National Library of Energy BETA

Sample records for gas emissions-could change

  1. CLIMATIC CHANGE, GREENHOUSE GAS EMISSIONS, FUTURE CLIMATE

    E-Print Network [OSTI]

    Bateman, Ian J.

    trends over India, greenhouse gas emissions due to energy consumption, forest and land-use changes the development of renewable, non- conventional energy sources. In all cases, serious institutional barriers an FOR INDIA by Pitta Govinda Rao, Mick Kelly, Mike Hulme and Govindarajan Srinivasan CSERGE Working Paper GEC

  2. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  3. ,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0630...

  4. Notice of Weekly Natural Gas Storage Report Changes

    Weekly Natural Gas Storage Report (EIA)

    The Energy Information Administration (EIA) is changing the Weekly Natural Gas Storage Report (WNGSR) for the following: The table will now include a column for implied flow...

  5. Notice of Changes to the Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report (EIA)

    September 29, 2015 EIA announced important changes to the Weekly Natural Gas Storage Report (WNGSR) with the addition of new regional breakouts. The new regional breakout enhances...

  6. Working Gas % Change from Year Ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWesternYear Jan1,29823

  7. Working Gas Volume Change from Year Ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWesternYear Jan1,29823751,045

  8. NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11

    E-Print Network [OSTI]

    McGaughey, Alan

    NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse Gas For Transportation or Electricity? Climate Change Implications Aranya Venkatesh, Paulina Jaramillo

  9. Long-Term Changes in Gas- and Particle-Phase Emissions from On...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline...

  10. Climate change: A crack in the natural-gas bridge

    E-Print Network [OSTI]

    Davis, SJ; Shearer, C

    2014-01-01

    fuels such as coal, gas and oil produces more than 80% ofsubstitution of gas for coal and oil can thus decarbonize

  11. Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas

    E-Print Network [OSTI]

    Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas Final report PRC 14-35F #12;2 Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas Texas A.............................................................................................................. 10 Chapter 2. Oil and Gas Well and Hydrocarbon Production Data

  12. Oil and Gas Energy Developments and Changes in Crash Trends in Texas

    E-Print Network [OSTI]

    Oil and Gas Energy Developments and Changes in Crash Trends in Texas Final report PRC 15-35 F #12;2 Oil and Gas Energy Developments and Changes in Crash Trends in Texas Texas A&M Transportation ................................................................................................ 41 Oil and Gas Well Developments

  13. Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes

  14. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  15. Climate change policy and its effect on market power in the gas market

    E-Print Network [OSTI]

    Newbery, David

    2006-03-14

    Climate change policy and its effect on market power in the gas market David Newbery Faculty of Economics, Cambridge 10 November 2005 Abstract The European Emissions Trading Scheme (ETS) limits CO2 emissions from covered sectors... the market power of gas suppliers, and also amplifying the impact of gas price increases on the price of electricity. A rough estimate using just British data suggests that this could increase gas market power by 50%. Key words Climate change...

  16. Greenhouse gas policy influences climate via direct effects of land-use change

    E-Print Network [OSTI]

    Jones, A.D.

    2014-01-01

    warming through the greenhouse effect.  Proceedings of the the radiative effect of greenhouse gases.   Philosophical Change for  Scenarios of Greenhouse Gas and Sulfur Dioxide 

  17. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  19. Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming

    E-Print Network [OSTI]

    2007-01-01

    Vegetation Changes, and Greenhouse Gas Warming M ASARU Yin the simulation. Greenhouse gas warming * The Nationalvegetation change, and greenhouse gas (GHG) warming using

  20. Notice of Weekly Natural Gas Storage Report Changes

    Weekly Natural Gas Storage Report (EIA)

    Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing...

  1. Notice of Changes to the Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report (EIA)

    At 10:30 a.m. on November 19, 2015, EIA will release the Weekly Natural Gas Storage Report (WNGSR) with new data breakouts for five regions of the Lower 48 states, converting...

  2. Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-21440 1 0

  3. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  4. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  5. Changes in Natural Gas Monthly Consumption Data Collection and the Short-Term Energy Outlook

    Reports and Publications (EIA)

    2010-01-01

    Beginning with the December 2010 issue of the Short-Term Energy Outlook (STEO), the Energy Information Administration (EIA) will present natural gas consumption forecasts for the residential and commercial sectors that are consistent with recent changes to the Form EIA-857 monthly natural gas survey.

  6. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0 1 2 2 15 2007 2008

  7. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million633 6222009

  8. Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per Thousand Cubic Feet) Decade1 0 112009

  9. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet)per272 522 2011

  10. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct,622,434 1,634,58742 1802009

  11. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 View History Proved Reserves as of Dec.

  12. Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYearThousand Cubic0 0 055

  13. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand343 342 328 370 3962,9699

  14. Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020 4,583 4,920(Million

  15. Michigan Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009Sameper Thousand6 0

  16. Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35 42 44 46 287 5 7 12 9 6134

  17. Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(Million Cubic Feet)

  18. Montana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2 74 59 95 104137

  19. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  20. Notice of Changes to the Weekly Natural Gas Storage Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseumEffect of photodiodeNotice of Changes

  1. California Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15Feet) Working Gas)Same

  2. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYearSame

  3. Wyoming Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYearSameSame

  4. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same Month Previous Year

  5. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same Month Previous

  6. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year (Million Cubic

  7. Alaska Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year (Million CubicMonth

  8. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8DecadeYear JanBaseSame

  9. Arkansas Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8DecadeYear

  10. California Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15Feet) Working

  11. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYearYear JanSame Month

  12. Colorado Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYearYear JanSame

  13. East Region Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998, and

  14. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15Vented andFeet)Same

  15. Illinois Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15Vented

  16. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1YearYearSame Month

  17. Indiana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1YearYearSame

  18. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0 Year-1 Year-2Base

  19. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0 Year-1 Year-2BaseMonth

  20. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuelTotal ConsumptionYearBaseMonth

  1. Kansas Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuelTotal

  2. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYear Jan

  3. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYear JanSame Month

  4. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotalYear JanSame Month

  5. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotalYear JanSame MonthSame

  6. Lower 48 Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020 4,5830 249

  7. Lower 48 States Natural Gas in Underground Storage - Change in Working Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020Cubic Feet)from Same

  8. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79DecadeBaseSame Month

  9. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79DecadeBaseSame

  10. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009Same Month Previous Year

  11. Michigan Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009Same Month Previous

  12. Midwest Region Natural Gas in Underground Storage - Change in Working Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 20118)TheCubicCubic

  13. Minnesota Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 (MillionYear Jan FebSame Month

  14. Minnesota Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 (MillionYear Jan FebSame

  15. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade Year-0

  16. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade Year-0Same Month Previous

  17. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear Jan Feb MarBaseSame Month

  18. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear Jan Feb MarBaseSame

  19. Montana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear Jan FebYearSame

  20. Montana Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear Jan FebYearSameSame

  1. Mountain Region Natural Gas in Underground Storage - Change in Working Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubicfrom Same

  2. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet) YearDecade

  3. U.S. Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet) YearDecadeMonth

  4. Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements

    E-Print Network [OSTI]

    Hansen, René Rydhof

    of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie

  5. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  6. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    SciTech Connect (OSTI)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  7. Basin scale assessment of gas hydrate dissociation in response to climate change

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

    2011-07-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

  8. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out by varying the inlet mass flow while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effect of turbine matching between the NG and SG cases was approximately 10 C, and 8 to 14% for rotor inlet temperature and total cooling flows, respectively. These results indicate that turbine-compressor matching, before and after fuel change, must be included in turbine models. The last stage of the turbine, for the SG case, experienced higher inner wall temperatures than the corresponding case for NG, with the temperature of the vane approaching the maximum allowable limit. This paper was published by ASME as paper no. GT2007-27530.

  9. "Changing Natural Gas Pipeline Throughputs in Canada"

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes & Sources1)Changing

  10. Temporal changes in gas hydrate mound topography and ecology: deep-sea time-lapse camera observations 

    E-Print Network [OSTI]

    Vardaro, Michael Fredric

    2004-09-30

    A deep-sea time-lapse camera and several temperature probes were deployed on the Gulf of Mexico continental shelf at a biological community associated with a gas hydrate outcropping to study topographic and hydrologic changes over time...

  11. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect (OSTI)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  12. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    E-Print Network [OSTI]

    Davis, SJ; Caldeira, K; Matthews, HD

    2010-01-01

    Future CO 2 Emissions and Climate Change from Existing Energynon-energy emissions could diminish in the future. In viewfuture CO 2 emissions is much greater in China, because China’s energy

  13. Applications for Change or Transfer of Control of Authorizations to Import or Export Natural Gas

    Broader source: Energy.gov [DOE]

    Applicants for authorization to import or export natural gas, including liquefied natural gas (LNG), apply on behalf of a given entity, whose corporate structure and place of business is detailed...

