National Library of Energy BETA

Sample records for gas emission trends

  1. Greenhouse Gas Emission Trends and Projections in Europe 2009...

    Open Energy Info (EERE)

    Liechtenstein, Poland and Turkey provided updated information on emission projections and national programmes in 2009." References "Greenhouse Gas Emission Trends and...

  2. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  3. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California

  4. Natural gas 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  5. Natural gas 1995: Issues and trends

    SciTech Connect (OSTI)

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  6. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  7. Global Natural Gas Market Trends, 2. edition

    SciTech Connect (OSTI)

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  8. Drivers, Trends and Mitigation

    SciTech Connect (OSTI)

    Blanco, Arthur S.; Gerlagh, Reyer; Suh, Sangwon; Barrett, John A.; de Coninck, Heleen; Diaz Morejon, Cristobal Felix; Mathur, Ritu; Nakicenovic, Nebojsa; Ahenkorah, Alfred Ofosu; Pan, Jiahua; Pathak, Himanshu; Rice, Jake; Richels, Richard G.; Smith, Steven J.; Stern, David; Toth, Ferenc L.; Zhou, Peter

    2014-12-01

    Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and the main drivers that explain those trends. The chapter uses different perspectives to analyze past GHG-emissions trends, including aggregate emissions flows and per capita emissions, cumulative emissions, sectoral emissions, and territory-based vs. consumption-based emissions. In all cases, global and regional trends are analyzed. Where appropriate, the emission trends are contextualized with long-term historic developments in GHG emissions extending back to 1750.

  9. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By ... full advantage of op- portunity fuels and thereby reduce their natural gas consumption. ...

  10. Trends in U.S. Residential Natural Gas Consumption

    Reports and Publications (EIA)

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  11. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  12. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13

  13. SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARYGREENHOUSEGASEMISSIONSDATAWORKSHEETJANUARY20...

  14. Seasonality in the Natural Gas Balancing Item: Historical Trends and

    U.S. Energy Information Administration (EIA) Indexed Site

    Corrective Measures Analysis > Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Released: June 4, 2010 Download Full Report (PDF) This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly. Research finds that a significant portion of data collected on EIA’s primary monthly natural gas

  15. NETL - World CO2 Emissions - Projected Trends Tool | Open Energy...

    Open Energy Info (EERE)

    to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger...

  16. Smoothing method aids gas-inventory variance trending

    SciTech Connect (OSTI)

    Mason, R.G. )

    1992-03-23

    This paper reports on a method for determining gas-storage inventory and variance in a natural-gas storage field which uses the equations developed to determine gas-in-place in a production field. The calculations use acquired data for shut-in pressures, reservoir pore volume, and storage gas properties. These calculations are then graphed and trends are developed. Evaluating trends in inventory variance can be enhanced by use of a technique, described here, that smooths the peaks and valleys of an inventory-variance curve. Calculations using the acquired data determine inventory for a storage field whose drive mechanism is gas expansion (that is, volumetric). When used for a dry gas, condensate, or gas-condensate reservoir, the formulas require no further modification. Inventory in depleted oil fields can be determined in this same manner, as well. Some additional calculations, however, must be made to assess the influence of oil production on the gas-storage process.

  17. Natural gas 1994: Issues and trends

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  18. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    U.S. Energy Information Administration (EIA) Indexed Site

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  19. INEEL Greenhouse Gas Inventory and Trend Analysis

    SciTech Connect (OSTI)

    Shropshire, David Earl; Teel, Dale Milton

    2000-02-01

    The objective of the INEEL GHG Inventory and Trend Analysis is to establish INEEL expertise in carbon management decision making and policy analysis. This FY-99 effort is the first step toward placing the INEEL in a leadership role within the DOE laboratories to support carbon management systems and analysis.

  20. Alternative Fuels Data Center: Natural Gas Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data

  1. Natural gas 1996 - issues and trends

    SciTech Connect (OSTI)

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  2. EIA Energy Efficiency-Energy Related Greenhouse Gas Emissions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Related Greenhouse Gas Emissions Links Energy Related Greenhouse Gas Emissions Links Posted Date: May 2007 Page Last Modified: September 2010 EIA Links Disclaimer: These pages...

  3. Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels & Greenhouse Gas Emissions: Myths versus Facts (107.15 KB) More Documents & Publications Biofuels & Greenhouse Gas Emissions: Myths versus Facts Microsoft Word - ...

  4. Biofuels & Greenhouse Gas Emissions: Myths versus Facts | Department...

    Energy Savers [EERE]

    myth versus facts about biofuels and greenhouse gas emissions. Biofuels & Greenhouse Gas Emissions: Myths versus Facts (166.88 KB) More Documents & Publications Microsoft Word - ...

  5. DOE Strengthens Public Registry to Track Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Registry to Track Greenhouse Gas Emissions DOE Strengthens Public Registry to Track Greenhouse Gas Emissions April 17, 2006 - 10:20am Addthis Announces Revised Guidelines ...

  6. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate Change in NEPA Reviews Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate ...

  7. Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...

    Open Energy Info (EERE)

    National Greenhouse Gas Emissions Baseline Scenarios: Learning from Experiences in Developing Countries Jump to: navigation, search Name Ethiopia-National Greenhouse Gas Emissions...

  8. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect (OSTI)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  9. Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues

    U.S. Energy Information Administration (EIA) Indexed Site

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues Release date: November 25, 2014 Executive summary Over the past five years, rapid growth in U.S. onshore natural gas and oil production has led to increased volumes of natural gas plant liquids (NGPL) and liquefied refinery gases (LRG). The increasing economic importance of these volumes, as a result of their significant growth in production, has revealed the need for better data accuracy and transparency to improve the quality of

  10. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Decrease 48% Decrease 90% Carbon Capture at the Power Plant Results in 80% Reduction in LC GHG Emissions for Coal-fired Power Plants and 70% Reduction for Natural Gas- fired ...

  11. Minimising greenhouse gas emissions from fossil fuels

    SciTech Connect (OSTI)

    Freund, P.

    1997-07-01

    Combustion of fossil fuels is the main anthropogenic source of carbon dioxide, the principal greenhouse gas. Generation of electricity is the single largest user of fossil fuels, world-wide. If there is international agreement about the need to make substantial reductions in greenhouse gas emissions, then having access to suitable, effective technology would be important. This would help avoid the need for precipitate action, such as radical changes in the energy supply systems. Capture and disposal of greenhouse gases from flue gases can achieve substantial reductions in greenhouse gas emissions. This can be realized with known technology. In this paper, the range of options will be summarized and steps needed to achieve further progress will be identified. Emissions of other gases, such as methane, are also expected to influence the climate. Methane is emitted from many anthropogenic sources; the IEA Greenhouse Gas programme is investigating ways of reducing these emissions. Opportunities for abatement of methane emissions associated with coal mining will be described. Reduction in emissions from drainage gas is relatively straightforward and can, in appropriate circumstances, generate useful income for the none operator. More substantial amounts of methane are discharged in mine ventilation air but these are more difficult to deal with. In this paper, a summary will be given of recent progress in reducing methane emissions. Opportunities will be examined for further research to progress these technologies.

  12. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    grasslands 34 Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps 35 Emissions of carbon dioxide from biofuelbioenergy use by sector and fuel

  13. CO{sub 2} Emission Calculations and Trends

    DOE R&D Accomplishments [OSTI]

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  14. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  15. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious

  16. Destruction of acid gas emissions

    DOE Patents [OSTI]

    Mathur, Mahendra P. (Pittsburgh, PA); Fu, Yuan C. (Muroran, JP); Ekmann, James M. (Pittsburgh, PA); Boyle, John M. (Pittsburgh, PA)

    1991-01-01

    A method of destroying NO.sub.x and SO.sub.2 in a combustion gas in disclosed. The method includes generating active species by treating stable moleucles in a high temperature plasma. Ammonia, methane, steam, hydrogen, nitrogen or a combination of these gases can be selected as the stable molecules. The gases are subjected to plasma conditions sufficient to create free radicals, ions or excited atoms such as N, NH, NH.sub.2, OH.sup.-, CH and/or CH.sub.2. These active species are injected into a combustion gas at a location of sufficiently high temperature to maintain the species in active state and permit them to react with NO.sub.x and SO.sub.2. Typically the injection is made into the immediate post-combustion gases at temperatures of 475.degree.-950.degree. C.

  17. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  18. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology As natural gas travels through infrastructure, from well-head to customer meter, small ...

  19. Selectivity trend of gas separation through nanoporous graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng; Jiang, De-en

    2014-01-29

    We demonstrate that porous graphene can efficiently separate gases according to their molecular sizes using molecular dynamic (MD) simulations,. The flux sequence from the classical MD simulation is H2>CO2>>N2>Ar>CH4, which generally follows the trend in the kinetic diameters. Moreover, this trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO2/N2 mixtures further demonstrate the separation capability of nanoporous graphene.

  20. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  1. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  2. Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-09-01

    This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

  3. Application of microturbines to control emissions from associated gas

    SciTech Connect (OSTI)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  4. Performance, Efficiency and Emissions Assessment of Natural Gas Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine | Argonne National Laboratory Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine Title Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine Publication Type Journal Article Year of

  5. CEQ Releases Final Guidance on Consideration of Greenhouse Gas Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Effects of Climate Change in NEPA | Department of Energy CEQ Releases Final Guidance on Consideration of Greenhouse Gas Emissions and Effects of Climate Change in NEPA CEQ Releases Final Guidance on Consideration of Greenhouse Gas Emissions and Effects of Climate Change in NEPA August 3, 2016 - 1:58pm Addthis CEQ released its Final Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy

  6. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State ... often are constrained in the investments that they are willing or able to make ...

  7. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...

  8. #AskBerkeleyLab: Jeff Greenblatt Talks Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greenblatt, Jeff

    2015-02-02

    We received questions from our social media audience around California's goal to dramatically reduce its greenhouse gas emissions by 2030. Berkeley Lab scientist Jeff Greenblatt answers them here.

  9. Analysis shows greenhouse gas emissions similar for shale, crude...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Wang, Argonne senior scientist and lead on the GREET model Analysis shows greenhouse gas emissions similar for shale, crude oil By Tona Kunz * October 15, 2015 Tweet ...

  10. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, and carbon dioxide equivalent) for each facility as well as total...

  11. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  12. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from agriculture, including assessment of mitigation options for...

  13. Verifying Greenhouse Gas Emissions: Methods to Support International...

    Open Energy Info (EERE)

    Climate Agreements Jump to: navigation, search Tool Summary Name: Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany...

  14. Technologies to characterize natural gas emissions tested in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies to characterize natural gas emissions tested in ... development of ultra-sensitive methane-sensing technology. ... have been focused on upstream applications in the oil ...

  15. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    strong price contango during the report week, mitigated withdrawals of natural gas from storage. Other Market Trends: EIA Releases New Report on U.S. Greenhouse Gas Emissions:...

  17. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  18. Parametric modeling of exhaust gas emission from natural gas fired gas turbines

    SciTech Connect (OSTI)

    Bakken, L.E.; Skogly, L.

    1996-07-01

    Increased focus on air pollution from gas turbines in the Norwegian sector of the North Sea has resulted in taxes on CO{sub 2}. Statements made by the Norwegian authorities imply regulations and/or taxes on NO{sub x} emissions in the near future. The existing CO{sub 2} tax of NOK 0.82/Sm{sup 3} (US Dollars 0.12/Sm{sup 3}) and possible future tax on NO{sub x} are analyzed mainly with respect to operating and maintenance costs for the gas turbine. Depending on actual tax levels, the machine should be operated on full load/optimum thermal efficiency or part load to reduce specific exhaust emissions. Based on field measurements, exhaust emissions (CO{sub 2}, CO, NO{sub x}, N{sub 2}O, UHC, etc.) are established with respect to load and gas turbine performance, including performance degradation. Different NO{sub x} emission correlations are analyzed based on test results, and a proposed prediction model presented. The impact of machinery performance degradation on emission levels is particularly analyzed. Good agreement is achieved between measured and predicted NO{sub x} emissions from the proposed correlation. To achieve continuous exhaust emission control, the proposed NO{sub x} model is implemented to the on-line condition monitoring system on the Sleipner A platform, rather than introducing sensitive emission sensors in the exhaust gas stack. The on-line condition monitoring system forms an important tool in detecting machinery condition/degradation and air pollution, and achieving optimum energy conservation.

