Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

2

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

impacts of marginal electricity demand for CA hydrogenUS DOE, 2007. EIA. Electricity data. [cited 2007 March 2,F. Decarbonized hydrogen and electricity from natural gas.

Yang, Christopher

2008-01-01T23:59:59.000Z

3

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect (OSTI)

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

4

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

5

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

6

Distributed Hydrogen Production from Natural Gas: Independent...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent...

7

Natural Gas and Hydrogen Infrastructure Opportunities: Markets...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth...

8

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

9

System for the co-production of electricity and hydrogen  

DOE Patents [OSTI]

Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

2007-10-02T23:59:59.000Z

10

Extracting Hydrogen Electricity from  

E-Print Network [OSTI]

. In the United States, energy security motivates the de- velopment of previously untapped sources of oil as well & TECHNOLOGY 161A C oncerns about climate change, in- creased global demand for finite oil and natural gas reserves, and national en- ergy security, among other factors, are driving the search for alternatives

11

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

12

Composition for absorbing hydrogen from gas mixtures  

DOE Patents [OSTI]

A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Lee, Myung W. (Aiken, SC)

1999-01-01T23:59:59.000Z

13

Multi-Sourced Electricity for Electrolytic Hydrogen  

E-Print Network [OSTI]

$/tonne (the DOE's centralized plant #12;Page 8 Electrolytic Hydrogen · Focus on low-cost electrolysis - 300 US Americas DOE Hydrogen Electrolysis-Utility Integration Workshop Boulder, Colorado 2004 September 22 & 23Multi-Sourced Electricity for Electrolytic Hydrogen Multi-Sourced Electricity for Electrolytic

14

The HERMES Polarized Hydrogen Internal Gas Target  

E-Print Network [OSTI]

internal gas targets. The HERMES hydrogen target is an internal polarized gas target using the storage cell frame on the right. atomic hydrogen beam and focuses it into a storage cell. The storage cellThe HERMES Polarized Hydrogen Internal Gas Target J. Stewart for The HERMES Collaboration

15

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

16

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

* Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

17

Co-production of Hydrogen and Electricity (A Developer's Perspective...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Co-production of Hydrogen and Electricity (A Developer's Perspective) Co-production of Hydrogen and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel...

18

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

19

Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

20

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

22

Natural Gas and Hydrogen Infrastructure Opportunities: Markets...  

Broader source: Energy.gov (indexed) [DOE]

h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

23

Delivery of Hydrogen Produced from Natural Gas  

E-Print Network [OSTI]

· Materials Development - Repair, smart pipe, liners · Operational Technologies - Compressors, modeling to separate hydrogen at distributed site · Hydrogen metering technology - Analyzing the effect that the presence of hydrogen may have on gas volume metering and measurement technology - New metering technologies

24

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Broader source: Energy.gov (indexed) [DOE]

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels,...

25

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and...

26

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Broader source: Energy.gov (indexed) [DOE]

to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international harmonization between natural gas and hydrogen...

27

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

28

Using restructured electricity markets in the hydrogen transition: The PJM case  

SciTech Connect (OSTI)

We examine a hydrogen transition strategy of using excess electric generation capacity in the U.S. midatlantic states during off-peak hours to produce hydrogen via electrolysis. Four different generation technologies are evaluated: combined-cycle natural gas, nuclear power, clean coal, and pulverized coal. We construct hydrogen-electricity price curves for each technology and evaluate the resulting air emissions of key pollutants. Substantial capital investments may be avoided by leveraging off generation assets that would otherwise be built to produce electricity. We also account for the interaction between the production of hydrogen and wholesale electricity prices and demand. Results show that off-peak electrolysis is a plausible but not dominant strategy for hydrogen production; however, there may be a substantial real option value in using the electric power system to transition to a hydrogen economy that may exceed the direct cost savings of producing hydrogen by less expensive methods.

Felder, F.A.; Hajos, A. [Rutgers State University, New Brunswick, NJ (United States)

2006-10-15T23:59:59.000Z

29

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Hydrogen and Electricity: Public-Private Partnershipand electricity demands. Foster Public-Private Partnershipand electricity demands. Foster Public-Private Partnership

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

30

Synergies in Natural Gas and Hydrogen Fuels  

Broader source: Energy.gov (indexed) [DOE]

F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary...

31

Development of a Compressed Hydrogen Gas  

E-Print Network [OSTI]

Kpsi "Saran Wrap" Tank Energy Density for Hydrogen Storage Systems " Advance the development of a cost · Satisfying hydrogen gas permeation requirements · Increasing energy density efficiency · Developing cost · Design » T700 carbon fiber overwrap with high interspersed winding pattern with design FOS of 2.45 » NGV

32

Techno-economic and behavioural analysis of battery electric, hydrogen  

E-Print Network [OSTI]

conducts a techno-economic study on hydrogen fuel cell electric vehicles (FCV), battery electric vehicles (BEV) and hydrogen fuel cell plug-in hybrid electric vehicles (FCHEV) in the UK using cost predictions reforming methane in 2030. Keywords: Fuel cell vehicle; electric vehicle; hybrid vehicle; hydrogen

33

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Not Available

2011-02-01T23:59:59.000Z

34

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

Natural Gas Gas Hydrates Kent Perry Executive Director Exploration & Production Technology Distributed Hydrogen Fuel Processing Low-Temperature Fuel Cells High-Temperature Fuel Cells Vehicle Fuel Infrastructure Gerry Runte Executive Director Hydrogen Energy Systems Gasification & Hot Gas Cleanup Process

35

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

SciTech Connect (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

36

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...  

Broader source: Energy.gov (indexed) [DOE]

for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

37

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/Generatorliter V-10 engine and about 26 kilograms of hydrogen, stored

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

38

Gas and Electric Utilities Regulation (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

39

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

40

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

SciTech Connect (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energys Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/GeneratorFuel Cell Deployment and Hydrogen Infrastructure, WorldwideOffice (2005), Florida Hydrogen Business Partnership,

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

42

Danish Energy Authority Poland -Electricity and gas  

E-Print Network [OSTI]

Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector analyses December 2004 #12;Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector

43

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

44

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

SciTech Connect (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

45

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

46

Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

47

Affording Gas and Electricity: Self Disconnection and  

E-Print Network [OSTI]

Affording Gas and Electricity: Self Disconnection and Rationing by Prepayment and Low Income Credit interview schedule................................... liv #12;2 Fuel Usage and Consumption Patterns of Low electricity, but this seems to be because gas prepayers have lower average income than electricity prepayers

Feigon, Brooke

48

Baltimore Gas and Electric Company (Electric)- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Baltimore Gas and Electric (BGE) provides incentives for technical assistance, retrofitting inefficient equipment, starting a new construction project, launching a major renovation, purchasing new...

49

Central Hudson Gas and Electric (Electric)- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam...

50

THE CORROSION OF SILICATE MATERIALS BY HYDROGEN GAS AND HYDROFLUORIC ACID SOLUTION  

E-Print Network [OSTI]

THE CORROSION OF SILICATE MATERIALS BY HYDROGEN GAS ANDApparatus II. Hydrogen Gas Corrosion, HydrofluoricAcid Solution Corrosion. Material Preparation, , , ,

Tso, Stephen T.

2011-01-01T23:59:59.000Z

51

Sensoring hydrogen gas concentration using electrolyte made of proton  

SciTech Connect (OSTI)

Hydrogen gas promises to be a major clean fuel in the near future. Thus, sensors that can measure the concentrations of hydrogen gas over a wide dynamic range (e.g., 1 99.9%) are in demand for the production, storage, and utilization of hydrogen gas. However, it is difficult to directly measure hydrogen gas concentrations greater than 10% using conventional sensor [1 11]. We report a simple sensor using an electrolyte made of proton conductive manganese dioxide that enables in situmeasurements of hydrogen gas concentration over a wide range of 0.1 99.9% at room temperature.

Ueda, Yoshikatsu [Kyoto University, Japan; Kolesnikov, Alexander I [ORNL; Koyanaka, Hideki [Kyoto University, Japan

2011-01-01T23:59:59.000Z

52

Electric Power Research Institute (EPRI) Hydrogen Briefing to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage...

53

Economics of Electric Compressors for Gas Transmission  

E-Print Network [OSTI]

) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review...

Schmeal, W. R.; Hibbs, J. J.

54

NIPSCO (Gas and Electric)- Residential Natural Gas Efficiency Rebates  

Broader source: Energy.gov [DOE]

Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency...

55

Electrochemical separation and concentration of hydrogen sulfide from gas mixtures  

DOE Patents [OSTI]

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (Atlanta, GA); Sather, Norman F. (Naperville, IL); Huang, Hann S. (Darian, IL)

1984-10-30T23:59:59.000Z

56

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

a synthetic gas or syngas, which can then be convertedand hydrogen. 4.2.1.1. Syngas-based co-production options.of a synthesis gas (syngas), which is a mixture of H 2 ,

Yang, Christopher

2008-01-01T23:59:59.000Z

57

On the energy of electric field in hydrogen atom  

E-Print Network [OSTI]

It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

Yuri Kornyushin

2009-07-30T23:59:59.000Z

58

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network [OSTI]

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

59

Natural Gas Utilities Options Analysis for the Hydrogen Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project Review Meeting 6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E....

60

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

62

Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve  

SciTech Connect (OSTI)

Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

Forsberg, C.W.

2005-01-20T23:59:59.000Z

63

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

64

HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.  

