Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,

2006-01-01T23:59:59.000Z

2

Federal Energy Management Program: Evaluate Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Profile to someone by E-mail Emissions Profile to someone by E-mail Share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Facebook Tweet about Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Twitter Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Google Bookmark Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Delicious Rank Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on Digg Find More places to share Federal Energy Management Program: Evaluate Greenhouse Gas Emissions Profile on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting

3

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings October 7, 2013 - 11:16am Addthis After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings. When using renewable energy in buildings, the approach for evaluating GHG emissions involves evaluating the renewable energy resource potential and determining what type of renewable energy technology to use in a building. To help determine renewable energy resource potential at a site, see FEMP's information on Renewable Energy Resource Maps and Screening Tools. Also see Renewable Energy Project Planning and Implementation.

4

Greenhouse Gas Emissions (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Minnesota) (Minnesota) Greenhouse Gas Emissions (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Climate Policies This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80

5

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

6

Reduction of Greenhouse Gas Emissions (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) Reduction of Greenhouse Gas Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Climate Policies Provider Department of Energy and Environmental Protection

7

Portfolio Manager Technical Reference: Greenhouse Gas Emissions | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions Greenhouse Gas Emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

8

How Portfolio Manager calculates greenhouse gas emissions | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

How Portfolio Manager calculates greenhouse gas emissions How Portfolio Manager calculates greenhouse gas emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

9

Aspects on Bioenergy as a Technical Measure to Reduce Energy Related Greenhouse Gas Emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

10

Aspects on bioenergy as a technical measure to reduce energy related greenhouse gas emissions.  

E-Print Network (OSTI)

??Greenhouse gas emission assessments of energy supply systems have traditionally included the CO2 emissions produced as the fuel is burned. A lot of models and (more)

Wihersaari, Margareta

2005-01-01T23:59:59.000Z

11

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

12

A graphical technique for explaining the relationship between energy security and greenhouse gas emissions  

E-Print Network (OSTI)

and greenhouse gas emissions Larry Hughes and Nikita Sheth Energy Research Group Department of Electrical the relationship between energy security and greenhouse gas emissions Larry Hughes and Nikita Sheth Abstract and the differences between energy security and greenhouse gas emissions. This paper presents a graphical technique

Hughes, Larry

13

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

Chinas energy-related CO 2 emissions from 1996 to 1999: thefoot: In measuring carbon emissions, its easy to confuseChinas greenhouse gas emissions. Science, 294, 1835 1837.

Sathaye, Jayant

2010-01-01T23:59:59.000Z

14

Evaluate Greenhouse Gas Emissions Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Profile Emissions Profile Evaluate Greenhouse Gas Emissions Profile October 7, 2013 - 10:14am Addthis Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement: Buildings Vehicles and mobile equipment Business travel Employee commuting. While the data required for annual GHG reporting are sufficient to establish an agency's overall emission inventory, these data are not typically enough information for effectively managing emissions. A detailed, bottom-up assessment can provide the foundation for much more robust Strategic Sustainability Performance Plans. Because detailed analyses of all assets can be time-intensive, strategic planning helps the

15

Greenhouse Gas Emissions Reduction Act (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Act (Maryland) Reduction Act (Maryland) Greenhouse Gas Emissions Reduction Act (Maryland) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires the State to reduce statewide

16

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop  

E-Print Network (OSTI)

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes

DeLucia, Evan H.

17

TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen  

E-Print Network (OSTI)

TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE fracturing of shale formations (shale gas) is projected by the Energy Information Administration to become the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gas

Angenent, Lars T.

18

EIA Energy Efficiency-Energy Related Greenhouse Gas Emissions Links for the  

U.S. Energy Information Administration (EIA) Indexed Site

Related Greenhouse Gas Emissions Links Related Greenhouse Gas Emissions Links Energy Related Greenhouse Gas Emissions Links Posted Date: May 2007 Page Last Modified: September 2010 EIA Links Disclaimer: These pages contain hypertext links to information created and maintained by other public and private organizations. These links provide additional information that may be useful or interesting and are being provided consistent with the intended purpose of the EIA website. EIA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this outside information. EIA does not endorse the organizations sponsoring linked websites, the views they express, or the products and services they offer. Government Agencies / Associations Energy Information Administration - Annual Energy Outlook: Carbon Dioxide Emissions, CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at 14 percent

19

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada  

E-Print Network (OSTI)

Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application explore the implications for Canada's industrial sector of an economy-wide, compulsory greenhouse gas of these strengths is linked to challenges when it comes to forecasting the impact of greenhouse gas policy. We

20

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Event:11th Annual Workshop on Greenhouse Gas Emission Trading | Open Energy  

Open Energy Info (EERE)

1th Annual Workshop on Greenhouse Gas Emission Trading 1th Annual Workshop on Greenhouse Gas Emission Trading Jump to: navigation, search Calendar.png 11th Annual Workshop on Greenhouse Gas Emission Trading: on 2011/10/03 "The IEA-IETA-EPRI Emissions Trading Workshop has been held annually at the headquarters of the International Energy Agency since 2000. This international workshop focuses on developments in greenhouse gas (GHG) emissions trading around the world at the international, national and sub-national level. The 2011 workshop will cover topics relevant to the development of global, national and sub-national carbon markets, including scaled-up and new market mechanisms, NAMAs and sectoral crediting policies, MRV and international GHG accounting and 2nd-best trading programmes. As in previous years, the workshop will assemble representatives from government,

22

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

23

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

2006-01-01T23:59:59.000Z

24

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

25

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Agency (IEA), 2004c. CO2 emissions from fuel combustion,of Carbon Dioxide Emissions on GNP Growth: Interpretation ofD. , 2000. Special Report on Emissions Scenarios: Report of

2006-01-01T23:59:59.000Z

26

Well-to-Wheels Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions  

E-Print Network (OSTI)

for a given facility were divided by its throughput to develop emissions factors Distribution curves were and Storage (99%) Transportation, Storage, and Distribution of Gasoline (99.5%) MTBE or EtOH for Gasoline.5%) Steam or Electricity Export NA: North American nNA: non-North American NG: natural gas G.H2 Compression

Argonne National Laboratory

27

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

SciTech Connect

There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

2008-07-04T23:59:59.000Z

28

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Energy Consumption 11and a decomposition of energy consumption to understand theData Historical energy consumption and energy-related CO 2

2006-01-01T23:59:59.000Z

29

How Portfolio Manager calculates greenhouse gas emissions | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

methane, and nitrous oxide) from on-site fuel combustion and purchased electricity and district heating and cooling. Portfolio Manager also enables tracking of avoided emissions...

30

The effect of household consumption patterns on energy use and greenhouse gas emissions: Comparison between Spain and Sweden.  

E-Print Network (OSTI)

??The purpose of this study is to provide a better understanding of the effect of increasing income on energy use and greenhouse gas (GHG) emissions (more)

Cintas Snchez, Olivia

2011-01-01T23:59:59.000Z

31

EIA - Greenhouse Gas Emissions Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... State Energy Data System ... and Paul Holtberg, Team Leader, Analysis Integration Team.

32

Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

C. Saricks; D. Santini; M. Wang

1999-02-08T23:59:59.000Z

33

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

34

The Regional Incidence of a National Greenhouse Gas Emission Limit: Title VII of the American Clean Energy and Security Act  

E-Print Network (OSTI)

The Regional Incidence of a National Greenhouse Gas Emission Limit: Title VII of the American the macroeconomic costs of greenhouse gas emission reductions under Title VII of the American Clean Energy limits on domestic emissions of greenhouse gases (GHGs). This paper analyzes the macroeconomic costs

Wing, Ian Sue

35

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

LBNL-56144 Sectoral Trends in Global Energy Use andAC02-05CH11231. ii Sectoral Trends in Global Energy Use andConsumption iii iv Sectoral Trends in Global Energy Use and

2006-01-01T23:59:59.000Z

36

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

production from non- fossil-fuel energy such as renewableenergy of the non- fossil-fuel energy at the level ofenergy of the non fossil fuel energy is accounted for at the

2006-01-01T23:59:59.000Z

37

Secretary of Energy Memorandum on DOE Greenhouse Gas Emission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As the agency charged with advancing the Nation's energy security, we are committed to developing energy efficient technologies that support the transformation to a low-carbon...

38

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

The possibility of oil reserve depletion raises questionscoefficient as these reserves of oil require more energy tooil use with other forms of energy. The potential exploitation of the large and inexpensive coal reserves

2006-01-01T23:59:59.000Z

39

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10 19%. With the assumption of an annual increase...

40

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

intensity of the energy use compared to the evolution of GDP. Historically, this indicatorenergy intensity to continue to decrease in a similar manner over the next 30 years (36%) while the B2 scenario forecasts this indicator

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.  

DOE Green Energy (OSTI)

Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

Mintz, M.; Gillette, J.; Elgowainy, A. (Decision and Information Sciences); ( ES)

2009-01-01T23:59:59.000Z

42

Greenhouse Gas Emission Measurements  

Science Conference Proceedings (OSTI)

... climate change as a serious problem and that greenhouse gas (GHG ... models to determine the baselines of GHG emissions and the effect of GHG ...

2010-10-05T23:59:59.000Z

43

Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Others wanting to learn more about greenhouse gas emissions and their reduction. About the ... based on ensuring the sustainability of finite natural resources.

44

Energy conservation: The main factor for reducing greenhouse gas emissions in the former Soviet Union  

SciTech Connect

The energy intensity of the former Soviet Union is more than twice that of other market economics in similar stages of economic development. Low energy efficiency in the Soviet Union has contributed significantly to global carbon and other greenhouse gas emissions. The technological potential for energy conservation in the former Soviet Union is the largest in the world. The inefficiencies of the previously command-system economy, however, have provided little incentive for conserving energy. The present transition to a market-based economy should encourage the incorporation of energy-efficiency improvements in order for the former Soviet Union to successfully lower its energy intensity. There are several obstacles that limit implementing energy conservation: for example, energy prices and discount rates influence the volume of investment in energy efficiency. Nevertheless, cost-effective measures for energy conservative do exist even in the most energy-intensive sectors of the Soviet economy and should form the core of any energy conservation program. The overall cost-effective potential for carbon savings in the former Soviet Union is estimated to be 280 to 367 million tons of carbon per year by the year 2005, or 23 to 29 percent of 1988 energy-related emissions.

Bashmakov, I.A.; Chupyatov, V.P.

1991-12-01T23:59:59.000Z

45

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

NDRC), 2007. Natural Gas Use Policy [??? ????]. NDRC EnergyNDRC), 2007. Natural Gas Use Policy [??? ????]. NDRC Energypolicy. In its 2007 Natural Gas Use Policy, the NDRC listed

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

46

Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas emission  

E-Print Network (OSTI)

Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas greenhouse gas emissions reductions. Without a major change in direction towards more compulsory policies, it seems unlikely that Canada will achieve significant domestic greenhouse gas reductions over and beyond

47

Secretary of Energy Memorandum on DOE Greenhouse Gas Emission Reduction Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31,2010 March 31,2010 MEMORANDUM FOR HEADS OF FROM: STEVEN CHU SUBJECT: Implementation of Executive Order 135 14, Federal Leadership in Environmental, Energy, and Economic Performance Addressing the crisis of climate change is the challenge of our time, and a fundamental priority for the Department of Energy. As the agency charged with advancing the Nation's energy security, we are committed to developing energy efficient technologies that support the transformation to a low-carbon economy. We must also lead by example in reducing greenhouse gas emissions associated with our own operations and facilities. On October 5,2009, the President issued Executive Order (EO) 135 14, "Federal Leadership in Environmental, Energy, and Economic Performance." This requires all

48

Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production  

Science Conference Proceedings (OSTI)

Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

D. Craig Cooper; Gerald Sehlke

2012-01-01T23:59:59.000Z

49

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

50

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

Science Conference Proceedings (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

51

Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants  

E-Print Network (OSTI)

BP is the worlds leading producer of purified terephthalic acid, or PTA, a commodity chemical used in the production of polyester. Through both self-help initiatives and innovations in our state-of-art process technology, the energy efficiency of our PTA manufacturing process has significantly improved over the past several years, which has translated into substantial decreases in greenhouse gas emissions across our global sites. The talk will provide a general overview of the PTA business and manufacturing process, as well as the enabling technology evolutions leading to this improved performance.

Clark, F.

2008-01-01T23:59:59.000Z

52

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

Hagan, Colin R.

2012-01-01T23:59:59.000Z

53

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

54

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

55

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

56

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

57

A methodology for assessing MIT's energy used and greenhouse gas emissions  

E-Print Network (OSTI)

(cont.) actions can be made to decrease losses and therefore increase plant efficiencies. As production efficiencies are maximized, fuel use and thus emissions are minimized. From fiscal year 1998 to 2003, the gas turbine ...

Groode, Tiffany Amber, 1979-

2004-01-01T23:59:59.000Z

58

Life-Cycle Energy Use and Greenhouse Gas Emission Implicaitons of Brazilian Sugarcane Ethanol Simulated with the GREET Model  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Life-Cycle Energy Use and Greenhouse Gas Emission Implications of Life-Cycle Energy Use and Greenhouse Gas Emission Implications of Brazilian Sugarcane Ethanol Simulated with the GREET Model Michael Wang*, May Wu, Hong Huo and Jiahong Liu Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. *Contact author: Tel: +1 (630) 252 2819 Fax: +1 (630) 252 3443 Email: mqwang@anl.gov In International Sugar Journal 2008, Vol. 110, No. 1317 ABSTRACT By using data available in the open literature, we expanded the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model developed by Argonne National Laboratory to include Brazilian-grown sugarcane ethanol. With the expanded GREET model, we examined the well-to-wheels (WTW) energy use and

59

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Firestone, R. (2004), Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,A.S. Siddiqui (2008b), Distributed Energy Resources On-Site

Stadler, Michael

2010-01-01T23:59:59.000Z

60

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

to close the gap on unregulated greenhouse gas emissions.a higher lifecycle greenhouse gas content than conventionalIN- FORMATION ON GREENHOUSE GAS EMISSIONs AssocIATEIDn wrri

Hagan, Colin R.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

62

Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Emission Trends and Projections in Europe 2009 Greenhouse Gas Emission Trends and Projections in Europe 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emission Trends and Projections in Europe 2009 Agency/Company /Organization: European Environment Agency Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Maps Website: www.eea.europa.eu/publications/eea_report_2009_9 Country: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Ireland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

63

A full fuel-cycle analysis of energy and emissions impacts of transportation fuels produced from natural gas  

DOE Green Energy (OSTI)

Because of its abundance and because it offers significant energy and evironmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this study, the authors avaluate eight fuels produced from natural gas - compressed natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer-Tropsch diesel, and electricity--for use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. Because of great uncertainties associated with advances both in fuel production and vehicle technologies, they evaluate near-term and long-term fuels and vehicle technologies separately. Furthermore, for long-term options, they establish both an incremental technology scenario and a leap-forward technology scenario to address potential technology improvements. The study reveals that, in general, the use of natural gas-based fuels reduces energy use and emissions relative to use of petroleum-based gasoline and diesel fuel, although different natural gas-based fuels in different vehicle technologies can have significantly different energy and emissions impacts.