  14. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01

    coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

  15. SEASONAL CHANGES IN TITAN'S POLAR TRACE GAS ABUNDANCE OBSERVED BY CASSINI

    SciTech Connect (OSTI)

    Teanby, N. A. [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ (United Kingdom); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); De Kok, R. [SRON, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Nixon, C. A., E-mail: n.teanby@bristol.ac.u [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2010-11-20

    We use a six-year data set (2004-2010) of mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer to search for seasonal variations in Titan's atmospheric temperature and composition. During most of Cassini's mission Titan's northern hemisphere has been in winter, with an intense stratospheric polar vortex highly enriched in trace gases, and a single south-to-north circulation cell. Following northern spring equinox in mid-2009, dramatic changes in atmospheric temperature and composition were expected, but until now the temporal coverage of polar latitudes has been too sparse to discern trends. Here, we show that during equinox and post-equinox periods, abundances of trace gases at both poles have begun to increase. We propose that increases in north polar trace gases are due to a seasonal reduction in gas depletion by horizontal mixing across the vortex boundary. A simultaneous south polar abundance increase suggests that Titan is now entering, or is about to enter, a transitional circulation regime with two branches, rather than the single branch circulation pattern previously observed.

  16. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect (OSTI)

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  17. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01

    renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

  18. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01

    Coal Natural Gas Petroleum Products Unit Energy Use Emissionis that some energy inputs, in particular “other petroleum4 The energy industry itself (coal mining, petroleum

  19. Changes in U.S. Natural Gas Transportation Infrastructure in 2004

    Reports and Publications (EIA)

    2005-01-01

    This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years.

  20. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  1. Greenhouse Gas Mitigation as a Structural Change and Policies that Offset Its Depressing Effects

    E-Print Network [OSTI]

    Babiker, Mustafa H.M.

    The current economic modeling of emissions limitations does not embody economic features that are likely to be particularly important in the short term, yet the politics of limiting greenhouse gas emissions are often ...

  2. Fact #608: February 1, 2010 Changes in Greenhouse Gas Emissions since 1990

    Broader source: Energy.gov [DOE]

    In October of 2009, the United Nations (UN) released greenhouse gas inventory data for 1990 to 2007 for all countries that submitted data in accordance with the UN Framework Convention on Climate...

  3. Greenhouse gas policy influences climate via direct effects of land-use change

    E-Print Network [OSTI]

    Jones, A.D.

    2014-01-01

    variations in energy and  carbon exchange over forest and energy flux changes associated with conversion from forestenergy budgets averaged over the boreal and tropical forest

  4. AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic MonthlyTechnicalRetail(MillionWorking Gas

  5. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million Cubic Feet)Gas from Same Month

  6. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million Cubic Feet)Gas from Same

  7. AGA Western Consuming Region Natural Gas in Underground Storage - Change in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million CubicWorking Gas from Same Month

  8. AGA Western Consuming Region Natural Gas in Underground Storage - Change in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million CubicWorking Gas from Same

  9. Carbon and Greenhouse Gas Dynamics in Annual Grasslands: Effects of Management and Potential for Climate Change Mitigation

    E-Print Network [OSTI]

    Ryals, Rebecca

    2012-01-01

    D.A. Angers. 2005. Greenhouse gas contributions ofchange and the impact on greenhouse gas exchange in northprimary productivity and greenhouse gas emissions in annual

  10. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet After LeaseAnnual",2014Value andGas,

  11. Expansion and Change on the U.S. Natural Gas Pipeline Network 2002

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity

  12. U.S. Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 2012 20132009

  13. AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic MonthlyTechnicalRetail(Million

  14. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0and Production 2011

  15. Lower 48 States Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020Cubic Feet)from5,382

  16. South Central Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (Million CubicDecadeCubic Feet)Gas

  17. Greenhouse gas policy influences climate via direct effects of land-use change

    SciTech Connect (OSTI)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Torn, Margaret S.; Janetos, Anthony C.; Calvin, Katherine V.; Thomson, Allison M.; Chini, Louise M.; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter; Hurtt, George; Wise, Marshall A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.

  18. TX, RRC District 4 Onshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper909 2,235Changes,80 3 1 7

  19. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper909 2,235Changes,800 1 29 12

  20. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome Pageper909 2,235Changes,8002 11 16

  1. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect (OSTI)

    Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai; Melillo, Jerry

    2013-04-26

    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.

  2. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  3. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect (OSTI)

    Qianlai Zhuang

    2012-11-16

    During the three-year project period, Purdue University has specifically accomplished the following: revised the existing Methane Dynamics Model (MDM) to consider the effects of changes of atmospheric pressure; applied the methane dynamics model (MDM) to Siberian region to demonstrate that ebullition estimates could increase previous estimates of regional terrestrial CH{sub 4} emissions 3- to 7-fold in Siberia; Conducted an analysis of the carbon balance of the Arctic Basin from 1997 to 2006 to show that terrestrial areas of the Arctic were a net source of 41.5 Tg CH{sub 4} yr{sup â??1} that increased by 0.6 Tg CH{sub 4} yr{sup â??1} during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH{sub 4}; improved the quantification of CH{sub 4} fluxes in the Arctic with inversion methods; evaluated AIRS CH4 retrieval data with a transport and inversion model and surface flux and aircraft data; to better quantify methane emissions from wetlands, we extended the MDM within a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to include a large-scale hydrology model, the variable infiltration capacity (VIC) model; more recently, we developed a single box atmospheric chemistry model involving atmospheric methane (CH{sub 4}), carbon monoxide (CO) and radical hydroxyl (OH) to analyze atmospheric CH{sub 4} concentrations from 1984 to 2008.

  4. Earthquake prediction: Gas emission and ground-water changes. (lLtest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the forecasting and prediction of earthquakes by observation and measurement of changes in groundwater and gaseous emissions prior to the seismic event. The citations discuss detection and measurement of changes in radon and other gas emissions from fault lines, groundwater, and well holes in earthquake-prone areas. Groundwater chemistry level changes of subsurface waters, and changes in conductive properties of groundwater are presented. Studies on other precursors to large seismic events are discussed in a separate bibliography. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  5. Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change 

    E-Print Network [OSTI]

    Sinha, P.; Wise, M.; Smith, S.

    2006-01-01

    Conference 2006 Session 11 – Industrial Energy Modeling: What is the State of the Art? Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change ParamitaSinha 1 MarshallWise 2* ,and...StevenSmith 2 1 UniversityofMaryland,CollegePark. 2 PacificNorthwestNationalLaboratory,JointGlobalChangeResearch Institute,CollegePark,MD. 1. Introduction Thispaperpresentsanewapproachtounderstandingthepotentiallong-termevolutionofenergy demandsinthe...

  6. Vp-Vs ratio sensitivity to pressure, fluid, and lithology changes in tight gas sandstones Eugenia Rojas*, Thomas L. Davis, Michael Batzle, Manika Prasad, Colorado School of Mines, Golden, CO,

    E-Print Network [OSTI]

    in prospect identification in tight gas sandstone reservoirs, because they are related to good quality rocks and permeability, possible presence of natural fractures, uncertainty in gas/water contact and high possibilityVp-Vs ratio sensitivity to pressure, fluid, and lithology changes in tight gas sandstones Eugenia

  7. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enlarge. A reduction in greenhouse gas emissions could greatly lessen the impacts of climate change. However, the gases already added to the atmosphere ensure a certain amount...

  8. The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate 

    E-Print Network [OSTI]

    Dandona, Anil Kumar

    1971-01-01

    , 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

  9. Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland ecosystems subject to climate change

    E-Print Network [OSTI]

    Fungal, bacterial, and archaeal communities mediating C cycling and trace gas flux in peatland microbial community profiling in a network of natural peatland ecosystems spanning large-scale climate the drivers of microbial community composition via metagenomic and metatranscriptomic analysis of samples from

  10. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    E-Print Network [OSTI]

    Zhou, Yaoqi

    and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production in the United States. The effects on emissions from agricultural production (i.e., methane

  11. Short-and long-term greenhouse gas and radiative forcing impacts of changing water management in Asian

    E-Print Network [OSTI]

    be a source or sink of carbon dioxide. Changing water management of rice paddies can affect net emissions (PFCs), and sulfur hexafluoride (SF6), evaluated as `carbon dioxide equivalent emissions' (Art. 3: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons

  12. Table 3. Changes to proved reserves of U.S. natural gas by source, 2013-14

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana.Alabama"U.S.EnergyChanges

  13. 2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life is change. Our

    E-Print Network [OSTI]

    Daraio, Chiara

    2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life to improve gas turbines over the last 50 years, it has also played an active role in fostering a global our community. One area of discussion has been the role of turbomachinery outside of the gas turbine

  14. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  15. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    risk of climate change to the energy infrastructure, Natural Gas Facilities in the Delta There is one natural gas storage

  16. Measuring Abatement Potentials When Multiple Change is Present: The Case of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    can also offset greenhouse gas (GHG) emissions by increasing production of energy crops, which can Professor Department of Agricultural Economics Texas A&M University Hamburg, Germany April 2003 1 #12 with conventional agricultural production. Competition among practices is examined under a wide range

  17. Optimization of condensing gas drive 

    E-Print Network [OSTI]

    Lofton, Larry Keith

    1977-01-01

    - cal, undersaturated reservoir with gas being injected into the crest and oil being produced from the base of the structure. Fractional oil re- covery at gas breakthrough proved to be less sensitive to changes in oil withdrawal rates as the gas... injection pressure was increased. The validity of the model was established by accurately simulating several low pressure gas drives conducted in the laboratory. Oil recoveries at gas breakthrough using the model compared closely with those recoveries...

  18. Reducing PM Concentrations in Simulated High Temperature Gas Streams 

    E-Print Network [OSTI]

    Luehrs, Daniel R

    2014-08-07

    F). These high temperatures impact the cyclone inlet velocities as a consequence of the reduced gas densities. Changes in gas densities will influence the cyclone design. It was hypothesized that changes in cyclone performances as a consequence lower gas...