E-Print Network [OSTI]

??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance. (more)

Haryanto, Agus

2008-01-01T23:59:59.000Z

65

Distributed Hydrogen Production from Natural Gas: Independent Review  

SciTech Connect (OSTI)

Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

Fletcher, J.; Callaghan, V.

2006-10-01T23:59:59.000Z

66

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...  

Broader source: Energy.gov (indexed) [DOE]

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from...

67

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

68

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

69

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

70

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect (OSTI)

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

71

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network [OSTI]

compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

72

Electric and Gas Fired Radiant Tubes 'ERT'  

E-Print Network [OSTI]

The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

Nilsen, E. K.

1981-01-01T23:59:59.000Z

73

Two-stage coal liquefaction without gas-phase hydrogen  

DOE Patents [OSTI]

A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

Stephens, H.P.

1986-06-05T23:59:59.000Z

74

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network [OSTI]

focus is on modeling of hydrogen production and distributionto centralized hydrogen production. One key question thatCalifornia, Davis Hydrogen Production via Natural Gas Steam

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

75

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents [OSTI]

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

76

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

77

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2011-01-01T23:59:59.000Z

78

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

ScienceCinema (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2013-05-29T23:59:59.000Z

79

Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration  

DOE Patents [OSTI]

A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

Golden, Timothy Christopher; Weist Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

2010-04-13T23:59:59.000Z

80

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Fuel Cells and Electric Forklift Trucks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel Cell

82

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

83

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Exhaust (CO 2 ) Grid electricity Cogen Heat Natural gas Airutility grid, 2) re-use of thermal energy waste heat forGrid electricity Exhaust (CO 2 ) Recycled Reformate Natural gas Air Water H2 Purifier Source: Weinert, 2005 Cogen Heat

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

84

A High Density Polarized Hydrogen Gas Target for Storage Rings  

E-Print Network [OSTI]

A High Density Polarized Hydrogen Gas Target for Storage Rings K. Zapfe \\Lambday , B. Braun z , H of gaseous polarized hydrogen was formed by injecting polarized H atoms (produced by Stern­Gerlach spin separation) into a storage cell consisting of a cylindrical tube open at both ends. The target was placed

85

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

86

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Fuel Cell Technologies Publication and Product Library (EERE)

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

87

The hydrogen atom in plasmas with an external electric field  

SciTech Connect (OSTI)

We numerically solve the Schrdinger equation, using a more general exponential cosine screened Coulomb (MGECSC) potential with an electric field, in order to investigate the screening and weak external electric field effects on the hydrogen atom in plasmas. The MGECSC potential is examined for four different cases, corresponding to different screening parameters of the potential and the external electric field. The influences of the different screening parameters and the weak external electric field on the energy eigenvalues are determined by solving the corresponding equations using the asymptotic iteration method (AIM). It is found that the corresponding energy values shift when a weak external electric field is applied to the hydrogen atom in a plasma. This study shows that a more general exponential cosine screened Coulomb potential allows the influence of an applied, weak, external electric field on the hydrogen atom to be investigated in detail, for both Debye and quantum plasmas simultaneously. This suggests that such a potential would be useful in modeling similar effects in other applications of plasma physics, and that AIM is an appropriate method for solving the Schrdinger equation, the solution of which becomes more complex due to the use of the MGECSC potential with an applied external electric field.

Bahar, M. K. [Department of Physics, Karamano?lu Mehmetbey University, 70100 Karaman (Turkey); Soylu, A. [Department of Physics, Ni?de University, 51240 Ni?de (Turkey)

2014-09-15T23:59:59.000Z

88

Towards a low carbon transport sector: electricity or hydrogen?y y g  

E-Print Network [OSTI]

i ti· Two possible innovations: - Electric vehicles H d f l ll hi l- Hydrogen fuel cell vehicles vehicle; PHEV: Hydrogen 6 ICE: internal combustion engine; FC: fuel cell; HEV: hybrid-electric vehicle; PHEV: plug-in hybrid-electric vehicle; EV: electric vehicle; HFCV: hydrogen fuel cell vehicle #12;The

89

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

90

Method for making hydrogen rich gas from hydrocarbon fuel  

DOE Patents [OSTI]

A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

1999-07-27T23:59:59.000Z

91

The selective adsorption of hydrogen sulfide from natural gas streams  

E-Print Network [OSTI]

on the Magnolia Petroleum Company's Clayton Ranch No. 1 gas well. This well has 100 grains of hydrogen sulfide per 100 ft. of gas, or 0. 0016 m. f. Back Pressure Regulator I Smiley Tester (PbAc) Flare Well Reducing Regulator Separator Heater... to flare The gas out the top passed upward through the adsorbing column, through another back pressure regulator to the positive displacement meter, and thence to flare. Smiley testers were installed in the exit line to test for hydrogen sulfide, using...

Fails, James Clayton

1959-01-01T23:59:59.000Z

92

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

93

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

94

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

SciTech Connect (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

95

Grid-Based Renewable Electricity and Hydrogen Integration  

E-Print Network [OSTI]

) ­ Lower capital cost · No net increase in carbon emissions ­ Improve efficiency of current generation mix NumberofVehicles Mature Hydrogen- Electric Economy · Coal (with Carbon sequestration) · Nuclear 2000 2010 2020 2030 2040 2050 Year GWe Wind nuclear o-g-s Coal-IGCC Coal-new Coal-old- noscrub Coal

96

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network [OSTI]

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

97

Production of Hydrogen at the Forecourt Using Off-Peak Electricity: June 2005 (Milestone Report)  

SciTech Connect (OSTI)

This milestone report provides information about the production of hydrogen at the forecourt using off-peak electricity as well as the Hydrogen Off-Peak Electricity (HOPE) model.

Levene, J. I.

2007-02-01T23:59:59.000Z

98

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network [OSTI]

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

99

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

SciTech Connect (OSTI)

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETLs Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

100

E-Print Network 3.0 - atomic hydrogen gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Fuel Summary: : Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar); Physical storage... of a material either as hydrogen molecules (H2...

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

102

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

103

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect (OSTI)

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

104

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

105

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

106

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

Judkins, R.R.; Burchell, T.D.

1999-06-15T23:59:59.000Z

107

Electrical swing adsorption gas storage and delivery system  

DOE Patents [OSTI]

Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

108

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

109

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

SciTech Connect (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or fencepost) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

110

Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated Pressures  

E-Print Network [OSTI]

Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. For reheat gas turbines, understanding of the ignition delay times of high-hydrogen natural gases is important for two...

Brower, Marissa

2012-10-19T23:59:59.000Z

111

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications  

SciTech Connect (OSTI)

Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

2002-08-25T23:59:59.000Z

112

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

113

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

114

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1  

E-Print Network [OSTI]

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Ghosh3 , Huei Peng2 Abstract A fuel processor that reforms natural gas to hydrogen-rich mixture to feed of the hydrogen in the fuel processor is based on catalytic partial oxidation of the methane in the natural gas

Peng, Huei

115

Electrical apparatus for explosive gas atmospheres, Part 0: General introduction  

E-Print Network [OSTI]

This Recommendation has been prepared by IEC Technical Committee No. 31, Electrical Apparatus for Explosive Atmospheres; It forms one of a series of publications dealing with electrical apparatus for use in explosive gas atmospheres. This particular...

IEC Technical Committee

1971-01-01T23:59:59.000Z

116

,"New Mexico Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)"...

117

Regulation of Gas, Electric, and Water Companies (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

118

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

119

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

120

Gas storage and separation by electric field swing adsorption  

DOE Patents [OSTI]

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Influence of hydrogen on the electronic states of olivine: Implications for electrical conductivity  

E-Print Network [OSTI]

Influence of hydrogen on the electronic states of olivine: Implications for electrical conductivity; accepted 29 February 2012; published 28 March 2012. [1] The influence of hydrogen on the electronic states of electrons. We find that the dissolution of hydrogen modifies the electronic states when hydrogen

122

An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

Forsberg, Charles W [ORNL

2008-01-01T23:59:59.000Z

123

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

124

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

or grows rapidly. Because hydrogen storage can be relativelyas it is assumed that hydrogen storage can accommodate ?this analysis is that hydrogen storage is only built to

Yang, Christopher

2008-01-01T23:59:59.000Z

125

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

Because of the focus on hydrogen production and refuelinglarge impacts that hydrogen production and conversion wouldresources available for hydrogen production. This is a major

Yang, Christopher

2008-01-01T23:59:59.000Z

126

Structure of Palladium Nanoclusters for Hydrogen Gas Sensors  

SciTech Connect (OSTI)

Palladium nanoclusters produced by inert gas aggregation/magnetron sputtering are used as building blocks for the construction of nano electronic devices with large surface to volume ratios that can be used as sensitive hydrogen gas sensors in fuel cells and in petrochemical plants. X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and high resolution transmission electron microscopy (HRTEM) have been used to characterize the structure, lattice constant, particle diameter and oxide thickness of the palladium nanoclusters in order to understand the operation of these sensors. Grazing incidence XRD (GIXRD) of heat treated Pd clusters has shown that the palladanite structure forms at elevated temperatures.

Stevens, K.J.; Ingham, B.; Toney, M.F.; Brown, S.A.; Lassesson, A.; /SLAC, SSRL /Canterbury U.

