National Library of Energy BETA

Sample records for gas electric ethanol

  1. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  2. Plants in Your Gas Tank: From Photosynthesis to Ethanol

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  3. Public Service Electric & Gas | Open Energy Information

    Open Energy Info (EERE)

    Electric & Gas Jump to: navigation, search Name: Public Service Electric & Gas Place: Newark, NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  4. Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers Natural Gas Connection program to residential customers to switch from electric to natural gas for heat. The program waives connection charge (...

  5. (Electric and Gas) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    The Energize CT in coordination with participating utilities offers various rebates for energy efficient electric and natural gas equipment.  

  6. Baltimore Gas & Electric Company (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Baltimore Gas and Electric (BGE) offers four different programs for its commercial customers for technical assistance, retrofitting inefficient equipment, purchasing new equipment, and combined...

  7. Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for ENERGY STAR clothes washers,...

  8. NIPSCO Prescriptive Electric and Natural Gas Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Prescriptive Natural Gas & Electric Program offers rebates to NIPSCO's large commercial, industrial, non-profit, governmental and institutional customers, who...

  9. PP-79 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon PP-79 San Diego Gas & Electric Company More Documents & Publications PP-49-1 San Diego Gas & Electric Company PP-68-2 San Diego Gas & Electric Company PP-48-3 El Paso ...

  10. Gas storage and separation by electric field swing adsorption...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Gas storage and separation by electric field swing adsorption Title: Gas storage and separation by electric field swing adsorption Gases are stored, ...

  11. Biomass Gas Electric LLC BG E | Open Energy Information

    Open Energy Info (EERE)

    Gas Electric LLC BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer...

  12. Energy Cost Calculator for Electric and Gas Water Heaters | Department...

    Office of Environmental Management (EM)

    Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT ...

  13. EA-160 Rochester Gas and Electric Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 Rochester Gas and Electric Corporation EA-160 Rochester Gas and Electric Corporation Order authorizing Rochester Gas and Electric Corporation to export electric energy to Canada. EA-160 Rochester Gas and Electric Corporation (30.03 KB) More Documents & Publications EA-162 PP&L, Inc EA-159 Cincinnati

  14. Pacific Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    PG&E) Jump to: navigation, search Name: Pacific Gas & Electric Co Abbreviation: PGE Place: California Service Territory: California Phone Number: 800-743-5002 Website: www.pge.com...

  15. Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  16. EA-159 Cincinnati Gas and Electric Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    59 Cincinnati Gas and Electric Corporation EA-159 Cincinnati Gas and Electric Corporation Order authorizing Cincinnati Gas and Electric Corporation to export energy to Canada. EA-159 Cincinnati Gas and Electric Corporation (31.58 KB) More Documents & Publications EA-162 PP&L, Inc EA-160 Rochester

  17. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  18. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Environmental Management (EM)

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric ... You can read your own meters to help monitor your electric or gas energy use. During the ...

  19. Comments of Baltimore Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company BGE comments to DOE addressing policy and logistical challenges Comments of Baltimore Gas & Electric Company (396.35 KB) More Documents & Publications NBP RFI: Data Access, Third Party Use and Privacy- Comments of Baltimore Gas & Electric Company NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company The Need for Essential Consumer Protections: Smart Metering

  20. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the

  1. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  2. NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company | Department of Energy Baltimore Gas & Electric Company NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company (105.16 KB) More Documents & Publications Comments of

  3. Requirements for Petitions to Construct Electric and Gas Facilities...

    Open Energy Info (EERE)

    requirements for petitions to construct electric generation, electric transmission, and natural gas facilities pursuant to 30 V.S.A. 248. In addition, the rule clarifies...

  4. Levelized Costs for Nuclear, Gas and Coal for Electricity, under...

    Office of Scientific and Technical Information (OSTI)

    Conference: Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Citation Details In-Document Search Title: Levelized Costs for Nuclear, Gas and ...

  5. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  6. ,"Kansas Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Price Sold to Electric Power ... 6:58:56 AM" "Back to Contents","Data 1: Kansas Natural Gas Price Sold to Electric Power ...