  19. Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase

    E-Print Network [OSTI]

    Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

  20. Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers

    E-Print Network [OSTI]

    Inoue, Masayuki

    1994-01-01

    In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

  1. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  2. An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

  3. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  4. Climate Change Proposed Scoping Plan

    E-Print Network [OSTI]

    Climate Change Proposed Scoping Plan a amework for change Prepared by the California Air Resources #12;CLIMATE CHANGE SCOPING PLAN State of California Air Resources Board Resolution 08-47 December 11 greenhouse gas (GHG) emissions that cause global warming; WHEREAS, the adverse impacts of climate change

  5. EIA - Natural Gas Exploration & Reserves Data and Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploration & Reserves Reserves Summary Proved reserves for natural gas and natural gas liquids by U.S., region, and State (annual). Proved Reserves, Reserves Changes, and...

  6. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    changes to the Northeast gas market. Chief among these has been the rapid growth of gas production from the Marcellus Shale in Pennsylvania and new pipeline and processing...

  7. Gas Mask 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  8. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  10. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  11. Natural Gas Purchasing Options 

    E-Print Network [OSTI]

    Watkins, G.

    1988-01-01

    As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower...

  12. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million CubicDecadeDecadeCubicfrom

  13. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million CubicDecadeDecadeCubicfromfrom

  14. The Weak Tie Between Natural Gas and Oil Prices

    E-Print Network [OSTI]

    Ramberg, David J.

    Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

  15. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  16. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  17. Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using CRiSP

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using of Engineers began the Gas Abatement Study in order to address the problem of gas and its effects on the Snake and Columbia Rivers. One important question is how much gas reductions caused by structural changes at a few

  18. Electric Vehicles Global Climate Change

    E-Print Network [OSTI]

    Sóbester, András

    . This applies both to gas extracted bythe petrochemical industries and to the methane which is naturallyreleased, and methane naturallyleaking from the seabed, could in future be detected using changes in acoustic signals from the seabed." Natural leaks of methane gas can be damaging to the environment because

  19. Unconventional gas: truly a game changer?

    SciTech Connect (OSTI)

    2009-08-15

    If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

  20. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  1. Climate Change and Conceptual Change

    E-Print Network [OSTI]

    Clark, David Joseph

    2013-01-01

    1.1.2 The Stark Reality of Climate Change . . . . . . . .1.2 Climate Change as a BehavioralEducation for Climate Change . . . . 1.4.1 The Numerically

  2. Determine Institutional Change Sustainability Goals

    Broader source: Energy.gov [DOE]

    The first step in the institutional change process is defining your federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves.

  3. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    of Interchangeability of Vaporized LNG and Natural Gas. Deswith Domestic Natural Gas. LNG and the Changing U.S. NaturalInterchangeability, and LNG Utilization in the United

  4. Gas Drill 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    .C. Wang, B.T. Lovell, Program, Summary Report TE4258-5-84, J. McCrank, "Topping of a Combined Gas DOE/ET/11292, Oct. 1984. and Steam Turbine Powerplant using a TAM Combustor," Thermo Electron [4J Final Report: "Thermionic Energy Report No. 4258... for each Btu fired in the burners has been cal culated with the process gas temperature as a variable. It was shown [2 ] that the maximum thermionic power produced is 18 kW per million Btu fired per hour. All com bustors are similar but progressively...

  5. Limitations of integrated assessment models of climate change

    E-Print Network [OSTI]

    Ackerman, Frank; DeCanio, Stephen J.; Howarth, Richard B.; Sheeran, Kristen

    2009-01-01

    Climatic Change (2009) 95:297–315 DOI 10.1007/s10584-009-MD 20686-3001, USA Climatic Change (2009) 95:297–315 ofgreenhouse gas (GHG) Climatic Change (2009) 95:297– 315

  6. Natural gas monthly - January 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This highlight discusses changes in natural gas supply, demand, and prices for the first three quarters of 1995 (January thru September) compared to the same periods in 1993 and 1994. Production for the first three quarters of 1995 lagged year-earlier levels while natural gas consumption has continued a steady upward movement. Total U.S. natural gas production through the first three quarters at 14.1 trillion cubic feet, was less than 1 percent below the 1994 period, but remained well ahead of the comparable 1993 period. The three leading producing States (Texas, Louisiana, and Oklahoma) contributed nearly 70 percent of the total. Natural gas consumption totaled 16.0 trillion cubic feet for the first three quarters, 4 percent above the same period in 1994. Net imports of natural gas reached 2.0 trillion cubic feet by the end of the third quarter 1995 and accounted for nearly 13 percent of total consumption during this period.

  7. Global Natural Gas Market Trends, 2. edition

    SciTech Connect (OSTI)

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  8. Natural gas storage - end user interaction. Task 2. Topical report

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. This paper discusses the storage of natural gas, storage facilities, and factors affecting the current, and future situation for natural gas storage.

  9. Natural gas 1995: Issues and trends

    SciTech Connect (OSTI)

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  10. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  11. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  12. The effect of natural gas supply on US renewable energy and CO2emissions

    E-Print Network [OSTI]

    Shearer, C; Bistline, J; Inman, M; Davis, SJ

    2014-01-01

    F and Paltsev S 2012 Shale gas production: potential versus46] Schrag D 2012 Is shale gas good for climate change?C 2011 Blind rush? Shale gas boom proceeds amid health

  13. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  14. Integrated Energy and Greenhouse Gas Management System 

    E-Print Network [OSTI]

    Spates, C. N.

    2010-01-01

    , the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy...

  15. Abrupt Climate Change R. B. Alley,1

    E-Print Network [OSTI]

    - tained Earth-surface conditions within the narrow liquid-water window conducive to life for about 4 change has focused on the climatic consequences of greenhouse-gas emissions and their impacts- sibility that large climate changes could occur quickly. Such abrupt climate changes could have natural

  16. Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb MarNGPL Production,Energy Office

  17. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Log NERSC-8 Trinity Benchmarks Change Log 09032013 Correction applied to MiniDFT web-page (to remove inconsistency with MiniDFT README). Capability Improvement...

  18. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  19. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    departments and agencies should consider the effects of greenhouse gas emissions and climate change in their National Environmental Policy Act reviews. The revised draft...

  20. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Li, Mo

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  1. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  2. Continuous Change Institutional Change Principle

    Broader source: Energy.gov [DOE]

    ecause it takes time to establish institutional change, federal agencies need multiyear plans that continuously work to achieve, reinforce, and improve significant and persistent sustainability goals.

  3. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  4. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  5. Natural gas 1994: Issues and trends

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  6. Climate Change, Nuclear Power and Nuclear

    E-Print Network [OSTI]

    Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

  7. Cefas contract report: -SLEA2 Oil and Gas Fisheries Risk

    E-Print Network [OSTI]

    Cefas contract report: - SLEA2 Oil and Gas Fisheries Risk Assessment Advice Updated Cefas: Oil and Gas Fisheries Risk Assessment Advice Submitted to: Department of Energy and Climate Change Recommendations for Spawning Finfish ­ English & Welsh Blocks Oil and Gas Fisheries Risk Assessment Advice Updated

  8. Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)

    E-Print Network [OSTI]

    MacDonald, Lee

    Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM) NREL Scientists Ngugi, Gabe Olchin, Catherine Stewart Summary Greenhouse gas (GHG) emissions and climate change pose one-induced warming of the planet. Hence, improved management practices are essential for reducing greenhouse gas (CO2

  9. CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER

    E-Print Network [OSTI]

    Jackson, Robert B.

    257 CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER STATES SARAH K. ADAIR Carolina Geological Survey (NCGS) announced the existence of shale gas underlying the Deep and Dan River and the state legislature began to consider policy changes that would be necessary to develop the shale gas

  10. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  11. Improving understanding of climate change dynamics using interactive simulations

    E-Print Network [OSTI]

    Martin Aguirre, Juan Francisco

    2008-01-01

    Global climate change is one of the most complex problems that human kind will face during the 21st century. Long delays in changing greenhouse gas emissions and in the response of the climate to anthropogenic forcing mean ...

  12. been due to the increase in greenhouse gas concentrations."

    E-Print Network [OSTI]

    Latham, Peter

    been due to the increase in greenhouse gas concentrations." Not only is climate difficult to climate change, and house prices consequently fall, some of this loss can straightforwardly how some external driver of climate change, such as past green- house-gas emissions, may have

  13. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremony TheChallenges andChange LogChange

  14. EVOLUTIONARY CHANGE the evolution of change management

    E-Print Network [OSTI]

    Emmerich, Michael

    page 1 EVOLUTIONARY CHANGE the evolution of change management by Jeroen van der Zon University, evolutionary change is studied by describing the evolution of Change Manage- ment (CM). CM is one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Modelling Change Management

  15. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  16. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  17. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  18. Future of Natural Gas

    Energy Savers [EERE]

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  19. Gas Kick Mechanistic Model 

    E-Print Network [OSTI]

    Zubairy, Raheel

    2014-04-18

    Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial ...