  19. U.S. Natural Gas Markets: Recent Trends and Prospects for the Future

    Reports and Publications (EIA)

    2001-01-01

    The purpose of this study is to examine recent trends and prospects for the future of the U.S. natural gas market. Natural gas prices rose dramatically in 2000 and remained high through the first part of 2001, raising concerns about the future of natural gas prices and potential for natural gas to fuel the growth of the U.S. economy.

  20. Trends in on-road vehicle emissions of ammonia

    SciTech Connect (OSTI)

    Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

    2008-07-15

    Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

  1. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_clark.pdf (100.8 KB) More Documents & Publications Evaluating Exhaust

  2. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology

    Office of Energy Efficiency and Renewable Energy (EERE)

    As natural gas travels through infrastructure, from well-head to customer meter, small portions are routinely used as fuel, vented, flared, or inadvertently leaked to the atmosphere. This paper describes the analytical and methodological basis for three diagrams that illustrate the natural gas losses and greenhouse gas emissions that result from these processes. The paper examines these emissions in some detail, focusing in particular on the production, processing, transmission and storage, and distribution segments of natural gas infrastructure.

  3. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Office of Environmental Management (EM)

    Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumbenergyuselossemissionslg.gif How...

  4. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Deployment of Advanced Technology | Department of Energy Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced

  5. Greenhouse Gas Emissions and Fuel Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1: Natural gas flaring associated with crude oil production ......as "lease and plant fuel" and for "pipeline and distribution use." 1 * Venting: The ...

  6. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  7. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  8. EIA - Greenhouse Gas Emissions - High-GWP gases

    Gasoline and Diesel Fuel Update (EIA)

    5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA

  9. GAS EMISSION FROM DEBRIS DISKS AROUND A AND F STARS

    SciTech Connect (OSTI)

    Zagorovsky, Kyryl; Brandeker, Alexis; Wu Yanqin E-mail: alexis@astro.su.s

    2010-09-01

    Gas has been detected in a number of debris disk systems. This gas may have arisen from grain sublimation or grain photodesorption. It interacts with the surrounding dust grains through a number of charge and heat exchanges. Studying the chemical composition and physical state of this gas can therefore reveal much about the dust component in these debris disks. We have produced a new code, ONTARIO, to address gas emission from dusty gas-poor disks around A-F stars. This code computes the gas ionization and thermal balance self-consistently, with particular care taken of heating/cooling mechanisms. Line emission spectra are then produced for each species (up to zinc) by statistical equilibrium calculations of the atomic/ionic energy levels. For parameters that resemble the observed {beta} Pictoris gas disk, we find that the gas is primarily heated by photoelectric emission from dust grains, and primarily cooled through the C II 157.7 {mu}m line emission. The gas can be heated to a temperature that is warmer than that of the dust and may in some cases reach temperature for thermal escape. The dominant cooling line, C II 157.7 {mu}m, should be detectable by Herschel in these disks, while the O I 63.2 {mu}m line will be too faint. We also study the dependence of the cooling line fluxes on a variety of disk parameters, in light of the much improved sensitivity to thermal line emission in the mid/far-infrared and at submillimeter wavelengths provided by, in particular, Herschel, SOFIA, and ALMA. These new instruments will yield much new information about dusty debris disks.

  10. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses

  11. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  12. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  13. Natural Gas Issues and Trends - Record winter withdrawals create summer

    U.S. Energy Information Administration (EIA) Indexed Site

    storage challenges - Energy Information Administration Natural Gas Glossary › FAQS › Overview Data Summary Prices Exploration & reserves Production Imports/exports Pipelines Storage Consumption All natural gas data reports Analysis & Projections Major Topics Most popular Consumption Exploration & reserves Imports/exports & pipelines Prices Production Projections Recurring Storage All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Market Digest: Natural

  14. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  15. EIA - Greenhouse Gas Emissions - Land use

    Gasoline and Diesel Fuel Update (EIA)

    6. Land use 6.1. Total land use, land use change, and forests This chapter presents estimates of carbon sequestration (removal from the atmosphere) and emissions (release into the atmosphere) from forests, croplands, grasslands, and residential areas (urban trees, grass clippings, and food scraps) in the United States. In 2008, land use, land use change, and forests were responsible for estimated net carbon sequestration of 940 MMTCO2e (Table 31), representing 16 percent of total U.S. CO2

  16. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  17. New Generating Technology to Reduce Greenhouse Gas Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40%

  18. Sensitivity of Multi-gas Climate Policy to Emission Metrics

    SciTech Connect (OSTI)

    Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

    2013-04-01

    Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

  19. Trends in emissions of acidifying species in Asia, 1985-1997.

    SciTech Connect (OSTI)

    Streets, D. G.; Tsai, N. Y.; Akimoto, H.; Oka, K.

    2000-05-31

    Acid deposition is a serious problem throughout much of Asia. Emissions of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) have been increasing steadily, as nations strive to increase their levels of economic development. Coal and fuel oil have been the main choices for powering industrial development; and, until recently, only a few countries (notably Japan and Taiwan) had taken significant steps to avert the atmospheric emissions that accompany fuel combustion. This paper discusses trends in emissions of SO{sub 2} and NO{sub x} that have occurred in Asian countries in the period 1985--1997, using results from the RAINS-ASIA computer model and energy-use trends from the IEA Energy Statistics and Balances database. Emissions of SO{sub 2} in Asia grew from 26.6 Tg in 1985 to 33.7 Tg in 1990 and to 39.2 Tg in 1997. Though SO{sub 2} emissions used to grow as fast as fossil-fuel use, recent limitations on the sulfur content of coal and oil have slowed the growth. The annual-average emissions growth between 1990 and 1997 was only 1.1%, considerably less than the economic growth rate. Emissions of NO{sub x}, on the other hand, continue to grow rapidly, from 14.1 Tg in 1985 to 18.7 Tg in 1990 and 28.5 Tg in 1997, with no signs of abating. Thus, though SO{sub 2} remains the major contributor to acidifying emissions in Asia, the role of NO{sub x}, will become more and more important in the future.

  20. Trends in anthropogenic mercury emissions in China from 1995 to 2003

    SciTech Connect (OSTI)

    Ye Wu; Shuxiao Wang; David G. Streets; Jiming Hao; Melissa Chan; Jingkun Jiang

    2006-09-01

    We have developed multiple-year inventories of anthropogenic mercury emissions in China for 1995 through 2003. It is estimated that total Hg emissions from all anthropogenic sources increased at an average annual rate of 2.9% during the period 1995-2003, reaching 696 ({+-}307) t in 2003, with a speciation split of 395 t of Hg{sup 0}, 230 t of Hg{sup 2+}, and 70 t of particulate mercury, Hg{sup p}. Nonferrous metals smelting and coal combustion continue to be the two leading mercury sources in China, as nonferrous metals production and coal consumption keep increasing. Nonferrous metals smelting and coal combustion together contributed {approximately}80% of total Hg emissions during the past decade. Hg emissions from coal combustion increased from 202 t in 1995 to 257 t in 2003 at an average annual rate of 3.0%. Among all of the coal consumption sectors, the power sector is the leading one in Hg emissions growth, up by 5.9% annually. Hg emissions from nonferrous metals smelting increased from 230 t in 1995 to 321 t in 2003 at an average annual rate of 4.2%. Although Hg emissions related to gold smelting decreased since 1996, other nonferrous metals such as zinc, lead, and copper contributed significant Hg growth at annual rates of 8.5%, 13.0%, and 6.9%, respectively. At provincial level, the trends of Hg emissions show significant variation. The uncertainty level decreased from {+-}78% (95% confidence interval) in the estimate of total emissions in 1995, to {+-}44% in 2003. This is primarily attributed to the decreased emissions from those Hg sources with the largest uncertainty in both activity levels and emission factors, such as artisanal gold smelting, mercury mining, and battery/fluorescent lamp production. 36 refs., 2 figs., 4 tabs.

  1. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  2. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power...

    Office of Scientific and Technical Information (OSTI)

    Flue Gas Purification - Power Plant Performance Citation Details In-Document Search Title: Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance A ...

  4. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect (OSTI)

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  5. Long-Term Changes in Gas- and Particle-Phase Emissions from On...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline ...

  6. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck ...

  7. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  8. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  9. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis thumb_energyuse_loss_emissions_lg.gif How effectively is energy used in U.S. manufacturing? How much greenhouse gas (GHG) is emitted from combustion in manufacturing operations? The U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis from the Oak Ridge National Laboratory traces energy from supply (fuel, electricity, and

  10. Statement from U.S. Energy Secretary Moniz on Mexico's Greenhouse Gas Emissions Targets

    Broader source: Energy.gov [DOE]

    Secretary Moniz welcomes the announcement by the Government of Mexico on new greenhouse gas emissions reduction targets.

  11. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  12. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  13. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  14. Gas reception uses modern solvents to reduce emissions

    SciTech Connect (OSTI)

    Pelekanou, A.; Vaughan, C.M.

    1996-12-31

    The Point of Ayr Terminal is the first gas plant to be built in Wales. It processes Natural Gas from BHP`s Liverpool Bay Development to feed a new 1,050 mega watt gas fired power station located at Connahs Quay, situated about 27 km south of the Terminal. This paper describes the overall process and focuses in particular on a relatively new process which uses one of a novel range of amines for treatment of natural gases containing both H{sub 2}S and mercaptans. The gas terminal is the first in the United Kingdom to include a Claus Tail Gas Unit to enhance sulfur recovery and achieve the latest HM Inspectorate of Pollution (HMIP) guidelines for recovery, therefore reducing the terminal sulfur dioxide emissions. The authorization includes targets for sulfur recovery at 99.95% and requires the use of low NOx burners for all fired equipment. Strict limits on the water quality are set and water discharged to the watercourse must be of river quality, and require checking prior to discharge.

  15. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across the Continental United States | Department of Energy Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions. p-03_carder.pdf

  16. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  17. Fact #608: February 1, 2010 Changes in Greenhouse Gas Emissions since 1990

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 8: February 1, 2010 Changes in Greenhouse Gas Emissions since 1990 Fact #608: February 1, 2010 Changes in Greenhouse Gas Emissions since 1990 In October of 2009, the United Nations (UN) released greenhouse gas inventory data for 1990 to 2007 for all countries that submitted data in accordance with the UN Framework Convention on Climate Change (UNFCCC). Between 1990 and 2007, total aggregate greenhouse gas (GHG) emissions for all reporting countries declined by 3.9%

  18. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components Panel > November 12, 2014 > Pittsburgh, PA > By Daniel Ersoy, GTI Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 GTI Company Overview

  19. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  20. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  1. Comparative emissions from natural gas and diesel buses

    SciTech Connect (OSTI)

    Clark, N.N.; Gadapati, C.J.; Lyons, D.W.; Wang, W.; Gautam, M.; Bata, R.M.; Kelly, K.; White, C.L.

    1995-12-31

    Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods. During the three years of testing, a significant fraction of emissions data was acquired from buses with Cummins L-10 engines designed to operate on either CNG or diesel. The CNG lean burn engines were spark ignited and throttled. Early CNG engines, which were pre-certification demonstration models, have provided the bulk of the data, but data from 9 buses with more advanced technology were also available. It has been found that carbon monoxide (CO) levels from early Cummins L-10 CNG powered buses varied greatly from bus to bus, with the higher values ascribed to either faulty catalytic converters or a rich idle situation, while the later model CNG L-10 engines offered CO levels considerably lower than those typical of diesel engines. The NO{sub x} emissions were on par with those from diesel L-10 buses. Those natural gas buses with engines adjusted correctly for air-fuel ratio, returned very low emissions data. CNG bus hydrocarbon emissions are not readily compared with diesel engine levels since only the non-methane organic gases (NMOG) are of interest. Data show that NMOG levels are low for the CNG buses. Significant reduction was observed in the particulate matter emitted by the CNG powered buses compared to the diesel buses, in most cases the quantity captured was vanishingly small. Major conclusions are that engine maintenance is crucial if emissions are to remain at design levels and that the later generation CNG engines show marked improvement over the earlier models. One may project for the long term that closed loop stoichiometry control is desirable even in lean burn applications.

  2. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  3. Combustor for a low-emissions gas turbine engine

    DOE Patents [OSTI]

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  4. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  5. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    SciTech Connect (OSTI)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  6. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  7. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  8. Controlling Methane Emissions in the Natural Gas Sector: A Review of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution | Department of Energy Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution This paper

  9. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Comparison of Clean Diesel Buses to CNG Buses

  10. The Greenhouse Gas Protocol Initiative: Allocation of Emissions...

    Open Energy Info (EERE)

    for allocation of GHG emissions from a combined heat and power (CHP) plant is a free Excel spreadsheet calculator designed to determine the GHG emissions attributable to the...

