Sample records for gas dry crude

  1. Nigeria: after crude, the gas

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Misinterpretation of the laws of the marketplace have already brought Nigeria to the brink of a catastrophe in 1978, when the government had built up heavy stocks expecting a substantial increase in price. When it did not materialize and the production had to be dropped to 50% of the previous rate, in a country where crude constitutes 90% of the export revenues, the system was changed. The new plan is intended to reduce the dependence of Nigeria on oil exports. The production rate is set at between 2.2 and 2.5 million bpd. Due to a significant increase in domestic demand, the 2 existing refineries cannot fill the gap; 2 more refineries are planned. There also are substantial gas reserves; the associated gas, now flared, is to be recovered. A gas liquefaction plant also is in operation, with one-half of the output going to Europe and one-half to the US. Some of the oil and gas is earmarked for local petrochemical plants.

  2. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  3. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  4. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  5. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  6. In situ ruminal dry matter and crude protein degradation of various forbs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    In situ ruminal dry matter and crude protein degradation of various forbs RG Ramirez, N Garcia (DM) and crude protein (CP) of 13 commonly available native forbs. Forbs evaluated were Coldenia. barbigerum (80). Crude protein digestion rate (/h) was highest in P. maculosa (0.17), S. filicaulis (0.12), Z

  7. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department or other Federal agencies. #12;#12;1 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

  8. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

  9. a type of barley from its crude fibre content using a correction of 110Kcal per supplementary point of crude fibre in the seed dry matter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a type of barley from its crude fibre content using a correction of 110Kcal per supplementary point of crude fibre in the seed dry matter : D.E. (Kcal i'kg 1) - 4.072- I10 crude fibre p. ioo D.1I. r = - o.96 different types (SoNJn: two-row winter barley, ASTlux: six-row winter barley) and of different crude fibre

  10. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

  11. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

    2006-07-01T23:59:59.000Z

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  12. Crude Oil and Natural Gas Drilling Activity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX ImeansCrude2009Oct-14

  13. ,"Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil

  14. Separation of anthracene from crude anthracene using gas antisolvent recrystallization

    SciTech Connect (OSTI)

    Yuchung Liou; Chiehming Chang (Yuan-Ze Inst. of Tech., Neili (Taiwan))

    1992-08-01T23:59:59.000Z

    Pure anthracene is mostly used for conversion to anthraquinone, an intermediate for the synthesis of very powerful vat dyestuffs. A coal tar distillate, crude anthracene, which contains 30% anthracene, 25% phenanthrene, 15% carbazole, and other impurities, was used as the model mixture. In this study, 90% by weight purity anthracene was obtained using gas antisolvent (GAS) recrystallization. The GAS process induces the separation of solids by introducing an antisolvent, carbon dioxide (or the supercritical fluid), into acetone which was used as the liquid solvent. The dissolution of the compressed gas into the solute-laden solution selectively lowers the solubilities of solid solutes and salts them out. The results showed that high purity anthracene was obtained at a high feed concentration and high pressure conditions. The separation factor of anthracene versus phenanthrene is close to 30.07.

  15. Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

  16. a normal commercial rapeseed oil-meal : dry matter : 90 ; total crude protein : 39.0 ; fat : 2.7 ; ashes : 7.5 ; crude fibre : 12.2 ;

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - a normal commercial rapeseed oil-meal : dry matter : 90 ; total crude protein : 39.0 ; fat : 2.7 ; ashes : 7.5 ; crude fibre : 12.2 ; I.T.C. (v`) : 2.2 ; T.O.V. (*) : 5.2 ; gross energy kcal/kg D.M. : 4.5 ; total crude protein : 37.9 ; fat : 2.5 ; ashes : 7.5 ; crude fibre : 15.4 ; I.T.C. (*) : 0.85 ; T

  17. ,"California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude Oil +Dry

  18. The relationship between crude oil and natural gas spot prices and its stability over time

    E-Print Network [OSTI]

    Ramberg, David J. (David John)

    2010-01-01T23:59:59.000Z

    The historical basis for a link between crude oil and natural gas prices was examined to determine whether one has existed in the past and exists in the present. Physical bases for a price relationship are examined. An ...

  19. Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

  20. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil +Dry

  1. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-07-01T23:59:59.000Z

    Calculations with plotted results presented as confirmation bases for selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying Operations.

