Daniel Hernández-Deckers; Jin-Song von Storch

2010-07-01T23:59:59.000Z

412

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

413

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

414

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

415

Gas scrubbing liquids  

DOE Patents (OSTI)

Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1981-01-01T23:59:59.000Z

416

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

417

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

418

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

419

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

420

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

February Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

422

November Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

423

January Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

424

March Natural Gas Monthly  

Gasoline and Diesel Fuel Update (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

425

May Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas Annual. Preliminary Monthly Data Preliminary monthly data in the "balancing item" cat- egory are calculated by subtracting dry gas production, withdrawals from storage,...

426

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

427

CONTINUOUS GAS ANALYZER  

DOE Patents (OSTI)

A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

Katz, S.; Weber, C.W.

1960-02-16T23:59:59.000Z

428

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

429

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

430

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

431

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

432

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

205 205 Expiration Date: 09/20/2012 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1: Address 2: Questions? Contact Name: Phone No.: Email: If this is a resubmission, enter an "X" in the box: This form may be submitted to the EIA by mail, fax, e-mail, or secure file transfer. Should you choose to submit your data via e-mail, we must advise you that e-mail is an insecure means of transmission because the data are not encrypted, and there is

433

Assessment of hot gas contaminant control  

SciTech Connect

The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

1996-12-31T23:59:59.000Z

434

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

435

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 4. Total U.S. Proved Reserves of Wet Natural Gas, and Crude Oil plus Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

436

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14 (next release 2:00 p.m. on December 21, 2006) 14 (next release 2:00 p.m. on December 21, 2006) Softening natural gas market conditions led to spot price decreases at most market locations in the Lower 48 States since Wednesday, December 6, with decreases ranging between $0.02 and $1.22 per MMBtu. The few price increases on the week were mostly confined to market locations west of the Rocky Mountains. On Wednesday, December 13, prices at the Henry Hub averaged $7.21 per MMBtu, decreasing $0.13 per MMBtu, or about 2 percent, since the previous Wednesday. The prices of futures contracts through December 2007 changed only slightly since December 6. The price for the January delivery contract decreased about 5 cents per MMBtu, or about 1 percent on the week (Wednesday-Wednesday), settling at $7.673 per MMBtu yesterday (December 13). Natural gas in storage was 3,238 Bcf as of December 8, which is 7.5 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased 86 cents per barrel, or about 1 percent on the week to $61.34 per barrel or $10.58 per MMBtu.

437

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11, 2002 11, 2002 On Friday, spot gas traded at the Henry Hub for $2.20 per MMBtu, marking no change from the price on the previous Friday. Last week spot prices at the Henry Hub traded within a tight range of $2.14-$2.20 per MMBtu. Temperatures in much of the country returned to above normal in the second half of the week and the National Weather Service's (NWS) latest 6-to 10-day forecast called for this pattern to continue through the weekend and all of this week. (See Temperature Map) (See Deviation Map) This dominant pattern of above normal temperatures has resulted in heating degree days thus far this winter that are 16 percent lower than normal. At the NYMEX, the settlement price for the March contract ended the week up almost 5 cents at $2.191 per MMBtu. Natural gas stocks remained well above last year's level as estimated net withdrawals were 82 Bcf during the last week of January. The spot price for West Texas Intermediate (WTI) crude oil moved down 15 cents last week and ended Friday trading at $20.25 per barrel or $3.49 per MMBtu.

438

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on January 26, 2006) 9 (next release 2:00 p.m. on January 26, 2006) Changes in natural gas spot prices were mixed this week (Wednesday-Wednesday, January 11-18), as colder weather boosted demand for space-heating in the eastern half of the country and moderate temperatures in part led to continued price declines in the West. For the week, the price at the Henry Hub increased 30 cents, or about 3.5 percent, to $8.85 per MMBtu, as colder weather returned to the East. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for February delivery dropped 47 cents per MMBtu yesterday (January 18) to $8.694, a 6-month low for the February 2006 contract, on expectations of moderate temperatures for the rest of the heating season. The near-month contract decreased roughly 54 cents since last Wednesday (January 11), and is now also trading at a 5-month low for a near-month contract. Natural gas in storage was 2,575 Bcf as of January 13, which is 16.3 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.85 per barrel, or nearly 3 percent, on the week to $65.76 per barrel or $11.34 per MMBtu.