  11. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  12. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles | Department of Energy Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles

  13. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  14. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 12-13, 2014 DOE's Natural Gas Modernization Initiative Christopher Freitas, Program Manager, Natural Gas Midstream Infrastructure R&D, Office of Oil and Natural Gas, U.S. ...

  15. JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Priorities - News Releases | NREL JISEA News: Study on Methane Emissions from Natural Gas Systems Indicates New Priorities Study findings published in Policy Forum of Journal Science February 18, 2014 A new study published in the journal Science says that the total impact of switching to natural gas depends heavily on leakage of methane (CH4) during the natural gas life cycle, and suggests that more can be done to reduce methane emissions and to improve measurement tools which help

  16. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect (OSTI)

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electronsa process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 ?m). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  17. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  18. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles | Department of Energy Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. wtw_analysis_phevs.pdf (272.71 KB) More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles System

  19. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  20. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  1. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  2. Guidance on Consideration of Greenhouse Gas Emissions and the Effects of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change in National Environmental Policy Act Reviews (CEQ, 2016) | Department of Energy on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy Act Reviews (CEQ, 2016) Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in National Environmental Policy Act Reviews (CEQ, 2016) The Council on Environmental Quality (CEQ) released its Final Guidance for Federal Departments and Agencies on

  3. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  4. Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Kuang, Xingya; Shankar, T.S.; Lim, C. Jim; Bi, X.T.; Melin, Staffan

    2009-10-01

    Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO2, CO, and CH4 from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO2, CO, and CH4 in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO2 and CO were generated at room temperature under lower oxygen levels, whereas CH4 emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets.

  5. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Stationary Combustion Guidance1 The Greenhouse Gas Protocol tool for...

  6. The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Refrigerant Guide1 The Greenhouse Gas Protocol tool for refrigeration is...

  7. NREL: News - Prototype Low-Emissions Natural Gas Engine Saves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the promise of the prototype medium-duty natural gas engine equipped with ... and activities in alternative fuels and vehicles are available at www.afdc.nrel.gov. ...

  8. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and transportation efficiency. Due to economic efficiency Interstate Natural Gas Pipelines typically do not operate at their optimum design condition. So, most ...

  9. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  10. Natural Gas Methane Emissions in the United States Greenhouse Gas Inventory: Sources, Uncertainties and Opportunities for Improvement

    SciTech Connect (OSTI)

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-11-19

    Presentation summarizing key findings of a Joint Institute for Strategic Energy Analysis Report at an Environmental Protection Agency workshop: 'Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems' on November 19, 2015. For additional information see the JISEA report, 'Estimating U.S. Methane Emissions from the Natural Gas Supply Chain: Approaches, Uncertainties, Current Estimates, and Future Studies' NREL/TP-6A50-62820.

  11. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  12. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  13. Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    On December 18, 2014, CEQ released revised draft guidance for public comment that describes how Federal departments and agencies should consider the effects of greenhouse gas emissions and climate change in their National Environmental Policy Act reviews. The revised draft guidance supersedes the draft greenhouse gas and climate change guidance released by CEQ in February 2010.

  14. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Rather, methane emission reductions from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, ...

  15. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect (OSTI)

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  16. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gasoline Vehicles | Department of Energy Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam

  18. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014, Sheraton Pittsburgh Airport Hotel, Coraopolis, PA 15108 FINAL AGENDA Day 1 (Wednesday, November 12) 12:00-1:00 pm REGISTRATION 1:00-1:30 pm Welcome and Overviews Mark Johnson, Director, Advanced Manufacturing Office (AMO), DOE Office of Energy Efficiency and Renewable Energy Christopher J. Freitas, Senior Program Manager, Natural Gas Infrastructure, Office of Oil and Natural Gas, DOE Office of

  19. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  20. Greenhouse gas emissions in Sub-Saharan Africa

    SciTech Connect (OSTI)

    Graham, R.L.; Perlack, R.D.; Prasad, A.M.G.; Ranney, J.W.; Waddle, D.B.

    1990-11-01

    Current and future carbon emissions from land-use change and energy consumption were analyzed for Sub-Saharan Africa. The energy sector analysis was based on UN energy data tapes while the land-use analysis was based on a spatially-explicit land-use model developed specifically for this project. The impacts of different energy and land-use strategies on future carbon emissions were considered. (A review of anthropogenic emissions of methane, nitrous oxides, and chlorofluorocarbons in Sub-Saharan Africa indicated that they were probably minor in both a global and a regional context. The study therefore was focused on emissions of carbon dioxide.) The land-use model predicts carbon emissions from land use change and the amount of carbon stored in vegetation (carbon inventory) on a yearly basis between 1985 and 2001. Emissions and inventory are modeled at 9000 regularly-spaced point locations in Sub-Saharan Africa using location-specific information on vegetation type, soils, climate and deforestation. Vegetation, soils, and climate information were derived from continental-scale maps while relative deforestation rates(% of forest land lost each year) were developed from country-specific forest and deforestation statistics (FAO Tropical Forest Resources Assessment for Africa, 1980). The carbon emissions under different land use strategies in Sub-Saharan Africa were analyzed by modifying deforestation rates and altering the amount of carbon stored under different land uses. The considered strategies were: preservation of existing forests, implementation of agroforestry, and establishment of industrial tree plantations. 82 refs., 16 figs., 25 tabs.

  1. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  2. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  3. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  4. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only

  5. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  6. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Natural Gas Issues and Trends - High prices show stresses in New England

    U.S. Energy Information Administration (EIA) Indexed Site

    natural gas delivery system - Energy Information Administration High prices show stresses in New England natural gas delivery system Released: February 7, 2014 Abstract. Since 2012, limited supply from the Canaport and Everett liquefied natural gas (LNG) terminals coupled with congestion on the Tennessee and Algonquin pipelines has led to winter natural gas price spikes in New England. The problem continued in the winter of 2013-14, as indicated by New England's forward basis for January

  9. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  10. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  11. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  12. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)’s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President’s Climate Action Plan and the DOE meeting series on reducing methane emissions from natural gas pipeline systems. The workshop is part of the larger Administration Strategy to Reduce Methane Emissions associated with natural gas transmission and distribution infrastructure.

  13. CIRCUMBINARY GAS ACCRETION ONTO A CENTRAL BINARY: INFRARED MOLECULAR HYDROGEN EMISSION FROM GG Tau A

    SciTech Connect (OSTI)

    Beck, Tracy L.; Lubow, S. H.; Bary, Jeffrey S.; Dutrey, Anne; Guilloteau, Stephane; Pietu, Vincent; Simon, M. E-mail: lubow@stsci.edu E-mail: Anne.Dutrey@obs.u-bordeaux1.fr E-mail: pietu@iram.fr

    2012-07-20

    We present high spatial resolution maps of ro-vibrational molecular hydrogen emission from the environment of the GG Tau A binary component in the GG Tau quadruple system. The H{sub 2} v = 1-0 S(1) emission is spatially resolved and encompasses the inner binary, with emission detected at locations that should be dynamically cleared on several hundred year timescales. Extensions of H{sub 2} gas emission are seen to {approx}100 AU distances from the central stars. The v = 2-1 S(1) emission at 2.24 {mu}m is also detected at {approx}30 AU from the central stars, with a line ratio of 0.05 {+-} 0.01 with respect to the v = 1-0 S(1) emission. Assuming gas in LTE, this ratio corresponds to an emission environment at {approx}1700 K. We estimate that this temperature is too high for quiescent gas heated by X-ray or UV emission from the central stars. Surprisingly, we find that the brightest region of H{sub 2} emission arises from a spatial location that is exactly coincident with a recently revealed dust 'streamer' which seems to be transferring material from the outer circumbinary ring around GG Tau A into the inner region. As a result, we identify a new excitation mechanism for ro-vibrational H{sub 2} stimulation in the environment of young stars. The H{sub 2} in the GG Tau A system appears to be stimulated by mass accretion infall as material in the circumbinary ring accretes onto the system to replenish the inner circumstellar disks. We postulate that H{sub 2} stimulated by accretion infall could be present in other systems, particularly binaries and 'transition disk' systems which have dust-cleared gaps in their circumstellar environments.

  14. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  15. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D.; Lee, D.S.; Paik, S.C.; Chung, J.S.

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  16. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  17. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilae, Kai; Hupa, Mikko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  18. PHYSICAL CONDITIONS IN THE X-RAY EMISSION-LINE GAS IN NGC1068

    SciTech Connect (OSTI)

    Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Sharma, N.; Turner, T. J.; George, Ian M. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Crenshaw, D. Michael, E-mail: kraemer@yancey.gsfc.nasa.gov [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States)

    2015-01-01

    We present a detailed, photoionization modeling analysis of XMM-Newton/Reflection Grating Spectrometer observations of the Seyfert 2 galaxy NGC1068. The spectrum, previously analyzed by Kinkhabwala et al., reveals a myriad of soft X-ray emission lines, including those from H- and He-like carbon, nitrogen, oxygen, and neon, and M- and L-shell iron. As noted in the earlier analysis, based on the narrowness of the radiative recombination continua, the electron temperatures in the emission-line gas are consistent with photoionization, rather than collisional ionization. The strengths of the carbon and nitrogen emission lines, relative to those of oxygen, suggest unusual elemental abundances, which we attribute to the star formation history of the host galaxy. Overall, the emission lines are blueshifted with respect to systemic, with radial velocities ?160kms{sup 1}, similar to that of [O III] ?5007, and thus consistent with the kinematics and orientation of the optical emission-line gas and, hence, likely part of an active galactic nucleus driven outflow. We were able to achieve an acceptable fit to most of the strong emission lines with a two-component photoionization model, generated with CLOUDY. The two components have ionization parameters and column densities of logU = 0.05 and 1.22 and logN {sub H} = 20.85 and 21.2 and covering factors of 0.35 and 0.84, respectively. The total mass of the X-ray gas is roughly an order of magnitude greater than the mass of ionized gas determined from optical and near-IR spectroscopy, which indicates that it may be the dominant component of the narrow-line region. Furthermore, we suggest that the medium that produces the scattered/polarized optical emission in NGC1068 possesses similar physical characteristics to those of the more highly ionized of the X-ray model components.

  19. Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures

    Reports and Publications (EIA)

    2010-01-01

    This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly.

  20. White House Announces New Executive Order To Reduce Greenhouse Gas Emissions in the Federal Government

    Broader source: Energy.gov [DOE]

    The White House today announced that President Obama will issue a new executive order that will cut the federal government's greenhouse gas emissions 40% over the next decade (from 2008 levels) and increase the share of electricity the federal government consumes from renewable sources to 30%.

  1. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect (OSTI)

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  2. A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB080517

    SciTech Connect (OSTI)

    Stanway, E. R.; Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Van der Laan, T. P. R.

    2015-01-01

    We have observed the host galaxy of the low-redshift, low-luminosity Swift GRB080517 at 105.8 GHz using the IRAM Plateau de Bure interferometer. We detect an emission line with integrated flux S?? = 0.39 0.05Jykms{sup 1}consistent both spatially and in velocity with identification as the J = 1-0 rotational transition of carbon monoxide (CO) at the host galaxy redshift. This represents only the third long gamma-ray burst (GRB) host galaxy with molecular gas detected in emission. The inferred molecular gas mass, M{sub H{sub 2}}?6.310{sup 8} M {sub ?}, implies a gas consumption timescale of ?40Myr if star formation continues at its current rate. Similar short timescales appear characteristic of the long GRB population with CO observations to date, suggesting that the GRB in these sources occurs toward the end of their star formation episode.