  2. ,"New York Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  3. ,"New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  4. ,"New York Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  5. ,"New York Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  6. ,"New York Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  7. ,"New York Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  8. ,"New York Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  9. ,"New York Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  10. Average Depth of Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1 Year-21960-2012Mission: Focus onDepth of Crude Oil and

  11. Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil 

    E-Print Network [OSTI]

    Yudishtira, Wan Dedi

    2003-01-01T23:59:59.000Z

    Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

  12. Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil

    E-Print Network [OSTI]

    Yudishtira, Wan Dedi

    2003-01-01T23:59:59.000Z

    Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

  13. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  14. ,"California Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil + LeaseDry

  15. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:22:39 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNY2"...

  16. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18T23:59:59.000Z

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  17. Florida Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 01 7

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  19. The effect of high-pressure injection of gas on the reservoir volume factor of a crude oil 

    E-Print Network [OSTI]

    Honeycutt, Baxter Bewitt

    1957-01-01T23:59:59.000Z

    THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By+ BAXTER DS'kONEYCUTT o Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, i957 Major Subject: Petroleum Engineering THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By BAXTER D. HONEYCUTT Appro d as to style...

  20. Impes modeling of volumetric dry gas reservoirs with mobile water

    E-Print Network [OSTI]

    Forghany, Saeed

    2004-09-30T23:59:59.000Z

    . For abnormally or geopressured reservoirs, pressure gradients often approach values equal to the overburden pressure gradient (i.e., ~1.0 psi/ft). 8, 9 Among these types of dry gas reservoirs, in this study we will focus on volumetric reservoir. 1... properties of a given reservoir?s gas and water can handle pressures starting from standard conditions up to 4,000 psi and the units for this table are tabulated in Table 3.1. Table 3.1- Units for the PVT properties used in the input file Pressure...

  1. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  2. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil + LeaseDry

  3. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  4. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  5. ,"New York Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01T23:59:59.000Z

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  7. An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for

    E-Print Network [OSTI]

    An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

  8. An evaluation of the relationships between fecal nitrogen and digestibility, crude protein and dry matter intake of forages

    E-Print Network [OSTI]

    Ngugi, Kinuthia Robinson

    1982-01-01T23:59:59.000Z

    until residual detergent was removed. The refluxed forage was allowed to air dry then labelled with 1. 2 g (i. e , 3g/ml x 4 ml) of Erbium and again allowed to dry. Labelled forage was then introduced into the goats' rumen through the cannulae... analysis for dry matter (A. O. A. C. 1975) and Erbium content (Telford 1980), the samples were ground through 2 mm screen of a Wiley mill. Concentration of Erbium was plotted against time post dose and the following formula used to estimate retention...

  9. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.09 0.01 QBarrels)Decade Year-0Elements)

  10. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.09 0.01 QBarrels)Decade

  11. U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.09 0.01 QBarrels)DecadeDrilled (Number of

  12. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.09 0.01Reports RailNatural6

  13. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWells

  14. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWellsDrilled (Feet

  15. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,ProductionMarketed18,736Revision DecreasesWellsDrilled

  16. U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbed Methane Proved22,315 25,181

  17. U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbed Methane Proved22,315

  18. U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbed Methane Proved22,315Drilled (Number of

  19. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbedavailable6:Developmental WellsWells

  20. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbedavailable6:Developmental

  1. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbedavailable6:DevelopmentalDevelopmental

  2. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.

  3. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar AprYear JanFeet) Sales(Thousand

  4. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar AprYear JanFeet)Oil

  5. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision2009 2010(Million

  6. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision2009 2010(Million(Dollars

  7. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude Oil +

  8. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude

  9. Texas State Offshore Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels) Crude

  10. Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProvedCrude

  11. ,"Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil +

  12. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal ConsumptionThousand CubicfromDry NaturalDry

  13. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet)(Dollars 2012DryDry

  14. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil +

  15. ,"Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil + LeaseDry

  16. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P. (Livermore, CA)

    2007-01-02T23:59:59.000Z

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  17. U.S. Dry Natural Gas Production (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPAChargeDry

  18. U.S. Dry Natural Gas Proved Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPAChargeDryArea:

  19. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194 39,008Dry

  20. Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (Billion Cubic Feet) Arkansas Dry

  1. Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Billion Cubic Feet) Wyoming Dry

  2. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry Natural

  3. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry

  4. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYear Jan(Dollars perfromDry

  5. Analysis of well test data from gas condensate reservoirs using single-phase dry gas methods: guidelines and examples

    E-Print Network [OSTI]

    Bonilla Kalil, Jose Ricardo

    1998-01-01T23:59:59.000Z

    drop functions versus flowing time, Arun Well A-70 (second drawdown). . 141 A-49 Early-time plot: pseudopressure versus flowing time, Arun Well A-70 (third drawdown). . 145 A-50 Semilog plot: pseudopressure versus flowing time, Arun Well A-70... due to its simplicity (the saturation history is not required). Our desire is to successfully demonstrate the analysis and interpretation of well test data in gas condensate systems using the "dry gas" analog. The primary deliverable of this thesis...