Wang, M.Q.; Huang, H.S.

2000-01-25T23:59:59.000Z

64

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

DOE Green Energy (OSTI)

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

65

Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences  

SciTech Connect

A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

Kulcinski, G.L.

2002-12-01T23:59:59.000Z

66

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

67

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

68

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

69

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

N. Zhou (2007), Distributed Generation with Heat RecoveryCO 2 emissions, distributed generation, energy management,1]. Although thermal distributed generation (DG) units are

Stadler, Michael

2010-01-01T23:59:59.000Z

70

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

71

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

72

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

73

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

74

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

75

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

76

Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels  

DOE Green Energy (OSTI)

In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

Huo, H.; Wang, M.; Bloyd, C.; Putsche, V.

2009-01-01T23:59:59.000Z

77

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates in

Mills, Evan

2009-07-16T23:59:59.000Z

78

Greenhouse Gas Emissions Inventory  

E-Print Network (OSTI)

are calculated using the eGRID post 2006 emission factor for all subject years (1990-2009); the CA-CP Calculator uses a different (lower) factor (eGRID pre 2006) for years 1990-2006. WUSTL deviated from the CA-CP Calculator on this emission factor because using the pre and post eGRID factors skews GHG emissions

Dobbins, Ian G.

79

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,related to industrial energy efficiency or GHG emissionsDenmark - Energy Efficiency Agreements. ... 4

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

80

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

1. Greenhouse Gas Emissions Overview 1. Greenhouse Gas Emissions Overview 1.1 Total emissions Total U.S. anthropogenic (human-caused) greenhouse gas emissions in 2009 were 5.8 percent below the 2008 total (Table 1). The decline in total emissions-from 6,983 million metric tons carbon dioxide equivalent (MMTCO2e) in 2008 to 6,576 MMTCO2e in 2009-was the largest since emissions have been tracked over the 1990-2009 time frame. It was largely the result of a 419-MMTCO2e drop in carbon dioxide (CO2) emissions (7.1 percent). There was a small increase of 7 MMTCO2e (0.9 percent) in methane (CH4) emissions, and an increase of 8 MMTCO2e (4.9 percent), based on partial data, in emissions of man-made gases with high global warming potentials (high-GWP gases). (Draft estimates for emissions of HFC and PFC

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mitigating greenhouse gas emissions: Voluntary reporting  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

NONE

1997-10-01T23:59:59.000Z

82

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

83

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

Science Conference Proceedings (OSTI)

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01T23:59:59.000Z

84

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

85

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

Science Conference Proceedings (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

86

Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

fail to meet this demand, the most likely alternatives will be heavy oil, oil sands, oil shale, and liquids from natural gas and coal. These are carbon-intensive fuels that would...

87

Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR  

E-Print Network (OSTI)

In the past 10 years ENERGY STAR has developed a track record as a certification mark to hang buildings performance hat on. By implementing upgrade strategies and pursuing operations and maintenance issues simultaneously, ENERGY STAR has led the nation and many states to pursue greenhouse gas reduction initiatives using energy efficiency as a model program. In developing these partnerships with industry, states and local government, what has occurred is a variety of program approaches that works to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today is that more and more local programs are looking to green buildings as an approach to reducing problems they face in air pollution, water pollution, solid waste, needed infrastructure and better of resources needs and the growth of expensive utility infrastructures. EPA - Region 6's ENERGY STAR and Green Building Program assistance has led to some unique solutions and the beginning workups for the integrated expansion of effort to support State Implementation Plans in new innovative voluntary approaches to transform certain markets, similarly to those of energy efficient products. This presentation will be an overview of activity that is being spearheaded in Texas in the DFW and Houston metro areas in ENERGY STAR and Green Buildings. The voluntary programs impacts are reducing energy consumption, creating markets for renewables, reducing air polluting chemicals and reducing greenhouse gas emissions using verifiable approaches.

Patrick, K.

2008-01-01T23:59:59.000Z

88

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

89

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

90

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

91

Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions  

DOE Green Energy (OSTI)

To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

Stork, K.C.; Singh, M.K.

1995-04-01T23:59:59.000Z

92

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

93

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

Difiglio, C. (2000). Energy efficiency and consumptiontheMcNeil, M. (2007). Energy-efficiency standards for electricfor advancing energy efficiency and renewable energy use in

Sathaye, Jayant

2010-01-01T23:59:59.000Z

94

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

2009-08-10T23:59:59.000Z

95

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country Mexico Central America References Greenhouse Emissions Baselines and Reduction Potentials for Buildings[1] Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Screenshot "This report represents the first comprehensive description of the factors that determine the present and future impacts of residential and commercial

96

Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 86. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 13. Natural Gas Supply, Disposition, and Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

97

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

act faster: a new sustainable energy path for AfricanCleveland, C. (2003). Energy and sustainable development atSustainable development of hydropower and biomass energy in

Sathaye, Jayant

2010-01-01T23:59:59.000Z

98

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

a dramatic scaling up of alternative energy technologies inemissions intensity. The alternative energy target aims to2010). Meeting the 15% alternative energy goal will require

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

99

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

2006. Verification of Energy Consumption in China duringheterogeneity in China's energy consumption: Sector priceChallenge of Reducing Energy Consumption of the Top- 1000

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

100

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

et al. (2007) DAES domestic alternative energy sources,IAES imported alternative energy sources In the transportA critique and alternative to the energy ladder model. World

Sathaye, Jayant

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

Gasoline and Diesel Fuel Update (EIA)

08(96) 08(96) Distribution Category UC-950 Mitigating Greenhouse Gas Emissions: Voluntary Reporting October 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. For More Information Individuals or members of organizations wishing to report reductions in emissions of greenhouse gases under the auspices of the Voluntary Reporting Program can contact the Energy Information Administration (EIA) at: Voluntary Reporting of Greenhouse Gases Energy Information Administration U.S. Department

102

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Stationary Combustion Guidance[1] The Greenhouse Gas Protocol tool for stationary combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

103

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

and E. Jeannette. 2004. Xcel Energys RecommissioningLong and Crowe 2008a). Xcel Energy had a similar target inFor example, the 2003 Xcel Energy program excluded buildings

Mills, Evan

2010-01-01T23:59:59.000Z

104

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program Evaluate Buildings Greenhouse Gas Emissions Contribution by Program October 7, 2013 - 10:48am Addthis When prioritizing building types and sites for evaluating greenhouse gas (GHG) emissions, Federal agencies should first determine which programs contribute the most to their total building greenhouse gas (GHG) emissions and focus their analysis on those programs. Using the total buildings energy use by program, these emissions profile can be calculated using the Federal Energy Management Program's Annual GHG and Sustainability Data Report site. In the example below, Agency ABC should focus on Programs B and C first because together they represent over 80% of building emissions. Agencies

105

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

106

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

energy demand and supply sector. Energy usebuildings, transport, and industryEnergy supply and use Energy efficiency improvement in all sectors (buildings, transportation, industry,supply of nuclear energy and a new building code that Japan made an aggressive shift of its industry

Sathaye, Jayant

2010-01-01T23:59:59.000Z

107

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

change and scale change. Energy Policy, 33, 319 335. doi:rebound effecta survey. Energy Policy, 28(6-7), 389401.climate change and energy policy. Washington DC. : Economic

Sathaye, Jayant

2010-01-01T23:59:59.000Z

108

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Policies in China. Energy Policy 38, 6439-6452. Zhou, W. ,Chinas ammonia industry. Energy Policy 38, 3701-3709. Zhou,and policy analysis. Energy Policy 38, 1379-1388. Zheng,

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

109

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Li, R. , 2003. Integration of fossil energy systems with CO2Li, R. , 2003. Integration of fossil energy systems with CO2large amounts of non-fossil energy over the next decade.

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

110

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

2004. What is driving Chinas decline in energy intensity?Resource and Energy Economics 26(1), 7797. Forster, P. ,Growing Pains. IEEE Power & Energy Magazine, July/August.

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

111

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Renewable portfolio standards and cost- effective energy-Renewable portfolio standards and cost- effective energy-renewable energy and coal, which significantly increases the scope and scale of cost-

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

112

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

a dramatic scaling up of alternative energy technologies inChinas original alternative energy goal was to achieve 15%near-term deployment of alternative energy sources in China.

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

113

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Challenges facing the government. Energy Policy 28, 335-347.Challenges facing the government. Energy Policy 28, 335-347.governments decarbonization and renewable energy policies a

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

114

Quantifying Greenhouse Gas Emissions from Human Activities: Toward  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location: 90-3122 Local to international control of anthropogenic greenhouse gas (GHG) emissions will require systematic estimation of emissions and independent verification. California, the only state in the US with legislated controls on GHG emissions, is conducting research to enable emissions verification of the mandated emissions reductions (AB-32). The California Energy Commission supports the California Greenhouse Gas Emissions Measurement (CALGEM) project at LBNL. In collaboration with NOAA, CALGEM measures mixing ratios of all significant GHGs at two tall-towers and on aircraft in

115

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Li, R. , 2003. Integration of fossil energy systems with CO2Li, R. , 2003. Integration of fossil energy systems with CO2

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

116

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Wind power in China: Policy and development challenges. Energy PolicyWind power in China: Policy and development challenges. Energy Policy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

117

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

118

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

119

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Corn Ethanol. Paper presented at the 8 th Bio-Energy Conference  

E-Print Network (OSTI)

This study has been undertaken at the request of the Illinois Department of Commerce and Community Affairs (DCCA) on the twin premises that (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region-- the upper Midwest. Argonne National Laboratory (ANL) contracted with DCCA to apply the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model with updated information appropriate to corn operations in Americas heartland in an effort to examine the role of corn-feedstock ethanol with respect to GHG emissions given present and near future production technology and practice. Information about these technologies and practices has been obtained from a panel of outside experts consisting of representatives of the U.S. Department of Agriculture, midwestern universities with expertise in corn production and soil emissions, and acknowledged authorities in the field of ethanol plant

Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

120

Well-to-wheel energy use and greenhouse gas emissions of advanced fuel/vehicle systems North American analysis.  

DOE Green Energy (OSTI)

There are differing, yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': Society, Automobile manufacturers and their key suppliers, Fuel providers and their key suppliers, and Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet Silverado full-size pickup.

Wang, M.

2001-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Well-to-tank energy use and greenhouse gas emissions of transportation fuels vol. 1, 2, 3.  

DOE Green Energy (OSTI)

There are differing yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': (1) Society, (2) Automobile manufacturers and their key suppliers, (3) Fuel providers and their key suppliers, and (4)Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet Silverado full-size pickup.

NONE

2001-08-23T23:59:59.000Z

122

China Energy and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

China Energy and Emissions Paths to 2030 (2 nd Edition) David Fridley, Nina Zheng, Nan Zhou, Jing Ke, Ali Hasanbeigi, Bill Morrow, and Lynn Price China Energy Group, Energy...

123

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration … Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

* NREL/TP-510-32575 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 January 2004 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann Prepared under Task No. BB04.4010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393

124

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

E-Print Network (OSTI)

payback time versus building size Project costs and energyPayback time (commissioning cost/annual energy savings) lessenergy payback time of 41 years, while the proper allocation of costs and

Mills, Evan

2010-01-01T23:59:59.000Z

125

Economic and Greenhouse Gas Emission Assessment of Utilizing Energy Storage Systems in ERCOT  

Science Conference Proceedings (OSTI)

The United States has vast wind generation potential; and state renewable portfolio standards (RPS), tax incentives, and national climate policy could lead to dramatic increases in new wind generation. While wind generation could result in significant reductions in emissions from existing fossil generation, the challenges imposed by intermittency and balancing transmission of power to load centers may limit the effective use of wind capacity additions. Electricity storage may play a pivotal role in overc...

2009-11-06T23:59:59.000Z

126

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

127

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

fall of oil, in Chinas primary energy mix. The shares ofenergy can be a significant part of Chinas electricity generation mix,

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

128

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change.  

E-Print Network (OSTI)

??Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, (more)

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

129

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network (OSTI)

Sustainable development of hydroelectric power. Energy, 20(power plants in place of hydroelectric power for instance,example, although hydroelectric plants have the potential of

Sathaye, Jayant

2010-01-01T23:59:59.000Z

130

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

131

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

Lin, B. , Liu, J. , 2010. Estimating coal production peakand trends of coal imports in China. Energy Policy 38, 512-5. Qiu, L. , 2007. The Coal-Electricity Pricing Co-Movement

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

132

Towards Standardization of Life-Cycle Metrics for Biofuels: Greenhouse Gas Emissions Mitigation and Net Energy Yield  

E-Print Network (OSTI)

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify Delivered by Ingenta to:

Biobased Materials; Adam J. Liska; Kenneth G. Cassman; Donna Michel

2008-01-01T23:59:59.000Z

133

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

energy intensities (MJ/2000 $) between China and South Korea and Brazil from the World Banks World Development Indicatorsenergy intensity (Technology, ?E INT ), sector value added shares (Structure, ?E STR ), and total value added (Aggregate, ?E ACT ) To calculate the indicators,

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

134

The US department of Energy's R&D program to reduce greenhouse gas emissions through beneficial uses of carbon dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Published in 2011 by John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. (2011); DOI: 10.1002/ghg Perspective Correspondence to: Darin Damiani, National Energy Technology Laboratory, US Department of Energy, 3610 Collins Ferry Road, Morgantown, WV 26507, USA. E-mail: darin.damiani@netl.doe.gov † This article is a US Government work and is in the public domain in the USA. Received June 24, 2011; revised July 26, 2011; accepted July 27, 2011 Published online at Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ghg.35 The US Department of Energy's R&D program to reduce greenhouse gas emissions through benefi cial uses of carbon dioxide † Darin Damiani and John T. Litynski, National Energy Technology Laboratory, US Department of

135

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

136

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

137

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

138

Shale Gas R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas R&D Shale Gas R&D Shale Gas R&D Natural gas from shales has the potential to significantly increase America's security of energy supply, reduce greenhouse gas emissions,...