  3. A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

    SciTech Connect (OSTI)

    Nigel N. Clark; Byron l. Rapp; Mridul Gautam; Wenguang Wang; Donald W. Lyons

    1998-10-19

    New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these was for street collection and transporting the refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines. Five trucks were equipped with electronically controlled Detroit Diesel Series 50 lean burn engines, while another five were powered by Caterpillar stoichiometric burn 3306 natural gas engines, The Ca terpillar engines employed an exhaust oxygen sensor feedback and three way catalysts. Since the refuse haulers had automatic Allison transmissions, and since they were employed in stop-and-go city service, initial emissions measurements were made using the Central Business Cycle (SAE Jl376) for buses at 42,000 pound test weight. Some additional measurements were made using an ad hoc cycle that has been designed to be more representative of the real refuse hauler use that included several compaction cycles. The Cummins powered natural gas vehicles showed oxides of nitrogen and carbon monoxide emission variations typically associated with variable fuel mixer performance. In the first Year of testing, the stoichiometric Caterpillar engines yielded low emission levels, but in later years two of these refuse haulers had high carbon monoxide attributed to failure of the feedback system. For example, carbon monoxide on these two vehicles rose from 1.4 g/mile and 10 g/mile in 1995 to 144.9 g

  4. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    SciTech Connect (OSTI)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch.

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  5. Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency

    SciTech Connect (OSTI)

    Alterra, Swart; Masanet, Eric; Lecocq, Franck; Najam, Adil; Schaeffer, Robert; Winkler, Harald; Sathaye, Jayant

    2008-07-04

    There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into devel?opment choices.

  6. Understanding the Design and Performance of Emissions Trading Systems for Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Toman, M.

    1999-01-31

    Research Spotlight presents new research findings and projects underway at Resources for the Future that are relevant to the analysis of climate change policy. As interest in greenhouse gas trading policies grows in the United States and other Annex I countries, so does the need for stronger analytical tools. The paper by Tietenberg in this collection lays out some of the principal conceptual issues that analysts face in providing more accurate and relevant tools and results for decisionmakers. In this paper we build on Tietenberg's analysis to consider some of the key modeling challenges that analysts face in developing an improved capacity for quantitatively assessing real-world policies.

  7. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  8. Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

    SciTech Connect (OSTI)

    Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

    2005-11-01

    A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

  9. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  10. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  11. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  12. DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES

    SciTech Connect (OSTI)

    Groves, Brent A.; Schinnerer, Eva; Walter, Fabian; Leroy, Adam; Galametz, Maud; Bolatto, Alberto; Hunt, Leslie; Dale, Daniel; Calzetti, Daniela; Croxall, Kevin; Kennicutt, Robert Jr.

    2015-01-20

    We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we find that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.

  13. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  14. References and Appendices: U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis REFERENCES AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012a. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/steam22_backpressure.pdf AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012b. Improving Steam System Performance: A

  15. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  16. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect (OSTI)

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  17. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    SciTech Connect (OSTI)

    Heath, Garvin; Warner, Ethan; Steinberg, Daniel; Brandt, Adam

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  18. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  19. Distribution and kinematics of neutral hydrogen gas and the radio continuum emission in barred spiral galaxies

    SciTech Connect (OSTI)

    Ondrechen, M.P.

    1985-01-01

    VLA radio synthesis observations of three barred spiral galaxies, NGC 1097, NGC 1365, and M83 are presented. Neutral hydrogen spectral line observations were made, as well as continuum observations at wavelengths of 6 cm and 20 cm. The continuum observations of the bars of NGC 1097 and M83 reveal that the radio emission is coincident with the linear dust lanes in the bars, that it is non-thermal in origin, and is moderately polarized. These data show that the dust lanes are generated by shocks, confirming a major theoretical prediction of bar structure. Spectral line observations of the neutral hydrogen gas reveal many interesting properties of these galaxies. Direct observation of the gas flow in the bar of NGC 1097 confirmed the presence of noncircular motions, of similar magnitude, to those predicted based on the presence of the bar and its associated shocks. Noncircular motions in the spiral arms of NGC 1097 and NGC 1365 were also found. The distribution of neutral hydrogen gas in the three galaxies has two common properties. In each galaxy, the peak surface densities of hydrogen gas and the optical spiral arms are coincident. Also, there are rings of gas at radii just larger than the bar lengths in each galaxy, with the greatest concentration of gas occurring at the ends of the bars.

  20. Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-04-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  1. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  2. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  3. CEQ Issues Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) issued revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of climate change in National Environmental Policy Act (NEPA) reviews on December 18, 2014

  4. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  5. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  6. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    SciTech Connect (OSTI)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  7. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  8. Scaling law for direct current field emission-driven microscale gas breakdown

    SciTech Connect (OSTI)

    Venkattraman, A.; Alexeenko, A. A.

    2012-12-15

    The effects of field emission on direct current breakdown in microscale gaps filled with an ambient neutral gas are studied numerically and analytically. Fundamental numerical experiments using the particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale ionization and space-charge enhancement of field emission. The numerical experiments are then used to validate a scaling law for the modified Paschen curve that bridges field emission-driven breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in cathode electric field, total steady state current density, and the ion-enhancement coefficient including a new breakdown criterion. It also includes the effect of all key parameters such as pressure, operating gas, and field-enhancement factor providing a better predictive capability than existing microscale breakdown models. The field-enhancement factor is shown to be the most sensitive parameter with its increase leading to a significant drop in the threshold breakdown electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also shown to agree well with two independent sets of experimental data for microscale breakdown in air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown process for given operating conditions makes the proposed model a suitable candidate for the design and analysis of electrostatic microscale devices.

  9. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  10. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  11. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect (OSTI)

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  12. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  13. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect (OSTI)

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  14. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department

  15. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  16. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  17. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  18. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations

  19. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect (OSTI)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  20. Emissions and performance evaluation of a dedicated compressed natural gas saturn

    SciTech Connect (OSTI)

    Hodgson, J.W.; Taylor, J.D.

    1997-07-01

    The use of compressed natural gas (CNG) as a transportation fuel has been identified as one strategy that can help ameliorate some problems, which include a growing dependence on imported oil (and all its ramifications) and the persistent contributions that mobile sources make to urban air pollution, associated with the use of conventional petroleum fuels. The attributes and limitations of CNG as a fuel for spark-ignition engines have been presented by others. The attributes are associated with its high octane rating, low cost relative to other alternative fuels, its availability, the absence of running and diurnal evaporative emissions, and its demonstrated potential for producing extremely low exhaust emissions-particularly if the volatile organic compounds (VOCs) emitted are expressed in terms of reactivity adjusted non-methane organic gases (RANMOG). The limitations associated with the use of CNG include its limited refueling infrastructure, the cost of refueling facilities, the cost of on-board fuel storage tanks, and its relatively low energy density. Because one impediment to CNG use is the cost associated with producing a CNG-powered vehicle, a study was initiated at the University of Tennessee under sponsorship by the Saturn Corporation to determine how a CNG vehicle (specifically, a 1991 Saturn SL1) could be engineered so it could be produced with a minimal impact on the production of the base vehicle. The present study was undertaken to further investigate the emissions reduction potential of the Saturn CNG vehicle. In the previous study the role of exhaust gas recirculation was not thoroughly investigated. Those involved in the study agreed that the NO{sub x} levels could be brought down well below California ULEV levels without increasing either the non-methane organic gases or the CO levels.

  1. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine

  3. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect (OSTI)

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  4. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F.; Gutberlet, Jutta

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  5. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  6. Gas cofiring in coal-fired stokers for emissions reduction and performance improvement

    SciTech Connect (OSTI)

    Mason, H.B.; Drennan, S.; Chan, I.; Kinney, W.L.; Borland, D.

    1996-12-31

    Adding gas burners above the grate of a coal-fired stoker can be an economical method of reducing gaseous and particulate emissions and improving efficiency and operational flexibility. With this cofiring configuration, the improved heat distribution and mixing with the stoker combustion products can give reduced opacity, reduced emissions of particulate, NO{sub x} and SO{sub 2}, improved carbon burnout and lower overall ash, reduced excess air, faster load response, cleaner and quicker lightoffs, improved turndown at both lower and upper capacity limits, and improved performance with problematic coals. To develop and validate the cofiring technology, three cofire field experiments have been conducted. A 165,000 lb/hr spreader stoker and mass feed chain grate stokers rated at 40,000 and 75,000 lb/hr have been retrofit with gas burners and tested in the field. The two larger units used dual, opposed burners, while the smaller unit was retrofit with a single burner. With the spreader stoker, the primary benefits of gas cofire was reduction in opacity episodes with coal quality variability and recovery of lost derate. With the larger chain grate unit, the primary benefit was reduction of NO{sub x} and SO{sub 2} to within Title V limits and elimination of opacity episodes during startup and load swings. With the smaller chain grate, the primary benefit was ability to operate at low loads without unacceptable opacity excursions which had previously required a backup boiler. In all cases, the economics justified the capital burner system retrofit cost and incremental fuel costs.

  7. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  8. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    SciTech Connect (OSTI)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; Smith, Jim; McCarty, Jessica L.; Gurney, Kevin R.; Tans, P. P.; Denning, Scott

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of the conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.

  9. Performances of a bent-crystal spectrometer adapted to resonant x-ray emission measurements on gas-phase samples

    SciTech Connect (OSTI)

    Journel, Loiec; El Khoury, Lara; Marin, Thierry; Guillemin, Renaud; Carniato, Stephane; Avila, Antoine; Delaunay, Renaud; Hague, Coryn F.; Simon, Marc

    2009-09-15

    We describe a bent-crystal spectrometer adapted to measure x-ray emission resulting from core-level excitation of gas-phase molecules in the 0.8-8 keV energy range. The spectrometer is based on the Johann principle, and uses a microfocused photon beam to provide high-resolution (resolving power of {approx}7500). A gas cell was designed to hold a high-pressure (300 mbar) sample of gas while maintaining a high vacuum (10{sup -9} mbar) in the chamber. The cell was designed to optimize the counting rate (2000 cts/s at the maximum of the Cl K{alpha} emission line), while minimizing self-absorption. Example of the K{alpha} emission lines of CH{sub 3}Cl molecules is presented to illustrate the capabilities of this new instrument.

  10. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  12. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  13. Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  14. Control of NO/sub x/ emissions in gas engines using pre-stratified charge - Applications and field experience

    SciTech Connect (OSTI)

    Tice, J.K.; Nalim, M.R.

    1988-01-01

    Since 1983, development of the Pre-Stratified Charge (PSC) means of NO/sub x/ control has focused upon gas fueled industrial engines following a decade of development in automobile-type liquid fueled engines. The early test results indicated exceptional potential and wre previously reported. In the two years following the initial tests of PSC on in-field gas engines, over 140 units have been installed in a wide range of applications including compression, generation, and pumping service. Importantly, the applications have demonstrated PSC effectiveness and longevity where other means of emissions control are either not applicable or ineffective. These include higher digester gas, landfill gas, and sour natural gas (containing substantial H/sub 2/S). This work is concerned with the Field experience in general, but with emphasis on particular applications and specific results.

  15. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  16. H? and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm

    SciTech Connect (OSTI)

    Hill, Alex S. [CSIRO Astronomy and Space Science, Marsfield, NSW (Australia); Benjamin, Robert A.; Gostisha, Martin C. [Department of Physics, University of Wisconsin-Whitewater, Whitewater, WI (United States); Haffner, L. Matthew [Department of Astronomy, University of Wisconsin-Madison, Madison, WI (United States); Barger, Kathleen A., E-mail: alex.hill@csiro.au [Department of Physics, University of Notre Dame, South Bend, IN (United States)

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] ?6716 and H? spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310 < l < 345. Using extinction-corrected H? intensities (I{sub H?}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/H? line ratio is enhanced at large |z| and in sightlines with faint I{sub H?}{sup c}. We find that the [S II]/H? line ratio has a power-law relationship with I{sub H?}{sup c} from a value of ?1.0 at I{sub H?}{sup c}<0.2 R (Rayleighs) to a value of ?0.08 at I{sub H?}{sup c}?100 R. The line ratio is better correlated with H? intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse H? emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.

  17. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K; Dimotakis, Paul E; Walker, Bruce C

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a

  18. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this

  19. From SO{sub 2} to greenhouse gases: trends and events shaping future emissions trading programs in the United States

    SciTech Connect (OSTI)

    Joseph Kruger

    2005-06-15

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the US SO{sub 2} and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs or other initiatives that may set precedents for a future national US greenhouse gas trading scheme. This paper summarizes the literature on the 'lessons learned' from the SO{sub 2} trading program for greenhouse gas trading, including lessons about the potential differences in design that may be necessary because of the different sources, science, mitigation options, and economics inherent in greenhouse gases. The paper discusses how the programs and initiatives mentioned above have been shaped by lessons from past trading programs and whether they are making changes to the SO{sub 2} model to address greenhouse gases. It concludes with an assessment of the implications of these initiatives for a future US national greenhouse gas trading program. 91 refs., 2 tabs.