439

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23 (next release 2:00 p.m. on March 30, 2006) 23 (next release 2:00 p.m. on March 30, 2006) Natural gas spot prices showed relatively modest changes at most market locations in the Lower 48 States since Wednesday, March 15, 2006. For the week (Wednesday - Wednesday, March 15 to 22), the spot price at the Henry Hub decreased by 3 cents, or less than one-half percent, to $7.07 per MMBtu. The price of the NYMEX futures contract for April delivery settled at $6.953 per MMBtu yesterday (March 22), which is 19 cents, or about 3 percent, less than last Wednesday. As of Friday, March 17, 2006, natural gas in storage was 1,809 Bcf or 67 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil was $60.03 per barrel or $10.35 per MMBtu yesterday. This price is $2.08 per barrel less than the price last week, a decrease of about 3 percent.

440

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25 (next release 2:00 p.m. on September 1) 25 (next release 2:00 p.m. on September 1) Since Wednesday, August 17, changes to natural gas spot prices were mixed, decreasing in major consuming areas in the Northeast and Midwest, while increasing at most markets in the Rocky Mountains, California, and West Texas regions. For the week (Wednesday-Wednesday), prices at the Henry Hub increased 2 cents to $10 per MMBtu. Yesterday (August 24), the price of the NYMEX futures contract for September delivery settled at $9.984 per MMBtu, increasing about 59 cents or more than 6 percent since Wednesday. Natural gas in storage was 2,575 Bcf as of August 19, which is 5.6 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.81 per barrel, or about 6 percent, on the week to a record high price of $67.10 per barrel, or $11.57 per MMBtu.

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23 (next release 2:00 p.m. on June 30) 23 (next release 2:00 p.m. on June 30) Since Wednesday, June 15, changes to natural gas spot prices were mixed, declining at most markets in the Gulf of Mexico and Northeast regions while increasing at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub edged up 1 cent, to $7.40 per MMBtu. Yesterday (June 22), the price of the NYMEX futures contract for July delivery at the Henry Hub settled at $7.442 per MMBtu, roughly equal to last Wednesday's settlement price of $7.441 per MMBtu. Natural gas in storage was 2,031 Bcf as of June 17, which is about 15 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $2.74 per barrel, or about 5 percent, on the week to $58.27 per barrel or $10.047 per MMBtu.

442

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16 (next release 2:00 p.m. on November 30, 2006) 16 (next release 2:00 p.m. on November 30, 2006) Changes in natural gas spot prices were modest at most trading locations in the Lower 48 States this week (Wednesday-Wednesday, November 8-15), as current demand for space-heating remained relatively low amid continuing concerns over long-term supplies. For the week, the price at the Henry Hub increased $0.08 per MMBtu, or about 1 percent, to $7.45. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for December delivery at the Henry Hub moved about 30 cents per MMBtu, or 3.4 percent, higher on the week to settle yesterday (Wednesday, November 15) at $8.12. Natural gas in storage was 3,450 Bcf as of Friday, November 10, which is 7.4 percent higher than the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.14 per barrel or about 2 percent, since last Wednesday (November 8) to trade yesterday at $58.79 per barrel or $10.14 per MMBtu.

443

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

21 (next release 2:00 p.m. on July 28) 21 (next release 2:00 p.m. on July 28) Since Wednesday, July 13, changes to natural gas spot prices were mixed, increasing at most market locations in the Lower 48 States, while declining at most markets in the Rocky Mountains, California, and Midwest regions. For the week (Wednesday-Wednesday), prices at the Henry Hub declined 3 cents, to $7.75 per MMBtu. Yesterday (July 20), the price of the NYMEX futures contract for August delivery at the Henry Hub settled at $7.550 per MMBtu, declining about 35 cents or about 4 percent since Wednesday, July 13. Natural gas in storage was 2,339 Bcf as of July 15, which is about 10 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $3.27 per barrel, or about 5 percent, on the week to $56.73 per barrel or $9.78 per MMBtu.