  6. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  8. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, WetReserves

  9. Florida Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0

  10. Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 01

  11. Florida Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0

  12. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by

  13. Florida Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensions

  14. Florida Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers

  15. Florida Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreases

  16. Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial ConsumersIncreasesSales

  17. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base Gas)6 Dollars per301

  18. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  19. ,"New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed MethaneDry

  20. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  1. ,"California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural Gas Expected Future

  2. ,"Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbedDry Natural Gas

  3. ,"New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas Expected Future

  4. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  5. ,"Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDryDry Natural Gas

  6. ,"Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDryDry Natural Gas

  7. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, WetCoalbed+Dry

  8. ,"Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. UndergroundStateCoalbedDry

  9. ,"New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008"PricePriceDry Natural Gas

  10. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  11. Dry Gas Zone, Elk Hills Field, Kern County, California: General reservoir study: Geologic text and tables: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-29T23:59:59.000Z

    The Dry Gas Zone was defined by US Naval Petroleum Reserve No. 1 Engineering Committee (1957) as ''/hor ellipsis/all sands bearing dry gas above the top of the Lower Scalez marker bed. The term is used to include the stratigraphic interval between the Scalez Sand Zone and the Tulare Formation - the Mya Sand Zone. The reservoirs in this upper zone are thin, lenticular, loosely cemented sandstones with relatively high permeabilities.'' Other than the limited Tulare production in the western part of the field, the Dry Gas Zone is the shallowest productive zone in the Elk Hills Reserve and is not included in the Shallow Oil Zone. It is Pliocene in age and makes up approximately eighty percent of the San Joaquin Formation as is summarized in Exhibit TL-1. The lithologic character of the zone is one of interbedded shales and siltstones with intermittent beds of various thickness sands. The stratigraphic thickness of the Dry Gas Zone ranges from 950 to 1150 feet with a general thickening along the flanks and thinning over the crests of the anticlines. The productive part of the Dry Gas Zone covers portions of 30 sections in an area roughly 10 miles long by 4 miles wide. 4 refs.

  12. ,"Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDry Natural Gas Expected

  13. ,"Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas,Dry Natural

  14. ,"Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry Natural Gas Expected Future

  15. ,"Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry Natural Gas

  16. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian (Sugar Land, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX)

    2009-09-08T23:59:59.000Z

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  17. The effect of high-pressure injection of gas on the reservoir volume factor of a crude oil

    E-Print Network [OSTI]

    Honeycutt, Baxter Bewitt

    1957-01-01T23:59:59.000Z

    . The gas was taken from the casing annulus at 180 psig pressure after the well had flowed for about 3 hours. An analysis of the gas is given in Table 4. Gravity of the oil was 37. 3 API at 60oF. Reservoir pressure in the Charlotte Field... are different at different locations in the reservoir. In the high-pressure zone about the injection well ? a substantial amount of the oil dissolves in the gas, leaving a low residual oil saturation consisting of the heaviest fraction of the oil...

  18. A fleet leader experience with dry low emissions aeroderivative gas turbines (LM6000PB and PD)

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Witte, M.

    1998-07-01T23:59:59.000Z

    In January 1995, the world's first LM6000 dry low emissions (DLE) aeroderivative gas turbine supplied by GE M and I was successfully started up at Gent power plant. In November 1997, the world's first uprated LM6000, also equipped with the DLE combustion system, began commercial operation at Geel cogeneration facility. TEE handled the engineering, procurement, construction and commissioning of these projects as well as for several other repowering and cogeneration facilities based on high efficiency DLE aeroderivative gas turbines. By mid 1998, seven LM6000 DLE and one LM2500 DLE will be in commercial operation at several cogeneration and power plants in Belgium. The results of three years of experience with the LM engines are presented: the reasons why the LM engines were selected, the history of the different units, the maintenance organization, the fleet fired hours and availability, and the main technical issues like DLE combustor, LPT5 failures. The conclusion is that after having experienced several serious problems, the LM6000 and the DLE combustion system have matured and now seem sufficiently reliable. The actual performance data of the uprated engine are significantly better than initially expected.

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  1. Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects

    E-Print Network [OSTI]

    Lopez Hernandez, Henry De Jesus

    2004-11-15T23:59:59.000Z

    to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Petroleum Engineering...) _______________________________ Guy L. Curry (Member) _______________________________ Stephen A. Holditch (Head of Department) August 2004 Major Subject: Petroleum Engineering iii ABSTRACT Optimal Fracture Treatment Design for Dry Gas Wells Maximizes...