  20. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    SciTech Connect (OSTI)

    West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.50.2, 1.30.6, and 2.21.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

  1. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  2. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    SciTech Connect (OSTI)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  3. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    SciTech Connect (OSTI)

    Hupponen, M. Grönman, K.; Horttanainen, M.

    2015-08-15

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to

  4. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  5. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  6. RADIO SYNCHROTRON EMISSION FROM A BOW SHOCK AROUND THE GAS CLOUD G2 HEADING TOWARD THE GALACTIC CENTER

    SciTech Connect (OSTI)

    Narayan, Ramesh; Sironi, Lorenzo; Oezel, Feryal

    2012-10-01

    A dense ionized cloud of gas has been recently discovered to be moving directly toward the supermassive black hole, Sgr A*, at the Galactic center. In 2013 June, at the pericenter of its highly eccentric orbit, the cloud will be approximately 3100 Schwarzschild radii from the black hole and will move supersonically through the ambient hot gas with a velocity of v{sub p} Almost-Equal-To 5400 km s{sup -1}. A bow shock is likely to form in front of the cloud and could accelerate electrons to relativistic energies. We estimate via particle-in-cell simulations the energy distribution of the accelerated electrons and show that the non-thermal synchrotron emission from these electrons might exceed the quiescent radio emission from Sgr A* by a factor of several. The enhanced radio emission should be detectable at GHz and higher frequencies around the time of pericentric passage and in the following months. The bow shock emission is expected to be displaced from the quiescent radio emission of Sgr A* by {approx}33 mas. Interferometric observations could resolve potential changes in the radio image of Sgr A* at wavelengths {approx}< 6 cm.

  7. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  8. Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers

    SciTech Connect (OSTI)

    Evans, Meredydd; Roshchanka, Volha

    2014-08-04

    This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

  9. Review of Sector and Regional Trends in U.S. Electricity Markets. Focus on Natural Gas. Natural Gas and the Evolving U.S. Power Sector Monograph Series. Number 1 of 3

    SciTech Connect (OSTI)

    Logan, Jeffrey; Medlock, III, Kenneth B.; Boyd, William C.

    2015-10-15

    This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entire eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.

  10. Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S.

  11. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch 

  12. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  13. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    SciTech Connect (OSTI)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  14. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  15. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  16. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2014-04-01

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  17. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission intensities and line ratios from a fast neutral helium beam J-W. Ahn a͒ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA D. Craig, b͒ G. Fiksel, and D. J. Den Hartog Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706, USA J. K. Anderson Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA M. G.

  18. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  19. Particle and gas emissions from a simulated coal-burning household fire pit

    SciTech Connect (OSTI)

    Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO{sub 2}, total hydrocarbons, and NOx) were 2-4 times higher for bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories. 25 refs., 8 figs., 1 tab.

  20. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated

    Reports and Publications (EIA)

    2001-01-01

    To assist reporters in estimating emissions and emission reductions, The Energy Information Administration (EIA) has made available in the instructions to Forms EIA-1605 and EIA-1605EZ emission coefficients for most commonly used fossil fuels and electricity. These coefficients were based on 1992 emissions and generation data. In 1999, updated coefficients were prepared based on the most recent data (1998) then available; however, the updated coefficients were not included in the instructions for the 1999 data year. This year, they have been updated again, but based on three years worth of data (1997, 1998, and 1999) rather than a single year.

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  2. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  3. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  4. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  5. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    SciTech Connect (OSTI)

    Mills, Evan

    2009-07-16

    available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the

  6. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  7. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    SciTech Connect (OSTI)

    Stewart, Arthur J; Mosher, Jennifer J; Mulholland, Patrick J; Fortner, Allison M; Phillips, Jana Randolph; Bevelhimer, Mark S

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  8. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  9. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  10. Method and apparatus for decreased undesired particle emissions in gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  11. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage

  12. Search for particle emission from a gas-loaded deuterium-palladium system in the alpha-beta phase

    SciTech Connect (OSTI)

    Nicholson, J.P.

    1996-12-01

    Neutron and proton emission due to possible solid state fusion events is monitored from a palladium sample loaded with deuterium gas to atomic fractions up to 0.7. Most of the experimental runs show no detectable activity above background rates, indicating a fusion rate <2.7x10{sup -22} s{sup -1}/deuterium-deuterium (D-D) pair. Two brief excursions by the proton counter might indicate a temporary rate of 3.5x10{sup -21} s{sup -1}/D-D pair. 25 refs., 1 fig.

  13. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  14. An investigation of gas separation membranes for reduction of thermal treatment emissions

    SciTech Connect (OSTI)

    Stull, D.M.; Logsdon, B.W.; Pellegrino, J.J.

    1994-05-16

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

  15. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Fearnside, P.M.

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  16. Trends Online: A Compendium of Data on Global Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trends Online provides synopses of frequently used time series of global-change data: • historical and modern records (from ice cores and current monitoring stations) of atmospheric concentrations of carbon dioxide (CO2) • atmospheric concentrations of methane • isotopic measurements (14C et al.) for atmospheric greenhouse gases • estimates of global, regional, and national CO2 emissions from the combustion of fossil fuels, gas flaring, and the production of cement • global emissions estimates for methane (CH4) • carbon flux from land-cover change • long-term temperature records, whose spatial coverage ranges from individual sites to the entire globe and from the Earth's surface to the lower stratosphere • total cloud amount over China • ecosystems (area and carbon content) Data records are presented in multipage formats, each dealing with a specific site, region, or emissions species. The data records include tables; graphs; discussions of methods for collecting, measuring, and reporting the data; trends in the data, and references to literature providing further information. Instructions for citing specific data in Trends Online are provided for each compiled data set. All data appearing in Trends Online are available, on request, on digital media from CDIAC at no cost. [Copied from the Abstract to Trends Online at http://cdiac.ornl.gov/trends/abstract.htm

  17. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

  18. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    SciTech Connect (OSTI)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  19. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  20. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  1. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Office of Energy Efficiency and Renewable Energy (EERE)

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  2. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Office of Energy Efficiency and Renewable Energy (EERE)

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  3. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  4. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  5. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  6. Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range

    SciTech Connect (OSTI)

    Tonse, S. R.; Singer, B. C.

    2011-07-01

    As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

  7. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  8. Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy

    SciTech Connect (OSTI)

    Benkert, A. E-mail: l.weinhardt@kit.edu; Blum, M.; Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 ; Meyer, F.; Wilks, R. G.; Yang, W.; Bär, M.; Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin; Insitut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, 03046 Cottbus ; and others

    2014-01-15

    We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600 °C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

  9. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  10. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  11. Application of holographic neural networks for flue gas emissions prediction in the Burnaby incinerator

    SciTech Connect (OSTI)

    Zheng, L.; Dockrill, P.; Clements, B.

    1997-12-31

    This article describes the development of a parametric prediction system (PPS) for various emission species at the Burnaby incinerator. The continuous emissions monitoring system at the Burnaby incinerator is shared between three boilers and therefore actual results are only available 5 minutes out of every 15 minutes. The PPS was developed to fill in data for the 10 minutes when the Continuous Emission Monitor (CEM) is measuring the other boilers. It bases its prediction on the last few actual readings taken and parametrically predicts CO, SO2 and NOx. The Burnaby Incinerator is located in the commercial/industrial area of South Burnaby, British Columbia. It consists of three separate lines, each burning ten tonnes of garbage per hour and producing about three tonnes of steam for every tonne of garbage burned. The air pollution control system first cools the combustion products with water injection and then scrubs them with very fine hydrated lime. Carbon is added to the lime to enhance the scrubbing of the combustion products. The CEM monitors the levels of oxygen, carbon monoxide, nitrogen oxides, sulphur dioxide and opacity. In 1996, an expert system was installed on one of boilers at the Burnaby Incinerator plant to determine if it could improve the plant=s operations and reduce overall emission. As part of the expert system, the PPS was developed. Holographic Neural Technology (HNeT), developed by AND Corporation of Toronto, Ontario, is a novel neural network technology using complex numbers in its architecture. Compared to the traditional neural networks, HNeT has some significant advantage. It is more resilient against converging on local minima; is faster training and executing; less prone to over fitting; and, in most cases, has significantly lower error. Selection of independent variabs, training set preparation, testing neural nets and other related issue will be discussed.

  12. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  13. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  14. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect (OSTI)

    Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai; Melillo, Jerry

    2013-04-26

    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.

  15. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOE Patents [OSTI]

    Garrett, W.R.

    1997-11-11

    A method and apparatus are disclosed for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components. 9 figs.

  16. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOE Patents [OSTI]

    Garrett, W. Ray

    1997-01-01

    A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

  17. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect (OSTI)

    Qianlai Zhuang

    2012-11-16

    During the three-year project period, Purdue University has specifically accomplished the following: revised the existing Methane Dynamics Model (MDM) to consider the effects of changes of atmospheric pressure; applied the methane dynamics model (MDM) to Siberian region to demonstrate that ebullition estimates could increase previous estimates of regional terrestrial CH{sub 4} emissions 3- to 7-fold in Siberia; Conducted an analysis of the carbon balance of the Arctic Basin from 1997 to 2006 to show that terrestrial areas of the Arctic were a net source of 41.5 Tg CH{sub 4} yr{sup ??1} that increased by 0.6 Tg CH{sub 4} yr{sup ??1} during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH{sub 4}; improved the quantification of CH{sub 4} fluxes in the Arctic with inversion methods; evaluated AIRS CH4 retrieval data with a transport and inversion model and surface flux and aircraft data; to better quantify methane emissions from wetlands, we extended the MDM within a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to include a large-scale hydrology model, the variable infiltration capacity (VIC) model; more recently, we developed a single box atmospheric chemistry model involving atmospheric methane (CH{sub 4}), carbon monoxide (CO) and radical hydroxyl (OH) to analyze atmospheric CH{sub 4} concentrations from 1984 to 2008.

  18. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  19. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  20. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  1. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  3. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  6. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices...

  8. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  9. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  10. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  11. CEQ Extends Comment Period on Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) has extended by 30 days the comment period on its revised draft guidance on consideration of greenhouse gas (GHG) emissions and the effects of climate change in NEPA reviews. The comment period now ends on March 25, 2015.

  12. Rate and peak concentrations of off-gas emissions in stored wood pellets sensitivities to temperature, relative humidity, and headspace volume

    SciTech Connect (OSTI)

    Kuang, Xingya; Shankar, T.J.; Bi, X.T.; Lim, C. Jim; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-08-01

    Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature. Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.

  13. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect (OSTI)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  14. A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K.; Dimotakis, Paul E.; Walker, Bruce C.

    2011-09-26

    This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS.

  15. Natural Gas | Department of Energy

    Energy Savers [EERE]

    vehicles to run on liquefied natural gas (LNG), reducing fuel costs and harmful emissions ... on liquefied natural gas (LNG), reducing fuel costs and harmful emissions in the process. ...

  16. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  17. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  18. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  19. A DETAILED STUDY OF SPITZER-IRAC EMISSION IN HERBIG-HARO OBJECTS. II. INTERACTION BETWEEN EJECTA AND AMBIENT GAS

    SciTech Connect (OSTI)

    Takami, Michihiro; Karr, Jennifer L.; Nisini, Brunella; Ray, Thomas P.

    2011-12-20

    We present a new analysis of the physical conditions in three Herbig-Haro complexes (HH 54, HH 212, and the L 1157 protostellar jet) using archival data from the Infrared Array Camera on the Spitzer Space Telescope. As described in detail in Paper I, the emission observed using the 4.5 {mu}m filter is enhanced in molecular shocks (T = 1000-4000 K) at relatively high temperatures or densities compared with that observed with the 8.0 {mu}m filter. Using these data sets, we investigate different distributions of gas between high and low temperatures/densities. Our analysis reveals the presence of a number of warm/dense knots, most of which appear to be associated with working surfaces such as the head of bow shocks and cometary features, and reverse shocks in the ejecta. These are distributed not only along the jet axis, as expected, but also across it. While some knotty or fragmenting structures can be explained by instabilities in shocked flows, others can be more simply explained by the scenario that the mass ejection source acts as a 'shot gun', periodically ejecting bullets of material along similar but not identical trajectories. Such an explanation challenges to some degree the present paradigm for jet flows associated with low-mass protostars. It also gives clues to reconciling our understanding of the mass ejection mechanism in high- and low-mass protostars and evolved stars.