2009-05-11T23:59:59.000Z

127

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

generation of electricity in California, which resulted in more air pollution than central power plants [electricity-intensive liquid hydrogen truck pathway, emis- sions from diesel truck delivery and electric generation at power plants

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

128

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

driver in the cost of hydrogen via electrolysis. Operationelectrolysis to compete economically with fossil- based hydrogen production, low cost

Yang, Christopher

2008-01-01T23:59:59.000Z

129

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

based on electricity generation plant type classificationsof electricity generation met by natural gas plants and theelectricity generation among different types of power plants (

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

130

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

131

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network [OSTI]

for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency on leveraging of developments in the stationary PEM fuel cell and compressed natural gas vehicle market sectors

132

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents [OSTI]

The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

Osher, John E. (Alamo, CA)

1992-01-01T23:59:59.000Z

133

Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Broader source: Energy.gov [DOE]

Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

134

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

135

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiencythe economic benefit derived from energy systems capital investment at a societal levelstrongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

136

Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

137

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

138

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

139

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

report on renewable hydrogen production. We hope that youis one method of hydrogen production at small and mediumis one method of hydrogen production at small and medium

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

140

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Partnership Finalizes Hydrogen Energy Roadmap, World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

142

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

143

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network [OSTI]

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

144

Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the...

145

Baltimore Gas and Electric Company (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

146

Silica membranes for hydrogen separation from coal gas. Final report  

SciTech Connect (OSTI)

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

147

Method of generating hydrogen gas from sodium borohydride  

DOE Patents [OSTI]

A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester, Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

2007-12-11T23:59:59.000Z

148

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

and diesel. Hydrogen and fuel cells are widely touted as anapplication for hydrogen and fuel cells is to power LDVs,system (batteries or hydrogen and fuel cells) will achieve

Yang, Christopher

2008-01-01T23:59:59.000Z

149

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

JM. Determining the lowest cost hydrogen delivery mode.Int J Hydrogen Energy 2007;32(2):26886. [11] Hoffmann P.p. 289. [12] Dunn S. Hydrogen futures: toward a sustainable

Yang, Christopher

2008-01-01T23:59:59.000Z

150

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network [OSTI]

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

151

Hydrogen Production: Natural Gas Reforming | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet HydrogenCoalNatural Gas

152

Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas  

DOE Patents [OSTI]

Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

2004-10-19T23:59:59.000Z

153

Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas  

DOE Patents [OSTI]

Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

Kong, Peter C.; Detering, Brent A.

2003-08-19T23:59:59.000Z

154

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

155

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents [OSTI]

Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

1984-01-01T23:59:59.000Z

156

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents [OSTI]

Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

157

,"New Mexico Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

158

,"New York Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:52 PM" "Back to Contents","Data 1: New York Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NY2"...

159

Certificate of Public Good--Gas and Electric (Vermont)  

Broader source: Energy.gov [DOE]

This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in...

160

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:54:29 PM" "Back to Contents","Data 1: Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Louisville Gas and Electric- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric (LGE) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps...

162

Gettering of hydrogen and methane from a helium gas mixture  

SciTech Connect (OSTI)

In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup } getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?C to decompose the methane, and the second at 110?C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

Crdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu [Department of Physics, The University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209 (United States); Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Sciences, 7011 East Avenue, Livermore, California 94550 (United States)

2014-11-01T23:59:59.000Z

163

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

164

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

evolution with the electricity sector and lays out some ofinteraction with the electricity sector because of thefuel and stationary electricity sectors will converge and

Yang, Christopher

2008-01-01T23:59:59.000Z

165

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

achieving low CoE for hydrogen production. Although other WEfor competitive hydrogen production, such advanced targetsElectricity and Hydrogen Fuel Production from Multi-Unit

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

166

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

167

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network [OSTI]

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

168

Modeling of Plasma-Assisted Conversion of Liquid Ethanol into Hydrogen Enriched Syngas in the Nonequilibrium Electric Discharge Plasma-Liquid System  

E-Print Network [OSTI]

In this work we report recent results of our experimental and theoretical studies related to plasma conversion of liquid ethanol into hydrogen-enriched syngas in the plasma-liquid system with the electric discharge in a gas channel with liquid wall using available diagnostics and numerical modeling.

Levko, Dmitry; Naumov, Vadim; Chernyak, Valery; Yukhymenko, Vitaly; Prysiazhnevych, Irina; Olszewski, Sergey

2008-01-01T23:59:59.000Z

169

The hydrogen energy economy: its long-term role in greenhouse gas reduction  

E-Print Network [OSTI]

The hydrogen energy economy: its long-term role in greenhouse gas reduction Geoff Dutton, Abigail for Climate Change Research Technical Report 18 #12;The Hydrogen Energy Economy: its long term role 2005 This is the final report from Tyndall research project IT1.26 (The Hydrogen energy economy: its

Watson, Andrew

170

Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

171

Detailed Studies of a HighDensity Polarized Hydrogen Gas Target for Storage Rings  

E-Print Network [OSTI]

Detailed Studies of a High­Density Polarized Hydrogen Gas Target for Storage Rings Kirsten Zapfe 1 (1996) 293 Abstract A high­density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T­shaped storage cell

172

Central Hudson Gas and Electric (Gas)- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments, not-for-profits, private institutions, public and...

173

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or  

E-Print Network [OSTI]

WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or system Electricity and Gas: A system used to distribute electricity and gas around the world/certain area, by compromising to minimise costs and generate the most electricity and gas as possible, which maximises profits

Wright, Francis

174

Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets  

DOE Patents [OSTI]

A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

2013-02-12T23:59:59.000Z

175

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network [OSTI]

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

176

Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing  

E-Print Network [OSTI]

There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries...

Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

177

Reduction of titania by methane-hydrogen-argon gas mixture  

SciTech Connect (OSTI)

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1,373 to 1,773 K. The reduction production product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1,373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1,723 K. A further increase in temperature to 1,773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

Zhang, G.; Ostrovski, O.

2000-02-01T23:59:59.000Z

178

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

the network of electricity generation plants that determinesredundancy in electricity generation plants. The diversionelectricity generation can come from baseload, intermediate or peaking power plants

Yang, Christopher

2008-01-01T23:59:59.000Z

179

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

180

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents [OSTI]

The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

Osher, J.E.

1992-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

182

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

183

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

184

The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study  

E-Print Network [OSTI]

The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh conditions that elucidate the role of oxygen in the functioning of silicon carbide field-effect gas sensors hydrogen-depleted state; competition between hydrogen oxidation and hydrogen diffusion to metal/ oxide

Tobin, Roger G.

185

Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor  

SciTech Connect (OSTI)

The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

2012-07-01T23:59:59.000Z

186

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

numerous domestic and renewable resources, makes hydrogen anto lower carbon and renewable resources such as biomass,non-dispatchable renewable resources, such as wind power,

Yang, Christopher

2008-01-01T23:59:59.000Z

187

Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the public-private partnerships in other countries focused on hydrogen, particularly Germany, Japan and the UK. In April, the DOE announced a new project leveraging the...

188

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

must come from renewable resources, such as wind, solar,numerous domestic and renewable resources, makes hydrogen annon-dispatchable renewable resources, such as wind power,

Yang, Christopher

2008-01-01T23:59:59.000Z

189

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

infrastructure with carbon capture and sequestration: casenuclear and fossil with carbon capture and sequestration (with the addition of carbon capture equipment on a hydrogen

Yang, Christopher

2008-01-01T23:59:59.000Z

190

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.

191

arctic gas pipeline: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

192

arctic gas pipelines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

193

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits  

E-Print Network [OSTI]

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization for the periodic orbits in a strongly coupled multidimen- sional Hamiltonian system, namely the hydrogen atom.15.Gy, 05.45.-a, 45.20.Jj I. INTRODUCTION The hydrogen atom in crossed electric and magnetic fields

194

Electric Power Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,1146,872,533 7,387,184 7,573,863

195

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

or service contract ­ Selling other types of energy services that qualify (e.g. hydrogen/renewables synergies

196

Hydrogen and electricity production using microbial fuel cell-based technologies  

E-Print Network [OSTI]

1 Hydrogen and electricity production using microbial fuel cell-based technologies Bruce E. Logan/mol? ? #12;8 Energy Production using MFC technologies · Electricity production using microbial fuel cells · H to renewable energy #12;9 Demonstration of a Microbial Fuel Cell (MFC) MFC webcam (live video of an MFC running

Lee, Dongwon

197

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network [OSTI]

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company Education SDG&E Goal Grid Integrated Charging More plug-in electric vehicles More electric grid to a hairdryer) per PEV in the population Instantaneous demand, 40 all-electric vehicles for one day (8

California at Davis, University of

198

Development of a hydrogen generator based on the partial oxidation of natural gas integrated with PEFC  

SciTech Connect (OSTI)

As is well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by CNR Institute Transformation and Storage of Energy, Messina, Italy, on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with a PEFC (Polymer Electrolyte Fuel Cell). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic Catalytic Selective Partial Oxidation of Methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

Recupero, V.; Pino, L.; Di Leonardo, R.; Lagana, M. [Inst. CNR-TAE, Messina (Italy)

1998-12-31T23:59:59.000Z

199

Refractory two-dimensional hole gas on hydrogenated diamond surface  

SciTech Connect (OSTI)

Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al{sub 2}O{sub 3} film on the diamond surface using an atomic-layer-deposition (ALD) method with an H{sub 2}O oxidant at 450 Degree-Sign C. The 2DHG thus protected survived air annealing at 550 Degree-Sign C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 Degree-Sign C in vacuum and above 450 Degree-Sign C in an H{sub 2}O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H{sub 2}O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 Degree-Sign C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 Degree-Sign C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 Degree-Sign C and remained at least up to 290 Degree-Sign C. The identification of these adsorbates is open for further investigation.

Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

2012-12-15T23:59:59.000Z

200

Single-event kinetic modeling of the hydrocracking of hydrogenated vacuum gas oil  

E-Print Network [OSTI]

The primary objective of the research project was to further develop a computer program modeling the hydrocracking of partially hydrogenated vacuum gas oil (HVGO), and to use the model to compare the theoretical product distribution to experimental...

Ertas, Alper T.

2007-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THE CORROSION OF SILICATE MATERIALS BY HYDROGEN GAS AND HYDROFLUORIC ACID SOLUTION  

E-Print Network [OSTI]

of Reacted Alumino-silicate Glass . Reaction Between CaO-of Reacted Alumino-silicate Glasses. Reaction with HydrogenGas. . Reaction Between Silicate Glasses and HF Acid

Tso, Stephen T.

2011-01-01T23:59:59.000Z

202

A step towards the hydrogen economy by using the existing natural gas grid  

E-Print Network [OSTI]

A step towards the hydrogen economy by using the existing natural gas grid (the NATURALHY to the hydrogen-economy will be lengthy, costly and will require significant R&D PRACTICAL STRATEGY Prepared - end use · Pipeline durability · Pipeline integrity · End user appliances' performance Prepared by O

203

SELECTIVE FILTER FOR SnO2 BASED GAS SENSOR : APPLICATION TO HYDROGEN TRACE DETECTION  

E-Print Network [OSTI]

are requested in several fields such as applications [1], fuel cell [2], radioactive waste storage and diverse selectivity of a sensor includes the addition of a catalyst to the tin oxide powder. In the case of hydrogen1 SELECTIVE FILTER FOR SnO2 BASED GAS SENSOR : APPLICATION TO HYDROGEN TRACE DETECTION G

Paris-Sud XI, Université de

204

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

205

Geothermal Developments at San Diego Gas & Electric  

SciTech Connect (OSTI)

In 1972, the first well flow tests were conducted by NARCO and Magma Power to determine reservoir characteristics such as mass flow, temperature, stability, and mineral content of geothermal brine from the exploration wells. The results of these tests were encouraging. Brine temperatures were relatively hot, and salinity was less than previously experienced. Results were sufficient to justify further testing of the process design to determine an appropriate energy conversion cycle for a power plant. Both the flash cycle and binary cycle were considered. In the binary cycle, geothermal heat is transferred from hot brine to a secondary working fluid by means of heat exchangers. The heated secondary fluid expands to drive a turbine-generator. The flash cycle was rejected because the high measured noncondensible gas content of the brines seriously reduced the cycle efficiency. The reduced salinity was expected to result in reduced scaling characteristics. For these reasons the binary cycle was selected for initial design and field testing. In 1973, a series of field tests was conducted to support the design of the binary conversion cycle. Unfortunately, a rapid decline in heat exchanger performance resulting from scaling demonstrated a need to reevaluate the cycle design. A flash/binary process was chosen as the basis for facility design modifications and additional field testing. Design modifications were to use as much of the original design as possible in order to minimize cost. In March of 1974, SDG&E resumed field testing at Niland using reduced size models of the new flash/binary design. The 1974 test program confirmed the decision to modify the design, construction, and operation of the GLEF in a four-stage, flash/binary cycle configuration. In May of 1975, the design was completed and construction of the GLEF began. Startup operations were initiated and in June 1976 the facility was dedicated. In the fall of 1976 while debugging and initial operation was being accomplished, a test program was developed to provide additional basic information necessary for the design of a commercial flash/binary geothermal plant. The primary objective of the program was to develop binary heat exchanger heat design data under a variety of conditions.

Anastas, George; Hoaglin, Gregory J.

1980-12-01T23:59:59.000Z

206

Design of an underground compressed hydrogen gas storage.  

E-Print Network [OSTI]

??Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond (more)

Powell, Tobin Micah

2011-01-01T23:59:59.000Z

207

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels...  

Broader source: Energy.gov (indexed) [DOE]

hydrogen blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing). In the keynote...

208

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

209

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

2001-01-01T23:59:59.000Z

210

Hydrogen and elemental carbon production from natural gas and other hydrocarbons  

DOE Patents [OSTI]

Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

211

Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons  

DOE Patents [OSTI]

A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

Detering, Brent A.; Kong, Peter C.

2006-08-29T23:59:59.000Z

212

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

y d r o g e n Energy Stations New York State Energy Researchin an effort led by the New York State Energy Research andNYSERDA) (2005), New York Hydrogen Energy Roadmap, NYSERDA

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

213

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

and fuel cell main- tenance and stack refurbishment costs.fuel cell stack to internally reform input fuel into hydrogen (obviating the need for a separate reformer system and reducing costs),

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

214

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

215

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network [OSTI]

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

216

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

tion. A higher level of coal generation would decrease thea lower level of coal generation would lead to an increaseElectricity Generation (2004) Coal Steam CO 2 emissions [gCO

Yang, Christopher

2008-01-01T23:59:59.000Z

217

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

the vehicle and fuel cell engine capital cost is alreadyKammen DM. Fuel cell system economics: comparing the cost oflow cost for grid electricity (relative to fuel cell

Yang, Christopher

2008-01-01T23:59:59.000Z

218

Coproduction of Hydrogen and Electricity (A Developer's Perspective)  

E-Print Network [OSTI]

connected in parallel to the local electrical grid #12; Current Biogas Fuel Cell Installation #12; Current Biogas Fuel Cell Installation City of Riverside ­ 1 MW Biogas Fuel Cell ­ Dedicated August, `08

219

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

SciTech Connect (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

220

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

Williams, Brett D

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect (OSTI)

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

222

Sandia National Laboratories: clean hydrogen-powered fuel cell electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogen power Portable Hydrogen Fuel-Cell Unit

223

Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge  

SciTech Connect (OSTI)

A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A. [Benha University, Physics Department, Faculty of Science (Egypt); Rashed, U. M. [Alazhar University, Physics Department, Faculty of Science (Egypt); Hassouba, M. A. [Benha University, Physics Department, Faculty of Science (Egypt)

2012-05-15T23:59:59.000Z

224

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

225

Electric Dipole Polarizabilities of Hydrogen and Helium Isotopes  

E-Print Network [OSTI]

The electric dipole polarizabilities of $^3$H, $^3$He, and $^4$He are calculated directly using the Schr\\"odinger equation with the latest generation of two- and three-nucleon interactions. These polarizabilities are necessary in order to obtain accurate nuclear-polarization corrections for transitions involving S-waves in one- and two-electron atoms. Our results are compared to previous results, and it is shown that direct calculations of the electric polarizability of $^4$He using modern nuclear potentials are smaller than published values calculated using experimental photoabsorption data. The status of this topic is assessed in the context of precise measurements of transitions in one- and two-electron atoms.

I. Stetcu; S. Quaglioni; J. L. Friar; A. C. Hayes; P. Navrtil

2009-04-23T23:59:59.000Z

226

Ris Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures,  

E-Print Network [OSTI]

, hydrogen in the gaseous state has an extremely high ability to diffuse through solid materials be stored as a gas, a liquid or a solid. In the case of solid storage, the hydrogen exists as a chemical.0 70 10.0 141.0 Methanol 12.5 99 19.0 22.7 Gasoline 33.4 47.6 Lead/Acid Battery 0.2 Advanced battery 0

227

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks4 Fuel CycleFuelIssues

228

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformationOildale,Gas & Electric Co

229

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

230

Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermalhydraulic and efficiency points of view.

C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

2006-08-01T23:59:59.000Z

231

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

232

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Departments action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

233

Critical Review Microbial Electrolysis Cells for High Yield Hydrogen Gas  

E-Print Network [OSTI]

sources such as wind, solar or biomass, but the energy requirements are high (5.6 kWh/ m3H2) and typical A S S E , , § A N D R E N ´E A . R O Z E N D A L | Hydrogen Energy Center, and Department of Civil, The Netherlands, and Advanced Water Management Centre (AWMC), The University of Queensland, Qld 4072, Australia

234

cpp header will be provided by the publisher Properties of Dense Fluid Hydrogen and Helium in Giant Gas  

E-Print Network [OSTI]

cpp header will be provided by the publisher Properties of Dense Fluid Hydrogen and Helium in Giant molecular dynamics, equation of state, giant gas planets, hydrogen-helium mix- tures PACS 61.20.Ja, 61.25.Em, 61.25.Mv, 61.20.-p Equilibrium properties of hydrogen-helium mixtures under thermodynamic conditions

Militzer, Burkhard

235

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

236

Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

Chang H. Oh; Eung Soo Kim; Steven Sherman

2008-04-01T23:59:59.000Z

237

The Overall Energy Balance of the Hydrogen Bus in Berkeley, CA  

E-Print Network [OSTI]

splitting plants 4 millions Uranium 7 large oil&gas SMR/gasification refineries 16 millions Oil, hydrogen compressor, hydrogen tanks, and a bus propelled by electrical motors driven by a 60 kW hydrogen/Methane Direct conversion of fossil fuels to hydrogen causes more CO2 and other GHG gas emissions than burning

Patzek, Tadeusz W.