139

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

similarly reliant on solar thermal heating. As can be seensolar thermal equipment, and storage systems. Consequently, natural gas purchases for heating

Stadler, Michael

2010-01-01T23:59:59.000Z

140

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Agricultural greenhouse gas emissions : costs associated with farm level mitigation.  

E-Print Network (OSTI)

??Agricultural greenhouse gas emissions within New Zealand account for 48 percent of all national greenhouse gas emissions. With the introduction of the emissions trading scheme (more)

Wolken, Antony Raymond

2009-01-01T23:59:59.000Z

142

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |  

NLE Websites -- All DOE Office Websites (Extended Search)

PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions By Patti Wieser April 25, 2011 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. In an effort to respond to President Obama's call to reduce greenhouse gas emissions by 28 percent by the year 2020, researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have identified ways to cut emissions that will allow the facility to exceed that goal - a decade early. Staff members at the laboratory, where scientists are finding ways to produce fusion energy, have trimmed the facility's greenhouse gas emissions

143

DOE Strengthens Public Registry to Track Greenhouse Gas Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Registry to Track Greenhouse Gas Emissions Public Registry to Track Greenhouse Gas Emissions DOE Strengthens Public Registry to Track Greenhouse Gas Emissions April 17, 2006 - 10:20am Addthis Announces Revised Guidelines for U.S. Companies to Report and Register Reductions WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced revised guidelines for the department's Voluntary Greenhouse Gas Reporting Program, known as "1605 (b)" that encourage broader reporting of emissions and sequestration by utilities, and industries, as well as small businesses and institutions. The revised guidelines strengthen the existing public registry for emissions and sequestration data and introduce new methods for U.S. businesses and institutions to calculate entity-wide emission reductions that contribute to the President's goal of substantially

144

South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis, Background analysis Resource Type Publications Website http://www.unep.org/sbci/pdfs/ Country South Africa UN Region Southern Africa References South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings[1] South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Screenshot "This report aims to provide: a summary quantification of the influence of buildings on climate

145

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids, IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

Stadler, Michael

2010-01-01T23:59:59.000Z

146

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

a Microgrid, Journal of Energy Engineering 131(1): 2-25. Toand Storage, Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2010-01-01T23:59:59.000Z

147

Life cycle greenhouse gas emissions from geothermal electricity production  

Science Conference Proceedings (OSTI)

A life cycle analysis (LCA) is presented for greenhouse gas (GHG) emissions and fossil energy use associated with geothermal electricity production with a special focus on operational GHG emissions from hydrothermal flash and dry steam plants. The analysis includes results for both the plant and fuel cycle components of the total life cycle. The impact of recent changes to California's GHG reporting protocol for GHG emissions are discussed by comparing emission rate metrics derived from post and pre revision data sets. These metrics are running capacity weighted average GHG emission rates (g/kWh) and emission rate cumulative distribution functions. To complete our life cycle analysis plant cycle results were extracted from our previous work and added to fuel cycle results. The resulting life cycle fossil energy and greenhouse gas emissions values are compared among a range of fossil

2013-01-01T23:59:59.000Z

148

Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.  

SciTech Connect

This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

Xie, X.; Wang, M.; Han, J. (Energy Systems)

2011-04-01T23:59:59.000Z

149

GREENHOUSE GAS EMISSIONS FROM AGROECOSYSTEMS: SIMULATING MANAGEMENT EFFECTS ON DAIRY FARM EMISSIONS.  

E-Print Network (OSTI)

??How does agriculture contribute to greenhouse gas emissions and what farm management scenarios decrease net emissions from agroecosystems? The reduction of greenhouse gas emissions is (more)

Sedorovich, Dawn

2008-01-01T23:59:59.000Z

150

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions For additional terms, refer to: the Glossary of Emissions of Greenhouse Gases in the United States 1998 for additional greenhouse gas related terms, the Glossary of Manufacturing Consumption of Energy 1994 for additional manufacturing terms, and Appendix F of Manufacturing Consumption of Energy 1994 for descriptions of the major industry groups. British Thermal Unit: The amount of heat required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. One quadrillion Btu is 1015 Btu, or 1.055 exajoules. Btu: See British Thermal Unit. Carbon Dioxide: A colorless, odorless, non-poisonous gas that is a normal part of Earth's atmosphere. Carbon dioxide is a product of fossil-fuel combustion as well as other processes. It is considered a greenhouse gas as it traps heat radiated into the atmosphere and thereby contributes to the potential for global warming.

151

Axion emission from a magnetized neutron gas  

SciTech Connect

By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2011-01-15T23:59:59.000Z

152

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Electricity Heat, and Steam Purchase Guidance v1.2[1] The Greenhouse Gas Protocol tool for purchased electricity is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

153

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Refrigerant Guide[1] The Greenhouse Gas Protocol tool for refrigeration is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

154

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

155

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts This report, Emissions of Greenhouse Gases in the United States 2009, was prepared under the general direction of John Conti, Assistant Administrator for Energy Analysis, and Paul Holtberg, Team Leader, Analysis Integration Team. General questions concerning the content of this report may be directed to the Office of Communications at 202/586-8800. Technical information concerning the content of the report may be obtained from Perry Lindstrom at 202/586-0934 (email, perry.lindstrom@eia.gov). Without the assistance of Science Applications International Corporation (SAIC), this report would not have been possible. In particular we would like to thank Erin Beddingfield, Keith Forbes, Kristin Igusky, Makely Lyon, Michael Mondshine, and Richard Richards. We also wish to acknowledge the

156

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Heat and Power Adoption by a Microgrid, Journal of EnergyStorage and Reliability on Microgrid Viability: A Study ofa cost- or CO 2 - minimizing microgrid that is able to adopt

Stadler, Michael

2010-01-01T23:59:59.000Z

157

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2013 March 25, 2013 Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Data from Alaska Test Could Help Advance Methane Hydrate R&D Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future. March 22, 2013 ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers Two New ARPA-E Programs Will Engage Nation's Brightest Scientists, Engineers and Entrepreneurs in Research Competition to Improve Vehicle Manufacturing Techniques and Natural Gas Conversion January 10, 2013 Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA.

158

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

159

EIA - Annual Energy Outlook 2008 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2008 with Projections to 2030 Emissions from Energy Use Figure 97. Carbon dioxide emissions by sector and fuel, 2006 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 98. Carbon dioxide emissions, 1990-2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rising Energy Consumption Increases Carbon Dioxide Emissions Without capture and sequestration, CO2 emissions from the combustion of fossil fuels are proportional to the carbon content of the fuel. Coal has the highest carbon content and natural gas the lowest, with petroleum in between. In the AEO2008 reference case, the shares of these fuels change

160

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

162

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network (OSTI)

2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

163

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

164

FETC Programs for Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Technology Center Federal Energy Technology Center Pittsburgh, Pennsylvania Morgantown, West Virginia FETC's Customer Service Line: (800) 553-7681 FETC's Homepage: http://www.fetc.doe.gov/ DOE/FETC-98/1058 (DE98002029) FETC Programs for Reducing Greenhouse Gas Emissions John A. Ruether February 1998 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

165

Greenhouse Gas Emissions for Different Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

166

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental  

Open Energy Info (EERE)

Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Energy, Land Focus Area: Industry Topics: Market analysis, Policies/deployment programs, Background analysis Resource Type: Publications Website: www.iisd.org/pdf/2009/bali_2_copenhagen_egs.pdf References: Greenhouse Gas Emissions Impacts of Liberalizing Trade in Environmental Goods[1] Background "As part of a suite of activities under the From Bali to Copenhagen project, IISD's work on low-carbon goods has focused on trying to measure the actual potential climate gains from what's now on the table in the WTO

167

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods...

168

South Africa - Greenhouse Gas Emission Baselines and Reduction...  

Open Energy Info (EERE)

Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and Reduction...

169

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...  

Open Energy Info (EERE)

Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

170

Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths versus Facts A fact sheet about the myths versus facts of ethanol and greenhouse...

171

Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths versus Facts A fact sheet about the myth versus facts about biofuels and...

172

Energy Efficiency in CO2 Emissions Trading  

Science Conference Proceedings (OSTI)

This Technical Update explores methods to account for carbon dioxide (CO2) emission reductions specifically associated with the implementation of energy efficiency programs into greenhouse gas (GHG) emissions trading or offset markets. It focuses on how to understand, account for, quantify, verify, and optimize how electricity savings may both reduce CO2 emissions and potentially be granted credits for CO2 savings that may be traded in cap-and-trade regimes.

2008-07-09T23:59:59.000Z

173

Radiative Forcing Due to Reactive Gas Emissions  

Science Conference Proceedings (OSTI)

Reactive gas emissions (CO, NOx, VOC) have indirect radiative forcing effects through their influences on tropospheric ozone and on the lifetimes of methane and hydrogenated halocarbons. These effects are quantified here for the full set of ...

T. M. L. Wigley; S. J. Smith; M. J. Prather

2002-09-01T23:59:59.000Z

174

NETL: Fugitive Gas Emissions Detection Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Fugitive Gas Emissions Detection Facilities Fugitive Gas Emissions Detection Facilities NETL uses an array of innovative laboratory techniques and field methods to detect and monitor fugitive emissions of CO2 stored in geologic formations. By providing an accurate accounting of stored CO2 and a high level of confidence that the CO2 will permanently remain in storage, these efforts can help ensure the technical soundness and economic viability of carbon sequestration, a technology that is critical to meeting the national goal of reduced greenhouse gas emissions. Successful research to establish the stability and integrity of host formations will help developers of sequestration projects secure permits and emissions reduction credits, while preventing damage to ecosystems and ensuring public health and safety.

175

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

acknowledge, "Marcellus shale gas production is still in itsof Marcellus shale gas production may not be fully

Hagan, Colin R.

2012-01-01T23:59:59.000Z

176

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

177

Total energy cycle emissions and energy use of electric vehicles  

DOE Green Energy (OSTI)

The purpose of this project is to provide estimates of changes in life cycle energy use and emissions that would occur with the introduction of EVs. The topics covered include a synopsis of the methodology used in the project, stages in the EV and conventional vehicle energy cycles, characterization of EVs by type and driving cycle, load analysis and capacity of the electric utility, analysis of the materials used for vehicle and battery, description of the total energy cycle analysis model, energy cycle primary energy resource consumption, greenhouse gas emissions, energy cycle emissions, and conclusions.

Singh, M.

1997-12-31T23:59:59.000Z

178

Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Greenhouse Gas State Greenhouse Gas (GHG) Emissions Reduction Strategy to someone by E-mail Share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Facebook Tweet about Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Twitter Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Google Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Delicious Rank Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Digg Find More places to share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on AddThis.com... More in this section... Federal

179

EIA - Greenhouse Gas Emissions Overview  

U.S. Energy Information Administration (EIA)

Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps : 35: Emissions of carbon dioxide from biofuel/bioenergy use by sector and fuel

180

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy...

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel composition effects on natural gas vehicle emissions  

DOE Green Energy (OSTI)

Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

Blazek, C.F.; Grimes, J.; Freeman, P. [Institute of Gas Technology, Chicago, IL (United States); Bailey, B.K.; Colucci, C. [National Renewable Energy Lab., Golden, CO (United States)

1994-09-01T23:59:59.000Z

182

Information about the Greenhouse Gas Emission Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

183

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

184

EIA - Greenhouse Gas Emissions - Land use  

U.S. Energy Information Administration (EIA)

53 Wood products originating from forests outside the United States are not included in the U.S. greenhouse gas inventory. 54 Source: U.S. Energy Information ...

185

Energy Efficency and Greenhouse Gas Connection  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency and Carbon Emissions Efficiency and Carbon Emissions Efficiency and Carbon Emissions Energy use for various services has a number of impacts on the environment. Energy combustion by-products include SOx, NOx, and precursors of ground-level ozone. Another combustion by-product is CO2 (carbon dioxide). CO2, a greenhouse gas, has been identified as a potential major contributor to global climate change. Climate_Change.jpg (6885 bytes) The carbon emissions from energy use depend on a number of factors: The level of demand for energy services; The service energy intensity (energy requirement per unit of service); The mix of energy sources for the service; The carbon content of the energy sources. Electricity and district energy both derive from other forms of energy. For these two sources, the mix of fuels used in their production is an additional factor in carbon emissions.

186

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network (OSTI)

CarbonPlanet, 2007, Greenhouse Gas Emissions by Country,In this discussion of greenhouse gas emissions and energyGreenhouse Gas Return on Investment: A New Metric for Energy

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

187

New Generating Technology to Reduce Greenhouse Gas Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Generating Technology to Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40% of total energy-related GHG emissions. * Based on projected annual electricity demand growth of 1.1%. Stuntz, Davis & Staffier, P.C. 3 The Target Cont'd * 16.4 GW of new nuclear + 2.7 GW Uprates of existing plants less 4.5 GW of retirements. * Coal responsible for 54% of generation in 2030.

188

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

189

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

190

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

191

Using landfill gas for energy: Projects that pay  

Science Conference Proceedings (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

192

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

locID=628&docID=-1 Sustainable Energy Ireland, 2006. Energyguideline.pdf Sustainable Energy Ireland, 2006.Sustainable Energy Irelands Energy Agreements Programme.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

193

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

STAR for Industry Energy Guides 52 include both process-s sector- wide energy efficiency guides provide informationfor Cement Making: An ENERGY STAR Guide for Energy and Plant

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

194

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

ance for new stationary source in the oil and gas industry.standards for new oil-burning stationary sources. 123 Cong.See Oil and Natural Gas Sector: New Source Performance

Hagan, Colin R.

2012-01-01T23:59:59.000Z

195

Destruction of acid gas emissions  

DOE Green Energy (OSTI)

A method of destroying NO{sub x} and SO{sub x} in a combustion gas is disclosed. The method includes generating active species by treating stable molecules in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combustion of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH{sub 2}, OH, CH and/or CH{sub 2}. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO{sub x} and SO{sub x}. Typically the injection is made into the immediate post-combustion gases at temperatures of 475--950{degrees}C. 1 fig.