  20. Natural gas monthly, January 1997

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

  1. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  2. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  4. Improving the performance of stainless-steel DC high voltage photoelectron gun cathode electrodes via gas conditioning with helium or krypton

    SciTech Connect (OSTI)

    Bastaninejad, Mahzad; Elmustafa, Abdelmageed; Forman, Eric I.; Clark, James; Covert, Steven R.; Grames, Joseph M.; Hansknecht, John C.; Hernandez-Garcia, Carlos; Poelker, Bernard; Suleiman, Riad S.

    2014-10-01

    Gas conditioning was shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns, thus providing a reliable means to operate photoguns at higher voltages and field strengths. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. We have studied five stainless steel electrodes (304L and 316LN) that were polished to approximately 20 nm surface roughness using diamond grit, and evaluated inside a high voltage apparatus to determine the onset of field emission as a function of voltage and field strength. The field emission characteristics of each electrode varied significantly upon the initial application of voltage but improved to nearly the same level after gas conditioning using either helium or krypton, exhibiting less than 10 pA field emission at ?225 kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength of ~13 MV/m. Field emission could be reduced with either gas, but there were conditions related to gas choice, voltage and field strength that were more favorable than others.

  5. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  6. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  7. Climate Change 2007: Mitigation of Climate Change.

    E-Print Network [OSTI]

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change”. Il Rapporto

  8. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    Hydrogen production from natural gas, sequestration ofunderground storage of natural gas, Jour. Petrol. Tech. 943,dioxide as cushion gas for natural gas storage, Energy and

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  12. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  13. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Strathclyde, University of

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  14. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network ShapingDate: M-16-04-04 Federal FacilityChange Number

  15. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network ShapingDate: M-16-04-04 Federal FacilityChange

  16. CS Chang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pmEnergyNovemberCompute 1CS Chang CS

  17. Change Log

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremony TheChallenges andChange Log

  18. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  19. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  20. Commonality Among Unique Indigenous Communities: An Introduction to Climate Change and Its Impacts on Indigenous Peoples

    E-Print Network [OSTI]

    Abate, Randall S.; Kronk, Elizabeth Ann

    2013-01-01

    This book (Climate Change and Indigenous Peoples: The Search for Legal Remedies) explores how climate change affects the rights of indigenous peoples. Climate change is a global environmental problem caused by greenhouse gas emissions. Although...

  1. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  2. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  3. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  4. Natural Gas Regulatory Policy: Current Issues 

    E-Print Network [OSTI]

    Watkins, G.

    1988-01-01

    stream_source_info ESL-IE-88-09-56.pdf.txt stream_content_type text/plain stream_size 1211 Content-Encoding ISO-8859-1 stream_name ESL-IE-88-09-56.pdf.txt Content-Type text/plain; charset=ISO-8859-1 NATURAL GAS... REGULATORY roLICY: CURRENT ISSUES G. GAIL WATKINS Railroad Commission of Texas Austin, Texas ABSTRACT Many changes have occurred in recent months in both federal and state natural gas regulation. Those changes have increased the options of industrial...

  5. Air quality impacts of liquefied natural gas in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    (Mexico) which can supply part of the terminal's natural gas capacity to Southern California (ECA, 2012). In addition, the increased extraction of shale gas in the United States occurring in the last five years of LNG or shale gas is the potential impact of the changes in natural gas composition on pollutant

  6. Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi Department are very sensitive to gas jet pressure and nozzle standoff distance. Do a high gas pressure and a small shows the same behavior (i.e., discontinuity as gas pressure and standoff change

  7. Nigeria: after crude, the gas

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Misinterpretation of the laws of the marketplace have already brought Nigeria to the brink of a catastrophe in 1978, when the government had built up heavy stocks expecting a substantial increase in price. When it did not materialize and the production had to be dropped to 50% of the previous rate, in a country where crude constitutes 90% of the export revenues, the system was changed. The new plan is intended to reduce the dependence of Nigeria on oil exports. The production rate is set at between 2.2 and 2.5 million bpd. Due to a significant increase in domestic demand, the 2 existing refineries cannot fill the gap; 2 more refineries are planned. There also are substantial gas reserves; the associated gas, now flared, is to be recovered. A gas liquefaction plant also is in operation, with one-half of the output going to Europe and one-half to the US. Some of the oil and gas is earmarked for local petrochemical plants.

  8. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  9. Experimental study of rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine 

    E-Print Network [OSTI]

    Na, Uhn Joo

    1996-01-01

    The rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine were investigated experimentally. Rotordynamic model(XLROTOR) for Gas Generator and Power Turbine were constructed. The XLROTOR response plots with changing...

  10. Physical Properties of Gas Hydrates: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 ? m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detectedmore »by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed. « less

  11. A gas-loading system for LANL two-stage gas guns

    SciTech Connect (OSTI)

    Gibson, Lloyd Lee; Bartram, Brian Douglas; Dattelbaum, Dana Mcgraw; Lang, John Michael; Morris, John Scott

    2015-09-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  12. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1998 PDF 12 Supplemental Gas Supplies by State, 1980-1998 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1998 PDF 14 Consumption of...

  13. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1997 PDF 12 Supplemental Gas Supplies by State, 1980-1997 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1997 PDF 14 Consumption of...

  14. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    State, 1980-1996 PDF 12 Supplemental Gas Supplies by State, 1980-1996 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1996 PDF 14 Consumption of...

  15. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  16. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  17. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  18. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  19. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  20. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  1. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  2. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  3. Thermionic gas switch

    DOE Patents [OSTI]

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  4. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, Antonio J. (Albuquerque, NM); Hughes, Robert C. (Cedar Crest, NM); Smith, James H. (Albuquerque, NM); Moreno, Daniel J. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA); Huber, Robert J. (Bountiful, UT)

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  5. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  6. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  7. Gas Chromatography -Mass Spectrometry

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

  8. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  9. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  10. Renewable Natural Gas (Biomethane)

    E-Print Network [OSTI]

    California at Davis, University of

    to Landfill Owner $6.18 Total Cost Per MMBtu #12;Index Price of Natural Gas NYMEX Natural Gas Futures PricesRenewable Natural Gas (Biomethane) #12;Critical Barriers Impeding RNG as a Transportation Fuel-developer of largest RNG production project in U.S. at McCommas Bluff Landfill in Dallas, Texas · Chairman and co

  11. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofMAC) refrigerant replacement. Greenhouse gas budgets for

  12. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  13. Nanocomposite thin films for optical gas sensing

    SciTech Connect (OSTI)

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  14. New Methodology for Natural Gas Production Estimates

    Reports and Publications (EIA)

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  15. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  16. Climate Change 2007: Mitigation of Climate Change.

    E-Print Network [OSTI]

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    e sull’occupazione. Le energie rinnovabili hanno in genereal gas; energia nucleare; energie rinnovabili (idrogeno,carbone; nucleare avanzato; energie rinnovabili avanzate tra

  17. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  18. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  19. Review: Global Climate Change

    E-Print Network [OSTI]

    Smith, Jennifer

    2013-01-01

    introduction to global climate change, the greenhouseReview: Global Climate Change: A Primer By Orrin H PilkeyPilkey, Keith C. Global Climate Change: a primer. Durham,

  20. Apportioning Climate Change Costs

    E-Print Network [OSTI]

    Farber, Daniel A.

    2008-01-01

    Apportioning Climate Change Costs Daniel A. Farber* I. II.ON CLIMATE CHANGE FOUR QUESTIONS ABOUTof how to respond to climate change. Most public attention

  1. Gas Purchasing Strategies for the '90s 

    E-Print Network [OSTI]

    Schuler, S. H.

    1989-01-01

    STRATEGIES FOR THE '90S STEVEN H. SCHULER Manager-Acquisition & Contract Administration Houston Lighting & Power Company Houston, Texas The purpose of my talk today is to: 1. provide a brief summary of the structural changes which have occurred... in the natural gas market over the last several years 2. discuss some of the effects of these changes and some of the potential issues that could result from these changes, and 3. finally to offer some advice on how to develop an effective strategy...

  2. STREAMLINING THE SUPPLY CHAIN: GREENHOUSE GAS EMISSIONSAND DRY MATTER LOSSES

    E-Print Network [OSTI]

    supply chains · Dry matter, lost energy and quality changes · Focusing on: · Wood chip storage and greenhouse gas emissions from wood chip storage? · Cap layer forms on outside · Mouldy and very dampSTREAMLINING THE SUPPLY CHAIN: GREENHOUSE GAS EMISSIONSAND DRY MATTER LOSSES FROM WOOD CHIP STACKS

  3. NM, East Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    7 35 23 93 178 2007-2013 Adjustments 10 3 66 28 7 2009-2013 Revision Increases 0 1 68 17 30 2009-2013 Revision Decreases 2 2 146 3 6 2009-2013 Sales 0 0 0 0 0 2009-2013...

  4. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 10 2011-2013 Adjustments 0 2 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  5. North Louisiana Shale Gas Proved Reserves, Reserves Changes,...

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 858 9,307 20,070 21,950 13,523 11,473 2007-2013 Adjustments 131 2,347 -172 241 70 2009-2013 Revision...

  6. Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and...

    Gasoline and Diesel Fuel Update (EIA)

    3,790 10,708 23,581 32,681 44,325 2007-2013 Adjustments 450 235 253 -63 953 2009-2013 Revision Increases 299 1,994 5,238 4,411 6,218 2009-2013 Revision Decreases 53 1,583 3,322...