444

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on April 28) 1 (next release 2:00 p.m. on April 28) Natural gas spot prices exhibited relatively modest changes at all market locations in the Lower 48 States since Wednesday, April 14, 2005. For the week (Wednesday - Wednesday, April 13 to 20), the spot price at the Henry Hub increased 3 cents, less than one-half percent, to $7.10 per MMBtu. The price of the NYMEX futures contract for May delivery settled at $7.057 per MMBtu yesterday (April 20), which is an 8 cent or 1.3 percent increase since last Wednesday. As of Friday, April 15, 2005, natural gas in storage was 1,343 Bcf or 28.4 percent above the 5-year average of 1,046 Bcf. The spot price for West Texas Intermediate (WTI) crude oil was $52.45 per barrel or $9.04 per MMBtu as of yesterday. This is $2.24 per barrel more than the price last week, an increase of about 4 percent.

445

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2003 (next release 2:00 p.m. on March 6) 7, 2003 (next release 2:00 p.m. on March 6) Natural gas spot prices across the country surged to record highs this week as yet another Arctic blast of cold arrived, this time reaching as far south as Texas. Prices in the Northeast were the highest in the country at more than $20 per MMBtu for much of the week, but prices also tripled since last Wednesday to $18 and more at production-area trading locations along the Gulf Coast and in Texas. On the week (Wednesday to Wednesday), the spot price at the Henry Hub had a net change of $4.26 per MMBtu to an average of $10.36 yesterday (Wednesday, February 26). The NYMEX contract for March delivery ended its run as the near-month futures contract on Wednesday, settling at just over $9.13 per MMBtu, or $3 higher on the week. As of February 21, natural gas in storage was 1,014 Bcf, or 33.4 percent below the 5-year average for this week. Crude oil prices climbed $1.90 per barrel yesterday to an average of $37.96, or $6.54 per MMBtu, which is near a 12-year high.

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

30, 2009 30, 2009 Next Release: May 7, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 29, 2009) The direction of spot price movements was mixed this report week (Wednesday-Wednesday, April 22-29). However, changes were relatively small regardless of direction. During the report week, the Henry Hub spot price decreased by $0.05 per million Btu (MMBtu) to $3.43. At the New York Mercantile Exchange (NYMEX), futures prices decreased as moderate temperatures in most of the country limited demand and a perception of strong supply continues. The futures contract for May delivery expired on Tuesday, April 28, at a price of $3.321 per MMBtu, which is the lowest monthly closing price for a NYMEX near-month contract

447

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

448

Natural gas monthly, January 1997  

Science Conference Proceedings (OSTI)

This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

NONE

1997-01-01T23:59:59.000Z

449

Federal Energy Management Program: Assess Potential Agency Size Changes  

NLE Websites -- All DOE Office Websites (Extended Search)

Assess Potential Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions to someone by E-mail Share Federal Energy Management Program: Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions on Facebook Tweet about Federal Energy Management Program: Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions on Twitter Bookmark Federal Energy Management Program: Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions on Google Bookmark Federal Energy Management Program: Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions on Delicious Rank Federal Energy Management Program: Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions on Digg Find More places to share Federal Energy Management Program: Assess

450

Controlling annular gas flow in deep wells  

SciTech Connect

This article reports on the phenomenon of annular gas channeling. It can occur during primary cementing in wells with formations containing gas. Such channeling may lead to interzonal communication down hole, or even gas migration to the surface. Formation gas is normally contained by the cement slurry's hydrostatic pressure. Annular gas channeling usually results from volumetric changes associated with: cement hydration and fluid loss, poor cement placement techniques, high cement free water, cementing gelling properties, and excessive thickening times. Initially, the cement slurry acts as a true fluid, transmitting hydrostatic pressure to the formation gas and preventing its flow into the cement matrix. However, as the cement begins to set, changing from a fluid state to a rigid state, it gradually begins to lose its ability to transmit hydrostatic pressure. This period of change is usually referred to as the ''transition period.'' Shrinkage of the cement volume compounds the problem and eventually can lead to poor binding between the cement and formation, thereby allowing gas to flow through gaps at the formation-cement interface.

Matthews, S.M.; Copeland, J.C.