  20. Intergalactic medium emission observations with the cosmic web imager. I. The circum-QSO medium of QSO 1549+19, and evidence for a filamentary gas inflow

    SciTech Connect (OSTI)

    Martin, D. Christopher; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.

    2014-05-10

    The Palomar Cosmic Web Imager (PCWI), an integral field spectrograph designed to detect and map low surface brightness emission, has obtained imaging spectroscopic maps of Ly? from the circum-QSO medium (CQM) of QSO HS1549+19 at redshift z = 2.843. Extensive extended emission is detected from the CQM, consistent with fluorescent and pumped Ly? produced by the ionizing and Ly? continuum of the QSO. Many features present in PCWI spectral images match those detected in narrow-band images. Filamentary structures with narrow line profiles are detected in several cases as long as 250-400 kpc. One of these is centered at a velocity redshifted with respect to the systemic velocity, and displays a spatially collimated and kinematically cold line profile increasing in velocity width approaching the QSO. This suggests that the filament gas is infalling onto the QSO, perhaps in a cold accretion flow. Because of the strong ionizing flux, the neutral column density is low, typically N(H I)?10{sup 12}--10{sup 15} cm{sup ?2}, and the line center optical depth is also low (typically ?{sub 0} < 10), insufficient to display well separated double peak emission characteristic of higher line optical depths. With a simple ionization and cloud model we can very roughly estimate the total gas mass (log M {sub gas} = 12.5 0.5) and the total (log M {sub tot} = 13.3 0.5). We can also calculate a kinematic mass from the total line profile (2 10{sup 13} M {sub ?}), which agrees with the mass estimated from the gas emission. The intensity-binned spectrum of the CQM shows a progression in kinematic properties consistent with heirarchical structure formation.

  1. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    , indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  2. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide

  3. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    SciTech Connect (OSTI)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Jameson, Katherine; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Indebetouw, Remy; Israel, Frank P.; Kawamura, Akiko; and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500?m. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 ?m. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500?m submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 1.7) 10{sup 5} and (8.3 2.1) 10{sup 4} M {sub ?} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  4. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J.; Lowrie, Robert S.; Sease, John D.

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  5. GBTL Workshop GHG Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf (1.37 MB) More Documents & Publications ...

  6. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  7. CO2 is dominant greenhouse gas emitted from six hydropower reservoirs in southeastern United States during peak summer emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bevelhimer, Mark S.; Stewart, Aurthur J.; Fortner, Allison M.; Phillips, Jana Randolph; Mosher, Jennifer J.

    2016-01-06

    During August-September 2012, we sampled six hydropower reservoirs in southeastern United States. for CO2 and CH4 emissions via three pathways: diffusive emissions from water surface; ebullition in the water column; and losses from dam tailwaters during power generation. Average total emission rates of CO2 for the six reservoirs ranged from 1,127 to 2,051 mg m-2 d-1, which is low to moderate compared to CO2 emissions rates reported for tropical hydropower reservoirs and boreal ponds and lakes, and similar to rates reported for other temperate reservoirs. Similar average rates for CH4 were also relatively low, ranging from 5 to 83 mgmore » m-2 d-1. On a whole-reservoir basis, total emissions of CO2 ranged nearly 10-fold, from ~51,000 kg per day for Fontana to ~486,000 kg per day for Guntersville, and total emissions of CH4 ranged nearly 20-fold, from ~5 kg per day for Fontana to ~83 kg per day for Allatoona. Emissions through the tailwater pathway varied among reservoirs, comprising from 20 to 50% of total CO2 emissions and 0 to 90% of CH4 emissions, depending on the reservoir. Furthermore, several explanatory factors related to reservoir morphology and water quality were considered for observed differences among reservoirs.« less

  8. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  9. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  10. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  11. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  12. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961–2010

    SciTech Connect (OSTI)

    Gao, Zhiling; Lin, Zhi; Yang, Yuanyuan; Ma, Wenqi; Liao, Wenhua; Li, Jianguo; Cao, Yufeng; Roelcke, Marco

    2014-11-15

    Due to the expanding dairy and beef population in China and their contribution to global CH{sub 4} and N{sub 2}O budgets, a framework considering changes in feed, manure management and herd structure was established to indicate the trends of CH{sub 4} and N{sub 2}O emissions from the enteric formation and manure storage in China's beef and dairy production and the underlying driving forces during the period 1961–2010. From 1961 to 2010, annual CH{sub 4} and N{sub 2}O emissions from beef cattle in China increased from 2.18 Mt to 5.86 Mt and from 7.93 kt–29.56 kt, respectively, while those from dairy cattle increased from 0.023 to 1.09 Mt and 0.12 to 7.90 kt, respectively. These increases were attributed to the combined changes in cattle population and management practices in feeds and manure storage. Improvement in cattle genetics during the period increased the bodyweight, required dry matter intake and gross energy and thus resulted in increased enteric CH{sub 4} EFs for each category of beef and dairy cattle as well as the overall enteric EFs (i.e., Tier 1 in IPCC). However, for beef cattle, such an impact on the overall enteric EFs was largely offset by the herd structure transition from draft animal-oriented to meat animal-oriented during 1961–2010. Although the CO{sub 2}-eq of CH{sub 4} and N{sub 2}O from manure storage was less than the enteric emissions during 1961–2010 in China, it tended to increase both in beef and dairy cattle, which was mainly driven by the changes in manure management practices. - Highlights: • CH{sub 4} emissions dominated the CO{sub 2}-eq emissions from dairy and beef cattle in China. • Beef herd transition played an important role in CH{sub 4} emissions. • Changes of manure managements increased the manure EFs of CH{sub 4} and N{sub 2}O. • Manure contributed very less to the total CO{sub 2}-eq emissions but tended to grow.

  13. Implications of High Renewable Electricity Penetration in the U.S. for Water Use, Greenhouse Gas Emissions, Land-Use, and Materials Supply

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply are identified.

  14. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global

  15. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Other Market Trends: MMS Issues Final Notice of Western Gulf Lease Sale: The Minerals Management Service (MMS) will offer several incentives to increase domestic oil and gas...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Storage Estimates Database. Other Market Trends: EIA Releases New Report on the Fundamentals of Natural Gas Storage: EIA prepared a new report to provide general background...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    , 2009 Next Release: July 9, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 2, 2009) Since...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    0, 2009 Next Release: August 6, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 29, 2009) Since...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    7, 2008 Next Release: July 24, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview The report week ended July 16 registered significant...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    recorded last year. Other Market Trends: FERC Releases Report on Underground Natural Gas Storage: The Federal Energy Regulatory Commission (FERC) issued a report last week that...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Estimates Database. Other Market Trends: Comments Received on Proposed Weekly Natural Gas Storage Report Revision Policy: The Energy Information Administration (EIA) solicited...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

  5. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 7, 2009) Since Wednesday, December...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    March 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 4, 2009) A late winter cold spell in...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, April 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 7, 2010) Since...

  8. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, February 25, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 17, 2010)...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, March 18, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 10, 2010) Since...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, March 24, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 16, 2011) With...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2008 Next Release: December 11, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, December 3, 2008) Since...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2009 Next Release: March 26, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 18, 2009) Warmer...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    P.M. Next Release: October 29, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 21, 2009) Since...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2008 Next Release: October 2, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 17, to Wednesday, September 24)...

  15. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release: Thursday, January 20, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 12, 2011)...

  16. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Thursday, September 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 8, 2010) Price...

  18. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, September 23, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 15, 2010)...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release: Thursday, May 12, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 4, 2011) Wholesale...

  20. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2009 Next Release: August 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 5, 2009) Natural...

  1. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, July 1, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 23, 2010)...

  2. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Release: Thursday, September 9, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 1,...

  3. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, January 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 6,...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11,...

  5. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, June 17, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 9, 2010)...

  6. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, August 12, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 4, 2010)...

  7. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Release: Thursday, September 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 25,...

  8. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, August 5, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 28, 2010)...

  9. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010)...

  10. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2009 Next Release: April 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 8, 2009) Since...

  11. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2009 Next Release: January 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 14, 2009) In...

  12. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, January 7, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 16, 2009)...

  14. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: November 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 28, 2009)...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010)...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, January 6, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 15, 2010)...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    , 2009 Next Release: April 9, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 1, 2009) Despite a...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 Next Release: February 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 11, 2009)...

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

  2. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 20, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, November 5, to Thursday, November 13)...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release: Thursday, October 28, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 20, 2010)...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Wednesday, November 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 3, 2010) Price...

  5. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release: Thursday, August 19, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 11, 2010) Summer...

  6. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: October 23, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For week ending Wednesday, October 15) Since Wednesday,...

  7. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011)...

  8. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release: Thursday, December 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 8, 2010) In...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Other Market Trends EIA Proposes Extending Oil and Natural Gas Reserves Survey Forms. The Energy Information Administration (EIA) on July 15 published a notice in the Federal...

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: The Minerals Management Service Reports Royalty Gas Sale for the First Time in Offshore Louisiana. On November 4, the Minerals Management Service (MMS) of the...

  11. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  12. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  13. The Challenge of Limiting Greenhouse Gas Emissions Through Activities implemented Jointly in Developing Countries: A Brazilian Perspective

    SciTech Connect (OSTI)

    La Rovere, E.L.

    1998-11-01

    This paper addresses, from the Brazilian perspective, the main problems with Joint Implementation/Activities Implemented Jointly (JI/AIJ) between industrialized (Annex I) and developing (non-Annex I) countries, as defined by the United Nations Framework Convention on Climate Change (UNFCCC). Four possible GHG emissions abatement measures are presented for Brazil: forest protection, reforestation projects for carbon sequestration or charcoal manufacturing, use of ethanol produced from sugar cane as a car fuel, and electrical energy conservation through an increase in end-use efficiencies. These four case studies form the basis of a discussion regarding the validity of developing countries' concerns about JI/AIJ. Recommendations are offered for overcoming the present shortcomings of JI/AIJ in developing countries. The primary conclusion is that Annex I countries' funding of JI/AIJ projects in developing countries in return for GHG emissions credits is not the best means to implement the UNFCCC. However, JI/AIJ projects can be a productive means of preventing global climate change if combined with other measures, including GHG emissions reduction targets for all countries involved in JI/AIJ projects and limits on the percentage of industrialized countries' emissions reductions that can be met through projects in developing countries.

  14. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.; Calvin, Katherine V.; Kyle, G. Page

    2014-11-01

    Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that would be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.

  15. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping . E-mail: zzhong@seu.edu.cn; Jin Baosheng; Huang Yaji; Zhou Hongcang; Lan Jixiang

    2006-07-01

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  16. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  17. TRENDS 1991: A compendium of data on global change

    SciTech Connect (OSTI)

    Boden, T.A.; Sepanski, R.J.; Stoss, F.W.

    1991-12-01

    This document is a source of frequently used global-change data. This second issue of the Trends series expands the coverage of sites recording atmospheric concentrations of carbon dioxide (CO{sub 2}) and methane (CH{sub 4}), and it updates records reported in the first issue. New data for other trace atmospheric gases have been included in this issue; historical data on nitrous oxide (N{sub 2}) from ice cores, modern records of atmospheric concentrations of chlorofluorocarbons (CFC-11 and CFC-12) and N{sub 2}O, and estimates of global estimates of CFC-11 and CFC-12. The estimates for global and national CO{sub 2} emissions from the burning of fossil fuels, the production of cement, and gas flaring have been revised and updated. Regional CO{sub 2} emission estimates have been added, and long-term temperature records have been updated and expanded. Data records are presented in four- to six-page formats, each dealing with a specific site, region, or emissions species. The data records include tables and graphs; discussion of methods for collecting, measuring, and reporting the data; trends in the data; and references to literature that provides further information. All data appearing in the document are available on digital media from the Carbon Dioxide Information Analysis Center.

  18. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  19. Natural Gas Hydrates Update 1998-2000

    Reports and Publications (EIA)

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  20. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  1. Emission Abatement System

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  3. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  4. Transportation energy trends and issues through 2030

    SciTech Connect (OSTI)

    DeCicco, J.M.