  7. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 View History Proved Reserves as of Dec. 31 135 126 2012-2013 Adjustments -1 3 2012-2013 Revision Increases 0 3 2012-2013 Revision Decreases 0 12 2012-2013 Sales 0 0...

  8. Ohio Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 483 2,319 2007-2013 Adjustments 0 0 16 2009-2013 Revision Increases 0 0 272 2009-2013 Revision Decreases 0 0 98 2009-2013 Sales 0 0 0 2009-2013 Acquisitions 0 0 0 2009-2013...

  9. Michigan Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,894 2,499 2,306 1,947 1,345 1,418 2007-2013 Adjustments -167 305 31 -98 -74 2009-2013 Revision Increases 149 165 140 520 351 2009-2013 Revision Decreases 276 325 151 916 103...

  10. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 4 4 10 53 136 2007-2013 Adjustments 1 -1 0 31 49 2009-2013 Revision Increases 0 1 4 13 56 2009-2013...

  11. Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    58 134 121 75 52 25 2007-2013 Adjustments 23 0 49 5 0 2009-2013 Revision Increases 4 17 19 76 3 2009-2013 Revision Decreases 22 77 27 9 29 2009-2013 Sales 0 11 89 14 0 2009-2013...

  12. TX, RRC District 5 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    13,691 16,032 19,747 11,513 13,592 2007-2013 Adjustments 657 105 233 -516 -70 2009-2013 Revision Increases 928 643 3,094 30 2,922 2009-2013 Revision Decreases 587 405 1,405 6,895...

  13. New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    36 123 144 176 258 2007-2013 Adjustments 10 3 69 45 18 2009-2013 Revision Increases 2 1 83 18 58 2009-2013 Revision Decreases 2 11 190 56 45 2009-2013 Sales 0 0 0 0 0 2009-2013...

  14. Mississippi Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 View History Proved Reserves as of Dec. 31 19 37 2012-2013 Adjustments 21 23 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0...

  15. NM, West Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    29 88 121 83 80 2007-2013 Adjustments 0 0 3 17 11 2009-2013 Revision Increases 2 0 15 1 28 2009-2013 Revision Decreases 0 9 44 53 39 2009-2013 Sales 0 0 0 0 0 2009-2013...

  16. Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 1 0 216 856 2007-2013 Adjustments 1 -1 0 0 1,167 2009-2013 Revision Increases 0 0 0 4 0 2009-2013 Revision Decreases 1 2 1 0 536 2009-2013 Sales 0 0 0 0 0 2009-2013...

  17. Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    9,307 20,070 21,950 13,523 11,483 2007-2013 Adjustments 131 2,347 -172 241 72 2009-2013 Revision Increases 636 1,856 2,002 1,422 1,606 2009-2013 Revision Decreases 826 1,878 3,882...

  18. TX, RRC District 8 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    48 24 90 61 583 649 2007-2013 Adjustments -1 53 -79 249 -21 2009-2013 Revision Increases 2 20 45 19 121 2009-2013 Revision Decreases 22 0 12 47 112 2009-2013 Sales 0 0 0 19 50...

  19. Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    20 55 10 41 34 46 2007-2013 Adjustments -1 -1 0 0 0 2009-2013 Revision Increases 44 3 44 1 16 2009-2013 Revision Decreases 3 43 11 4 0 2009-2013 Sales 0 0 45 0 0 2009-2013...

  20. TX, RRC District 1 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    2 435 1,564 5,123 8,340 7,357 2007-2013 Adjustments 5 8 0 47 315 2009-2013 Revision Increases 1 322 2,141 1,852 1,083 2009-2013 Revision Decreases 0 251 48 1,272 2,818 2009-2013...

  1. North Dakota Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    24 368 1,185 1,649 3,147 5,059 2007-2013 Adjustments 101 235 20 253 -72 2009-2013 Revision Increases 119 528 439 901 1,056 2009-2013 Revision Decreases 17 343 290 199 554 2009-2013...

  2. Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    3,833 9,070 12,526 14,808 9,779 12,231 2007-2013 Adjustments 2 63 655 -754 7 2009-2013 Revision Increases 1,585 861 502 1,533 329 2009-2013 Revision Decreases 261 126 141 6,151 239...

  3. Montana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    125 137 186 192 216 229 2007-2013 Adjustments 8 40 14 -7 -4 2009-2013 Revision Increases 42 14 14 18 31 2009-2013 Revision Decreases 34 16 14 2 28 2009-2013 Sales 2 1 42 3 0...

  4. Texas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    38,048 49,588 44,778 49,055 2007-2013 Adjustments 990 2,940 450 446 1,694 2009-2013 Revision Increases 2,052 3,580 12,185 3,748 7,294 2009-2013 Revision Decreases 1,267 2,425...

  5. Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    6,389 9,670 10,733 12,572 12,675 2007-2013 Adjustments 1 713 216 393 -253 2009-2013 Revision Increases 1,373 1,352 3,709 3,332 1,392 2009-2013 Revision Decreases 865 2,117...

  6. West Virginia Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    14 688 2,491 6,043 9,408 18,078 2007-2013 Adjustments 140 701 -2 13 1,257 2009-2013 Revision Increases 58 289 702 1,214 1,586 2009-2013 Revision Decreases 13 543 139 962 2,267...

  7. TX, RRC District 6 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    73 1,161 4,381 6,584 4,172 4,633 2007-2013 Adjustments 40 1,968 26 -225 564 2009-2013 Revision Increases 422 1,206 2,322 999 513 2009-2013 Revision Decreases 8 1,319 1,860 2,907...

  8. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 0 0 0 0 0 0 2007-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision...

  9. TX, RRC District 9 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    10,756 12,573 10,276 9,260 9,580 2007-2013 Adjustments 179 533 42 -483 378 2009-2013 Revision Increases 580 1,044 3,005 200 1,092 2009-2013 Revision Decreases 469 191 5,864...

  10. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Proved Reserves as of Dec. 31 2 3 2012-2013 Adjustments 0 0 2012-2013 Revision Increases 0 0 2012-2013 Revision Decreases 0 0 2012-2013 Sales 0 0 2012-2013...

  11. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 View History Proved Reserves as of Dec. 31 855 777 756 2011-2013 Adjustments 1 1 -1 2011-2013 Revision Increases 912 258 68 2011-2013 Revision Decreases 0 248 0...

  12. TX, RRC District 10 Shale Gas Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 37 37 2007-2013 Adjustments 0 0 -1 11 6 2009-2013 Revision Increases 0 0 0 31 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 1 2009-2013 Acquisitions 0 0...

  13. Permeability changes in coal resulting from gas desorption

    SciTech Connect (OSTI)

    Levine, J.R.; Tsay, F.

    1989-11-19

    Sampling Procedure: This project requires a carefully coordinated sample preparation procedure that will ensure that specimens of the proper size and physical characteristics are available for the various measurement methods used. Coherent blocks of coal will be collected in the field, with subsamples being removed in the lab by 1 inch-diameter core drill. At least 5 separate cores will be drilled from each block. Coal blocks sampled in the field will be approximately 10 inches (times) 10 inches {times} 6 inches. Distinctive compositional lithologies should be selected for sampling. For example, a section of the seam containing particularly thick vitrain or durain bands might be selected; or the block might include a mineral matter rich layer. If necessary, several blocks should be selected to represent a range in compositions. Sampling procedure must include a method for retaining moisture. The sample must not be allowed to dry out. Exposure to atmospheric oxygen should be limited as much as possible. The samples must carefully packed for shipment so as to preserve their integrity.

  14. NM, East Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (MillionandIndustrialYear1371,024,082474601497

  15. NM, West Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009 2,851 2,410 2,851 3,84720 21 260 0

  16. New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep OctFeet)149 123

  17. North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade Year-063 9698

  18. North Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade8 45 30 13 12

  19. Ohio Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0 Year-1VentedMonth799 7420 0 0

  20. Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear Jan Feb Mar

  1. Pennsylvania Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million0 0 0 0 0 0 1996-20143,790

  2. TX, State Offshore Shale Gas Proved Reserves, Reserves Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 0 0 0 1996-2014

  3. Texas Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(Million Cubic

  4. Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million CubicDecadeSame Month(Million

  5. West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of6,090 7,163 10,532 14,881 23,209DecadeFeet)0 0 1 1 2688

  6. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect (OSTI)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  7. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  8. Framing a Comprehensive Approach to Climate Change 

    E-Print Network [OSTI]

    Boggs, Jay W.; Chellinsky, Andrew; Ege, David; Hodges, Allen; Reynolds, Tripp; Williams, Andy

    2007-01-01

    area of permafrost shifting – Russian Core of Western Siberia between Urals and Central Siberian Plateau. Estimates that Russia possesses 74 billion barrels of oil reserves and 1, 699 trillion cubic feet of natural gas proven reserves. Comparatively... to Handle: Climate Change, Geopolitics, and U.S. National Security in 2025 Jay Boggs Andrew Chellinsky David Ege Allen Hodges Tripp Reynolds Adam Williams 26 April 2007 Security Implications of Global Climate Change Capstone Team Jay W. Boggs – Russia...