  7. ,"Nevada Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Price Sold to Electric Power ... 1:03:29 AM" "Back to Contents","Data 1: Nevada Natural Gas Price Sold to Electric Power ...

  8. Bath Electric Gas & Water Sys | Open Energy Information

    Open Energy Info (EERE)

    Electric Gas & Water Sys Jump to: navigation, search Name: Bath Electric Gas & Water Sys Place: New York Phone Number: (607) 776-3072 Website: www.villageofbath.orgBEGWS.ht Outage...

  9. ,"New Jersey Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Deliveries to Electric ... 8:26:15 AM" "Back to Contents","Data 1: New Jersey Natural Gas Deliveries to Electric ...

  10. ,"New Jersey Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Price Sold to Electric ... 8:26:15 AM" "Back to Contents","Data 1: New Jersey Natural Gas Price Sold to Electric ...

  11. ,"New Mexico Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Deliveries to Electric ... 8:26:16 AM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric ...

  12. ,"New York Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Deliveries to Electric ... 8:26:17 AM" "Back to Contents","Data 1: New York Natural Gas Deliveries to Electric ...

  13. ,"New Mexico Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Price Sold to Electric ... 8:26:16 AM" "Back to Contents","Data 1: New Mexico Natural Gas Price Sold to Electric ...

  14. ,"New York Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Price Sold to Electric ... 8:26:18 AM" "Back to Contents","Data 1: New York Natural Gas Price Sold to Electric ...

  15. ,"New Mexico Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NM2" "Date","New Mexico Natural Gas Deliveries to Electric ...

  16. ,"Minnesota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Price Sold to Electric Power ... 6:59:00 AM" "Back to Contents","Data 1: Minnesota Natural Gas Price Sold to Electric Power ...

  17. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  18. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    The Anaerobic Digester Gas-to-Electricity program is designed to support small-sized electricity generation where the energy generated is used primarily at the electric customer's location (third...

  19. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  20. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  1. ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045TX3" "Date","Texas Natural Gas Price Sold to ...

  2. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    1: West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045WV3" "Date","West Virginia Natural Gas Price ...

  3. ,"West Virginia Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045WV2" "Date","West Virginia Natural Gas Deliveries to ...

  4. ,"New Mexico Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: New Mexico Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045NM3" "Date","New Mexico Natural Gas Price Sold ...

  5. ,"North Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045NC3" "Date","North Carolina Natural Gas ...

  6. ,"North Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NC2" "Date","North Carolina Natural Gas Deliveries to ...

  7. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045ND2" "Date","North Dakota Natural Gas Deliveries to ...

  8. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045ND3" "Date","North Dakota Natural Gas ...

  9. ,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic ...

  10. ,"New Hampshire Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","62016" ...

  11. Pacific Gas and Electric Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Pacific Gas and Electric Company Address: PO Box 770000 Place: San Francisco Zip: 94177 Region: United States Sector: Marine and...

  12. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  13. Holyoke Gas & Electric- Commercial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Holyoke Gas & Electric's Commercial Energy Conservation Program offers zero interest loans to its commercial customers who are making energy efficiency improvements to facilities. The...

  14. San Diego Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    Company) Jump to: navigation, search Name: San Diego Gas & Electric Co Place: San Diego, California Service Territory: California Website: www.sdge.com Green Button Access:...

  15. ,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  16. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  17. ,"South Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  18. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"Rhode Island Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  20. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  2. ,"South Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  3. Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21 in Cheyenne, Wyoming); and electricity transmission, storage, and distribution issues ... flexibility factors that led to past investment in natural gas generation will ...

  4. Holyoke Gas & Electric - Commercial Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Administrator Holyoke Gas and Electric Department Website http:www.hged.comhtmlincentiveprograms.htmlCommercialAssist State Massachusetts Program Type Loan...

  5. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  6. Holyoke Gas & Electric- Residential Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas & Electric (HG&E) Residential Energy Conservation Program provides residential customers with loans to help make energy saving improvements to eligible homes. The loan...