238

Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1of PageHYDROGEN H 2 Gridin the

239

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOE Hydrogen and Fuel CellsDepartment of

240

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions  

SciTech Connect (OSTI)

High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

2013-07-03T23:59:59.000Z

242

ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel  

DOE Patents [OSTI]

The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

2013-04-02T23:59:59.000Z

243

Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.  

SciTech Connect (OSTI)

Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

2011-09-01T23:59:59.000Z

244

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

SciTech Connect (OSTI)

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

Spath, P. L.; Mann, M. K.

2000-09-28T23:59:59.000Z

245

The effect of electron induced hydrogenation of graphene on its electrical transport properties  

SciTech Connect (OSTI)

We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman D band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)] [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States) [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)

2013-07-22T23:59:59.000Z

246

Understanding the use of natural gas storage for generators of electricity  

SciTech Connect (OSTI)

Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

247

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Yields Energy in Darkness · CO supports both cell growth and ATP synthesis, in darkness · ATP can be used to regenerate more water-gas shift catalysts in darkness · Dark bioreactor simplifies reactor design, operation's comments that shift reaction can support cell growth yielding energy in darkness leading to sustained H2

248

Hydrogen Bus Technology Validation Program  

E-Print Network [OSTI]

and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

249

Gas production response to price signals: Implications for electric power generators  

SciTech Connect (OSTI)

Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

Ferrell, M.L.

1995-12-31T23:59:59.000Z

250

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

251

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

252

Midwest Energy (Gas and Electric)- How$mart Energy Efficiency Finance Program  

Broader source: Energy.gov [DOE]

Midwest Energy offers its residential and small commercial electricity and natural gas customers in good standing a way to finance energy efficiency improvements on eligible properties. Under the...

253

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

254

Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application  

SciTech Connect (OSTI)

Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

2009-06-30T23:59:59.000Z

255

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

cost for renewable electricity, hydrogen from onsite electrolysiscosts, prices are assumed for electricity (for compression or electrolysis at stations), natural gas (for onsite reformers), compressed hydrogencosts, prices are assumed for electricity (for compression or electrolysis at stations), natural gas (for onsite reformers), compressed hydrogen

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

256

A Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Induced Pseudoscalar Coupling gP  

E-Print Network [OSTI]

the hydrogen gas of Z > 1 impurities COMET COMpressor forhydrogen gas using a model 75-32 Whatman Figure 5.11: CHUPS schematic diagram, including the compressors,

Banks, Thomas Ira

2007-01-01T23:59:59.000Z

257

Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films  

SciTech Connect (OSTI)

Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

1998-10-20T23:59:59.000Z

258

Bad wine makes for good energy Waste from improper fermentation can transform into electricity, hydrogen  

E-Print Network [OSTI]

MSNBC.com Bad wine makes for good energy Waste from improper fermentation can transform, a group of scientists from India recently developed a microbial fuel cell that uses wine to produce energy of wine could drop your electrical and gas bills. Using widely available microbes, scientists

259

PRODUCTION OF HYDROGEN AND ELECTRICITY FROM COAL WITH CO2 CAPTURE  

E-Print Network [OSTI]

gasification, quench cooled and shifted to (pri- marily) H2 and CO2 via sulfur-tolerant water-gas shift (WGS with sulfur-bearing waste gases, H2S and SO2. I. INTRODUCTION Carbon-free energy carriers, H2 and electricity relative abundance, high carbon intensity, and low cost. Coal-to-H2 plants based on gasification have been

260

Compressed Natural Gas and Hydrogen Fuels Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieofPropertyEnergyWorkshopCompressed Natural Gas and

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas separation by pressure swing adsorption for producing hydrogen from coal: Final report  

SciTech Connect (OSTI)

This project demonstrated the feasibility of producing high purity hydrogen from a coal gasification product gas mixture by Pressure Swing Adsorption (PSA) using a commercial 5A zeolite as the adsorbent. The major advantage of PSA over conventional hydrogen upgrading processes is associated with lower overall production costs. This is mainly due to the integration of PSA into H/sub 2/ production plants as a single unit operation by replacing the low temperature carbon monoxide shift, carbon dioxide wash and methanation steps. In this way, hydrogen production costs are typically reduced from 7 to 40%. A single bed PSA process was designed to simulate the various steps of commercial multibed PSA plants. A new and very important step, ''Vacuum Purge'', was also investigated. 45 refs., 38 figs., 50 tabs.

Kapoor, A.; Ritter, J.A.; Yang, R.T.

1988-02-01T23:59:59.000Z

262

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

263

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2 October 9, 2009 for developing a risk management framework as well as pricing of options. Many derivatives on both electricity and electricity prices is a relevant issue. Numerous diffusion-type and econometric models have been proposed

264

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

265

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

on the impact of hydrogen production on urban air quality.in ambient air quality: (1) onsite hydrogen production; (2)centralized hydrogen production with gaseous hydrogen

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

266

Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria  

DOE Patents [OSTI]

A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

Ooteghem, Suellen Van (Morgantown, WV)

2005-09-13T23:59:59.000Z

267

Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria  

SciTech Connect (OSTI)

A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

Ooteghem Van, Suellen

2005-09-13T23:59:59.000Z

268

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriersenable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

269

Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors  

SciTech Connect (OSTI)

Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

Xiang Wenguo; Chen Yingying [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2007-08-15T23:59:59.000Z

270

Low-Cost Production of Hydrogen and Electricity | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and Electricity Low-Cost

271

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

however). If hydrogen production via grid electrolysis orgeneration for hydrogen production is assumed to beIn both cases, hydrogen production is assumed to be

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

272

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

273

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

274

Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.  

SciTech Connect (OSTI)

In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

Lord, Anna Snider

2009-09-01T23:59:59.000Z

275

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844:Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

276

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

277

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

SciTech Connect (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

278

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

279

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network [OSTI]

NANGAS (North American Natural Gas Analysis System), E2020 (Modeling Forum (EMF). 2003. Natural Gas, Fuel Diversity and2003. Increasing U.S. Natural Gas Supplies: A Discussion

Wiser, Ryan

2005-01-01T23:59:59.000Z

280

Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer  

SciTech Connect (OSTI)

It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

2000-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Can anything better come along? Reflections on the deep future of hydrogen-electricity systems  

SciTech Connect (OSTI)

Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No{exclamation_point} Nothing better will ever come along.'. (authors)

Scott, D. S. [International Association for Hydrogen Energy (United States); Inst. for Integrated Energy Systems, U. of Victoria (Canada); Environmentalists for Nuclear Energy (Canada)

2006-07-01T23:59:59.000Z

282

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D

2007-01-01T23:59:59.000Z

283

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

284

Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME  

SciTech Connect (OSTI)

The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

John Pratapas; Daniel Mather; Anton Kozlovsky

2007-03-31T23:59:59.000Z

285

Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions  

E-Print Network [OSTI]

to the choice of coal over natural gas. External incentives such as low natural gas prices compared to coalImplications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG

Jaramillo, Paulina

286

Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst  

SciTech Connect (OSTI)

The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.

Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

2011-09-30T23:59:59.000Z

287

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

288

Catalytic hydrogenation and gas permeation properties of metal-containing poly(phenylene oxide) and polysulfone  

SciTech Connect (OSTI)

Metal-containing polymers, PPL-DPP-Pd, PPO-CPA-Pd, PSF-DPP-Pd, PSF-CPA-Pd (PDD = diphenylphosphinyl, CPA = o-carboxy phenyl amino), PPO-M (M = Pd,Cu,Co,Ni), and PSF-Pd, were prepared by incorporating metal chloride with either modified or unmodified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polysulfone (PSF). The Pd-containing polymers exhibit catalytic activity in the hydrogenation of cyclopentadiene under mild conditions both in alcohol solution and in the gas phase. The selectivity in the hydrogenation of diene to monoene in the gas phase can be controlled by adjusting the hydrogen partial pressure. The metal-containing polymers, PPL-M and PSF-Pd, can be cast easily into the membranes. The H[sub 2]/N[sub 2] permselectivity for PPO-M is higher than that for unmodified PPO, whereas the permeability of H[sub 2] changes slightly. The H[sub 2] permeability and H[sub 2]/N[sub 2] permselectivity for the PPO-Pd membrane are up to 67.5 barrers and 135, respectively.

Hanrong Gao; Yun Xu; Shijian Liao; Ren Liu; Daorong Yu (Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics)

1993-11-10T23:59:59.000Z

289

Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME  

SciTech Connect (OSTI)

The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogens significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: Substantially lower intake temperature needed for stable HCCI combustion Inconclusive impact on engine BMEP and power produced, Small reduction in the thermal efficiency of the engine, Moderate reduction in the unburned hydrocarbons in the exhaust, Slight increase in NOx emissions in the exhaust, Slight reduction in CO2 in the exhaust. Increased knocking at rich stoichiometry The major accomplishments and findings from the project can be summarized as follows: 1. A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. 2. A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen.

Pratapas, John; Mather, Daniel; Kozlovsky, Anton

2013-03-31T23:59:59.000Z

290

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

291

Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications  

E-Print Network [OSTI]

A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

Eshraghi, R. R.; Welch, D. E.

292

Regulating electricity and natural gas in Peru : solutions for a sustainable energy sector  

E-Print Network [OSTI]

Peru is one of the fastest growing countries in Latin America, thanks in part to industry fueled by generous endowments of hydro power capacity and natural gas reserves. However, investment in electricity generation capacity ...