Mathur, M.P.; Fu, Yuan C.; Ekmann, J.M.; Boyle, J.M.

1990-12-31T23:59:59.000Z

196

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions  

E-Print Network (OSTI)

Modeling Swtichgrass Biomass Production and Associated Greenhouse Gas Emissions Weiyuan Zhu, Johan in the atmosphere have led to renewed interest in energy from plant biomass. Surfing the internet or flipping to a series of concerns, apprehensions and challenges presented by a shift to a heavier reliance on biomass

California at Davis, University of

197

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methanes global warming potential factor.

198

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

199

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Vehicles and Mobile Equipment Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:32am Addthis YOU ARE HERE Step 2 To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

200

Near-zero Emissions Oxy-combustion Flue Gas Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-zero Emissions Oxy-combustion Near-zero Emissions Oxy-combustion Flue Gas Purification Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) R&D Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Regional GHG Emissions Stat s Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions Stat s Greenhouse Gas and the Regional Power System Symposium.6% Coal 42% Hydro, 68.0% 10 #12;6/5/2013 6 Overall GHG Emissions: PNW vs. US Total US Greenhouse Gas Emissions by Economic Sector (2011) Total PNW* Greenhouse Gas Emissions by Economic Sector (2010

202

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

the costs associated with energy efficiency investments.B. , 2003. Energy Efficiency Improvement and Cost SavingM. , 2003. Energy Efficiency Improvement and Cost Saving

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

203

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

less than six years. The energy audits were carried out bythe following: 86 1. Energy audit and analysis. The companycertification body. (More on energy audits is contained in

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

204

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

Ireland, 2006. Energy Management Systems. I.S. 393:20052004. The Energy Management System Specification withA corporate energy management system can be expanded to

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

205

An Analysis of Measures to Reduce the Life-Cycle Energy Consumption and Greenhouse Gas Emissions of California's Personal Computers  

E-Print Network (OSTI)

Prepared for the California Energy Commission, Sacramento,Laboratory for the California Energy Commission, PIERof the University of California Energy Institute's (UCEI)

Horvath, A; Masanet, Eric

2007-01-01T23:59:59.000Z

206

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

of Subsidizing Energy Saving Technologies: Evidence fromfor Investments in Energy-saving Equipment and SustainableCapital Allowances for Energy-Saving Investments. http://

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

207

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

208

Effects of Internet-based multiple-site conferences on greenhouse gas emissions  

Science Conference Proceedings (OSTI)

There is a growing consensus that ICT can contribute to the reduction of anthropogenic greenhouse gas (GHG) emissions, both by increasing the efficiency of existing processes and by enabling substitution effects to usher in more energy efficient patterns ... Keywords: Greenhouse-gas emissions, ICT for energy efficiency, Multiple-site conference, Rebound effect, Substitution effect, Videoconferencing

Vlad C. Coroama; Lorenz M. Hilty; Martin Birtel

2012-11-01T23:59:59.000Z

209

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

and a Facility Energy Assessment Matrix to help energyalso developed an Energy Program Assessment Matrix to help

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

210

An Analysis of Measures to Reduce the Life-Cycle Energy Consumption and Greenhouse Gas Emissions of California's Personal Computers  

E-Print Network (OSTI)

2002). Estimating Carbon Dioxide Emissions Factors for thefactors for California of 9.2 megajoules per kilowatt-hour (MJ/kWh) and 0.4 kilograms of carbon dioxide

Horvath, A; Masanet, Eric

2007-01-01T23:59:59.000Z

211

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

212

Quantifying Greenhouse Gas Emissions from Human Activities: Toward...  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying Greenhouse Gas Emissions from Human Activities: Toward Verification of Emissions Control Compliance Speaker(s): Marc Fischer Date: April 29, 2010 - 12:00pm Location:...

213

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... power plants, fuel use, stocks, generation, trade, demand & emissions. ... 1.10 Cooling Degree-Days by Census Division, ... 6.0 Natural Gas Energy Flow,

214

Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Emissions Study to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Emissions Study By October 13, 2013, the Washington Office of Financial Management must

215

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

E-Print Network (OSTI)

in the Pulp and Paper Industry, Energy Policy 25 (7-9):on reducing energy use Pulp and Paper Magazine. Milleron the US pulp and paper industry, Energy Policy, Volume

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-01-01T23:59:59.000Z

216

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

E-Print Network (OSTI)

U.S. Department of energy, the U.S. pulp and paper industry9 Figure 3. Primary Energy Use in U.S. Paperpolicies on the US pulp and paper industry, Energy Policy,

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-01-01T23:59:59.000Z

217

The Greenhouse Gas Protocol Initiative: Allocation of Emissions...  

Open Energy Info (EERE)

Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Name The Greenhouse Gas Protocol Initiative: Allocation...

218

Washington Gas Energy Services | Open Energy Information  

Open Energy Info (EERE)

Washington Gas Energy Services (Redirected from WGES) Jump to: navigation, search Name Washington Gas Energy Services Place Virginia Utility Id 20659 Utility Location Yes Ownership...

219

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

Information Center

2000-05-31T23:59:59.000Z

220

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

Science Conference Proceedings (OSTI)

Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.

Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

2011-05-25T23:59:59.000Z

222

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

223

Direct measurements improve estimates of dairy greenhouse-gas emissions  

E-Print Network (OSTI)

small quantity of Greenhouse gases measured enteric nitrousSC, Pain BF. 1994. Greenhouse gas emissions from intensiveE, Brose G. 2001. Greenhouse gas emissions from animal house

Mitloehner, Frank M; Sun, Huawei; Karlik, John F

2009-01-01T23:59:59.000Z

224

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

E-Print Network (OSTI)

Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators,energy and carbon intensity are evaluated. We show that macro-economic indicators,

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-01-01T23:59:59.000Z

225

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,of Unconventional Shale-Gas Reservoirs. In Society oftight gas reservoirs, shale gas, tight oil, oil shale, and

Coughlin, Katie

2013-01-01T23:59:59.000Z

226

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network (OSTI)

of banks and private capital in energy efficiencybanks that tend to be conservative in investments, and who are not used to the idea of energyEnergy Consumption Protocol, 154 the U.S. Initiative on Joint Implementation, the World Bank

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

227

High energy photon emission  

E-Print Network (OSTI)

The primary goal of this work was to initiate the use of BaF2 arrays for detection of high energy photon emission from nuclear reactions. A beam from the Texas A&M University K-500 Superconducting Cyclotron, and a variety of detectors for hard photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities at angles of 90' and 135'. Two 19-element barium fluoride (BaF2) arrays, an array of liquid scintillation fast neutron detectors and plastic scintillation charged-particle veto detectors, together with a silicon-cesium iodide (Si-CsI) telescope and a silicon fission fragment detector allowed the possibility of impact parameter selection through neutron and charged particle multiplicities. The associated multiplicity distributions of photon and fast neutron triggers were compared at 30' and 90' angles. The hardware and electronics layout of the experimental set up are described. Fundamental properties of the various detectors are explained and typical spectra are shown as examples for each detector system. The data acquisition and data compression is described in Chap. III, and followed by the calibration methods used for the BaF2 and Nal(TI) detectors. A description of a dynamic pedestal (zero level) correction mechanism, is followed by a description of several cosmic ray background reduction methods, including the highly effective centrality condition. A summary is given to compare the various methods. After a description of the other types of detectors used in the experiment, an example is given how the final photon spectra were produced. In Chap. IV the measured results are presented and compared to those in the literature. The last chapter provides the conclusions of this work.

Jabs, Harry

1997-01-01T23:59:59.000Z

228

The Essential Role of State Enforcement in the Brave New World of Greenhouse Gas Emission Limits  

E-Print Network (OSTI)

the Brave New World of Greenhouse Gas Emission Limits MattNATURE AND EXTENT OF THE GREENHOUSE GAS EMISSION REDUCTIONa similar situation with greenhouse gas emission reductions.

Bogoshian, Matt; Alex, Ken

2009-01-01T23:59:59.000Z

229

U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World  

E-Print Network (OSTI)

U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective the IMPAC project. #12;Abstract International agreements are likely to stimulate greenhouse gas mitigation Words Agricultural Sinks, Emissions Trading, Greenhouse Gas Emission Reductions, Kyoto Protocol #12

McCarl, Bruce A.

230

Greenhouse Gas Emissions from the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

Strom, Daniel J.

2010-03-01T23:59:59.000Z

231

Buildings Energy Data Book: 3.4 Commercial Environmental Emissions  

Buildings Energy Data Book (EERE)

6 6 2009 Methane Emissions for U.S. Commercial Buildings Energy Production, by Fuel Type (1) Fuel Type Petroleum 0.5 Natural Gas 26.8 Coal 0.3 Wood 0.4 Electricity (2) 50.5 Total 78.5 Note(s): Source(s): MMT CO2 Equivalent 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is 23 times that of carbon dioxide). 2) Refers to emissions of electricity generators attributable to the buildings sector. EIA, Emissions of Greenhouse Gases in the U.S. 2009, Mar. 2011, Table 18, p. 37 for energy production emissions; EPA, Inventory of U.S. Greenhouse Gas

232

The geology of natural gas resources - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

233

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

234

Federal, state and utility roles in reducing new building greenhouse gas emissions  

SciTech Connect

This paper will explore the role of implementation of building energy codes and standards in reducing US greenhouse gas emissions. It will discuss the role of utilities in supporting the US Department of Energy (DOE) and the Environmental Protection Agency in improving the efficiency of new buildings. The paper will summarize Federal policies and programs that improve code compliance and increase overall greenhouse gas emission reductions. Finally, the paper will discuss the role of code compliance and the energy and greenhouse gas emission reductions that have been realized from various Federal, State and utility programs that enhance compliance.

Johnson, J.A.; Shankle, D. [Pacific Northwest Lab., Richland, WA (United States); Boulin, J. [USDOE, Washington, DC (United States)

1995-03-01T23:59:59.000Z

235

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

236

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

237

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration -- Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

DOE Green Energy (OSTI)

Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

Spath, P. L.; Mann, M. K.

2004-01-01T23:59:59.000Z

238

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

239

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal,Footprint of Natural Gas from Shale Formations. Climaticof Unconventional Shale-Gas Reservoirs. In Society of

Coughlin, Katie

2013-01-01T23:59:59.000Z

240

Baltimore Gas and Electric Company (Gas) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

General Equilibrium Emissions Model (GEEM) | Open Energy Information  

Open Energy Info (EERE)

General Equilibrium Emissions Model (GEEM) General Equilibrium Emissions Model (GEEM) Jump to: navigation, search Tool Summary Name: General Equilibrium Emissions Model (GEEM) Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Goods and Materials, Greenhouse Gas, Industry, Offsets and Certificates, Transportation Topics: Background analysis, Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs, Technology characterizations Country: Kenya, Thailand UN Region: Eastern Africa, Caribbean Coordinates: 13.7240216°, 100.5798602°

242

Samson Sherman President Obama's Energy Plan & Natural Gas  

E-Print Network (OSTI)

Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

Toohey, Darin W.

243

China Energy and Emissions Paths to 2030  

E-Print Network (OSTI)

generate electricity in a gas turbine. The energy content ofcogeneration units are gas turbine based, using eithera simple cycle system (gas turbine with waste heat recovery

Fridley, David

2012-01-01T23:59:59.000Z

244

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network (OSTI)

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge sector is believed to be responsible for 28.4% of our greenhouse gas emissions (see figure), including 33% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs

245

Regulating Greenhouse Gas Emissions Date: March 7, 2011  

E-Print Network (OSTI)

Regulating Greenhouse Gas Emissions Date: March 7, 2011 To: Michigan's Congressional Delegation From: Michigan College, University, Agency and NGO Researchers RE: Clean Air Act and Greenhouse Gas note that the EPA's rules to reduce greenhouse gas emissions from new vehicles were welcomed

Shyy, Wei

246

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

247

Regional GHG Emissions O tlook Greenhouse Gas and the Regional  

E-Print Network (OSTI)

6/5/2013 1 Regional GHG Emissions O tlook Greenhouse Gas and the Regional Power System Symposium Natural Gas Prices 6. Potential Federal CO2 regulatory cost policy Two basic CO2 Cost 10 20 30 40 Million Generation Coal 19 % 15 % 13 % Natural Gas 10 % 10 % 14 % Wind & Other Renewables 8 % 12 % 13 % Emission

248

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network (OSTI)

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado requires a life cycle perspective. This paper compares greenhouse gas (GHG) emissions from three renewable, and natural gas power plants is estimated for four time periods after construction. The assessment

Kammen, Daniel M.

249

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

250

Energy Department Projects Focus on Sustainable Natural Gas Development |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Focus on Sustainable Natural Gas Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Gayland Barksdale Technical Writer, Office of Fossil Energy What is RPSEA? The Research Partnership to Secure Energy for America - or RPSEA -

251

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Cameron KC. Nitrous oxide emissions from two dairy pastureand land use on N 2 O emissions from an imperfectly drainedoptions for N 2 O emissions from differently managed

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

252

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provideend-use energy efficiency, or avoid methane emissions...

253

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

and Canada. ANL/ESD/02-5, Argonne National Laboratory, U.S.Department of Energy. Argonne, Illinois. Schwarz, W. and J.and Greenhouse Gas Emissions. Argonne National Laboratory,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

254

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

and Canada. ANL/ESD/02-5, Argonne National Laboratory, U.S.Department of Energy. Argonne, Illinois. Schwarz, W. and J.and Greenhouse Gas Emissions. Argonne National Laboratory,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

255

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

256

Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions  

Gasoline and Diesel Fuel Update (EIA)

Impact of U.S. Nuclear Generation Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Ronald E. Hagen, John R. Moens, and Zdenek D. Nikodem Energy Information Administration U.S. Department of Energy International Atomic Energy Agency Vienna, Austria November 6-9, 2001 iii Energy Information Administration/ Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Contents Page I. The Electric Power Industry and the Greenhouse Gas Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. The Current Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 III. The Future Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IV. Factors That Affect Nuclear Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V. Conclusion

257

Federal Greenhouse Gas Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements Requirements Federal Greenhouse Gas Requirements October 7, 2013 - 10:02am Addthis Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable

258

Rough surface mitigates electron and gas emission  

SciTech Connect

Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of {eta}{sub e} {le} 130 and {eta}{sub 0} {approx} 10{sup 4} respectively, with 1 MeV K{sup +} incident on stainless steel. Electron emission scales as {eta}{sub e} {proportional_to} 1/cos({theta}), where {theta} is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90{sup o}) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62{sup o}. Gas desorption varies more slowly with {theta} (Fig. 1(b)) decreasing a factor of {approx}2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K{sup +} ions backscatter when incident at 88-89{sup o} from normal on a smooth surface. The scattered ions are mostly within {approx}10{sup o} of the initial direction but a few scatter by up to 90{sup o}. Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams.