    1996-12-31

    Controlling transportation energy use looms as a serious challenge for the United States in the 21st century. Demand for transportation services is steadily growing, driven by increasing population, economic activity, and incomes. Few forces presently constrain growth in travel by the energy-intensive modes of automobile, truck, and air transportation. In contrast to other sectors of the economy, transportation energy efficiency improvements are nearly stagnant. Efficiency increases are now absent in highway modes; aircraft efficiency is improving, but not enough to offset rising air travel. Transportation is also the most oil-dependent sector of the economy as well as the country`s most rapidly growing source of greenhouse gas emissions. A conservative forecast indicates US transportation energy consumption rising from 23 Quads in 1990 to roughly 36 Quads by 2030; less conservative assumptions push the total to 43 Quads by 2030. Yet opportunities exist for efficiency improvements to counter a substantial portion of this growth. The most promising options are technological, with potential long-term efficiency improvements of threefold for light vehicles, twofold for aircraft, and 65 percent for heavy trucks. Combined with system efficiency changes to help limit growth of the energy-intensive modes, transportation energy use might be cut to 19 Quads by 2030. Pursuing cost-effective strategies to move the system toward such reduced energy intensiveness would be clearly valuable for the economy and environment. This paper examines these trends and options, and offers suggestions for policies that could lead to reductions in transportation energy use and its associated problems such as greenhouse gas emissions and oil dependence risks. 24 refs., 6 figs., 3 tabs.

  5. A DEEP SEARCH FOR MOLECULAR GAS IN TWO MASSIVE LYMAN BREAK GALAXIES AT z = 3 AND 4: VANISHING CO-EMISSION DUE TO LOW METALLICITY?

    SciTech Connect (OSTI)

    Tan, Q.; Gao, Y.; Daddi, E.; Sargent, M.; Béthermin, M.; Bournaud, F.; Elbaz, D.; Pannella, M.; Hodge, J.; Walter, F.; Carilli, C.; Owen, F.; Dannerbauer, H.; Dickinson, M.; Morrison, G.; Riechers, D.

    2013-10-20

    We present deep IRAM Plateau de Bure Interferometer observations, searching for CO-emission toward two massive, non-lensed Lyman break galaxies at z = 3.216 and 4.058. With one low significance CO detection (3.5σ) and one sensitive upper limit, we find that the CO lines are ∼>3-4 times weaker than expected based on the relation between IR and CO luminosities followed by similarly massive galaxies at z = 0-2.5. This is consistent with a scenario in which these galaxies have low metallicity, causing an increased CO-to-H{sub 2} conversion factor, i.e., weaker CO-emission for a given molecular (H{sub 2}) mass. The required metallicities at z > 3 are lower than predicted by the fundamental metallicity relation at these redshifts, consistent with independent evidence. Unless our galaxies are atypical in this respect, detecting molecular gas in normal galaxies at z > 3 may thus remain challenging even with ALMA.

  6. International Assistance for Low-Emission Development Planning...

    Open Energy Info (EERE)

    Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends Jump to: navigation, search International Assistance for Low-Emission Development...

  7. How the Carbon Emissions Were Estimated

    U.S. Energy Information Administration (EIA) Indexed Site

    dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels...

  8. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  9. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  10. 2011 Directions in Engine-Efficiency and Emissions Research ...

    Broader source: Energy.gov (indexed) [DOE]

    America Advanced Engine Trends, Challenges & ... Compression Ignition on Vehicle Fuel Economy and Emissions ... Two-Stroke Engine Alternative - Performance and ...

  11. EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin

  12. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  15. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to examine the net emissions of greenhouse gases as well as other major ... Completion Report Fuel Use and Greenhouse Gas Emissions from the Natural Gas ...

  16. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  17. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies

  18. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  19. Power plant emissions reduction

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  20. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  1. Trends in stationary energy

    SciTech Connect (OSTI)

    2013-04-01

    Trends in Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  2. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W.; Lookman, A.A.; Manos, M.G.; Corfman, D.W.; Waddingham, A.L.; Johnson, S.A.

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  4. Recent Trends in Natural Gas Spot Prices

    Reports and Publications (EIA)

    1997-01-01

    This article focuses primarily on conditions and developments in the East Consuming Region and their connection to prices at the Henry Hub in the Producing Region.

  5. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a

  6. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    SciTech Connect (OSTI)

    D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

    1998-12-10

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Gas Prices Contributing to Increases in Greenhouse Gas Emissions: The United States Environmental Protection Agency (EPA) cited increasing natural gas prices as one of three...

  8. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect (OSTI)

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Trends Natural Gas and Crude Oil Production Shut-ins in the Gulf of Mexico. The Minerals Management Service (MMS) of the Department of the Interior reported that a significant...

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2, 2010 at 2:00 P.M. Next Release: Thursday, April 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday,...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2010 at 2:00 P.M. Next Release: Thursday, May 6, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday,...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3, 2011 at 2:00 P.M. Next Release: Thursday, February 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    than normal during the report week, freeing some gas for injections into storage. Other Market Trends: New Incentives to Help Boost Production in the Gulf of Mexico: In its first...

  14. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monday, December 29 (next release 2:00 p.m. on January 8) A trend of increasing natural gas spot prices since mid-November abruptly halted late in the week before Christmas, owing...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    at 2:00 P.M. Next Release: October 8, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 30,...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7, 2010 at 2:00 P.M. Next Release: Thursday, October 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday,...

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4, 2010 at 2:00 P.M. Next Release: Thursday, October 21, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday,...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the trend of week-over-week increases for the fifth consecutive week. Natural gas in storage was 1,285 billion cubic feet (Bcf) as of April 18, which is 1.9 percent...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    March 3 (next release 2:00 p.m. on March 10) Following the cold weather trend, natural gas prices have increased since Wednesday, February 23 at most market locations in the Lower...

  20. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  1. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect (OSTI)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  2. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology ...

  3. Opportunities for market-based programs worldwide that reduce greenhouse gas emissions: Initial Observations from Missions to the Philippines, South Africa, and Mexico

    SciTech Connect (OSTI)

    Stanton-Hoyle, D.R.

    1998-07-01

    Globally, governments and industries are implementing innovative voluntary programs to reduce greenhouse gas emissions. Often these programs encourage groups to use cost effective technologies that capture market-based forces. These programs are successful because they capitalize on existing opportunities where both the environment and the participants can benefit (i.e., win-win opportunities). This paper documents efforts to investigate these kinds of win-win opportunities in three developing countries: the Philippines, South Africa, and Mexico. Initial observations are provided as fresh information from the field, drawing on six missions during the last nine months. Utility costs, interest rates, and overall economic health appear to critically affect opportunities in each country. By contrast, details of heating, ventilating and air-conditioning (HVAC) design and local climate were often important differences between countries. These affect opportunities, for example, to achieve significant savings from cooling systems or not. Looking at the success of ESCOs was somewhat surprising. One might expect to see the most successful ESCO activity where utility costs are high and upgrade opportunities are plentiful (such as in the Philippines). This was not the case, however, as research in the Philippines did not reveal even one active ESCO contract yet. Design practices for new construction were in need of the same thing that helps US design teams do a better job of energy-efficient design, better communications between design team members. Finally, industrial firms were doing a variety of EE upgrades in each country, but this level of activity was relatively small compared to what should be cost effective.

  4. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    A2. Glossary Acid stabilization: A circumstance where the pH of the waste mixture in an animal manure management system is maintained near 7.0, optimal conditions for methane production. Aerobic bacteria: Microorganisms living, active, or occurring only in the presence of oxygen. Aerobic decomposition: The breakdown of a molecule into simpler molecules or atoms by microorganisms under favorable conditions of oxygenation. Aerosols: Airborne particles. Afforestation: Planting of new forests on

  5. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    860 Form The New Form EIA-860 combines: Form EIA-860 - Annual Electric Generator Report Form EIA-767 - Steam-Electric Plant Operation and Design Report (shown on right) What Do I Need to Do? See if you are required to file the EIA-860. Yes? File the EIA-860 electronically (Available soon!) Not registered for electronic filing? Just send us an email to get registered. EIA-860 Resources Printable form and instructions Answers to Anticipated Questions Summary of new and deleted data elements Having

  6. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    ... that inject and store CO2 underground for the purposes ... production, underground coal mines, industrial ... The project focuses on reducing energy consumption in the ...

  7. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for Energy Analysis, and Paul Holtberg, Team Leader, Analysis Integration Team. ... Without the assistance of Science Applications International Corporation (SAIC), this ...

  8. Anisotropic Lyman-alpha emission

    SciTech Connect (OSTI)

    Zheng, Zheng; Wallace, Joshua

    2014-10-20

    As a result of resonant scatterings off hydrogen atoms, Lyα emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the observed Lyα emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lyα flux and spectral properties and induces correlations among them. The Lyα flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lyα optical depth in the viewing direction relative to those in all other directions. The distribution of Lyα flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lyα equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lyα line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half-maximum and asymmetry), pointing to a possibility of using Lyα line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lyα emission from star-forming galaxies. We discuss the implications of using Lyα emission to probe the circumgalactic and intergalactic environments of galaxies.

  9. Trends Online: A Compendium of Data on Global Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Data records are presented in multipage formats, each dealing with a specific site, region, or emissions species. The data records include tables; graphs; discussions of methods for collecting, measuring, and reporting the data; trends in the data, and references to literature providing further information. Instructions for citing specific data in Trends Online are provided for each compiled data set. All data appearing in Trends Online are available, on request, on digital media from CDIAC at no cost. [Copied from the Abstract to Trends Online at http://cdiac.ornl.gov/trends/abstract.htm

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2008 Next Release: May 22, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices increased in a majority of regions...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Market Trends). NYMEX Natural Gas Futures Near-Month Contract Settlement Price, West Texas Intermediate Crude Oil Spot Price, and Henry Hub Natural Gas Spot Price Graph More...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  16. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments [OSTI]

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  17. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  18. Powertrain Trends and Future Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential Powertrain Trends and Future Potential Gasoline and clean diesel engines have the potential to reduce CO2 further as technology for both types of engines continues to evolve deer09_rueger.pdf (851.21 KB) More Documents & Publications SCR Technologies for NOx Reduction Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation

  19. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  20. MOtor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    of low-emission development strategies (LEDS). Key Outputs Greenhouse gas and air toxic emissions. How to Use This Tool Training Available Training available at http:...

  1. Consumption trend analysis in the industrial sector: Regional historical trends. Draft report (Final)

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Data on the use of natural gas, electricity, distillate and residual fuel oil, coal, and purchased coke were collected from the United States Bureau of the Census and aggregated nationally and by Census Region. Trend profiles for each fuel and industry were developed and economic, regulatory, and regional factors contributing to these trends were examined. The recession that followed the OPEC embargo in 1973 affected the industrial sector and the heavily industrialized regions of the country most severely. Both industrial production and fuel consumption fell significantly in 1975. As production recovered, spiraling fuel prices promoted conservation efforts, and overall fuel consumption remained at pre-recession levels. From 1975 to 1977 natural gas consumption decreased in almost all the industries examined with curtailments of gas supplies contributing to this trend.

  2. Trends in independent power production

    SciTech Connect (OSTI)

    1995-12-01

    A 33-person panel recently convened by Future Technology Surveys, Inc., identified a series of the most important IPP trends to have occurred int the past five years, and forecast what will happen in this volatile market over the next five years. The survey was designed to present viewpoints of experts in the United States and was intentionally not international in scope. The most important trends from 1989--1994 are ranked in order of importance as: global market; retail wheeling/open access; exempt wholesale generators (EWGs); Energy Policy Act 1992; increased competition; transmission (better access and policy changes); consolidation of industry; bulk power marketing and sales; open competitive bidding; and almost exclusive shift to large gas projects. There is shift in emphasis, and the introduction of new trends, in IPP executive prediction for the future (1995--1999). Their views, in order of importance, are: retail wheeling; increased globalization; consolidation of industry; competition and direct competition with utilities; open access transmission; restructuring of entire power utility industry; deregulation; electricity as a commodity; and unbundling of integrated monopolies.

  3. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and

  5. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic...

    Open Energy Info (EERE)

    in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved...

  6. Conservation trend indicators. Interim and final report

    SciTech Connect (OSTI)

    Peterson, C.

    1980-08-21

    This report outlines major conservation trends for the four US energy consuming sectors: residential, commercial, industrial, and transportation. Tables on residential use include data on gas, electricity, and fuel oil. Data is not available for renewable sources or for bottled gas, kerosene, or propane. Commercial data is also reported for gas, electricity, and fuel oil, and total consumption is examined on a square foot basis. Industrial trends are shown for the ten most energy intensive industries. In addition, industrial efficiencies by fuel are analyzed. For the transportation sector, petroleum products (particularly gasoline) are the major fuels considered, and selected energy intensities are examined. The discussion on each sector will cover findings, data sources, and data interpretation. Recommendations on reporting are part of the residential section of this report.