  9. Process and system for removing impurities from a gas

    DOE Patents [OSTI]

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  10. Climate Change and Extinctions

    E-Print Network [OSTI]

    Sinervo, Barry

    2013-01-01

    Lectures presents: Climate Change and Extinctions Happening2013. He will present a climate change extinction model that

  11. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  12. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  13. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, Daniel (Los Alamos, NM)

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  14. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  15. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  16. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  17. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  18. Climate Change Scoping Plan

    E-Print Network [OSTI]

    Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

  19. Climate Change Scoping Plan

    E-Print Network [OSTI]

    Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

  20. Compressed Gas Cylinder Policy

    E-Print Network [OSTI]

    of pressure from a compressed gas cylinder and pose a serious threat to life and property. To minimize risk cylinders to and from a designated work are

  1. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  2. String Gas Baryogenesis

    E-Print Network [OSTI]

    G. L. Alberghi

    2010-02-19

    We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

  3. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  4. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  5. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  6. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  7. Global climate change and international security

    SciTech Connect (OSTI)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  8. Mitchell firmly retrenched in natural gas services

    SciTech Connect (OSTI)

    Share, J.

    1997-09-01

    The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation`s largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses.

  9. Technology and Technical Change in the MIT EPPA Model

    E-Print Network [OSTI]

    Jacoby, Henry D.

    Potential technology change has a strong influence on projections of greenhouse gas emissions and costs of control, and computable general equilibrium (CGE) models are a common device for studying these phenomena. Using ...

  10. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  11. Promoting lower-carbon lifestyles: the role of personal values, climate change communications and carbon allowances in processes of change 

    E-Print Network [OSTI]

    Howell, Rachel Angharad

    2013-07-01

    Climate change is a pressing problem and substantial reductions in the greenhouse gas emissions that cause it are necessary to avert the worst impacts predicted. The UK has targeted an 80% reduction from 1990 emissions ...

  12. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  13. Land Use and Land Cover Change

    SciTech Connect (OSTI)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  14. GAS EXPLORATION Winter 2006 GasTIPS 5

    E-Print Network [OSTI]

    Rubin, Yoram

    GAS EXPLORATION Winter 2006 · GasTIPS 5 T he prediction of reservoir parameters such as gas or oil, but is particularly challenging in the case of gas exploration. Current seismic imaging technol- ogy cannot accurately discriminate between economic and non-eco- nomic concentrations of gas. This is primarily because

  15. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  16. Environmental Change Institute Environmental Change Institute

    E-Print Network [OSTI]

    Oxford, University of

    Environmental Change Institute 2012/13 eci Environmental Change Institute #12;ii Environmental 06 Educating environmental leaders 08 Centre for interdisciplinary doctoral training 10 A thriving, Dumfriesshire (ECI) #12;1 The Environmental Change Institute has 21 years' experience in helping governments

  17. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  18. Cryogenic treatment of gas

    DOE Patents [OSTI]

    Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  19. Supersonic gas compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  20. Commonality Among Unique Indigenous Communities: An Introduction to Climate Change and Its Impacts on Indigenous Peoples

    E-Print Network [OSTI]

    Abate, Randall S.; Kronk, Elizabeth Ann

    2013-01-01

    This article is part of a special issue of the Tulane Environmental Law Journal exploring how climate change affects the rights of indigenous peoples. Climate change is a global environmental problem caused by greenhouse gas emissions. Indigenous...

  1. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  2. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . .versus AEO and Henry Hub Natural Gas Prices . . . . . .

  3. Climate change action plan

    E-Print Network [OSTI]

    Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

  4. Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry

    E-Print Network [OSTI]

    Lin, Xiaodong

    Do Private Firms Invest Dierently than Public Firms? Taking Cues from the Natural Gas Industry Erik and public rms using a unique dataset of onshore U.S. natural gas producers. In rm-level regressions we nd that investments by private rms are 68% less responsive to changes in natural gas prices, a measure that captures

  5. A Channel Model for Wireless Sensor Networks in Gas Turbine Engines

    E-Print Network [OSTI]

    Atkinson, Robert C

    A Channel Model for Wireless Sensor Networks in Gas Turbine Engines K. Sasloglou, I. A. Glover , P.5 GHz) for wireless sensors deployed over the external surfaces of a gas turbine engine is reported turbine engine. I. INTRODUCTION Wireless sensing offers a potential step change in gas turbine engine

  6. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb Mar Apr May JunSame Month

  7. Nebraska Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb Mar Apr May JunSame MonthSame

  8. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovSame Month

  9. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovSame

  10. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecade Year-0 Year-1BaseSame Month

  11. New York Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecade Year-0 Year-1BaseSame

  12. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0 Year-1VentedMonth Previous

  13. Ohio Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0 Year-1VentedMonth

  14. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear Jan Feb Mar AprSame Month

  15. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear Jan Feb Mar AprSame MonthSame

  16. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear JanElements)YearBaseMonth

  17. Oregon Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear

  18. Pacific Region Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajor Characteristics of AllPacificCubicfrom Same

  19. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060Year JanFeet) BaseSame

  20. Tennessee Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060Year JanFeet)

  1. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (MillionDecadeYear Jan

  2. Texas Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (MillionDecadeYear JanMonth

  3. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear JanYear Jan FebYearMonth

  4. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear JanYear Jan

  5. Virginia Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million CubicDecade

  6. Virginia Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million CubicDecadeSame Month Previous

  7. Washington Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation10,428 (Million CubicYear

  8. Washington Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation10,428 (Million CubicYearSame Month

  9. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of6,090 7,163 10,532 14,881 23,209Decade Year-0Cubicfrom Same

  10. West Virginia Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of6,090 7,163 10,532 14,881 23,209Decade Year-0Cubicfrom

  11. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  12. Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers Natural Gas Connection program to residential customers to switch from electric to natural gas for heat. The program waives connection charge (...

  13. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

  14. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  15. Quick-change filter cartridge

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM); McFarland, Andrew R. (College Station, TX); Ortiz, Carlos A. (Bryan, TX)

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  16. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  17. How Europe is Changing

    E-Print Network [OSTI]

    Abdolah, Kader

    2012-01-01

    20. Devil 21. Tirannie How Europe is Changing 22. Bin Ladencan swim in a pond," he How Europe is Changing I says. "Yourain falls on his hat. How Europe is Changing An Empty Grave

  18. Gas only nozzle

    DOE Patents [OSTI]

    Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  19. Oregon Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas and Gas4.00 4.92 1979-2010

  20. Oil and gas outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodologyNorth093 *Oil andOil and

  1. ,"Federal Offshore California Natural Gas Withdrawals from Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  2. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  3. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas relevance to the oil and gas industry: 10 weeks in Year 1 and 5 weeks each in Years 2 and 3. Instructors will be both from expert academics from across the CDT and also experienced oil and gas industry professionals

  4. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  5. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  6. What is shale gas? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary Natural Gas Study Guide -...

  7. EIA - Natural Gas Publications & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Publications & Analysis Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S. Natural Gas Weekly Update...

  8. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01

    The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

  9. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01

    forty gallon residential gas-fired storage water heater wasthat could replace a gas-fired storage water heater with adefined a baseline gas-fired storage water heater that meets

  10. Compressed natural gas (CNG) measurement

    SciTech Connect (OSTI)

    Husain, Z.D.; Goodson, F.D. [Daniel Flow Products, Inc., Houston, TX (United States)

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  11. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  12. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  13. Gas Separation Using Membranes 

    E-Print Network [OSTI]

    Koros, W. J.; Paul, D. R.

    1984-01-01

    Commercial membrane-based gas separator systems based upon high-flux, asymmetric polysulfone hollow fibers were first introduced in 1977 by Monsanto. These systems were packaged in compact modules containing large amounts of permeation surface area...

  14. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01

    Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

  15. Gas-separation process

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA); Baker, Richard W. (Palo Alto, CA)

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  16. Natural gas monthly

    SciTech Connect (OSTI)

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  17. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  18. Nanocrystalline films for gas-reactive applications

    DOE Patents [OSTI]

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  19. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  20. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    operations with natural gas: Fuel composition implications,”of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

  1. Modeling Leaking Gas Plume Migration

    E-Print Network [OSTI]

    Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

    2008-01-01

    GAS PLUME MIGRATION t = 64.0 [day] Depth [m] Depth [m] t =GAS PLUME MIGRATION t = 160.0 [day] Depth [m] Depth [m] t =

  2. EIA - Natural Gas Analysis Basics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied...

  3. Changes in Energy Intensity 1985-1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million CubicChanges in

  4. Cumulative Effects of Rapid Land-Cover and Land-Use Changes on the Yamal

    E-Print Network [OSTI]

    Bhatt, Uma

    in the Bovanenkovo gas field, Yamal Peninsula, Russia. The presence of the gas field provides both economic, Russia Donald A. Walker, Bruce C. Forbes, Marina O. Leibman, Howard E. Epstein, Uma S. Bhatt, Josefino C to a combination of gas development, reindeer herding, and climate change. Unusual geological condi- tions

  5. MIT Joint Program on the Science and Policy of Global Change

    E-Print Network [OSTI]

    , on balance increasing its role from present levels. The shale gas resource is a major contributor including the scale and cost of gas resources, the costs of competing technologies, the patternMIT Joint Program on the Science and Policy of Global Change The Future of U.S. Natural Gas

  6. MIT Joint Program on the Science and Policy of Global Change

    E-Print Network [OSTI]

    to economic viability affects the nation's energy outlook and the expected role of natural gas in climate, the other using price to achieve a 50% emissions reduction. The shale gas is shown both to benefitMIT Joint Program on the Science and Policy of Global Change The Influence of Shale Gas on U

  7. Shale gas - what happened? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale gas - what happened? Shale gas - what happened? It seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions...