Molvik, A

2004-09-03T23:59:59.000Z

259

Greenhouse gas emissions from public consumption in Gothenburg.  

E-Print Network (OSTI)

??The purpose of this thesis is to explore and estimate greenhouse gas emissions from the public consumption in Gothenburg. By doing so it should be (more)

Sinclair, Robin

2013-01-01T23:59:59.000Z

260

San Diego's carbon footprint : measuring and mitigating greenhouse gas emissions.  

E-Print Network (OSTI)

??Climate Change is one of the most pressing issues of our time. The best way to measure and mitigate the greenhouse gas emissions causing climate (more)

Bushman, Tara Rose

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas emissions from dairy cow and fattening pig buildings.  

E-Print Network (OSTI)

??The objective of this research is to contribute to the knowledge concerning the abatement of gas emissions from livestock production. Investigations regarding the choice of (more)

Ngwabie, Ngwa Martin

2011-01-01T23:59:59.000Z

262

Greenhouse gas emissions from cultivated peat soils in Sweden.  

E-Print Network (OSTI)

??Greenhouse gas emissions and peat subsidence are major concerns both from an environmental perspective and for farmers with declining soil production capacity. Agricultural databases, digitised (more)

Berglund, rjan

2011-01-01T23:59:59.000Z

263

Natural Gas Stove Emissions and Respiratory Health: Evidence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES III NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not...

264

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01T23:59:59.000Z

265

Energy Information Administration--Energy and Greenhouse Gas Analysis  

U.S. Energy Information Administration (EIA) Indexed Site

and Greenhouse Gas Analysis and Greenhouse Gas Analysis Energy and Greenhouse Gas Analysis Posted Date: October 1999 Page Last Modified: August 2007 This section contains analysis covering all sectors of the United States and issues related to the energy use, energy efficiency, and carbon emission indicators. New analysis will be added to the web site as they become available. All Sectors / Residential / Commercial / Manufacturing / Transportation All Sectors United States Energy Usage and Efficiency: Measuring Changes Over Time, increasing emphasis has been placed on energy efficiency as a vital component of the United States' energy strategy. This was evident with the passing of the Energy Policy Act of 1992 (EPACT) [1]. EPACT promotes energy-efficiency programs such as building energy-efficiency standards,

266

Supporting RBEC Transition to Low-Emission Development | Open Energy  

Open Energy Info (EERE)

RBEC Transition to Low-Emission Development RBEC Transition to Low-Emission Development Jump to: navigation, search Name Supporting RBEC Transition to Low-Emission Development Agency/Company /Organization United Nations Development Programme (UNDP), UNDP Bratislava Regional Center Partner Interministerial committees headed by the national focal point on climate change Sector Climate, Energy Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Greenhouse Gas, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Low emission development planning, -LEDS Website http://europeandcis.undp.org/e Program Start 2010 Program End 2012 Country Kazakhstan, Moldova, Republic of Kosovo, Turkey, Turkmenistan, Uzbekistan

267

Energy Use and Carbon Emissions:  

Gasoline and Diesel Fuel Update (EIA)

World Energy Use and Carbon Dioxide Emissions, 1980-2001 World Energy Use and Carbon Dioxide Emissions, 1980-2001 April 2004 Energy Information Administration Contacts Staff from the Office of Energy Markets and End Use (EMEU), Energy Markets and Contingency Information Division (EMCID) prepared this report. General questions concerning the content of the report may be referred to Mark Rodekohr (Mark.Rodekohr@eia.doe.gov, 202-586-1130), Director of EMCID; or Lowell Feld (Lowell.Feld@eia.doe.gov, 202-586-9502), Leader of the Contingency Information Team. Specific questions about the report should be referred to Nathan Wilson (Nathan.Wilson@eia.doe.gov, 202-586-9883). 1 Table of Contents CONTACTS .......................................................................................................................

268

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying Californias Greenhouse Gas Law. http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

269

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying Californias Greenhouse Gas Law. http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

270

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network (OSTI)

for minimum life cycle greenhouse gas emissions and cost Elizabeth Traut a,n , Chris Hendrickson b,1 , Erica reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low

Michalek, Jeremy J.

271

Determine Largest Mobile Greenhouse Gas Emission Sources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Mobile Greenhouse Gas Emission Sources Largest Mobile Greenhouse Gas Emission Sources Determine Largest Mobile Greenhouse Gas Emission Sources October 7, 2013 - 11:39am Addthis YOU ARE HERE Step 2 For the purposes of portfolio planning, a Federal agency's first data analysis step is to determine which mobile emissions sources represent the largest contributors to the agency's overall greenhouse gas (GHG) emissions. Agencies can use agency-level data to determine which fleets/locations, which vehicle assets (e.g., fleet vehicles, non-fleet equipment, etc.), and which fuel types are producing the largest amounts of emissions. Based on this analysis, the agency can better define which mitigation strategies will be most effective. For instance, if a single fleet comprises over half of the agency's vehicle and equipment emissions, the

272

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

273

Greenhouse gas balances of biomass energy systems  

DOE Green Energy (OSTI)

A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues.

Marland, G. [Oak Ridge National Lab., TN (United States); Schlamadinger, B. [Institute for Energy Research, Joanneum Research, Graz, (Austria)

1994-12-31T23:59:59.000Z

274

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

275

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

276

Definition: Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Jump to: navigation, search Dictionary.png Gas Flux Sampling Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares...

277

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

278

Treatment of Gas Emissions in Potrooms  

Science Conference Proceedings (OSTI)

The paper presents the solutions developed by Fives to eliminate two of the main sources of HF emissions in the potrooms: - Emissions from pots, when they...

279

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

280

The reduction of gas emissions from the use of bioethanol  

Science Conference Proceedings (OSTI)

This work deals with the examination of farm Tractor with Diesel engine from the viewpoint of power and gas emissions, using as fuel Diesel-ethanol mixtures. A series of laboratory instruments was used for the realization of the experiments. The tractor ... Keywords: bioethanol, biofuels, gas emissions

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

282

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed an integrated Energy and Greenhouse Gas Management System that allows companies to reduce energy and carbon intensity at the same time all the while bolstering bottom line performance. Reducing energy use and greenhouse gases is not an option but a necessity today. All manufacturing companies need to develop in-house capabilities to manage these important resources or pay the price of high carbon taxes and/or face a depletion in operating margins. MPC will present a case history highlighting the steps taken, the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy Management Strategies- a winning approach to meet the challenge; Turn a potential cost of compliance into a new cash flow source; Leveraging Energy Management Systems to optimize savings; Navigating through the new Greenhouse Gas reporting requirements; Utilizing Plant and Corporate Energy Management Dashboards to Control Energy Consumption and Greenhouse Gas emissions.

Spates, C. N.

2010-01-01T23:59:59.000Z

283

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of ... other biomass. 3 Natural gas, excluding supplemental gaseous fuels.

284

NETL: News Release - Converting Emissions into Energy - Three Companies to  

NLE Websites -- All DOE Office Websites (Extended Search)

September 14, 2000 September 14, 2000 Converting Emissions into Energy - Three Companies To Develop Technologies for Tapping Coal Mine Methane Methane, the chief constituent of natural gas, is a potent greenhouse gas, and millions of cubic feet of it escape daily from active coal mines. Now, three projects selected the U.S. Department of Energy propose new ways to capture the gas and convert it to useful energy -- reducing an environmental threat while adding to the nation's supplies of clean natural gas and electric power. The National Energy Technology Laboratory, the Energy Department's chief field site for its fossil energy research program, has selected: Appalachian-Pacific Coal Mine Methane Power Co., LLC, Arlington, VA, to work with West Virginia University Research Corp., Morgantown, WV, and Invitation Energy, Mannington, WV, to convert coal mine methane from mines in Marion County, WV, and surrounding areas into liquefied natural gas (LNG) to fuel heavy trucks.

285

Event:11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 | Open  

Open Energy Info (EERE)

th Annual Workshop on Greenhouse Gas Emission Trading Day 2 th Annual Workshop on Greenhouse Gas Emission Trading Day 2 Jump to: navigation, search Calendar.png 11th Annual Workshop on Greenhouse Gas Emission Trading: on 2011/10/04 "The IEA-IETA-EPRI Emissions Trading Workshop has been held annually at the headquarters of the International Energy Agency since 2000. This international workshop focuses on developments in greenhouse gas (GHG) emissions trading around the world at the international, national and sub-national level. The 2011 workshop will cover topics relevant to the development of global, national and sub-national carbon markets, including scaled-up and new market mechanisms, NAMAs and sectoral crediting policies, MRV and international GHG accounting and 2nd-best trading programmes. As in previous years, the workshop will assemble representatives from government,

286

Mitigating Greenhouse Gas Emissions: Voluntary Reporting  

U.S. Energy Information Administration (EIA)

Carbon Sequestration ..... 199 62 Halogenated Substances ..... 22 18 Other Emissions Reductions ..... 59 45 Total ...

287

Measuring of exhaust gas emissions using absorption spectroscopy  

Science Conference Proceedings (OSTI)

This paper describes an optical fibre sensor for the detection of NOx (NO2 and NO) and CO2 in the exhaust system of a road vehicle. The measurement is based on a free path interaction zone which is interrogated using ... Keywords: absorption spectroscopy, air pollution, carbon dioxide, emissions measurement, exhaust gas emissions, gas sensors, infrared, nitrogen dioxide, nitrogen oxide, optical fibre sensors, ultraviolet, vehicle emissions

Eamonn Hawe; Gerard Dooly; Colin Fitzpatrick; Paul Chambers; Elfed Lewis; W. Z. Zhao; T. Sun; K. T. V. Grattan; M. Degner; H. Ewald; S. Lochmann; G. Bramman; C. Wei; D. Hitchen; J. Lucas; A. Al-Shamma'a; E. Merlone-Borla; P. Faraldi; M. Pidria

2008-02-01T23:59:59.000Z

288

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

289

Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reporting Guidance, Greenhouse Gas Reporting Guidance, Seeks Public Comment Energy Department Releases New Greenhouse Gas Reporting Guidance, Seeks Public Comment March 22, 2005 - 10:54am Addthis Program Will Ensure Greater Accuracy & Completeness WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today asked for further public comment on its revised guidelines for voluntary reporting of greenhouse gas emissions, sequestration and emission reductions. The program was established by section 1605(b) of the Energy Policy Act of 1992 and will help fulfill President George W. Bush's directive that DOE enhance its voluntary reporting program to reduce overall greenhouse gas emissions while improving the accuracy, verifiability and completeness of emissions data reported to the Federal Government.

290

Land-use change and greenhouse gas emissions from corn and cellulosic  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, 2013 Tweet EmailPrint The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and

291

State of the Science of Biopower Life-Cycle Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Biomass power offers utilities a potential pathway to increase their renewable generation portfolio for compliance with renewable energy standards and to reduce greenhouse gas emissions relative to current fossil-based technologies. To date, a large body of life-cycle assessment (LCA) literature assessing biopower's life-cycle greenhouse gas (GHG) emissions has been published. An exhaustive search of the biopower LCA literature yielded 117 references that passed quality and relevance screening criteria. ...

2011-12-30T23:59:59.000Z

292

China Energy and Emissions Path to 2030  

NLE Websites -- All DOE Office Websites (Extended Search)

China Energy and Emissions Path to 2030 Title China Energy and Emissions Path to 2030 Publication Type Report LBNL Report Number LBNL-4866E Year of Publication 2013 Authors...

293

Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Baltimore Gas & Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

294

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

2003. Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

295

Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan  

SciTech Connect

To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

Yu-Ming Kuo; Yasuhiro Fukushima [National Cheng Kung University, Tainan City (Taiwan). Department of Environmental Engineering

2009-03-15T23:59:59.000Z

296

Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Emissions Assess Potential Agency Size Changes that Impact Greenhouse Gas Emissions October 7, 2013 - 10:12am Addthis Federal agencies should establish planned changes in operations that could have a substantial impact on emissions for each greenhouse gas (GHG) emission source: Buildings Vehicles and mobile equipment Business travel Employee commuting. Such changes could represent either an additional significant hurdle to overcome or a significant reduction in the effort required to drive emissions down-in the absence of any direct GHG mitigation reduction strategies. This will help each organization establish its "business as usual" emission profile in 2020, the year agencies are expected to meet their Scope 1 and 2 and Scope 3 GHG emission-reduction goals.

297

The gas emissions variation of diesel engine from the combustion of used vegetable oils  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: biofuels, gas emissions, vegetable oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2009-02-01T23:59:59.000Z

298

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

ENERGY USAGE, AND GREENHOUSE EMISSIONS GAS 4. ASSESSMENT ANDgas consumption (miles per gallon or Wh mile) of a vehicle, calculation of the fuel usageGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJfr Usage

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

299

"Blue Sky" Approaches to Reduce Greenhouse Gas Emissions: An Initial Assessment of Potential New Types of Greenhouse Gas Emissions Offsets  

Science Conference Proceedings (OSTI)

This report provides an initial assessment of potential new approaches to reducing greenhouse gas (GHG) emissions that might be capable of generating large-scale GHG emissions offsets at relatively low cost compared to other GHG mitigation options. The nine potential blue sky approaches assessed in this report include biochar, destruction of ozone depleting substances, control of natural fugitive methane seeps from coal seams, control of fugitive natural gas emissions associated with hydraulic fracturing...