Breckel, Alex Cade

2014-01-01T23:59:59.000Z

293

Baltimore Gas and Electric Company- Home Performance with Energy Star Rebates  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BG&E) offers the Home Performance with Energy Star Program that provides incentives for residential customers who have audits performed by participating...

294

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

295

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and...

296

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1997-01-01T23:59:59.000Z

297

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, R.V.

1997-12-30T23:59:59.000Z

298

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, R.V.

1999-02-02T23:59:59.000Z

299

Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas  

DOE Patents [OSTI]

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1999-01-01T23:59:59.000Z

300

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Broader source: Energy.gov (indexed) [DOE]

Replacement: 20 Freezer: 25 Room Air Conditioner: 25 Water Heater: 50 Electric Heat Pump Water Heaters: 100 Circulating Fans: 25 - 75 Milkers and Heat Reclaimers: 5...

302

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

production with gaseous hydrogen pipeline delivery systems;production with gaseous hydrogen pipeline delivery systems (the central hydrogen pathway with pipeline systems in terms

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

303

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network [OSTI]

future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

Parker, Nathan

2004-01-01T23:59:59.000Z

304

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

305

Sandia National Laboratories: co-locating natural gas and hydrogen stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locating natural gas and hydrogen

306

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

307

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z

308

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

plants, natural gas-based gas turbine plants operate atnatural gas-based gas turbine plants are still operating,from natural gas-based gas turbines, compared to the High

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

309

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

310

Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOE Patents [OSTI]

Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

2002-01-01T23:59:59.000Z

311

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network [OSTI]

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

312

Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

Not Available

2012-07-01T23:59:59.000Z

313

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

314

Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks  

E-Print Network [OSTI]

We present new, high angular resolution (~0.22") MERLIN observations of neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially resolved HI absorption is detected against the morphologically complex and extended 21-cm radio continuum emission, consistent with two counterrotating disks of neutral hydrogen, with a small bridge of gas connecting the two. We propose a merger model in which the two nuclei represent the galaxy cores which have survived the initial encounter and are now in the final stages of merging, similar to conclusions drawn from previous CO studies (Sakamoto, Scoville & Yun 1999). However, we suggest that instead of being coplanar with the main CO disk (in which the eastern nucleus is embedded), the western nucleus lies above it and, as suggested by bridge of HI connecting the two nuclei, will soon complete its final merger with the main disk. We suggest that the collection of radio supernovae (RSN) detected in VLBA studies in the more compact western nucleus represent the second burst of star formation associated with this final merger stage and that free-free absorption due to ionised gas in the bulge-like component can account for the observed RSN distribution. (Abridged)

C. G. Mundell; P Ferruit; A Pedlar

2001-06-13T23:59:59.000Z

315

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Broader source: Energy.gov (indexed) [DOE]

or natural gas on a retail rate basis for the applicable technology. Interest rates for financing range from 0% - 6.9%. The maximum loan amount under this program is...

316

Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011  

E-Print Network [OSTI]

Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011 Regulation Governing Use of Electric/Gas UtilityType Vehicles (EGUV): Individual operators will use their judgment on whether. Electric vehicles will be recharged at a location appropriate for such use. Use of extension cords from

Beex, A. A. "Louis"

317

Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)  

SciTech Connect (OSTI)

Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

Chad Smutzer

2006-01-01T23:59:59.000Z

318

Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.  

SciTech Connect (OSTI)

Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

Wally, Karl

2006-05-01T23:59:59.000Z

319

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation forElectricity

320

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

future compositions of the electricity sector in California.Similar to the electricity sector, we integrate performanceour modeling of the electricity sector, we defined typical

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Measurement of Hydrogen Balmer Line Broadening and Thermal Power Balances of Noble Gas-Hydrogen Discharge Plasmas  

E-Print Network [OSTI]

talyst atoms or ions which ionize at integer multiples of the potential energy of atomic hydrogen (St, He + , or Ar + ) caused an increase in power; whereas, no excess power was observed in the case of krypton which does not provide a reaction with a net enthalpy of a multiple of the potential energy of atomic hydrogen under these conditions. For a power input to the glow discharge of 110 W, the excess output power of mixtures of strontium with argon- hydrogen (95/5%), strontium with hydrogen, strontium with helium-hydrogen (95/5%), and argon-hydrogen (95/5%) was 75, 58, 50, and 28 W, respectively, based a comparison of the temperature rise of the cell with krypton-hydrogen mixture (95/5%) and krypton alone. The input power was varied to find conditions that resulted in the optimal output for the strontium- hydrogen plasma. At 136 W input, the excess power significantly increased to 184 W. These studies provide a useful comparison of catalysts for the optimization of the catal

322

Hydrogenation-induced edge magnetization in armchair MoS{sub 2} nanoribbon and electric field effects  

SciTech Connect (OSTI)

We performed density functional theory study on the electronic and magnetic properties of armchair MoS{sub 2} nanoribbons (AMoS{sub 2}NR) with different edge hydrogenation. Although bare and fully passivated AMoS{sub 2}NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS{sub 2}NRs and make AMoS{sub 2}NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS{sub 2}NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS{sub 2}NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H{sub 2}, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS{sub 2}NRs.

Ouyang, Fangping [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Physics and Electronics, Central South University, Changsha 410083 (China); Yang, Zhixiong; Wu, Nannan; Chen, Yu [School of Physics and Electronics, Central South University, Changsha 410083 (China); Ni, Xiang [Physics program at the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016-4309 (United States); Xiong, Xiang, E-mail: xiongx228@sina.com [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

2014-02-17T23:59:59.000Z

323

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

324

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

325

Hydrogen Fuel Cells Providing Critical Backup Power | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power April 9, 2010 - 3:43pm Addthis Customers of AT&T Wireless and Pacific Gas & Electric...

326

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to: navigation,

327

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump to:

328

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCo JumpElectric Co Jump

329

Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report  

SciTech Connect (OSTI)

Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

Haeberli, W.

1992-02-01T23:59:59.000Z

330

Development of a hydrogen and deuterium polarized gas target for application in storage rings  

SciTech Connect (OSTI)

Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

Haeberli, W.

1992-02-01T23:59:59.000Z

331

The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-08-01T23:59:59.000Z

332

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

333

Nanocomposite thin films for high temperature optical gas sensing of hydrogen  

DOE Patents [OSTI]

The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

Ohodnicki, Jr., Paul R.; Brown, Thomas D.

2013-04-02T23:59:59.000Z

334

Gas separation device based on electrical swing adsorption  

DOE Patents [OSTI]

A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-10-26T23:59:59.000Z

335

Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

336

Electric and gas utility marketing of residential energy conservation case studies  

SciTech Connect (OSTI)

The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

None

1980-05-01T23:59:59.000Z

337

The electric and gas industries are converging: What does it mean?  

SciTech Connect (OSTI)

Three broad views define deregulation in retail gas and electric markets. One sees the future as but a lengthened shadow of the present. Change is glacial. The second predicts a significant but mannerly shift-a leisurely transition from monopoly to competition. The third posits revolution. It awaits a future marked by epochal, discontinuous, and abrupt changes. This third future is the most interesting. It raises the stakes. This article examines the industrial organization of gas and electric enterprises as they will be reinvented by those who embrace the third view. Not a prediction; rather, a thought experiment.

Dar, V.K.

1995-04-01T23:59:59.000Z

338

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

339

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a technical note. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogens production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

340

Central Hudson Gas and Electric (Electric)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of between $25 and $600 for energy efficient equipment and measures. This is for residential electric customers who upgrade heating,...

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation

342

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry for

343

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

344

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType JumpJersey)Carbon DevelopmentCorpSamSan Diego Gas

345

Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4 16 18 19

346

Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4

347

Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan

348

Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 20106 50 0

349

Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (BillionFeet) Decade

350

Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009Year0 0 0

351

Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-140 1 1 0 0

352

Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14Year

353

Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-1423,448Cubic

354

Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Millionper

355

Michigan Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013 Adjustments

356

Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay65Feet)

357

Mississippi Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May Jun Jul

358

Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0

359

Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14

360

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to:Ayuda:PalabrasBadema JumpBallardGas and

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan Feb Mar Apr0

362

Connecticut Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number

363

Delaware Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan FebFeet) Decade

364

District of Columbia Natural Gas Deliveries to Electric Power Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial

365

Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0 1 -1Feet)

366

Georgia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4Year Jan FebFeet)

367

Hawaii Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998

368

Idaho Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0Feet) Decade Year-0 Year-1

369

Illinois Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-1444,805Feet)

370

Indiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707Year

371

Comments of Baltimore Gas & Electric Company | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClayCoalofFrontierfrom theBaltimore Gas

372

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

373

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits  

E-Print Network [OSTI]

A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations.

Stephan Gekle; Jrg Main; Thomas Bartsch; T. Uzer

2006-10-02T23:59:59.000Z

374

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

375

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

SciTech Connect (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

376

Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity  

E-Print Network [OSTI]

and the security of supply. Index Terms-- Power system economics, electricity-gas integration, natural gas. The largest use still is for industrial heating. The second largest use is for electric power generation for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy

Catholic University of Chile (Universidad Católica de Chile)

377

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network [OSTI]

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

Mallinson, Richard

378

San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services  

E-Print Network [OSTI]

Fact Sheet San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services Docket No. EL00-95-000 July 6, 2007 The Federal Energy Regulatory Commission today approved an $18 million uncontested settlement that resolves matters and claims related to BP Energy Company (BP) and California

Laughlin, Robert B.