1987-03-01T23:59:59.000Z

451

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

452

Natural gas contracts in efficient portfolios  

Science Conference Proceedings (OSTI)

This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

Sutherland, R.J.

1994-12-01T23:59:59.000Z

453

Greenhouse gas mitigation options for Washington State  

DOE Green Energy (OSTI)

President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

Garcia, N.

1996-04-01T23:59:59.000Z

454

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

455

Change Log  

NLE Websites -- All DOE Office Websites (Extended Search)

Change Log Change Log Change Log NERSC-8 / Trinity Benchmarks Change Log 09/03/2013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability Improvement measurements do not require 10,000 MPI ranks per k-point. 08/06/2013 Various pages have changed to remove "draft" status 08/02/2013 Correction added to FLOP Counts for "Small" Single-Node Miniapplication Tests page 07/12/2013 README files updated for IOR benchmark to correct an error in wording (no code changes); README file updated for osu-micro-benchmarks (OMB) changing the tests required and conditions including reinserting some tests that had been deleted earlier 07/05/2013 README updated for mpimemu benchmark; Revised version of benchmark results spreadsheet (linked on SSP web page);

456

Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)  

Reports and Publications (EIA)

Beginning with the December 2002 issue of EIAs Short-Term Energy Outlook (STEO),electricity generation and related fuel consumption totals will be presented on a basis that isconsistent with the definitions and aggregates used in the 2001 edition of EIAs Annual EnergyReview (AER). Particularly affected by these changes are the demand and balancing itemtotals for natural

Information Center

2002-12-01T23:59:59.000Z

457

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

458

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

459

Climate Change, Nuclear Power and Nuclear  

E-Print Network (OSTI)

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

460

Changes related to "Middelgrunden Wind Turbine Cooperative" ...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 1. Changes to proved reserves, 2011  

Gasoline and Diesel Fuel Update (EIA)

Changes to proved reserves, 2011 Crude Oil and Lease Condensate Wet Natural Gas (billion barrels) (trillion cubic feet) U.S. proved reserves at December 31, 2011 25.2 317.6 Total...

462

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

463

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

464

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

465

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

466

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

467

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

468

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

469

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

470

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

471

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

472

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

473

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

474

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

475

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

476

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy and Fuels,GAS RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburgits operation as a natural gas storage reservoir. In this

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

477

New Mexico Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

478

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

479

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

480

Basic science of climate change  

SciTech Connect

Anthropogenic emissions of greenhouse gases are enhancing the natural greenhouse effect. There is almost universal agreement in the scientific community that this will lead to a warming of the lower atmosphere and of the earth's surface. However, the exact timing, magnitude, and regional distribution of this future warming are very uncertain. Merely taking account of changes in the global mean climate is not enough, especially when considering the impacts of climate change. Man also have to consider the rate and regional distribution of climate change and changes in the frequency of events. An increase in the frequency of extremes, such as droughts and storms, and rapid climate change are two factors which could have dramatic effects on human society and natural ecosystems. However, systems already under stress or close to their climate limits are likely to experience the greatest difficulty in adapting to change. Although human activity has been increasing greenhouse gas concentrations for a hundred years, man cannot yet detect unequivocally a greenhouse gas induced signal in climate records. However, increases in greenhouse gas concentrations are almost bound to continue and are likely to emerge as the dominant perturbation of the earth's climate in the coming decades.

Maskell, K.; Callander, B.A. (Hadley Centre, Bracknell (United Kingdom)); Mintzer, I.M. (Univ. of Maryland, College Park, MD (United States))

1993-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions-could change" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development of Alaskan gas hydrate resources  

Science Conference Proceedings (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

482

Bibliography of greenhouse-gas reduction strategies  

SciTech Connect

A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

Tompkins, M.M.; Mintz, M.M.

1995-03-01T23:59:59.000Z

483

Gas Turbine Upgrades for Enhancing Operational Flexibility  

Science Conference Proceedings (OSTI)

Over the last several years, gas turbines owners have had to adapt their operating profiles to adjust to an ever changing environment that has included a dramatic run-up in gas prices, the halt (or collapse) of deregulation efforts in regions of the United States, the bankruptcy or near bankruptcy of industry giants, and an overall squeeze in profitability. In recent years, these externalities have been further exacerbated by the push for renewable portfolio standards (RPS), which mandate how much energy...