  8. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

  9. ComEd, Nicor Gas, Peoples Gas & North Shore Gas- Small Business Energy Savings Program

    Broader source: Energy.gov [DOE]

    ComEd, Nicor Gas, Peoples Gas, and North Shore Gas fund the Small Business Energy Savings program in which an energy advisor conducts a free on-site energy assessment and provides free installati...

  10. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    M. F. , Northern California oil and gas field production.California, Division of Oil, Gas and Geothermal Resources;Beaumont EA, eds. , Atlas of Oil and Gas Fields, Structural

  11. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,4896-2015 Illinois NA NA NA

  12. Natural Gas Gross Withdrawals from Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,4896-2015 Illinois NA NA

  13. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith FirstatOpportunitiesDOE forSevenShale gas is

  14. Climatic Change An Interdisciplinary,

    E-Print Network [OSTI]

    Reale, Marco

    1 23 Climatic Change An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change ISSN 0165-0009 Volume 107 Combined 3-4 Climatic Change (2011) 107:247-265 DOI available until 12 months after publication. #12;Climatic Change (2011) 107:247­265 DOI 10.1007/s10584

  15. Climate Change and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    1 Climate Change and Transportation Addressing Climate Change in the Absence of Federal Guidelines;6 WSDOT Efforts · Climate Change Team · Project Level GHG Approach · Planning Level GHG Approach · Alternative Fuels Corridor · Recent legislation and research #12;7 WSDOT Efforts: Climate Change Team

  16. Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and

    E-Print Network [OSTI]

    1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and HydrologyHydrology Steven Fassnacht Watershed Science Colorado State University The Importance of Climate · Climate affects the environment and us ­ Ecology: vegetation and animals ­ Water Systems ­ People

  17. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  18. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

    2011-01-28

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  19. Control of water coning in gas reservoirs by injecting gas into the aquifer 

    E-Print Network [OSTI]

    Haugen, Sigurd Arild

    1980-01-01

    implicit model. The model is thoroughly tested for both coning and other problems, including both gas and oil. It was very stable, allowing a maximum saturation change per timestep as high as 10 per cent. The condition simulated was a well in the center... saturation chanqes are expected to be large, the porosity was set to 100 percent in the gas zone, and 1, 000, 300, and 100 percent in the cells outward from the wellbore in the water zone. This can be seen in Figure 3. These high porosi- ty values were...

  20. Creative financing of landfill gas utilization projects

    SciTech Connect (OSTI)

    Peters, J.P. Jr.; Laughlin, M.F.; McGuigan, M.J.

    1996-11-01

    The landfill gas utilization industry has gone through profound change in the last ten years and is in for further changes in the coming years. The first change is the probable expiration of Section 29 tax credits for newly developed projects and the second is the upcoming NSPS mandate to capture fugitive LFG emission from our nations larger landfills. In order to provide for the capital needs of LFG utilization project developers, lenders and investors must adapt to the changing nature of the industry as well. Lyon Credit Corporation has provided senior and subordinated financing as well as lease financing for the LFG utilization industry for the last three years. During this time, LCC has had to adapt its product offerings to meet the continuing needs of the borrowers in this industry. This presentation will focus on the changing nature of the industry and its effect on the economics, capital and financing requirements of newly developed LFG utilization projects. The two fundamental changes which have drastically altered the way projects are structured and financed include the changing nature of the LFG project product end-user and various regulatory and legislative measures which have significantly impacted the responsibilities of the project owner/developer and the future profitability of all LFG utilization projects. The successful LFG utilization project developers will be those who recognize that these changes are permanent departures from past practices, and those who will seek to exploit opportunities created by these changes. The lenders and investors to this industry will likewise have to adapt with these changes in order to continue to provide needed capital to this growing industry.

  1. Gas-powered integration

    SciTech Connect (OSTI)

    Hawrylyshyn, G.

    1993-05-01

    Popularly known as the Brazil/Bolivia Gas Deal, the project consists of a 20-year agreement to supply Bolivian natural gas to heavily industrialized southern Brazil. This is an inter-regional undertaking comparable in scope and significance to pipeline projects in Europe and the gas networks between the USA and Canada and Mexico. The Brazil/Boliviz agreement call foe a 10-month period to obtain financing and 30 months to build the 1,376 mile main pipeline, a job that will be undertaken individually by each country within its territory. The pipelines will meet at the border in Corumba. Aside from the main gasline, the 20-year agreement will also require the laying of 1,184 kilometers (736 miles) of additional feeder and distribution pipelines in Brazil, raising the total pipe mileage to 3,389 kilometers. Then there is the need to build the whole infrastructure for gas distribution facilities and to switch to gas to power the equipment in thousands of industrial plants, commercial establishments and residences. The total investment in this undertaking is estimated to surpass US$10 billion.

  2. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  3. REVISED NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION REVISED NATURAL GAS MARKET ASSESSMENT In Support of the 2007's natural gas market. It covers natural gas demand, supply, infrastructure, price, and possible alternative and the related Scenarios Project, and additional updated information. California natural gas demand growth

  4. Gas intrusion into SPR caverns

    SciTech Connect (OSTI)

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.; Giles, H.N. [Dept. of Energy, Washington, DC (United States). Strategic Petroleum Reserve

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  5. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  6. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  7. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  8. Climate Change, Adaptation, and Development

    E-Print Network [OSTI]

    Cole, Daniel H.

    2008-01-01

    Climate Change, Adaptation, and Development Daniel H. Cole*THE COSTS OF CLIMATE CHANGE . ADAPTATIONCONVENTION ON CLIMATE CHANGE . IV. A.

  9. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  10. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  11. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, Curtis D. (Albuquerque, NM); Blair, Dianna S. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Reber, Stephen D. (Corrales, NM)

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  12. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  13. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  14. Indiana Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion CubicOctober 2015Elements) GasYear

  15. Alaska Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas andYear Jan Feb

  16. Arizona Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr May Jun19

  17. Colorado Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) GasBarrels)Kansas (MillionYear21

  18. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 20001:Gas Production

  19. Wyoming Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear (MillionCubicCubic3.40

  20. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  1. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  2. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  3. QER- Comment of Claire Chang

    Office of Energy Efficiency and Renewable Energy (EERE)

    on proposed Kinder Morgan gas pipeline through MA. — The pipeline is not needed. This pipeline is being touted as filling in a "shortfall" in fuel needed for electricity generation. The "shortfall" in energy has only occurred during very cold snaps when more of the current gas supply is used for heating instead of electric generation. This occasional "shortfall" can be cut by 1/3 just by fixing the leaks in the current gas infrastructure in the state. The remaining 2/3 can easily be made up by expanding current energy efficiency programs like MassSave. — Caps on clean energy need to be removed. A further boost to fill in the occasional "shortfall" in the grid could be achieved removing the cap on the amount of independently generated clean energy (small-scale wind and solar), that can be sold back to the grid. These are systems are already in place and would allow more power into the grid without any additional infrastructure investments needed. — Gas is also intended for export. The pipeline being proposed brings in many times more gas than would be needed to fill in the "shortfall" even if it was a constant need. According to Kinder Morgan's own memo, this extra capacity is slated to go toward increased gas use along newly proposed lateral distribution lines, which works against the state's own greenhouse gas emissions goals, and for export to the Canadian Maritimes, which does not benefit the people of Massachusetts or the country and drives up the price of gas, negating any claims of the project providing cheaper energy. — Ratepayers bear the costs & risks with no benefit. Having electric rate payers fund the pipeline through the proposed tariff is unfair. The pipeline is a private venture, yet the general public is expected to foot the bill and bear the health, safety and environmental risks, while Kinder Morgan and Tennessee Gas Pipeline stockholders reap the benefits. — More gas makes us more dependent. The state's electric generation is already approx 2/3 natural gas. Increasing this makes us even more vulnerable to swings in fuel prices, especially in rapidly changing geo political climate and as this finite resource becomes increasingly rare. — State & ratepayer funds could be better spent. If these kinds of funds are going to be raised on rate payers, they should go toward expanding energy efficiency programs, increased incentives for decentralized roof-top wind and solar generation, more efficient electric transmission lines, more effective energy storage from big wind and solar generation installations. — Pipeline carries financial burden for landowners. The payment for the easement on your land is a one-time deal and is not much money when weighed against the costs to property value. The presence of gas pipelines has historically had a severe negative impact on property values, rendering the properties it crosses virtually unsellable, no longer eligible for a mortgage, and often negating any insurance policies. — Health and safety are at risk. The bad track record for safety of the gas industry, and Kinder Morgan in particular, does not bode well for the health and safety of the people of the Commonwealth. Leaks are frequent, and they can happen even in underground and underwater sections of this buried pipeline. Off-gassing of carcinogens, neurotoxins and endocrine disrupting chemicals at compressor stations every 40-50 miles are constant. Explosions of a pipeline this size and at this high pressure are catastrophic and the fires are fed by many, many miles worth of fuel between shut-off stations, leading to prolonged, extremely high temperature burn. — Pipeline construction and presence pose unwarranted damage and risks. The track of this proposed pipeline cuts through over 900 personal properties, farms, watersheds, major rivers and protected wetlands and forests, leaving all of them to deal with the presence of a toxic mix of chemicals for the decades its in use and the decaying infrastructure for decades after it's no longer in use. — The boost to local taxes is not enough. Any taxe

  4. File:EIA-coalbed-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf JumpLIQ.pdf Jump to:gas.pdfGas.pdf Jumpcoalbed-gas.pdf

  5. File:EIA-offshore-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf JumpLIQ.pdf Jump to:gas.pdfGas.pdfoffshore-gas.pdf

  6. Change in historic buildings

    E-Print Network [OSTI]

    Yin, Chien-Ni

    1992-01-01

    Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

  7. "Managing Department Climate Change"

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

  8. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  9. Fuel gas desulfurization

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Shen, Ming-Shing (Rocky Point, NY)

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  10. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  11. Gas-separation process

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  12. Exact solutions in a model of vertical gas migration

    E-Print Network [OSTI]

    Silin, Dmitriy B.; Patzek, Tad W.; Benson, Sally M.