2011-12-22T23:59:59.000Z

300

Establish Internal Greenhouse Gas Emission Reduction Targets | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets October 7, 2013 - 10:24am Addthis Question to Answer What are appropriate GHG emission reduction targets for specific agency programs and sites? Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions. As illustrated in the figure below, two sites may have equal potential to reduce GHG emissions. But a site expecting significant mission-related growth prior to the 2020 target year may have a lower reduction target

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Allocation of Emissions from a Combined Heat and Power Plant Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Climate Focus Area: - Central Plant, Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: CHP Guidance v1.0[1] The Greenhouse Gas Protocol tool for allocation of GHG emissions from a combined heat and power (CHP) plant is a free Excel spreadsheet calculator

302

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

303

Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California  

E-Print Network (OSTI)

an 80% reduction in greenhouse gas emissions from ,Board, 2008. California Greenhouse Gas Emission Inventory.A. , 2003. Reducing Greenhouse Gas Emissions from US

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2009-01-01T23:59:59.000Z

304

High Energy Emission from Magnetars  

E-Print Network (OSTI)

The recently discovered soft gamma-ray emission from the anomalous X-ray pulsar 1E 1841-045 has a luminosity L_g ~ 10^{36} ergs/s. This luminosity exceeds the spindown power by three orders of magnitude and must be fed by an alternative source of energy such as an ultrastrong magnetic field. A gradual release of energy in the stellar magnetosphere is expected if it is twisted and a strong electric current is induced on the closed field lines. We examine two mechanisms of gamma-ray emission associated with the gradual dissipation of this current. (1) A thin surface layer of the star is heated by the downward beam of current-carrying charges, which excite Langmuir turbulence in the layer. As a result, it can reach a temperature kT ~ 100 keV and emit bremsstrahlung photons up to this characteristic energy. (2) The magnetosphere is also a source of soft gamma rays at a distance of ~100 km from the star, where the electron cyclotron energy is in the keV range. A large electric field develops in this region in response to the outward drag force felt by the current-carrying electrons from the flux of keV photons leaving the star. A seed positron injected in this region undergoes a runaway acceleration and upscatters keV photons above the threshold for pair creation. The created pairs emit a synchrotron spectrum consistent with the observed 20-100 keV emission. This spectrum is predicted to extend to higher energies and reach a peak at ~1 MeV.

C. Thompson; A. M. Beloborodov

2004-08-30T23:59:59.000Z

305

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

and the Environment. Greenhouse Gas Emissions from AviationD17): 4560. EPA (2006). Greenhouse Gas Emissions from theInventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

306

Greenhouse Gas Mitigation Planning for Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings Greenhouse Gas Mitigation Planning for Buildings October 7, 2013 - 10:29am Addthis Energy use in buildings represents the single largest source of greenhouse gas (GHG) emissions in the Federal sector. Buildings can contribute to Scope 1 emissions from direct stationary combustion sources; Scope 2 from indirect electricity, heat, or steam purchases; and Scope 3 emissions from transmission and distribution losses. Also see Use Renewable Energy in Buildings for Greenhouse Gas Mitigation. Step 1: Assess Agency Size Changes Step 2: Evaluate Emissions Profile Step 3: Evaluate Reduction Strategies Step 4: Estimate Implementation Costs Step 5: Prioritize Strategies Helpful Data and Tools See GHG planning data and tools for buildings.

307

High Energy Emission from Magnetars  

E-Print Network (OSTI)

The recently discovered soft gamma-ray emission from the anomalous X-ray pulsar 1E 1841-045 has a luminosity L_g ~ 10^{36} ergs/s. This luminosity exceeds the spindown power by three orders of magnitude and must be fed by an alternative source of energy such as an ultrastrong magnetic field. A gradual release of energy in the stellar magnetosphere is expected if it is twisted and a strong electric current is induced on the closed field lines. We examine two mechanisms of gamma-ray emission associated with the gradual dissipation of this current. (1) A thin surface layer of the star is heated by the downward beam of current-carrying charges, which excite Langmuir turbulence in the layer. As a result, it can reach a temperature kT ~ 100 keV and emit bremsstrahlung photons up to this characteristic energy. (2) The magnetosphere is also a source of soft gamma rays at a distance of ~100 km from the star, where the electron cyclotron energy is in the keV range. A large electric field develops in this region in resp...

Thompson, C

2004-01-01T23:59:59.000Z

308

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:23am Addthis Once Federal sites have been screened for viability of different renewable energy resources to evaluate emissions profile, the next step is to establish what renewable energy resources developed at which particular sites would have the greatest impact on the agency's overall greenhouse gas (GHG) emissions goals. It is important to consider that some types of renewable energy generation could impact not only Scope 1 and 2 GHG goals, but also Scope 3 goals through avoided transmission and distribution losses. Estimate Greenhouse Gas Reduction Potential It is important to note that solar systems can have the greatest reduction

309

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation Use Renewable Energy in Buildings for Greenhouse Gas Mitigation October 7, 2013 - 11:13am Addthis After all cost-effective energy efficiency projects have been explored as part of a Federal agency's planning efforts for greenhouse gas (GHG) mitigation in buildings, renewable energy may be considered as an option for meeting the agency's GHG reduction goals. Renewable energy can reduce emissions in all three GHG emission scopes by displacing conventional fossil fuel use. The focus of this guidance is prioritizing on-site renewable energy projects that will best support GHG reduction goals. It is intended to provide a high-level screening approach for on-site renewable energy projects to support agency- or program-level portfolio planning. General

310

Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter  

E-Print Network (OSTI)

of ?uorinated greenhouse gases. greenhouse gas emissions. Washington,ective e?orts to reduce greenhouse gas emissions. C.D. Howe

Lutsey, Nicholas P.; Sperling, Dan

2007-01-01T23:59:59.000Z

311

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources » Fossil » Natural Gas Sources » Fossil » Natural Gas Natural Gas July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

312

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel Collect Data to Evaluate Greenhouse Gas Emissions Profile for Business Travel October 7, 2013 - 1:27pm Addthis YOU ARE HERE Step 2 To evaluate a greenhouse gas (GHG) emissions profile, most of the information required to support air travel demand management is currently available through Federal agency-level travel information systems, such as GovTrip. However, that information may not be distributed to programs, regional offices, and sites, which are in the best position to evaluate opportunities to reduce travel. Considerations that may help the agency determine the level at which data should be collected and analyzed include: Where are budgets and policies regarding travel made and modified?

313

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings Collect Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:45am Addthis YOU ARE HERE Step 2 Strategic planning for greenhouse gas (GHG) mitigation in buildings requires an understanding of a Federal agency's buildings portfolio, including which programs, building types, and sites contribute the most to the agency's emissions. The data described in Table 1 below will support this type of analysis. It is recommended that this information be collected at the agency and program level. Programs refer to major operating units within the agency where there is a significant degree of autonomy in planning and decision-making. In many cases, the type of data required for portfolio planning may already

314

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

315

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting October 7, 2013 - 1:47pm Addthis YOU ARE HERE Step 2 For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey. The default survey methodology in the Federal GHG Accounting Guidance is designed to collect the minimum data for emissions calculations. Additional information may be necessary to determine which trip reduction strategies are best suited for specific employee populations. The optional questions in the advanced survey methodology or data gathered through an agency-defined employee commute survey can provide this understanding.

316

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

U.S. Energy Information Administration (EIA)

Carbon sequestration in U.S. croplands and grasslands, 1990-2008: Source: U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: ...

317

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California, Marineet al. , 2007, Measurement of Oil and Gas Emissions from aand P.G. Mikolaj, Natural oil seepage at Coal Oil Point,

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

318

Greenhouse Gas Emission Impacts of Carsharing in North America  

Science Conference Proceedings (OSTI)

This paper evaluates the greenhouse gas (GHG) emission impacts that result from individuals participating in carsharing organizations within North America. The authors conducted an online survey with members of major carsharing organizations and evaluated ...

Elliot W. Martin; Susan A. Shaheen

2011-12-01T23:59:59.000Z

319

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cal Climate Action Partnership: Reducing Greenhouse Gas Emissions at UC Berkeley Speaker(s): Fahmida Ahmed Date: January 11, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

320

TY RPRT T1 Estimating Policy Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories in Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model A1 J Greenblatt AB p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and other sources Starting from basic drivers such as population numbers

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

et al. 2010). Shale gas production by hydraulic fracturing (anticipated growth in shale gas production is expected toFugitive emissions from shale gas production are the subject

Coughlin, Katie

2013-01-01T23:59:59.000Z

322

Natural Gas Supply Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Supply Conference. William Trapmann Energy Information Administration. American Public Gas Association January 30 & 31, 2001

323

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

324

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

325

Shale Gas Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Glossary Shale Gas Glossary Shale Gas Glossary Energy.gov Careers & Internships...

326

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network (OSTI)

Speed Redcutions on Vessel-Based Emissions for InternationalAviation-Related GHG Emissions: A Systems Analysis forthe Environment. Greenhouse Gas Emissions from Aviation and

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

327

The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization  

E-Print Network (OSTI)

for greenhouse gas emissions, Department of Chemical andStep Toward City-Driven Emissions Rationalization ChrisStep toward City-Driven Emissions Rationalization Submitted

Ganson, Chris

2008-01-01T23:59:59.000Z

328

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

329

Compact, high energy gas laser  

DOE Patents (OSTI)

An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

Rockwood, Stephen D. (Los Alamos, NM); Stapleton, Robert E. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

1976-08-03T23:59:59.000Z

330

The Natural Gas Vehicle Challenge `92: Exhaust emissions testing and results  

DOE Green Energy (OSTI)

The Natural Gas Vehicle (NGV) Challenge `92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P. [Argonne National Lab., IL (United States); Zammit, M.G. [Johnson Matthey, Wayne, PA (United States); Davies, J.G.; Salmon, G.S. [General Motors of Canada Ltd., Toronto, ON (Canada); Bruetsch, R.I. [US Environmental Protection Agency (United States)

1992-11-01T23:59:59.000Z

331

The Natural Gas Vehicle Challenge '92: Exhaust emissions testing and results  

DOE Green Energy (OSTI)

The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the US Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine. out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P. (Argonne National Lab., IL (United States)); Zammit, M.G. (Johnson Matthey, Wayne, PA (United States)); Davies, J.G.; Salmon, G.S. (General Motors of Canada Ltd., Toronto, ON (Canada)); Bruetsch, R.I. (US Environmental Protection Agency (United States))

1992-01-01T23:59:59.000Z

332

Central Hudson Gas & Electric (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of energy efficient equipment. Natural gas rebates apply to water heaters, natural gas boilers, steam boilers, boiler controls, furnaces, programmable thermostats, and duct and air...

333

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

334

Federal Energy Management Program: Greenhouse Gas Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Contacts on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Contacts on...

335

Atmos Energy (Gas) - Residential Efficiency Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling...

336

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

337

Promoting Geothermal Energy: Air Emissions Comparison and Externality Analysis  

Science Conference Proceedings (OSTI)

When compared to fossil fuel energy sources such as coal and natural gas, geothermal emerges as one of the least polluting forms of energy, producing virtually zero air emissions. Geothermal offers a baseload source of reliable power that compares favorably with fossil fuel power sources. But unless legislative changes are enacted, geothermal energy will continue to be produced at only a fraction of its potential.

Kagel, Alyssa; Gawell, Karl

2005-09-01T23:59:59.000Z

338

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

339

Energy-Related Carbon Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Energy-related CO2 emissions 2005 . 2020 : 2035 : Energy-related CO; 2 emissions ; 6.00 ; 5.43 . 5.76

340

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES III Speaker(s): Ronald Briggs Date: August 15, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Brett Singer Do emissions from natural gas stoves in American homes degrade respiratory health? The combustion of natural gas yields byproducts such as NOx , PM2.5 , and CO that the US EPA regulates outdoors. But while ambient air quality has improved in the US over the last few decades as a consequence of the Clean Air Act of and its amendments, the prevalence of asthma and morbidity and mortality associated with asthma continue to rise (Mannino /et al./, 1998). Concentrations of most air pollutants are higher indoors than outdoors in the US, however, and people in the US spend more than 90%

342

EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources  

Gasoline and Diesel Fuel Update (EIA)

A1. Notes and Sources A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Errata (Cambridge, UK: Cambridge University Press, 2008), website http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1_Errata_2008-12-01.pdf. Table 2. U.S. greenhouse gas intensity and related factors, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the

343

A fuel cycle framework for evaluating greenhouse gas emission reduction technology  

SciTech Connect

Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

1990-05-01T23:59:59.000Z

344

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

345

Do energy taxes decrease carbon dioxide emissions?.  

E-Print Network (OSTI)

?? This paper investigates the environmental effectiveness of the Swedish energy taxes. That is, whether these have decreased the CO2 emissions and how they have (more)

Sundqvist, Patrik

2007-01-01T23:59:59.000Z

346

EIA - Annual Energy Outlook 2009 - Emissions from Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Emissions from Energy Use Emissions from Energy Use Annual Energy Outlook 2009 with Projections to 2030 Emissions from Energy Use Figure 81. Carbon diioxide emissions by sector and fuel, 2007 and 2030 (million metric tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 82. Sulfur dioxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 83. Nitrogen oxide emissions from electricity generation, 1995-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800. figure data Rate of Increase in Carbon Dioxide Emissions Slows in the Projections Even with rising energy prices, growth in energy use leads to increasing

347

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network (OSTI)

Gas Daily Quantity Daily GhG Emissions Oil Price Price elasGas Daily Quantity Daily GhG Emissions Oil Price Price elasDaily Quantity Daily GhG Emissions Surcharge Revenues Oil

Borenstein, Severin

2008-01-01T23:59:59.000Z

348

Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996  

Reports and Publications (EIA)

Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

Information Center

1997-10-01T23:59:59.000Z

349

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 31, 2012 August 31, 2012 Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012 August 23, 2012 Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy study. August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding

350

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

351

Literature Review and Sensitivity Analysis of Biopower Life-Cycle Assessments and Greenhouse Gas Emission  

Science Conference Proceedings (OSTI)

Biomass power offers utilities a potential pathway to increase their renewable generation portfolios for compliance with renewable energy standards and to reduce greenhouse gas (GHG) emissions relative to current fossil-based technologies. To date, a large body of life-cycle assessment (LCA) literature assessing biopowers life-cycle GHG emissions has been published.Phase A of this project performed an exhaustive search of the biopower LCA literature yielding 117 references that ...