2009-01-09T23:59:59.000Z

484

SLE($?,?$)and Boundary Coulomb Gas  

E-Print Network (OSTI)

We consider the coulomb gas model on the upper half plane with different boundary conditions, namely Drichlet, Neuman and mixed. We related this model to SLE($\\kappa,\\rho$) theories. We derive a set of conditions connecting the total charge of the coulomb gas, the boundary charges, the parameters $\\kappa$ and $\\rho$. Also we study a free fermion theory in presence of a boundary and show with the same methods that it would lead to logarithmic boundary changing operators.

S. Moghimi-Araghi; M. A. Rajabpour; S. Rouhani

2005-08-07T23:59:59.000Z

485

Numerical simulation of transient gas flow during underbalanced drilling into a gas sand  

Science Conference Proceedings (OSTI)

Shallow gas drilling has long been recognized as a serious problem in offshore operations. Low fracture gradients and shallow casing do not permit shutting- in the well. Computer simulations of gas kicks during drilling require accurate description of the gas flow rate from the formation into the wellbore. The problem is complicated by the fact that during drilling into a gas sand the effective wellbore area exposed to flow is continually changing until the formation has been completely drilled. This paper describes a numerical model developed to calculate gas flow into the wellbore while drilling underbalanced into a gas sand. A two-dimensional finite difference model of transient flow from the reservoir has been coupled with a one-dimensional finite element model of two-phase flow in the wellbore.

Berg, K.A.; Skalle, P. (Dept. of Petroleum Engineering, Univ. of Trondheim (NO)); Podio, A.L. (Dept. of Petroleum Engineering, Univ. of Texas at Austin, Austin, TX (US))

1991-01-01T23:59:59.000Z

486

Multiple volume compressor for hot gas engine  

DOE Patents (OSTI)

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

487

SewerSnort: A drifting sensor for in situ Wastewater Collection System gas monitoring  

Science Conference Proceedings (OSTI)

Biochemical reactions that occur in sewer pipes produce a considerable amount of hydrogen sulfide gas (H"2S corrosive and poisonous), methane gas (CH"4 explosive and a major climate change contributor), carbon dioxide (CO"2 a major climate change contributor), ... Keywords: Biochemical process, Electrochemical gas sensor, Mobile sensing, Received signal strength indicator based localization, Wastewater Collection System

Jung Soo Lim, Jihyoung Kim, Jonathan Friedman, Uichin Lee, Luiz Vieira, Diego Rosso, Mario Gerla, Mani B. Srivastava

2013-06-01T23:59:59.000Z

488

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements… (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

489

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

490

Baltimore Gas and Electric Company (Gas) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

491

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

492

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

493

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

494

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program Eligibility Commercial Savings For Other Heating...

495

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2007 (next release 2:00 p.m. on February 8, 2007) 1, 2007 (next release 2:00 p.m. on February 8, 2007) Since Wednesday, January 24, natural gas spot prices have increased at most market locations in the Lower 48 States, with increases ranging between 9 and 60 cents per MMBtu or about 1.1 to 8.4 percent at most markets. On Wednesday, January 31, prices at the Henry Hub averaged $7.75 per MMBtu, reflecting an increase of 29 cents per MMBtu or about 4 percent since Wednesday, January 24. The futures contract for February delivery at the Henry Hub closed at $6.917 per MMBtu on Monday, January 29, decreasing about 50 cents per MMBtu since Wednesday, January 24. By yesterday, (January 31), the futures contract for March 2007 delivery at the Henry Hub increased about 29 cents per MMBtu or about 4 percent since Wednesday, January 24. Natural gas in storage was 2,571 Bcf as of January 26, which is about 21 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.93 per barrel, or 7.3 percent to $58.17 per barrel or $10.03 per MMBtu. This week's WTI price change was the highest week-on-week increase since the week ended November 29, 2006, when crude oil increased $5.17 per barrel or $0.89 per MMBtu. Despite this week's relatively high increase, crude oil prices remain about 14.3 percent lower than a year ago.

496

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

497

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

498

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

499

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

500

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z