379

Joint Modelling of Gas and Electricity spot prices N. Frikha1 , V. Lemaire2  

E-Print Network [OSTI]

The recent deregulation of energy markets has led to the development in several countries of market places for developing a risk management framework as well as pricing of options. Many derivatives on both electricity to price projects in energy (see [12] for an introduction). Thus, modelling jointly the evolution of gas

Boyer, Edmond

380

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11  

E-Print Network [OSTI]

for electricity generation, GHG emissions are reduced by at least 45% per kWh. But when natural gas is used that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn non-GHG emissions such as particulate matter, carbon monoxide and nitrous oxide. The trade-off between

McGaughey, Alan

382

2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, Rates and the Customer  

E-Print Network [OSTI]

© 2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, OR #12;2 SDG&E Smart Meter Goals · Install AMI/smart metering for all SDG&E electric and gas business're starting to recreate our relationship with customers and transform our company #12;Smart Meter Business

383

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents [OSTI]

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

Cookson, A.H.; Dale, S.J.; Bolin, P.C.

1982-12-28T23:59:59.000Z

384

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

385

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

386

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

SciTech Connect (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

387

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

388

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

SciTech Connect (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

389

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energys FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

390

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

391

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network [OSTI]

2 Risø Energy Report 3 Interest in the hydrogen economy and in fuel cells has increased used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power. Emerging fuel cell technologies can do the same for other hydrogen-rich fuels, while generating little

392

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

393

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation  

E-Print Network [OSTI]

1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

Jaramillo, Paulina

394

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

395

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

396

POLYCYCLIC AROMATIC HYDROCARBONS, IONIZED GAS, AND MOLECULAR HYDROGEN IN BRIGHTEST CLUSTER GALAXIES OF COOL-CORE CLUSTERS OF GALAXIES  

SciTech Connect (OSTI)

We present measurements of 5-25 {mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of nine cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray-emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission-line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H{sub 2} rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as somewhat higher ratios of 70 {mu}m/24 {mu}m luminosities. Our analysis suggests that while star formation processes dominate the heating of the dust and PAHs, a heating process consistent with suprathermal electron heating from the hot gas, distinct from star formation, is heating the molecular gas and contributing to the heating of the ionized gas in the galaxies. The survival of PAHs and dust suggests that dusty gas is somehow shielded from significant interaction with the X-ray gas.

Donahue, Megan; Mark Voit, G.; Hoffer, Aaron [Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824 (United States); De Messieres, Genevieve E.; O'Connell, Robert W. [Astronomy Department, University of Virginia, Charlottesville, VA (United States); McNamara, Brian R. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Nulsen, Paul E. J., E-mail: donahue@pa.msu.edu, E-mail: voit@pa.msu.edu, E-mail: hofferaa@msu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

397

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

398

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

399

Electrical and gas sensing properties of polyaniline functionalized single-walled carbon This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes.1088/0957-4484/21/7/075502 Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes Jae Online at stacks.iop.org/Nano/21/075502 Abstract Electrical and gas sensing properties of single

400

Dissolved gas supersaturation associated with the thermal effluent of an electric generating station and some effects on fishes  

E-Print Network [OSTI]

saturations of total dissolved gas were determined with a Weiss Gas Saturometer and ranged from 100. 5 to 115. 04 in the discharge water. Saturation levels were directly related to the power plant AT and the gas content of the intake water. Percent... hours. Red shiners were more susceptible to gas supersaturation than bluegiils or bass. ACKNOWLEDGMENTS I would like to thank the Texas Utilities System including Dallas Power E Light Company, Texas Electric Service Company, and Texas Power C Light...

Ciesluk, Alexander Frank

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

SciTech Connect (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

402

Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers  

E-Print Network [OSTI]

1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... watts/sq.ft. calculations relative to ASHRAE 90.1-2004 baselines 7 Energy Conscious Blueprint Program ? Provides prescriptive rebates for: ? CT Cool Choice for HVAC Equipment ($ per ton) ? Utility prescriptive caps apply to the following: ? VFDs...

Sermakekian, E.

2011-01-01T23:59:59.000Z

403

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J and industry expectations · DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK

404

The Use of Metal Hydrides for Hydrogen Recovery from Industrial Off-Gas Streams  

E-Print Network [OSTI]

to have potential for hydrogen separation technology. These were Edible Fats and Oils, Float Glass, Germanium, Heat Treating of Metal Parts, Molybdenum Powder, Powder Metallurgy, Rhenium, Silicon (Electronics) and Tungsten. While these industries... the hydrogen containing secondary streams are available, process steam is generally an important commodity and its generation during recovery of hydrogen presents a further conservation, partially off-setting the heating value reduction of the stream...

Rebello, W. J.; Guerrero, P. S.; Goodell, P. D.

405

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect (OSTI)

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

406

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network [OSTI]

Hydrogen Refueling Stations SMR station Pipeline Station SMR Module Cost (HGM-1000) SMR Module Output 600 kg/day Compressor Base Cost (

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

407

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

408

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

409

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

410

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen FuelDepartment

411

The marginal costs and pricing of gas system upgrades to accommodate new electric generators  

SciTech Connect (OSTI)

In the coming years, competitive forces and restructuring in the electric industry can be expected to increase substantially the demand for gas delivery service to new electric generating units by local distribution companies (LDCs) and pipeline companies across the United States. In meeting this demand, it is important that the prices paid by electric generators for gas delivery service properly reflect the costs of the resources utilized in providing service to them in order that their decisions regarding what to build and where as well as the manner in which their units are dispatched are as efficient as possible from a societal standpoint. This will assure that society`s resources will be neither squandered nor underutilized in providing service to these generators and aid in assuring that, once built, the units are run in an efficient manner. While the most efficient solution to this problem is a secondary market in tradeable pipeline capacity rights, we do not have such a system in place at this time. Further, tradeable rights for LDC capacity may be difficult to establish. An interim solution that will work in the confines of the present system and not create problems for the transition to tradeable rights is required. This purpose of this paper is to set out the important first principals involved in applying marginal costing to the provision of gas delivery service to new electric generating units rather than to present empirical data on the marginal costs of such service. Experience has shown that marginal costs are usually unique to the particular situation being costed.

Ambrose, B.

1995-12-31T23:59:59.000Z

412

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

413

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

414

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

415

Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results  

SciTech Connect (OSTI)

A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter, providing a unique indication of the cumulative gas exposure.

Small IV, W; Maitland, D J; Wilson, T S; Bearinger, J P; Letts, S A; Trebes, J E

2008-06-05T23:59:59.000Z

416

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

417

Natural Gas and Hydrogen Infrastructure Opportunities Workshop, October 18-19, 2011, Argonne National Laboratory, Argonne, IL : Summary Report.  

SciTech Connect (OSTI)

The overall objective of the Workshop was to identify opportunities for accelerating the use of both natural gas (NG) and hydrogen (H{sub 2}) as motor fuels and in stationary power applications. Specific objectives of the Workshop were to: (1) Convene industry and other stakeholders to share current status/state-of-the-art of NG and H{sub 2} infrastructure; (2) Identify key challenges (including non-technical challenges, such as permitting, installation, codes, and standards) preventing or delaying the widespread deployment of NG and H{sub 2} infrastructure. Identify synergies between NG and H{sub 2} fuels; and (3) Identify and prioritize opportunities for addressing the challenges identified above, and determine roles and opportunities for both the government and industry stakeholders. Plenary speakers and panel discussions summarized the current status of the NG and H{sub 2} infrastructure, technology for their use in transportation and stationary applications, and some of the major challenges and opportunities to more widespread use of these fuels. Two break-out sessions of three groups each addressed focus questions on: (1) infrastructure development needs; (2) deployment synergies; (3) natural gas and fuel cell vehicles (NGVs, FCVs), specialty vehicles, and heavy-duty trucks; (4) CHP (combined heat and power), CHHP (combined hydrogen, heat, and power), and synergistic approaches; and (5) alternative uses of natural gas.

Kumar, R. comp.; Ahmed, S. comp. (Chemical Sciences and Engineering Division)

2012-02-21T23:59:59.000Z

418

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

SciTech Connect (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

419

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

420

Hydrogen separation membranes annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

422

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels  

Broader source: Energy.gov [DOE]

Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

423

Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors  

SciTech Connect (OSTI)

The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenation of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700?nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 12??10{sup ?2} ? cm, which is one order of magnitude higher than that by native donors (23??10{sup ?3} ? cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.

Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp [NTT Microsystem Integration Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

2014-09-01T23:59:59.000Z

424

LARGE EDDY SIMULATION/EULERIAN PROBABILITY DENSITY FUNCTION APPROACH FOR SIMULATING HYDROGEN-ENRICHED GAS TURBINE  

E-Print Network [OSTI]

while the small-scale motions are modeled using sub-filter models. Since gas-turbine relevant combustion providing better input for the combustion models. Developing LES-based combustion models for stationary gas) based approach is used here to deal with the complexities of gas turbine combustion. In the PDF approach

Raman, Venkat

425

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect (OSTI)

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

426

Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report  

SciTech Connect (OSTI)

Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1995-09-01T23:59:59.000Z

427

Toward a new, integrated interactive electric power and natural gas industry  

SciTech Connect (OSTI)

The movement toward a new, integrated interactive electric power and natural gas industry is discussed. This movement envisions more competition and fewer competitors. The key capabilities of the new market are described. It is concluded that what will make an energy business succeed is the ability to aggregate supply and markets, to optimize routing, to improve load factors, and to provide added levels of reliability through diversity. The strong organization that is able to deal in all forms of energy is a necessary part of this new paradigm of the integrated energy market.