2013-01-30T23:59:59.000Z

352

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

353

EIA - Greenhouse Gas Emissions - High-GWP gases  

Gasoline and Diesel Fuel Update (EIA)

5. High-GWP gases 5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA Vintaging Model. Emissions from manufacturing and utilities are derived by the EPA from a mix of public and proprietary data, including from the EPA's voluntary emission reduction partnership programs. For this year's EIA inventory, 2008 values for HFC-23 from HCFC-22

354

Vehicle Emission Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Emission Basics Vehicle Emission Basics Vehicle Emission Basics November 22, 2013 - 2:07pm Addthis Vehicle emissions are the gases emitted by the tailpipes of vehicles powered by internal combustion engines, which include gasoline, diesel, natural gas, and propane vehicles. Vehicle emissions are composed of varying amounts of: water vapor carbon dioxide (CO2) nitrogen oxygen pollutants such as: carbon monoxide (CO) nitrogen oxides (NOx) unburned hydrocarbons (UHCs) volatile organic compounds (VOCs) particulate matter (PM) A number of factors determine the composition of emissions, including the vehicle's fuel, the engine's technology, the vehicle's exhaust aftertreatment system, and how the vehicle operates. Emissions are also produced by fuel evaporation during fueling or even when vehicles are

355

EIA - Greenhouse Gas Emissions - Land use  

Gasoline and Diesel Fuel Update (EIA)

6. Land use 6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2 emissions. The largest sequestration category in 2008 was forest lands and harvested wood pools,49 with estimated sequestration increasing from 730 MMTCO2e in 1990 to 792 MMTCO2e in 2008. The second-largest carbon sequestration category was urban trees,50 responsible for 57 MMTCO2e in 1990 and 94

356

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network (OSTI)

and A. Schafer, Reducing Greenhouse Gas Emissions from U.S.Marintek, Study of Greenhouse Gas Emissions from Ships .Biofuels Increases Greenhouse Gases Through Emissions from

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

357

Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided  

Open Energy Info (EERE)

Greenhouse Gas Emissions through Avoided Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to: navigation, search Name Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Agency/Company /Organization Government of Costa Rica, Peace with Nature Sector Land Focus Area Forestry Topics Co-benefits assessment, Implementation, Policies/deployment programs, Resource assessment, Background analysis Resource Type Publications Website http://www.paxnatura.org/pax_n Country Costa Rica UN Region Latin America and the Caribbean References Costa Rica[1] Overview References ↑ "Costa Rica" Retrieved from

358

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

359

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23, 2013 May 23, 2013 Secretary Moniz on Natural Gas and Renewables May 17, 2013 Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas Freeport LNG Terminal on Quintana Island, Texas Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries May 17, 2013 FE DOCKET NO. 10-161-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS April 24, 2013 The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

360

The EPRI Greenhouse Gas Emissions Offset Policy Dialogue  

Science Conference Proceedings (OSTI)

In 2008, EPRI launched the EPRI Greenhouse Gas (GHG) Emissions Offset Policy Dialogue project. The goals of this project are to inform key constituencies involved in the development of U.S. climate mitigation strategies and policies about GHG emissions offset-related policies and design issues, and to provide a forum in which representatives of key sectors of the U.S. economy and communities involved in the ongoing development and debate on climate change policies can discuss these issues. This Technical...

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Role of Hydropower Reservoirs in Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Recent publications of measurements and analyses of reservoir greenhouse gas (GHG) emissions have sparked debate about the carbon neutrality of hydropower. This report describes the results of two initial tasks of a multiyear study to assess the importance of carbon cycling and GHG emissions from hydropower reservoirs and operations in the United States. The risks this issue presents to the U.S. hydropower industry are discussed, and a plan to resolve uncertainties is presented. Throughout this report, r...

2010-05-20T23:59:59.000Z

362

Portfolio Manager Technical Reference: Greenhouse Gas Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation Third-party resources Utilities Energy efficiency program...

363

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Title The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Publication Type Journal Article Refereed Designation Unknown Year of Publication 2012 Authors Williams, James H., Andrew DeBenedictis, Rebecca Ghanadan, Amber Mahone, Jack Moore, William R. Morrow, Snuller Price, and Margaret S. Torn Journal Science Volume 335 Start Page 53 Issue 6064 Pagination 53-59 Date Published 01/2012 Abstract Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.

364

Unanticipated Consequences of Regional Greenhouse Gas Policies: Criteria Emissions and the Regional Greenhouse Gas Initiave.  

E-Print Network (OSTI)

??The Regional Greenhouse Gas Initiative (RGGI) has been developed by 10 Northeastern and Mid-Atlantic states in an attempt to curb emissions of carbon dioxide (C02) (more)

Olesniewicz, Timothy J.

2008-01-01T23:59:59.000Z

365

Small gas turbines exhibit single-digit emissions in service  

Science Conference Proceedings (OSTI)

A 10 MW-class, THM 1304-10D gas turbine from MAN-GHH, equipped with dry low-NO[sub x] combustion chambers, including hybrid burners, entered service last October. The unit was installed on the Stegal long-distance natural gas pipeline from the Olbernhau compression station on the Czech border. The pipeline transmits gas from Russia to the central part of Germany. A similar compression station, featuring three THM 1304-D driven compressor packages, started commercial operation last March in the Rehden station on the Midal pipeline. A test program carried out by MAN-GHH has demonstrated that the THM 1304 gas turbine has a wide operating range with NO[sub x] emission well under TA luft limits and, at the same time, negligible CO emissions. This is accomplished by combined effect of large volume combustion chambers, optimized wall cooling and premix dry low-NO[sub x] burners. 3 figs.

Chellini, R.

1994-06-01T23:59:59.000Z

366

IGES GHG Emissions Data | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Emissions Data IGES GHG Emissions Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IGES GHG Emissions Data Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset Website: www.iges.or.jp/en/cdm/report_kyoto.html References: IGES GHG Emissions Data[1] Summary "IGES GHG Emissions Data is aimed at providing comprehensive, organised information on the GHG emissions from Annex I countries to the UNFCCC in an easy-to-understand way. All information is extracted from the publicly available sources on the UNFCCC web-site and this data will be updated regularly. " References ↑ "IGES GHG Emissions Data" Retrieved from "http://en.openei.org/w/index.php?title=IGES_GHG_Emissions_Data&oldid=383109"

367

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various countries and US cities  

SciTech Connect

Past studies have shown that use of electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled internal-combustion-engine vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, the authors estimate greenhouse gas emission reductions for EVs, including these important aspects. They select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the US) and analyze greenhouse emission impacts of EVs in each city or country. These selected cities and countries have distinct differences in electric power-plant fuel mixes. They also select six driving cycles developed around the world. They choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Thus, the city- or country-specific vehicle energy consumption estimates reflect effects of both vehicle driving cycles and electric power-plant mixes. Finally, they estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and power-plant and vehicle operations. They estimate that relative to GVs, EVs reduce greenhouse gas emissions in all selected US cities and countries.

Wang, M.Q.; Marr, W.W. (Argonne National Lab., IL (United States). Center for Transportation Research)

1994-09-01T23:59:59.000Z

368

IPCC Emission Factor Database | Open Energy Information  

Open Energy Info (EERE)

IPCC Emission Factor Database IPCC Emission Factor Database Jump to: navigation, search Tool Summary Name: IPCC Emission Factor Database Agency/Company /Organization: World Meteorological Organization, United Nations Environment Programme Resource Type: Dataset Website: www.ipcc-nggip.iges.or.jp/EFDB/main.php References: IPCC-EFDB[1] About "EFDB is meant to be a recognised library, where users can find emission factors and other parameters with background documentation or technical references that can be used for estimating greenhouse gas emissions and removals. The responsibility of using this information appropriately will always remain with the users themselves." References ↑ "IPCC-EFDB" Retrieved from "http://en.openei.org/w/index.php?title=IPCC_Emission_Factor_Database&oldid=367213"

369

Sensitivity of Multi-gas Climate Policy to Emission Metrics  

Science Conference Proceedings (OSTI)

Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

2013-04-01T23:59:59.000Z

370

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

Not Available

2012-11-01T23:59:59.000Z

371

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network (OSTI)

and module manufacturing. · System/Plant Decommissioning · Disposal · PowerPlant Decommissioning · Waste life cycle GHG emissions from solar PV systems are similar to other renewables and nuclear energy.nrel.gov/harmonization. · Life cycle GHG emissions from c-Si and TF PV technologies appear broadly similar; the small number

372

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

emissions intensity of unconventional oil production remainof the forecasts of unconventional oil and gas productionassociated with unconventional production of oil and gas;

Coughlin, Katie

2013-01-01T23:59:59.000Z

373

Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Oil and Gas Jump to: navigation, search Oil and gas represents a non-renewable energy...

374

Ameren Missouri (Gas)- Business Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Ameren Missouri offers its commercial natural gas customers rebates for the installation of certain energy efficient natural gas equipment and measures, such as programmable thermostats, food...

375

Global Gas Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

BSA 28 years of gas and energy advisory services. Economics, pipeline tariffs, contracting, price risks. Research & training Negotiation of gas contracts

376

Natural Gas Exports Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

377

Natural Gas Imports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

378

Natural Gas Exports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

379

Natural Gas 1995 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1995: Issues and Trends iii Preface Natural Gas 1995: Issues and T rends has been prepared by the

380

Federal Energy Management Program: Prioritize Greenhouse Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Prioritize Greenhouse Gas Mitigation Strategies to someone by E-mail Share Federal Energy Management Program: Prioritize Greenhouse Gas Mitigation Strategies on Facebook Tweet...

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Monthly - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Monthly September 2013 U.S. Department of Energy

382

Natural Gas from Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas from Shale Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective...

383

CHBE 484: Term Report Greenhouse Gas Emissions Analysis  

E-Print Network (OSTI)

CHBE 484: Term Report Greenhouse Gas Emissions Analysis of Future UBC Transportation Options Curtis of UBC transportation in: 2007, 2020 based on the current transportation methods, the elimination for cars and 2316.08 tonnes CO2 for trolley and conventional buses traveling to UBC. If the transportation

384

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

385

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

386

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 12, 2011 August 12, 2011 Statement from National Security Council Spokesman Tommy Vietor on U.S.-Brazil Strategic Energy Dialogue Launch THE WHITE HOUSE Office of the Press Secretary August 1, 2011 DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by DOE's Office of Fossil Energy. July 27, 2011 Fossil Energy R&D Returns Significant National Benefit in More Than Three Decades of Achievement Research and development activities at DOE's Office of Fossil Energy have helped increase domestic energy supplies and security, lowered costs,

387

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

388

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

389

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

390

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

391

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

392

Estonian greenhouse gas emissions inventory report  

SciTech Connect

It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

1996-07-01T23:59:59.000Z

393

Greenhouse gas emissions associated with different meat-free diets in Sweden.  

E-Print Network (OSTI)

?? The production of food is responsible for large share of the anthropogenic greenhouse gas emissions. There is a wide range of emissions associated with (more)

Baumann, Andreas

2013-01-01T23:59:59.000Z

394

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network (OSTI)

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

395

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This final project report describes a three-year long EPRI supplemental project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project investigated an innovative approach to developing large-scale, cost-effective greenhouse gas (GHG) emissions offsets that potentially can be implemented across broad geographic areas of the United States and internationally.

2009-12-17T23:59:59.000Z

396

How the Carbon Emissions Were Estimated - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

How the Carbon Emissions Were Estimated. Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human ...

397

What is shale gas? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home What is shale gas? What is shale gas? What is shale gas? Energy.gov Careers & Internships Science &...

398

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn National Parks Clean Up with Alternative Fuels Many National Parks are adopting clean alternative fuel vehicles, advanced vehicles technologies and other fuel saving measures to maintain their air quality and keep the parks pristine. February 7, 2011 DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields.

399

Energy-Related Carbon Emissions - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Carbon Forum - North America October 1, 2012 Washington, D.C. by Adam Sieminski, Administrator Whats driving ...

400

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportatio...  

Open Energy Info (EERE)

Regulated Emissions, and Energy Use in Transportation (GREET) Model Abstract This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies...

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

402

Analysis of Potential Energy Saving and CO2 Emission Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China Title Analysis of Potential Energy Saving and CO2 Emission...

403

Analysis of Potential Energy Saving and CO2 Emission Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China Title Analysis of Potential Energy Saving and CO2 Emission Reduction of...

404

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

405

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network (OSTI)

RFG Running Hot Soak Diurnal CNG :Diesel Fuels Emissions RFGwith compressednatural gas (CNG),the hydrocarbontaitpipemethanol, natural gas (CNG),and hydrogen. As noted above,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

406

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

ng/J) distributions from residential natural gas appliances.ng/J) distribution from residential natural gas appliances.Pollutant Emissions from Residential Heating Systems, EPA-

Traynor, G.W.

2011-01-01T23:59:59.000Z

407

Energy Use and Carbon Emissions  

U.S. Energy Information Administration (EIA)

Electricity use worldwide increased significantly faster than overall energy use, ... consumption of hydroelectric energy, largely from the Aswan High Dam on the

408

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million metric tons) Carbon Intensity SIC Code Industry Group Total Net Electricity Natural Gas Petro- leum Coal Other (MMTC/ Quadrillion Btu) Total 371.7 131.1 93.5 87.3 56.8 3.1 17.16 20 Food and Kindred Products 24.4 9.8 9.1 W W 0.1 20.44 21 Tobacco Products W 0.1 W W W W W 22 Textile Mill Products 8.7 5.5 1.7 0.6 1.0 * 28.21 23 Apparel and Other Textile Products W 1.3 0.4 W W W W 24 Lumber and Wood Products 4.9 3.4 0.7 W W 0.2 9.98 25 Furniture and Fixtures 1.6 1.1 0.3 * 0.1 0.1 23.19 26 Paper and Allied Products 31.6 11.0 8.3 4.3 7.8 0.3 11.88

409

False optimism for the hydrogen economy and the potential of biofuels and advanced energy storage to reduce domestic greenhouse gas emissions  

E-Print Network (OSTI)

Discussion of the general domestic energy situation addresses the motivations which underlie the push for an hydrogen energy economy. The validity of claims about such a hydrogen economy and the official DOE position ...

Foster, Rory, 1982-

2004-01-01T23:59:59.000Z

410

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

program in Mexico City, and contacts in energy efficiencyenergy savings due to cool roofs for the median climate in Brazil, India, and Mexico ..energy savings due to cool roofs for the median climate in Brazil, India, and Mexico

Akbari, Hashem

2011-01-01T23:59:59.000Z

411

The influence of temperature in the gas emissions by using mixtures of diesel & olive seed oil as fuels  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: gas emissions, olive seed oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

412

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

CHP Emissions Reduction Estimator CHP Emissions Reduction Estimator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CHP Emissions Reduction Estimator Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/chp/basic/calculator.html Country: United States UN Region: Northern America CHP Emissions Reduction Estimator Screenshot References: http://www.epa.gov/chp/basic/calculator.html "This Emissions Estimator provides the amount of reduced emissions in terms of pounds of CO2, SO2, and NOX based on input from the User regarding the CHP technology being used. In turn the User will be provided with

413

Berkshire Gas - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy efficiency rebates. Berkshire Gas will pay residential customers that use gas to heat their homes 75% of the installed cost (up to 2,000) of certain pre-determined energy...