  7. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  8. EA-137-A New York State Electric and Gas Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A New York State Electric and Gas Corporation EA-137-A New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to export electric ...

  9. Improving the ethanol gas-sensing properties of porous ZnO microspheres by Co doping

    SciTech Connect (OSTI)

    Xiao, Qi Wang, Tao

    2013-08-01

    Graphical abstract: - Highlights: • Co-doped porous ZnO microspheres were synthesized. • 3 mol% Co-doped ZnO sensor showed the highest response to ethanol. • 3 mol% Co-doped ZnO sensor exhibited fast recovery property. • 3 mol% Co-doped ZnO sensor exhibited good selectivity and long-term stability. - Abstract: Porous Co-doped ZnO microspheres were prepared by a simple hydrothermal method combined with post-annealing. Co species existed as a form of divalent state in the sample and substituted Zn{sup 2+} sites in ZnO crystal lattice, which was affirmed by X-ray diffraction, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The gas-sensing measurements demonstrated that the 3 mol% Co-doped ZnO sample showed the highest response value to 100 ppm ethanol at 350 °C, which were 5 folds higher than that of the pure ZnO sample. In addition, the 3 mol% Co-doped ZnO sensor exhibited fast recovery property, good quantitative determination, good selectivity and long-term stability. The superior sensing properties were contributed to high specific surface area combined with the large amount of oxygen vacancies originating from Co doping.

  10. PP-68-2 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon PP-68-2 San Diego Gas & Electric Company More Documents & Publications PP-49-1 San Diego Gas & Electric Company PP-79 San Diego Gas & Electric Company PP-48-3 El Paso ...

  11. PP-49-1 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon PP-49-1 San Diego Gas & Electric Company More Documents & Publications PP-79 San Diego Gas & Electric Company PP-68-2 San Diego Gas & Electric Company PP-48-3 El Paso ...

  12. EA-137 NYSEG New York State Electric and Gas Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-137 NYSEG New York State Electric and Gas Corporation EA-137 NYSEG New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to...

  13. EA-137 NYSEG New York State Electric and Gas Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NYSEG New York State Electric and Gas Corporation EA-137 NYSEG New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to export ...

  14. Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total

  15. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This will require significant northsouth transmission investment that falls outside of our ... We are a partner with the New England States Committee on Electricity (NESCOE) ...

  16. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  17. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, Marshall O.; Adcock, James L.; Christophorou, Loucas G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

  18. ,"Pennsylvania Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:09 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  19. ,"Alaska Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:32 AM" "Back to Contents","Data 1: Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  20. ,"Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:53 AM" "Back to Contents","Data 1: Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  1. ,"Louisiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:50 AM" "Back to Contents","Data 1: Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  2. ,"Nebraska Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:01 AM" "Back to Contents","Data 1: Nebraska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  3. ,"Michigan Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:54 AM" "Back to Contents","Data 1: Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  4. ,"Minnesota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:55 AM" "Back to Contents","Data 1: Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  5. ,"Massachusetts Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:52 AM" "Back to Contents","Data 1: Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  6. ,"California Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:36 AM" "Back to Contents","Data 1: California Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  7. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:16 AM" "Back to Contents","Data 1: Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  8. ,"Wisconsin Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:19 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  9. ,"Oklahoma Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:07 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  10. ,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:45 AM" "Back to Contents","Data 1: Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  11. ,"Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:16 AM" "Back to Contents","Data 1: Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  12. ,"Nevada Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:05 AM" "Back to Contents","Data 1: Nevada Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  13. ,"Colorado Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:38 AM" "Back to Contents","Data 1: Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  14. ,"Tennessee Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:13 AM" "Back to Contents","Data 1: Tennessee Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  15. ,"Washington Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:18 AM" "Back to Contents","Data 1: Washington Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  16. ,"Kansas Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:48 AM" "Back to Contents","Data 1: Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  17. ,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:44 AM" "Back to Contents","Data 1: Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  18. ,"Maryland Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:52 AM" "Back to Contents","Data 1: Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  19. San Diego Gas and Electric | OpenEI Community

    Open Energy Info (EERE)

    Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart Meters OpenEI San Diego Gas and Electric Smart Meters...