  7. Bioenergy Impacts … Greenhouse Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory developed the Greenhouse gases, Regulated Emissions, and Energy ... crops, and algae that have greater greenhouse gas reduction benefits compared to ...

  8. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    system was reconfigured to enable testing of the baseline HLW or LAW off-gas trains to perform off-gas emissions testing with both LAW and HLW simulants in the present work. During 2002 and 2003, many of these off-gas components were tested individually and in an integrated manner with the DM1200 Pilot Melter. Data from these tests are being used to support engineering design confirmation and to provide data to support air permitting activities. In fiscal year 2004, the WTP Project was directed by the Office of River Protection (ORP) to comply with Environmental Protection Agency (EPA) Maximum Achievable Control Technology (MACT) requirements for organics. This requires that the combined melter and off-gas system have destruction and removal efficiency (DRE) of >99.99% for principal organic dangerous constituents (PODCs). In order to provide confidence that the melter and off-gas system are able to achieve the required DRE, testing has been directed with both LAW and HLW feeds. The tests included both 'normal' and 'challenge' WTP melter conditions in order to obtain data for the potential range of operating conditions for the WTP melters and off-gas components. The WTP Project, Washington State Department of Ecology, and ORP have agreed that naphthalene will be used for testing to represent semi-volatile organics and allyl alcohol will be used to represent volatile organics. Testing was also performed to determine emissions of halides, metals, products of incomplete combustion (PICs), dioxins, furans, coplanar PCBs, total hydrocarbons, and COX and NOX, as well as the particle size distribution (PSD) of particulate matter discharged at the end of the off-gas train. A description of the melter test requirements and analytical methods used is provided in the Test Plan for this work. Test Exceptions were subsequently issued which changed the TCO catalyst, added total organic emissions (TOE) to exhaust sampling schedule, and allowing modification of the test conditions in

  9. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  10. Biomass power and conventional fossil systems with and without CO2 sequestration - Comparing the energy balance, greenhouse gas emissions and economics

    SciTech Connect (OSTI)

    Spath, Pamela L.; Mann, Margaret K.

    2004-01-01

    Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

  11. Review of Sector and Regional Trends in U.S. Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Review of Sector and Regional Trends in U.S. Electricity Markets: Focus on Natural Gas Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 1 of 3...

  12. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  13. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  14. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  15. Urban Transportation Emission Calculator | Open Energy Information

    Open Energy Info (EERE)

    Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and...

  16. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  17. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  18. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  19. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Renewable Electricity: State-level Issues and Perspectives July 12, 2016 2 40% Reduction in GHG emissions from 1990 levels Reducing greenhouse gas (GHG) emissions from the energy sector- power generation, industry, buildings, and transportation-is critical to protecting the health and welfare of New Yorkers and reaching the longer term goal of decreasing total carbon emissions 80% by 2050. 50% Generation of electricity from renewable energy sources Renewable resources, including solar, wind,

  20. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  1. Understanding the China energy market: trends and opportunities 2006

    SciTech Connect (OSTI)

    Barbara Drazga

    2005-05-15

    The report is broken up into 4 Sections: Section I - Overview of China Energy Market (historical background, market value, consumption, production, reserves, export and import, market segmentation, market forecast); Section II - Market Analysis (PEST analysis, Porter's five forces analysis, socio-economic trends, consumption trends); Section III - Market Segments (electricity, oil, natural gas, liquefied natural gas, liquid petroleum gas, nuclear power, coal, renewables, photovoltaics, wind power, hydroelectric power. Each market segment details current and planned projects, and lists participants in that sector); and Section IV - Breaking Into the Market (regulatory framework, methods of market entry, foreign investment, challenges, government agencies).

  2. Navigating the Numbers: Greenhouse Gas Data and International...

    Open Energy Info (EERE)

    Gas Data and International Climate Policy1 Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies...

  3. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  4. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  5. Temporal trends in and influence of wind on PAH concentrations measured near the Great Lakes

    SciTech Connect (OSTI)

    Cortes, D.R.; Basu, I.; Sweet, C.W.; Hites, R.A.

    2000-02-01

    This paper reports on temporal trends in gas- and particle-phase PAH concentrations measured at three sites in the Great Lakes' Integrated Atmospheric Deposition Network: Eagle Harbor, near Lake Superior, Sleeping Bear Dunes, near Lake Michigan, and Sturgeon Point, near Lake Erie. While gas-phase concentrations have been decreasing since 1991 at all sites, particle-phase concentrations have been decreasing only at Sleeping Bear Dunes. To determine whether these results represent trends in background levels or regional emissions, the average concentrations are compared to those found in urban and rural studies. In addition, the influence of local wind direction on PAH concentrations is investigated, with the assumption that dependence on wind direction implies regional sources. Using these two methods, it is found that PAH concentrations at Eagle Harbor and Sleeping Bear Dunes represent regional background levels but that PAH from the Buffalo Region intrude on the background levels measured at the Sturgeon Point site. At this site, wind from over Lake Erie reduces local PAH concentrations.

  6. The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

    SciTech Connect (OSTI)

    Jones, B. Harvey-Thompson, A. J.; Ampleford, D. J.; Jennings, C. A.; Hansen, S. B.; Moore, N. W.; Lamppa, D. C.; Johnson, D.; Jones, M. C.; Waisman, E. M.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ouart, N. D.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.; and others

    2015-02-15

    Argon gas puffs have produced 330 kJ ± 9% of x-ray radiation above 3 keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

  7. Natural gas monthly, April 1999

    SciTech Connect (OSTI)

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  8. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    SciTech Connect (OSTI)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  9. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  10. Emission abatement system utilizing particulate traps

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  11. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  12. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  13. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 610% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  14. QER- Comment of American Gas Association 4

    Office of Energy Efficiency and Renewable Energy (EERE)

    From: Peterson, Christopher (EIA)Sent: Tuesday, October 14, 2014 12:11 PMTo: Pierpoint, LaraSubject: FW: AGA comments to QER: Natural Gas Emissions Section

  15. Natural Gas: Lifting Mileage Higher and Higher

    Broader source: Energy.gov [DOE]

    A new Energy Department brochure compares the energy efficiency, greenhouse gas emissions and ranges of the three proposed natural gas passenger vehicle configurations using analysis by Argonne National Laboratory.

  16. Trends in polycyclic aromatic hydrocarbon concentrations in the Great Lakes atmosphere

    SciTech Connect (OSTI)

    Ping Sun; Pierrette Blanchard; Kenneth A. Brice; Ronald A. Hites

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo(a)pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The major sources of PAHs in and around Chicago are vehicle emissions, coal and natural gas combustion, and coke production. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer. 36 refs., 4 figs., 1 tab.

  17. Powertrain Trends and Future Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential * Global Trends - Fighting Global Warming * Clean Diesel - Neglected in the U.S. for Too Long Agenda DSNE-NA | August 4, 2009 | Robert ...

  18. Natural gas monthly, December 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  19. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect (OSTI)

    John L. Marion; Nsakala ya Nsakala

    2003-11-09

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  20. Solar Pricing Trends

    Energy Savers [EERE]

    30.00% 35.00% 40.00% 2006 2007 2008 2009 2010 % Of Spend 2006 2007 2008 2009 2010 SDGE 22.89% 25.05% 29.23% 29.08% 36.88% SoCalGas 23.43% 26.87% 31.06% 34.53% 37.42% CPUC ...

  1. Natural Gas Modernization Clearinghouse | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modernization Clearinghouse Natural Gas Modernization Clearinghouse Overview This Natural Gas Modernization Clearinghouse provides information about the implications of natural gas infrastructure modernization, including strategies and technologies that increase public safety, improve efficiency and environmental performance and enhance natural gas deliverability. Specific topic areas include information on measuring and reducing methane emissions, technology research and development, job

  2. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect (OSTI)

    Karman, D.; O`Leary, K.; O`Reilly, S.

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  3. Trends in Environmental Analysis

    SciTech Connect (OSTI)

    Koester, C J; Moulik, A

    2005-03-31

    This article discusses developments in environmental analytical chemistry that occurred in the years of 2003 and 2004. References were found by searching the ''Science Citation Index and Current Contents''. As in our review of two years ago (A1), techniques are highlighted that represent current trends and state-of-the-art technologies in the sampling, extraction, separation, and detection of trace concentrations, low-part-per-billion and less, of organic, inorganic, and organometallic contaminants in environmental samples. New analytes of interest are also reviewed, the detections of which are made possible by recently developed analytical instruments and methods.

  4. Storage Trends and Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries Storage Trends and Summaries Total Bytes Utilized The growth in NERSC's storage systems amounts to roughly 1.7x per year. Total Bytes Utilized Number of Files Stored The growth in the number of files stored is less than the growth in the number of bytes stored as the average file size has increased over time. The average file size as of August 2003 is about 30 MB. The median file size is closer to 1 MB. Number of Files Monthly I/O The growth rate of I/O is roughly the same as the

  5. A Community Emissions Data System (CEDS) for Historical Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Zhou, Yuyu; Kyle, G. Page; Wang, Hailong; Yu, Hongbin

    2015-04-21

    Historical emission estimates for anthropogenic aerosol and precursor compounds are key data needed for Earth system models, climate models, and atmospheric chemistry and transport models; both for general analysis and assessment and also for model validation through comparisons with observations. Current global emission data sets have a number of shortcomings, including timeliness and transparency. Satellite and other earth-system data are increasingly available in near real-time, but global emission estimates lag by 5-10 years. The CEDS project will construct a data-driven, open source framework to produce annually updated emission estimates. The basic methodologies to be used for this system have been used for SO2 (Smith et al. 2011, Klimont, Smith and Cofala 2013), and are designed to complement existing inventory efforts. The goal of this system is to consistently extend current emission estimates both forward in time to recent years and also back over the entire industrial era. The project will produce improved datasets for global and (potentially) regional model, allow analysis of trends across time, countries, and sectors of emissions and emission factors, and facilitate improved scientific analysis in general. Consistent estimation of uncertainty will be an integral part of this system. This effort will facilitate community evaluation of emissions and further emission-related research more generally.

  6. Gas-phase photodissociation of CH{sub 3}COCN at 308 nm by time-resolved Fourier-transform infrared emission spectroscopy

    SciTech Connect (OSTI)

    Yeh, Yu-Ying; Chao, Meng-Hsuan; Tsai, Po-Yu; Chang, Yuan-Bin; Tsai, Ming-Tsang; Lin, King-Chuen

    2012-01-28

    By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v= 1, 2) and CO(v= 1-3) are detected in one-photon dissociation of acetyl cyanide (CH{sub 3}COCN) at 308 nm. The S{sub 1}(A'), {sup 1}(n{sub O}, {pi}*{sub CO}) state at 308 nm has a radiative lifetime of 0.46 {+-} 0.01 {mu}s, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) x 10{sup -12} cm{sup 3} molecule{sup -1} s{sup -1}. The measurements of O{sub 2} dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 {+-} 7 and 32 {+-} 3 kJ/mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH{sub 2}CO, in which the CH{sub 2}CO moiety may further undergo secondary dissociation to release CO. The production of CO{sub 2} in the reaction with O{sub 2} confirms existence of CH{sub 2} and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH{sub 3} fragments that dominate the dissociation products at 193 nm are not detected.

  7. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect (OSTI)

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  8. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    exceeding normal levels by 40 and 18 percent, respectively (see Temperature Maps and Data). Storage Table More Storage Data Other Market Trends Premium of Natural Gas Liquids...

  9. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Other Market Trends: MMS Issues Final Notice of Western Gulf Lease Sale: The Minerals Management Service (MMS) will offer several incentives to increase domestic oil and gas...

  10. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Storage Estimates Database. Other Market Trends: EIA Releases New Report on the Fundamentals of Natural Gas Storage: EIA prepared a new report to provide general background...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2009 Next Release: February 26, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 18, 2009)...

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    0, 2009 Next Release: August 6, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 29, 2009) Since...

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    , 2009 Next Release: July 9, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 2, 2009) Since...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Database. Row and column sums may not equal totals due to independent rounding. Other Market Trends: Report on Nova Scotia Natural Gas Reserves: According to a report...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    recorded last year. Other Market Trends: FERC Releases Report on Underground Natural Gas Storage: The Federal Energy Regulatory Commission (FERC) issued a report last week that...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 7, 2009) Since Wednesday, December...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Release: Thursday, March 24, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 16, 2011) With...