414

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

415

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration - EIA ... nuclear reactors, ... Selected National Average Natural Gas Prices, 2008-2013: XLS: PDF:

416

Energy Information Administration - Natural Gas Glossary  

U.S. Energy Information Administration (EIA)

Energy Information Administration Deliverability on the Interstate Natural Gas Pipeline System 143 Glossary Abandonment: Regulatory permission to ...

417

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

418

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

419

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington  

E-Print Network (OSTI)

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007 ............................................................................................6 Operational Boundaries.......................................................................................................................21 Montlake Landfill

Kaminsky, Werner

420

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Title Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Publication Type Report Year of Publication 2012 Authors Kong, Lingbo, Ali Hasanbeigi, and Lynn K. Price Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory Keywords emerging technologies, energy efficiency, ghg, Low Emission & Efficient Industry, pulp and paper Abstract The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2)emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry's absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry's mid- and long-term climate change mitigation strategies. This report describes the industry's processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry's energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy and air emission implications of a decentralized wastewater system  

NLE Websites -- All DOE Office Websites (Extended Search)

and air emission implications of a decentralized wastewater system and air emission implications of a decentralized wastewater system Title Energy and air emission implications of a decentralized wastewater system Publication Type Journal Article Year of Publication 2012 Authors Shehabi, Arman, Jennifer R. Stokes, and Arpad Horvath Journal Environmental Research Letters Volume 7 Issue 2 Abstract Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

422

Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment  

E-Print Network (OSTI)

coating comparison of air-conditioning energy usage for bothtemperature, heat flux, and air conditioning electricity useHourly time series of air conditioning and non-conditioning

Akbari, Hashem

2011-01-01T23:59:59.000Z

423

Florida Public Utilities (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences...

424

Federal Energy Management Program: Greenhouse Gas Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation Planning to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Mitigation Planning on Facebook Tweet about Federal Energy Management Program:...

425

Federal Energy Management Program: Greenhouse Gas Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Travel to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Mitigation Planning for Business Travel on Facebook Tweet about Federal Energy...

426

Federal Energy Management Program: Greenhouse Gas Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employee Commuting to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Mitigation Planning for Employee Commuting on Facebook Tweet about Federal Energy...

427

Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions in Agricultural Crop Production  

Science Conference Proceedings (OSTI)

This report covers the first two years of a three-year long project entitled "Developing Greenhouse Gas Emissions Offsets by Reducing Nitrous Oxide (N2O) Emissions." This EPRI-sponsored project is investigating an innovative approach to developing large-scale and potentially cost-effective greenhouse gas (GHG) emissions offsets that could be implemented across broad geographic areas of the U.S. and internationally. The tools and information developed in this project will broaden the GHG emissions offset ...

2008-11-11T23:59:59.000Z

428

Evaluate Greenhouse Gas Emissions Profile for Employee Commuting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Commuting Employee Commuting Evaluate Greenhouse Gas Emissions Profile for Employee Commuting October 7, 2013 - 1:44pm Addthis YOU ARE HERE Step 2 To fulfill annual reporting requirements under Executive Order 13514, Federal agencies must estimate the total commute miles traveled by employees using each transportation method. While these data are rolled up to the agency level for reporting purposes, effective planning for commuter greenhouse gas (GHG) emission reductions requires an understanding of employee commute behavior at the worksite level. For agencies with hundreds or thousands of worksites across the country, worksite level analysis may not be feasible for all locations. It is recommended that agencies focus initial analysis on the largest worksites or clusters of worksites in major metropolitan areas with similar commuting

429

Xcel Energy (Gas and Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Xcel Energy (Gas and Electric) - Residential Energy Efficiency Rebate Programs Eligibility Residential Savings For Home Weatherization...

430

PSNC Energy (Gas) - Energy-Efficient Appliance Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Appliance Rebate Program PSNC Energy (Gas) - Energy-Efficient Appliance Rebate Program Eligibility Commercial Residential Savings For Heating & Cooling Commercial...

431

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels.  

E-Print Network (OSTI)

Yale University committed to reducing its primary greenhouse gas emissions 43% below 2005 levels. Beginning in 2013, emissions from the University fleet are included in the reduction target. Greenhouse Gas. 2005 2013 In 2005,Yale University pledged to reduce its primary greenhouse gas emissions forty

432

Projecting Insect Voltinism Under High and Low Greenhouse Gas Emission Conditions  

E-Print Network (OSTI)

REVIEW Projecting Insect Voltinism Under High and Low Greenhouse Gas Emission Conditions SHI CHEN,1 change can alter insect voltinism under varying greenhouse gas emissions scenarios by using input climate data until 2099 under both high (A1?) and low (B1) greenhouse gas emission scenarios, we used

433

RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several  

E-Print Network (OSTI)

RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations

Wehrli, Bernhard

434

AGRICULTURAL SECTOR ANALYSIS ON GREENHOUSE GAS EMISSION MITIGATION IN THE UNITED STATES  

E-Print Network (OSTI)

AGRICULTURAL SECTOR ANALYSIS ON GREENHOUSE GAS EMISSION MITIGATION IN THE UNITED STATES: Agricultural Economics #12;AGRICULTURAL SECTOR ANALYSIS ON GREENHOUSE GAS EMISSION MITIGATION IN THE UNITED on Greenhouse Gas Emission Mitigation in the United States. (December 2000) Uwe Schneider, M.Ag., Humboldt

McCarl, Bruce A.

435

Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems  

E-Print Network (OSTI)

Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems annual variations of greenhouse gas emissions from cropping systems and effects of land management a powerful tool for estimating greenhouse gas emissions from terrestrial ecosystems. INDEX TERMS: 1610 Global

436

Summary of Environmental Performance at Harvard Greenhouse Gas Emissions from Harvard University  

E-Print Network (OSTI)

Summary of Environmental Performance at Harvard Greenhouse Gas Emissions from Harvard University of emissions reductions associated with central utilities. Harvard University Greenhouse Gas Emissions: FY2006 AND SAFETY The 2010 Harvard University Greenhouse Gas Inventory represents the full breadth of the University

437

Summary of Environmental Performance at Harvard Greenhouse Gas Emissions from Harvard University  

E-Print Network (OSTI)

Summary of Environmental Performance at Harvard Greenhouse Gas Emissions from Harvard University of emissions reductions associated with central utilities. Harvard University Greenhouse Gas Emissions: FY2006 AND SAFETY The 2011 Harvard University Greenhouse Gas Inventory represents the full breadth of the University

438

GEIA-ACCENT Emission Data Portal | Open Energy Information  

Open Energy Info (EERE)

GEIA-ACCENT Emission Data Portal GEIA-ACCENT Emission Data Portal Jump to: navigation, search Tool Summary Name: Global Emissions Inventory Activity (GEIA) Agency/Company /Organization: National Aeronautics and Space Administration Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset Website: www.geiacenter.org/ References: Global Emissions Inventory Activity (GEIA)[1] "The GEIA /ACCENT data portal provides gridded emission data; emission data are usually separated into three main categories : anthropogenic emissions, biomass burning emissions, and natural emissions: anthropogenic emissions include emissions from fossil fuel and biofuel consumption, industry and agricultural sources. biomass burning emissions include emissions from forest fires, savannah fires, and sometimes large croplands fires.

439

Climate Change Standards Working Group, SUDS Policy and Planning Committee Quantifying Greenhouse Gas Emissions  

E-Print Network (OSTI)

from Transit Abstract: This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement by laying out a standard methodology for transit agencies to report their greenhouse gas emissions in a transparent, consistent and cost-effective manner.

unknown authors

2009-01-01T23:59:59.000Z

440

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Greenhouse gas emissions in Sub-Saharan Africa  

SciTech Connect

Current and future carbon emissions from land-use change and energy consumption were analyzed for Sub-Saharan Africa. The energy sector analysis was based on UN energy data tapes while the land-use analysis was based on a spatially-explicit land-use model developed specifically for this project. The impacts of different energy and land-use strategies on future carbon emissions were considered. (A review of anthropogenic emissions of methane, nitrous oxides, and chlorofluorocarbons in Sub-Saharan Africa indicated that they were probably minor in both a global and a regional context. The study therefore was focused on emissions of carbon dioxide.) The land-use model predicts carbon emissions from land use change and the amount of carbon stored in vegetation (carbon inventory) on a yearly basis between 1985 and 2001. Emissions and inventory are modeled at 9000 regularly-spaced point locations in Sub-Saharan Africa using location-specific information on vegetation type, soils, climate and deforestation. Vegetation, soils, and climate information were derived from continental-scale maps while relative deforestation rates(% of forest land lost each year) were developed from country-specific forest and deforestation statistics (FAO Tropical Forest Resources Assessment for Africa, 1980). The carbon emissions under different land use strategies in Sub-Saharan Africa were analyzed by modifying deforestation rates and altering the amount of carbon stored under different land uses. The considered strategies were: preservation of existing forests, implementation of agroforestry, and establishment of industrial tree plantations. 82 refs., 16 figs., 25 tabs.

Graham, R.L.; Perlack, R.D.; Prasad, A.M.G.; Ranney, J.W.; Waddle, D.B.

1990-11-01T23:59:59.000Z

442

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

International Energy Outlook - Natural Gas Section. Released: July 25, 2013. International natural gas projections through 2040 . Natural Gas Imports ...

443

Central Hudson Gas & Electric (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Home Energy SavingsCentral Program offers customers rebates of up to $700 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

444

Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and  

E-Print Network (OSTI)

6/5/2013 1 Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas Council June 4, 2013 Portland, OR 1 CO2 Chemistry 1 molecule of CO 1 atom carbon1 molecule of CO2 = 1 atom carbon + 2 atoms oxygen 2 #12;6/5/2013 2 CO2 Chemistry 1 mole of carbon = 6 02 x 1023 carbon atoms 1

445

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

446

Potential Efficiency Gains, and Energy and Carbon Emission Savings ...  

U.S. Energy Information Administration (EIA)

Table 3. Potential Efficiency Gains, and Energy and Carbon Emission Savings, of Replacing Existing 1997 Appliances

447

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

448

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Prioritize Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:27am Addthis At this point in the analysis for using renewable energy in buildings, after estimating costs to implement strategies, there should be a list of sites and promising renewable energy technologies. The next step in the analysis is to prioritize those sites and technologies to achieve cost-effective reductions in greenhouse (GHG) emissions. In prioritizing the locations for cost-effective renewable energy project development, start with the sites that have the: Best resources Best financial incentives Highest energy rates. These factors are the most important for determining the economic viability

449

The impact of natural gas imports on air pollutant emissions in Mexico  

SciTech Connect

This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

1993-12-31T23:59:59.000Z

450

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-01-01T23:59:59.000Z

451

Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92  

DOE Green Energy (OSTI)

The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

Rimkus, W.A.; Larsen, R.P.

1992-09-01T23:59:59.000Z

452

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Carbon dioxide injection -- an important part of carbon capture and storage technology -- is underway as part of a pilot study of CO2 enhanced oil recovery in the Citronelle Field of Mobile County, Alabama. October 29, 2009 DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research expedition off the coast of northeastern Alaska involving the Office of Fossil Energy's National Energy Technology Laboratory (NETL). October 2, 2009 DOE to Unveil New Online Database of Oil and Natural Gas Research Results

453

Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities  

SciTech Connect

Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

Wang, M.Q.; Marr, W.W.

1994-02-10T23:59:59.000Z

454

Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options  

DOE Green Energy (OSTI)

Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

Wang, M.Q.

1997-05-20T23:59:59.000Z

455

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

E-Print Network (OSTI)

of Carbon Dioxide Emissions on GNP Growth: Interpretation ofMcNeil et al Enduse Global Emissions Mitigation Scenarios (Keywords Greenhouse gas emissions, emissions scenarios,

McNeil, Michael A.

2010-01-01T23:59:59.000Z

456

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

457

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

458

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

459

Agegraphic Chaplygin gas model of dark energy  

E-Print Network (OSTI)

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

460

Where Our Natural Gas Comes From - Energy Explained, Your Guide To  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas > Where Our Natural Gas Comes From Natural Gas > Where Our Natural Gas Comes From Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

Note: This page contains sample records for the topic "gas emissions energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

462

Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle  

E-Print Network (OSTI)

p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Ken K. Chin n Department of Physics and Apollo CdTe Solar Energy Research Center, NJIT, Newark, NJ 07058, USA a r t i c l e substitution of Cd CuCd 0=? #12; #12; play critical roles in p-doping of CdTe in CdS/CdTe thin film solar cells

463

Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Vehicle Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations on AddThis.com... More in this section... Federal

464

Atmos Energy - Residential Natural Gas and Weatherization Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program Eligibility Residential...

465

Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Home Energy Solutions and Gas) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company and The United Illuminating Company, Connecticut Natural Gas, Southern Connecticut Gas, and Yankeegas customers. The Home Energy Solutions Program provides weatherization assistance to any

466

Federal Energy Management Program: Federal Greenhouse Gas Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements Requirements Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable energy generation projects

467

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network (OSTI)

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

468

Liquefied Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

469

Greenhouse Gas Initiative Scenario Database | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Initiative Scenario Database Greenhouse Gas Initiative Scenario Database Jump to: navigation, search Tool Summary Name: Greenhouse Gas Initiative Scenario Database Agency/Company /Organization: Science for Global Insight Sector: Climate, Energy, Land Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: www.iiasa.ac.at/web-apps/ggi/GgiDb/dsd?Action=htmlpage&page=about Cost: Free References: Greenhouse Gas Initiative Scenario Database[1] The GGI (Greenhouse Gas Initiative) scenario database documents the results of a set of greenhouse gas emission scenarios that were created using the IIASA Integrated Assessment Modeling Framework and previously documented in a special issue of the Technological Forecasting and Social Change.

470

Improved accounting of emissions from utility energy storage system operation  

Science Conference Proceedings (OSTI)

Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

Paul Denholm; Tracey Holloway [University of Wisconsin-Madison, Madison, WI (United States)

2005-12-01T23:59:59.000Z

471

The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US  

SciTech Connect

This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the reg