  20. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:39 AM" "Back to Contents","Data 1: Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  1. ,"Hawaii Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:49 AM" "Back to Contents","Data 1: Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  2. ,"Georgia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:48 AM" "Back to Contents","Data 1: Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  3. ,"Connecticut Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:44 AM" "Back to Contents","Data 1: Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  4. ,"Indiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:53 AM" "Back to Contents","Data 1: Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  5. ,"Arizona Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:41 AM" "Back to Contents","Data 1: Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  6. ,"Arkansas Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:40 AM" "Back to Contents","Data 1: Arkansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  7. ,"Florida Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:47 AM" "Back to Contents","Data 1: Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  8. ,"Kentucky Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:55 AM" "Back to Contents","Data 1: Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  9. ,"Delaware Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:46 AM" "Back to Contents","Data 1: Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  10. ,"Illinois Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:52 AM" "Back to Contents","Data 1: Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  11. Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas and Electric (LGE) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps...

  12. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  13. VEA-0008- In the Matter of Cincinnati Gas & Electric Company

    Broader source: Energy.gov [DOE]

    This Decision and Order considers an Appeal filed by Cincinnati Gas & Electric Company (CG&E) from a determination issued on December 8, 1997, by the Office of Energy Efficiency and...

  14. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance deer11_meisner.pdf (1.17 MB) More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  15. Pacific Gas and Electric Company Presentation by Steve Metague

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metague Sr. Director, Project Development Pacific Gas & Electric Co. 2012 National Electric Transmission Congestion Study Western Regional Workshop December 13, 2011 - Portland, Oregon California Transmission Planning Group (CTPG) * CTPG is a voluntary organization comprised of all the entities within California responsible for transmission planning: - California Independent System Operator (ISO) - Imperial Irrigation District (IID) - Los Angeles Department of Water and Power (LADWP) -

  16. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through our six operating companies, Eversource operates over 4,300 miles of transmission lines, 72,000 miles of distribution lines, and 6,500 miles of natural gas pipelines. ...

  17. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  18. World electricity and gas industries; Pressures for structural change

    SciTech Connect (OSTI)

    Kahane, A. )

    1990-01-01

    Electric and gas utilities are central middlemen in the energy business. Worldwide, more than 50% of all primary energy is transformed by utilities and delivered to final consumers through utility wires and pipes. The structure and behavior of the electricity and gas industries and the role and behavior of utilities are therefore important to all other energy industry players. The electricity and gas industries are special. Unlike oil, coal, or wood, electricity and gas are transported from producers to consumers mostly via fixed grids. This means that supplies are generally tied to specific markets and, unlike an oil tanker on the high seas, cannot be easily diverted elsewhere. These grids are natural monopolies inasmuch as having more than one wire or pipe along a given route is generally unnecessary duplicative. In addition, both supply and grid investments are generally large and lumpy. Industrial organization theory suggests that the coordination of industries can be achieved either through hierarchies or through markets. Hierarchies are generally preferred when the transaction costs of coordinating through markets is too high. These two elements of electricity and gas industry structure are the means of hierarchical coordination. This paper discusses the possibilities for changing the structure of utilities to one which has greater reliance on markets.

  19. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  20. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  1. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Reports and Publications (EIA)

    2001-01-01

    This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

  2. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect (OSTI)

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  3. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  4. Sensing behaviour of nanosized zinc-tin composite oxide towards liquefied petroleum gas and ethanol

    SciTech Connect (OSTI)

    Singh, Ravi Chand; Singh, Onkar; Singh, Manmeet Pal; Chandi, Paramdeep Singh; Thangaraj, R.

    2010-09-15

    A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 {sup o}C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO{sub 2}, ZnO, Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3} at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 {sup o}C responded better to LPG than ethanol.

  5. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  6. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  7. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation’s electric infrastructure and natural gas...

  9. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  10. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  11. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  12. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  13. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  14. Midwest Energy (Gas and Electric)- How$mart Energy Efficiency Finance Program

    Broader source: Energy.gov [DOE]

    Midwest Energy offers its residential and small commercial electricity and natural gas customers in good standing a way to finance energy efficiency improvements on eligible properties. Under the...