NONE

1995-12-31T23:59:59.000Z

428

,"North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric PowerNetGas, WetDeliveries

429

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric FuelGas Wells

430

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

431

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

432

DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS  

SciTech Connect (OSTI)

A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

2014-04-01T23:59:59.000Z

433

Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

434

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

435

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

436

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

437

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

438

Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009  

E-Print Network [OSTI]

catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

439

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

Water High-pressure hydrogen compressor Compressed hydrogenWater High-pressure hydrogen compressor Compressed hydrogenReciprocating gas compressor Figure 13 Hydrogen refueling

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

440

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

442

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

443

An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanfords 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

2009-05-22T23:59:59.000Z

444

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

445

Standard Test Method for Determination of the Susceptibility of Metallic Materials to Hydrogen Gas Embrittlement (HGE)  

E-Print Network [OSTI]

1.1 This test method covers the quantitative determination of the susceptibility of metallic materials to hydrogen embrittlement, when exposed to high pressure gaseous hydrogen. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

446

Batch methods for enriching trace impurities in hydrogen gas for their further analysis  

DOE Patents [OSTI]

Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

2014-07-15T23:59:59.000Z

447

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. For the first time stability of such oxides were tested for 100 redox cycles. Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

448

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

449

Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts  

E-Print Network [OSTI]

rights reserved. Keywords: Methanol decomposition; Pt/alumina; Ceria; Hydrogen; PEM fuel cell 1 exchange mem- brane (PEM) fuel cell system. PEM fuel cells convert hydrogen gas into useful electric power is seen as an attractive means of providing the necessary hydrogen to the fuel cell. With the exception

Gulari, Erdogan

450

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

451

Survey of the Economics of Hydrogen Technologies  

E-Print Network [OSTI]

Gasification Biomass Pyrolysis Electrolysis Hydrogen Storage Compressed Gas Liquefied Gas Metal Hydride Carbon Hydrogen Production Steam Methane Reforming Noncatalytic Partial Oxidation Coal Gasification Biomass

452

Final Report - Hydrogen Delivery Infrastructure Options Analysis  

Broader source: Energy.gov (indexed) [DOE]

pipelines for gaseous hydrogen delivery Option 2: Use of existing natural gas or oil pipelines for gaseous hydrogen delivery Option 3: Use of existing natural gas pipelines...

453

Process for removal of hydrogen halides or halogens from incinerator gas  

DOE Patents [OSTI]

A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

Huang, H.S.; Sather, N.F.

1987-08-21T23:59:59.000Z

454

Electric Power Research Institute (EPRI) Hydrogen Briefing to DOE on May  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summaryand Contact Information |Electric Power27,

455

Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry  

SciTech Connect (OSTI)

The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

2002-04-01T23:59:59.000Z

456

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Fuel Cell Technologies http://www.hydrogen.energy.gov/pdfs/12020_fuel_cell_system_cost_2012.pdf; Program Record, [

Zhao, Hengbing

2013-01-01T23:59:59.000Z

457

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines, October 2000. Available onlineNext Evolution of the F Gas Turbine, April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

458

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

vehicles with hydrogen (and fuel cells) and electricity,vehicles and hydrogen powered fuel cell vehicles. Such

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

459

CO{sub 2} Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors  

SciTech Connect (OSTI)

The Regional Greenhouse Gas Initiative among Northeastern states is expected to lead to an increase in the price of electricity in the region and beyond. In the RGGI region, changes in the value of electricity-generating assets may be positive or negative, while changes outside the Northeast are virtually always positive. For stakeholders in the industry, the change depends on the portfolio of assets held by affected firms. (author)

Burtraw, Dallas; Kahn, Danny; Palmer, Karen

2006-03-01T23:59:59.000Z

460

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network [OSTI]

fuel- cell vehicles: Mobile Electricity" technologies andFuel-Cell Vehicles: Mobile Electricity Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

462

Has the Supreme Court pulled the rug from under the FERC's electric and natural gas regulation  

SciTech Connect (OSTI)

The Supreme Court overruled a prior decision in the Attleboro Gap case, which had identified an area where state regulation would be a burden on interstate commerce and opened the way for federal regulation in Parts II and III of the Federal Power Act and the Natural Gas Act of 1938. In Arkansas Electric Cooperative Corporation (AECC) v. Arkansas Public Service Commission, the Court decided that there is a ''bright line'' between the point where state regulation of wholesale rates will be a burden on interstate commerce and where it will be tolerable. In shifting the emphasis from whether there is to whether there could be an interference with interstate commerce, the decision raises the question of who must make that determination and how it will affect administrative proceedings. There is not likely to be a major impact, but this will depend on state legislatures, commissions, regulated industries, and consumers. 19 references.

Flax, L.

1983-01-01T23:59:59.000Z

463

Natural gas-assisted steam electrolyzer  

DOE Patents [OSTI]

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

464

Hydrogen and OUr Energy Future  

SciTech Connect (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

465

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect (OSTI)

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

466

Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas  

SciTech Connect (OSTI)

In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

2014-01-29T23:59:59.000Z

467

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy andNews and updates from theBiomass inBlending Hydrogen

468

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

CI) combustion, an electric motor, and a lithium-ion batterypowertrain using one electric motor in the pre-transmissionthe same shaft as the electric motor and the transmission.

Zhao, Hengbing

2013-01-01T23:59:59.000Z

469

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

SciTech Connect (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

470

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Broader source: Energy.gov [DOE]

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

471

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

472

The water-gas shift (WGS) reaction (CO + H2O = CO2+ H2) is an important reaction for hydrogen upgrading during fuel  

E-Print Network [OSTI]

-treatment units in practical low-temperature PEM fuel cell systems, whereby the deleterious CO should be totally for hydrogen upgrading during fuel gas processing. Emerging applications in fuel cells require active, non-pyrophoric, and cost-effective catalysts. Along with a new group of platinum catalysts with atomically dispersed Pt

Napp, Nils

473

Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications  

E-Print Network [OSTI]

exhaust emissions that can be achieved relative to both diesel and natural gas alternatives. The design $ For applications that now use diesel engines $ Develop engine configurations that can replace existing diesel that minimizes the surface to volume ratio. However, care must be taken to avoid engine knock. This can require

474

System for thermochemical hydrogen production  

DOE Patents [OSTI]

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

475

Accepted for publication in the INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, April 2009. Hydrogen Economy Transition in Ontario-Canada Considering the Electricity Grid  

E-Print Network [OSTI]

: Integrated Power System Plan IRR: Internal Rate of Return LMP: Locational Marginal Price MILP: Mixed and Power FCV: Fuel-Cell Vehicle HHV: Higher Heating Value HOEP: Hourly Ontario Energy Price HPP: Hydrogen

Cañizares, Claudio A.

476

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

477

Properties, Behavior and Material Compatibility of Hydrogen, Natural Gas and Blends Materials Testing and Design Requirements for Hydrogen Components and Tanks  

Broader source: Energy.gov [DOE]

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 29, 2010, in Beijing, China.

478

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

479

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

480

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network [OSTI]

modeling of Californias electricity sector to 2020: UpdatedFig. 3B). In the electricity sector, three forms of de-options. Residual electricity-sector carbon emis- sions in

Williams, J.H.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas electricity hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

482

Gas-phase hydrogen isotope exchange in HF + D2O  

SciTech Connect (OSTI)

The gas-phase isotope exchange reaction of HF and D2O has been studied by flow tube and matrix isolation techniques over a range of concentrations and reaction times. The matrix isolation/FTIR gas sampling and analysis technique proved capable of detecting reactants and products even at low concentrations (0.02% and less) and for reaction times down to 10 msec. The reaction under study, however, is sufficiently rapid that it appeared complete at 10 msec even at the lowest reactant concentrations used. From these results, it is therefore possible only to place a lower bound on the reaction rate. This lower bound, arrived at by computer modeling an assumed second order reaction in the flow tube, represents a refinement in the previously established limit by about a factor of 10U and may thus be of utility in UF6 atmospheric release models. 4 refs., 13 figs., 2 tabs.

Trowbridge, L.D.

1982-12-31T23:59:59.000Z

483

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

484

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

SciTech Connect (OSTI)

Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({approx}10 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H{sub 2} separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 40} alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

J. Douglas Way; Robert L. McCormick

2001-06-01T23:59:59.000Z

485

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

486

Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I  

SciTech Connect (OSTI)

In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

1995-07-01T23:59:59.000Z

487

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

SciTech Connect (OSTI)

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

488

Mobility with Hydrogen Fuel Cells Becomes Reality! 2Daimler AG / 09.02.2012  

E-Print Network [OSTI]

Bio-Mass Natural Gas Crude Oil Conventional fuels sulphur-free, free of aromatic compounds fuels system & stack Electric engine H2 tank system Infrastructure Hydrogen costs Reliable refueling technology Synthetic fuels (GTL) sulphur-free, free of aromatic compounds Natural Gas (CNG) 1. Gen. Bio-Fuels (Ethanol

California at Davis, University of

489

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Electric Drivetrain Electric Drivetrain Conv. DieselDiesel Hyb. Conv. LNG-SI LNG-SI Hyb. Conv. LNG-CI LNG-CICompression Ignition Carbon Dioxide Diesel Gallon Equivalent

Zhao, Hengbing

2013-01-01T23:59:59.000Z

490

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

491