    2006-01-01

    gas leaking from seasonal gas storage, or for modeling ofmigration resulting from a gas storage leak, the gas ?owsof gas, created by a leaking gas storage reservoir, migrates

  13. Infrastructure Institutional Change Principle

    Broader source: Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  14. CLIMATE CHANGE AND BIODIVERSITY

    E-Print Network [OSTI]

    CLIMATE CHANGE AND BIODIVERSITY THE CONTRIBUTION OF THE NATIONAL MUSEUM OF NATURAL HISTORY #12;At, the origin of which is mainly related to human activities. For the first time climate change sends a strong of climate change and that will fully find material expression in the debates. What will the world we shape

  15. CLIMATE CHANGE & THE GREENHOUSE

    E-Print Network [OSTI]

    Tobar, Michael

    CLIMATE CHANGE & THE GREENHOUSE EFFECT #12;This development of these materials was supported under.nasa.gov/Features/BlueMarble/BlueMarble_history.php © 2014 University of Western Australia ISBN 978-0-646-93241-5 Title: Climate change and the greenhouse OF CONTENTS TABLE OF CONTENTS Introduction to climate change resources 5 Alternative conceptions 6 References

  16. Forest Research: Climate Change

    E-Print Network [OSTI]

    Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

  17. Geography 131 Environmental Change

    E-Print Network [OSTI]

    the present landscape of the earth reflects past environmental conditions. We will then look at the impact Environmental Changes in the late Holocene 6 9 The Impact of People and Natural Environmental Changes in the late Holocene 7-8 10 TEST 2 - Thurs 8th The Impact of People and Natural Environmental Changes

  18. Climate change vulnerability

    E-Print Network [OSTI]

    Hilderbrand, Robert H.

    Climate change vulnerability assessment of the Verde Island Passage, Philippines #12;ii This document should be cited as: R. Boquiren, G. Di Carlo, and M.C. Quibilan (Eds). 2010. Climate Change, Marine Climate Change Program Conservation International­Global Marine Division epidgeon

  19. Environment and Climate Change

    E-Print Network [OSTI]

    Galles, David

    Migration, Environment and Climate Change: ASSESSING THE EVIDENCE #12;The opinions expressed;Migration, Environment and Climate Change: ASSESSING THE EVIDENCE Edited by Frank Laczko and Christine with with the financial support of #12;3 Migration, Environment and Climate Change: Assessing the Evidence Contents

  20. Climate Change Workshop 2007

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 Climate Change Workshop 2007 Adaptive Management and Resilience Relevant for the Platte River, UNL Climate Change Workshop 2007 · Resilience ·Why it matters · Adaptive Management ·How it helps ·Adaptive Capacity · What it is Overview Climate Change Workshop 2007 "A public Domain, once a velvet carpet

  1. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  2. Iterative Federalism and Climate Change

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    INST. , GREENHOUSE GAS EMISSIONS TRADING IN U.S. STATES:greenhouse-gas-emissions-trading-us-lessons-from-otc-nox.increase). 19 The emissions trading program also achieved

  3. Natural Gas Value-Chain and Network Assessments

    SciTech Connect (OSTI)

    Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.; Walker, LaTonya Nicole; Malczynski, Leonard A.; Myerly, Melissa M.; Vargas, Vanessa N.; Tenney, Craig M.; Borns, David J.

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.

  4. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01

    gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

  5. Natural gas monthly, March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  7. Natural gas monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  10. Natural gas monthly, October 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam

    E-Print Network [OSTI]

    Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates

  12. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  13. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  15. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect (OSTI)

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  16. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  17. Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas emission

    E-Print Network [OSTI]

    Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas greenhouse gas emissions reductions. Without a major change in direction towards more compulsory policies, it seems unlikely that Canada will achieve significant domestic greenhouse gas reductions over and beyond

  18. Oil & Gas Science and Technology Rev. IFP, Vol. 57 (2002), No. 5, pp. 591-599 Copyright 2002, ditions Technip

    E-Print Network [OSTI]

    Santos, Juan

    2002-01-01

    Oil & Gas Science and Technology ­ Rev. IFP, Vol. 57 (2002), No. 5, pp. 591-599 Copyright © 2002 for compaction. #12;Oil & Gas Science and Technology ­ Rev. IFP, Vol. 57 (2002), No. 5 INTRODUCTION Compaction of porous rock is an important process in the oil and gas industry. Compaction caused by changes

  19. Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony

    E-Print Network [OSTI]

    Wiser, Ryan

    2005-01-01

    present concerns about natural gas prices and the findingsEconomy (ACEEE). 2003. Natural Gas Price Effects of EnergyGas Crisis: Reducing Natural Gas Prices Through Electricity

  20. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect (OSTI)

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  1. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  2. Long-term contracts and asset specificity revisited : an empirical analysis of producer-importer relations in the natural gas industry

    E-Print Network [OSTI]

    Neumann, Anne

    2006-01-01

    In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the ...

  3. Fundamental mechanisms in flue-gas conditioning

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  4. A structural analysis of natural gas consumption by income class from 1987 to 1993

    SciTech Connect (OSTI)

    Poyer, D.A.

    1996-12-01

    This study had two major objectives: (1) assess and compare changes in natural gas consumption between 1987 and 1993 by income group and (2) assess the potential influence of energy policy on observed changes in natural gas consumption over time and across income groups. This analysis used U.S. Department of Energy (DOE) data files and involved both the generation of simple descriptive statistics and the use of multivariate regression analysis. The consumption of natural gas by the groups was studied over a six-year period. The results showed that: (1) natural gas use was substantially higher for the highest income group than for the two lower income groups and (2) natural gas consumption declined for the lowest and middle income quintiles and increased for the highest income quintile between 1987 and 1990; between 1990 and 1993, consumption increased for the lowest and middle income quintile, but remained relatively constant for the highest income quintile. The relative importance of the structural and variable factors in explaining consumption changes between survey periods varies by income group. The analysis provides two major energy policy implications: (1) natural gas intensity has been the highest for the lowest income group, indicating that this group is more vulnerable to sudden changes in demand-indicator variables, in particular weather-related variables, than increase natural gas consumption, and (2) the fall in natural gas intensity between 1987 and 1993 may indicate that energy policy has had some impact on reducing natural gas consumption. 11 refs., 4 figs., 16 tabs.

  5. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  6. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  7. Hydrogen gas relief valve

    DOE Patents [OSTI]

    Whittlesey, Curtis C. (Birmingham, MI)

    1985-01-01

    An improved battery stack design for an electrochemical system having at least one cell from which a gas is generated and an electrolyte in communication with the cell is described. The improved battery stack design features means for defining a substantially closed compartment for containing the battery cells and at least a portion of the electrolyte for the system, and means in association with the compartment means for selectively venting gas from the interior of the compartment means in response to the level of the electrolyte within the compartment means. The venting means includes a relief valve having a float member which is actuated in response to the level of the electrolyte within the compartment means. This float member is adapted to close the relief valve when the level of the electrolyte is above a predetermined level and open the relief valve when the level of electrolyte is below this predetermined level.

  8. Produce diesel from gas

    SciTech Connect (OSTI)

    Singleton, A.H.; Regier, S.

    1983-05-01

    The Gulf Badger process converts natural gas directly to hydrocarbon liquids by a catalytic chemical route. Fischer-Tropsch process--which is a carbon monoxide polymerization/ hydrogenation process--is used. Because the process is exothermal, heat removal by either tubular fixed bed, fluidized bed, or slurry are considered. A wax build up of high molecular weight material is removed by hydro-stripping two-bed system. The demonstration plant flow diagram shows the process to be: natural gas is compressed, recycled with CO/sub 2/, sulfur is removed in a zinc oxide drum, CO is removed in amine scrubbers, H/sub 2//CO ratio is adjusted to produce a hydrogen rich stream, and stabilization and distribution follow. A monitoring system using computers is part of the demonstration unit.

  9. Model of the radial distribution of gas in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

    1996-12-31

    This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

  10. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  11. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  12. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  13. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  14. Alabama Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade

  15. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  16. Historical Natural Gas Annual 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    State, 1980-1999 PDF 12 Supplemental Gas Supplies by State, 1980-1999 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1999 PDF 14 Consumption of...

  17. Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Natural Gas Many heavy-duty fleets depend on diesel fuel. But an increasing number of trucking companies are transitioning their vehicles to run on liquefied natural...

  18. Natural Gas Exports from Iran

    Reports and Publications (EIA)

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  19. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  20. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.