  15. To: U.S. Department of Energy From: San Diego Gas & Electric Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Via email To: U.S. Department of Energy From: San Diego Gas & Electric Company Date: October 17, 2014 Comments of San Diego Gas & Electric Company on the Department of Energy's National Electric Transmission Congestion Study - Draft for Public Comment I. Introduction On August 19, 2014, the Department of Energy ("Department") issued a Notice 1 inviting public comment on the draft National Electric Transmission Congestion Study. 2 The Draft Study is the third congestion study

  16. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in

  17. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  18. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  19. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  20. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  1. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Annual green energy purchases must be at least as large as the AC output of the PV system. This arrangement requires that the customer have two electricity meters: one to measure electricity...

  2. Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this analysis, the U.S. Department of Energy commissioned Deloitte MarketPoint to examine scenarios in its North American Integrated Model (NAIM), which simultaneously models the electric power and the natural gas sectors. This study concludes that, under scenarios in which natural gas demand from the electric power sector increases, the incremental increase in interstate natural gas pipeline expansion is modest, relative to historical capacity additions. Similarly, capital expenditures on new interstate pipelines in the scenarios considered here are projected to be significantly less than the capital expenditures associated with infrastructure expansion over the last 15 years.

  3. TEA-0013 - In the Matter of Madison Gas and Electric Company | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 - In the Matter of Madison Gas and Electric Company TEA-0013 - In the Matter of Madison Gas and Electric Company This Decision and Order considers an Appeal filed by the Madison Gas and Electric Company (MGE) from a determination issued on September 17, 2009, on behalf of the Assistant Secretary for Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under the provisions of 10 C.F.R. Part 490. In its determination, EE denied a request filed by MGE for

  4. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  5. Adapting On-site Electrical Generation Platforms for Producer Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  6. Low Interest Energy Efficiency Loan Program (Electric and Gas)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energize CT offers low interest loans for commercial and industrial customers for investments in energy efficiency improvements. Electric customers of Connecticut Light & Power, United...

  7. Madison Gas and Electric Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    installation of advanced metering infrastructure (AMI), deployment of a new distribution management system, and installation of electric vehicle charging stations. These...

  8. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Broader source: Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  9. ,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12292015 2:58:40 AM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

  10. "Table A47. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (million kWh)",," (Billion BTU)",," (1000 cu ft)" ,"

  11. DOE/EA-1752 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC COMPANY (PG&E) COMPRESSED AIR ENERGY STORAGE (CAES) COMPRESSION TESTING PHASE PROJECT, SAN JOAQUIN COUNTY, CALIFORNIA U.S. Department of Energy National Energy Technology Laboratory May 2014 DOE/EA-1752 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC COMPANY (PG&E) COMPRESSED AIR ENERGY STORAGE (CAES) COMPRESSION TESTING PHASE PROJECT, SAN JOAQUIN COUNTY, CALIFORNIA U.S. Department of Energy National

  12. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  13. Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",,"

  14. Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Energy Use and Achieve Cost Savings | Department of Energy Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at

  15. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  16. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  17. QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President and CEO, Public Service Company of Colorado - Written Statement PDF icon Curtis Moffatt, Deputy General Counsel and Vice President - Gas Legal, Kinder Morgan, Inc. -...

  18. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  19. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  20. Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page i Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page iii Table of Contents Executive Summary ....................................................................................................................................... v 1. Introduction

  1. Synthesis of one-dimensional porous Co{sub 3}O{sub 4} nanobelts and their ethanol gas sensing properties

    SciTech Connect (OSTI)

    Che, Hongwei; Liu, Aifeng; Hou, Junxian; Zhang, Xiaoliang; Bai, Yongmei; Mu, Jingbo; Wang, Renliang

    2014-11-15

    Graphical abstract: 1D porous porous Co{sub 3}O{sub 4} nanobelts were synthesized via a facile route without use of any surfactants or organic solvent, exhibiting ethanol gas sensing properties superior to the commercial Co{sub 3}O{sub 4} powders. - Highlights: • One-dimensional porous Co{sub 3}O{sub 4} nanobelts were synthesized. • The belt-like morphology can be finely controlled via adjusting the reaction parameters. • The evolution process of porous Co{sub 3}O{sub 4} nanobelts was investigated. • Porous Co{sub 3}O{sub 4} nanobelts exhibit superior ethanol gas sensing properties. - Abstract: In this paper, one-dimensional porous Co{sub 3}O{sub 4} nanobelts were synthesized via a facile template-free hydrothermal method and subsequent the thermal decomposition. Their microstructures and morphologies were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption–desorption techniques. The results indicate that the reaction parameters such as the molar ratio of Co(NO{sub 3}){sub 2}·6H{sub 2}O to C{sub 2}H{sub 4}N{sub 4}, the amount of Co(NO{sub 3}){sub 2}·6H{sub 2}O, the hydrothermal temperature and time play crucial rules in controlling the microstructures and morphologies of the as-prepared cobalt precursors. A possible formation mechanism was proposed. Moreover, the obtained porous Co{sub 3}O{sub 4} nanobelts exhibit ethanol gas sensing properties superior to the commercial Co{sub 3}O{sub 4} powders at a working temperature of 200 °C, suggesting their potential applications as nanosensors.

  2. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  3. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  4. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Broader source: Energy.gov [DOE]

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years.

  5. Gas separation device based on electrical swing adsorption

    DOE Patents [OSTI]

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  6. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  7. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  8. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  9. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  10. Comments of San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    submits these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the Southern

  11. Comments of San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    files these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated public electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the

  12. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  13. "Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and

  14. Reforms, environmental concerns spurring growth opportunities for gas, electricity in U.S., Europe

    SciTech Connect (OSTI)

    Carson, M.

    1998-06-29

    As the 21st century approaches, deregulation of developed economies, economic liberalization, and an emphasis on cleaner fuels are creating significant growth opportunities for electricity, natural gas, and other forms of energy on both sides of the Atlantic Ocean. The paper discusses the US status, European vs. US fuel use, dominant fuels vs. strategies, fuel use trends, opportunities for electricity growth, and trends and observations. An additional section describes the slowing of the trillion dollar international independent power market.

  15. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect (OSTI)

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  16. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  17. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  18. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  19. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  20. State Commission electricity regulation under Federal Greenhouse gas cap-and-trade policy

    SciTech Connect (OSTI)

    Keeler, Andrew G.

    2008-05-15

    Given the current uncertainty about the timing and severity of greenhouse gas constraints on electric generation that will result from a federal program, commissions need to begin crafting strategies and procedures to best serve the public interest in this new environment. (author)

  1. Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The

    Reports and Publications (EIA)

    2009-01-01

    This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

  2. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  3. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  4. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  5. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect (OSTI)

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  6. High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium

    DOE Patents [OSTI]

    Wootton, Roy E.

    1980-01-01

    High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.

  7. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  8. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature

  9. Natural gas will account for biggest share of U.S. electricity for first time in 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas will account for biggest share of U.S. electricity for first time in 2016 For the first time on an annual basis, the amount of U.S. electricity generated by natural gas- fired power plants is expected to exceed coal-fired generation. In its new monthly forecast, the U.S. Energy Information Administration said 33% of U.S. electricity will come from natural gas this year while 32% will come from coal. The electric power sector's use of coal this year is expected to decline by 29

  10. Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-363 Noble Americas Gas & Power Corporation

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE):  Noble Americas Gas & Power Corporation to export electric energy to Mexico

  11. Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): OE Docket EA-364 Noble Americas Gas & Power Corporation

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE):  Application from Noble Americas Gas & Power Corporation to export electric...

  12. Ask a scientist: Ethanol & car performance | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ask a scientist: Ethanol & car performance September 13, 2013 Tweet EmailPrint Does ethanol extend or decrease your gas mileage? -Tommy Holly, via Facebook JEHLIK: In a one-to-one ...

  13. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  14. Analytical investigation of electrical breakdown properties in a nitrogen-SF{sub 6} mixture gas

    SciTech Connect (OSTI)

    Uhm, Han S.; Byeon, Yong S.; Song, Ki B.; Choi, Eun H.; Ryu, Han-Yong; Lee, Jaimin

    2010-11-15

    The electrical breakdown properties in nitrogen gas mixed with SF{sub 6} are analytically investigated in this article by making use of the ionization and attachment coefficients of the mixed gas. The ionization coefficients of nitrogen and SF{sub 6} gas are obtained in terms of the electron temperature T{sub e} by assuming a Maxwellian distribution of the electron energy. The attachment coefficient of SF{sub 6} gas is also obtained in terms of the gas temperature T{sub e}. An algebraic equation is obtained, relating explicitly the electron breakdown temperature T{sub b} in terms of the SF{sub 6} mole fraction {chi}. It was found from this equation that the breakdown temperature T{sub b} increases from approximately 2 to 5.3 eV as the mole fraction {chi} increases from zero to unity. The breakdown temperature T{sub b} of the electrons increases very rapidly from a small value and then approaches 5.3 eV slowly as the SF{sub 6} mole fraction increases from zero to unity. This indicates that even a small mole fraction of SF{sub 6} in the gas dominates the electron behavior in the breakdown system. The breakdown electric field E{sub b} derived is almost linearly proportional to the breakdown electron temperature T{sub b}. The experimental data agree remarkably well with the theoretical results. Therefore, it is concluded that even a small fraction of SF{sub 6} gas dominates nitrogen in determining the breakdown field. In this context, nearly 25% of the SF{sub 6} mole fraction provides a reasonable enhancement of the breakdown field for practical applications.

  15. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOE Patents [OSTI]

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  16. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect (OSTI)

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  17. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  18. Structural, optical and ethanol gas sensing properties of In{sub 2}O{sub 3} and Dy{sup 3+}:In{sub 2}O{sub 3} nanoparticles

    SciTech Connect (OSTI)

    Anand, Kanica Thangaraj, R. Kohli, Nipin Singh, Ravi Chand

    2014-04-24

    This paper reports the structural, optical and ethanol gas sensing properties of In{sub 2}O{sub 3} and 5% Dy{sup 3+}doped In{sub 2}O{sub 3} nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy (UV-vis) techniques. XRD revealed that synthesized nanoparticles have cubic bixbyite phase. The lattice parameter, strain and crystallite size have been calculated by using the Williamson-Hall plots. UV-vis spectroscopy showed the red shift in the optical band gap due to Dy{sup 3+} doping in In{sub 2}O{sub 3} nanoparticles. For ethanol gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showed that the optimum operating temperature of both the gas sensors is 300°C. At optimum operating temperature, the response of In{sub 2}O{sub 3} and Dy{sup 3+}:In{sub 2}O{sub 3} gas sensor towards 250 ppm ethanol was found to be 9.65 and 37.80. The investigations revealed that the addition of Dy{sup 3+} as a dopant enhanced the sensing response of In{sub 2}O{sub 3} nanoparticles appreciably.

  19. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  20. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  1. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ohio Ethanol LLC GO Ethanol Jump to: navigation, search Name: Greater Ohio Ethanol, LLC (GO Ethanol) Place: Lima, Ohio Zip: OH 45804 Product: GO Ethanol is a pure play ethanol...

  2. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information ...

  3. Experiences from Introduction of Ethanol Buses and Ethanol Fuel...

    Open Energy Info (EERE)

    of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency...

  4. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  5. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  6. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  7. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles

    SciTech Connect (OSTI)

    Sonawane, Yogesh S.; Kanade, K.G.; Kale, B.B. Aiyer, R.C.

    2008-10-02

    Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

  8. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  9. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle

  10. Policy implications of allocation methods in the life cycle analysis of integrated corn and corn stover ethanol production

    SciTech Connect (OSTI)

    Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Zhichao; Wang, Michael

    2015-08-18

    Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. We examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.

  11. Policy implications of allocation methods in the life cycle analysis of integrated corn and corn stover ethanol production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Zhichao; Wang, Michael

    2015-08-18

    Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less

  12. Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Add description and move this content to a more appropriate page name (like "List of ethanol incentives") List of Ethanol Incentives E85 Standards Retrieved from "http:...

  13. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc. Corporate HQ: Sacramento, CA Proposed Facility Location: Boardman, OR Description: The team will design and build a demonstration cellulosic ethanol plant in ...

  14. BlueFire Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. Corporate HQ: Irvine, California Proposed Facility Location: Mecca, ... or Southern California Materials Recovery Facilities to ethanol and other products. ...

  15. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  16. Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-04-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  17. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  18. Ethanol production method and system

    DOE Patents [OSTI]

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  19. Why do we power our cars with gas? NBC Chicago

    ScienceCinema (OSTI)

    None

    2013-04-19

    Why can we only power our cars with gas? NBC-Chicago tackles this question with a trip to Argonne National Lab, where work on the Omnivorous Engine (runs on any blend of ethanol, butanol, and gasoline) and electric vehicles continues. A segment from NBC-Chicago's "Good Question" series.

  20. Why do we power our cars with gas? NBC Chicago

    SciTech Connect (OSTI)

    2009-01-01

    Why can we only power our cars with gas? NBC-Chicago tackles this question with a trip to Argonne National Lab, where work on the Omnivorous Engine (runs on any blend of ethanol, butanol, and gasoline) and electric vehicles continues. A segment from NBC-Chicago's "Good Question" series.

  1. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  2. CO{sub 2} Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors

    SciTech Connect (OSTI)

    Burtraw, Dallas; Kahn, Danny; Palmer, Karen

    2006-03-01

    The Regional Greenhouse Gas Initiative among Northeastern states is expected to lead to an increase in the price of electricity in the region and beyond. In the RGGI region, changes in the value of electricity-generating assets may be positive or negative, while changes outside the Northeast are virtually always positive. For stakeholders in the industry, the change depends on the portfolio of assets held by affected firms. (author)

  3. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  4. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  5. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  7. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 KB) More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc

  8. EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

  9. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect (OSTI)

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  10. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  11. Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership

    Broader source: Energy.gov [DOE]

    Energy Secretary Steven Chu today announced that four new corporate partners – Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia – are joining the Energy Department’s National Clean Fleets Partnership, a broad public-private partnership that assists the nation’s largest fleet operators in reducing the amount of gasoline and diesel they use nationwide.

  12. Southridge Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Southridge Ethanol Place: Dallas, Texas Zip: 75219 Sector: Renewable Energy Product: Southridge Ethanol is a renewable energy company...

  13. Diversified Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Diversified Ethanol Place: Northbrook, Illinois Zip: 60062 Product: A division of OTCBB-traded ONYI that is building an ethanol plant in...

  14. Ace Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Ace Ethanol Place: Stanley, Wisconsin Zip: 54768 Product: Producer of corn-based ethanol in Wisconsin. Coordinates: 44.958844,...

  15. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  16. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  17. Enabling High Efficiency Ethanol Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Ethanol Engines (VSSP 12) Presented by Robert Wagner Oak Ridge National ... advantage of the unique properties of ethanol and ethanol-gasoline blends.. 3 Managed ...

  18. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    DOE Patents [OSTI]

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.; Verbael, David J.

    1995-01-01

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.

  19. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    DOE Patents [OSTI]

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Verbael, D.J.

    1995-10-17

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.

  20. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  1. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  2. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  3. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  4. Byone Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Byone Ethanol Jump to: navigation, search Name: Byone Ethanol Place: Brazil Product: Ethanol Producer References: Byone Ethanol1 This article is a stub. You can help OpenEI by...

  5. Highwater Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Highwater Ethanol Jump to: navigation, search Name: Highwater Ethanol Place: Lamberton, Minnesota Zip: MN 56152 Product: Highwater Ethanol LLC is the SPV behind the 195mLpa ethanol...

  6. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  7. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  8. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  9. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. ,"Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release