  2. Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.; Uttley, S.J.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

  3. ,"Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDry Natural Gas Expected

  4. ,"Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural Gas Expected Future

  5. ,"Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNaturalADry Natural Gas

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  7. ,"Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil +

  8. ,"Alaska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil

  9. ,"Alaska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude

  10. ,"Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbed Methane Proved+Dry

  11. ,"Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas Expected Future

  12. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed MethaneDry

  13. ,"Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, WetDry

  14. Monthly variation in crude protein, fibre fractions and mineral composition of paragrass (Brachiaria mutica (Forsk)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Monthly variation in crude protein, fibre fractions and mineral composition of paragrass variation in crude protein, fibre fractions and mineral composition of forages collected in the pastures. The samples were dried, ground and analysed for crude protein (CP), neutral detergent fibre (NDF), acid

  15. Dry Gas Zone, Elk Hills field, Kern County, California: General reservoir study: Engineering text and exhibits: (Final report)

    SciTech Connect (OSTI)

    Not Available

    1988-08-01T23:59:59.000Z

    The Dry Gas Zone in the Elk Hills field is comprised of fourteen separate productive horizons deposited in the MYA Group of the San Joaquin Formation of Pliocene Age. Eighty-six separate Reservoir Units have been identified within the interval over an area roughly ten miles long and four miles wide. One basal Tulare sand, the Tulare B, was also included in the geologic study. Five earlier studies have been made of the Dry Gas Zone; each is referenced in the Appendix of this report. Most of these studies were geologic in nature, and none provided in-depth reservoir analyses. This report is made up of ten (10) separate volumes which include: engineering text and exhibits (white dot); engineering data (black dot); geologic text and tables (green dot); structure and isochore maps (light blue dot); structural cross sections (dark blue dot); stratigraphic cross sections (brown dot); geologic data sheets -book 1 (yellow dot); geologic data sheets - book 2 (orange dot); geologic data sheets - book 3 (red dot); and geologic data sheets - book 4 (pink or coral dot). Basic production, injection, pressure, and other assorted technical data were provided by the US Department of Energy engineering staff at Elk Hills. These data were accepted as furnished with no attempt being made at independent verification.

  16. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil

    SciTech Connect (OSTI)

    Wickramarachchi, Praneeth, E-mail: praneeth1977@yahoo.co.uk [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Kawamoto, Ken; Hamamoto, Shoichiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Nagamori, Masanao [Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115 (Japan); Moldrup, Per [Environmental Engineering Section, Dept. of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg (Denmark); Komatsu, Toshiko [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2011-12-15T23:59:59.000Z

    Highlights: > The effects of soil physical properties on gas transport parameters were investigated. > Higher values of D{sub p} and k{sub a} exhibited in the '+gravel' than the '-gravel' fraction at same soil-air content ({epsilon}). > Recent power law models for D{sub p} (WLR) and k{sub a} (RPL) were modified. > Model parameters were linearly related to easily measurable dry bulk density ({rho}{sub b}). - Abstract: Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, {rho}{sub b}, and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D{sub p}/D{sub o}, ratio of gas diffusion coefficients in soil and free air) and air permeability (k{sub a}) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting {rho}{sub b} values ranging from 1.40 to 2.10 g cm{sup -3}. Results showed that D{sub p} and k{sub a} values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2 mm) under variably-saturated conditions for a given soil-air content ({epsilon}), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D{sub p} and k{sub a} was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D{sub p}/D{sub f}, the ratio of measured D{sub p} to D{sub p} in total porosity (f), (ii) for air permeability k{sub a}/k{sub a,pF4.1}, the ratio of measured k{sub a} to k{sub a} at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content ({epsilon}) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D{sub p}({epsilon}/f) and k{sub a}({epsilon}/f) models were developed based on a single parameter (water blockage factor M for D{sub p} and P for k{sub a}). The water blockage factors, M and P, were found to be linearly correlated to {rho}{sub b} values, and the effects of dry bulk density on D{sub p} and k{sub a} for both '+gravel' and '-gravel' fractions were well accounted for by the new models.

  17. ,"Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved Reserves (BillionDry

  18. ,"Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease Condensate Proved ReservesDry

  19. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnitedAssociated-DissolvedDry

  20. ,"Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNGCoalbed Methane+Dry

  1. ,"New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed

  2. Arabian crude fractions analyzed

    SciTech Connect (OSTI)

    Ali, M.F.; Bukhari, A.M.; Hasan, M.U.; Saleem, M.

    1985-02-01T23:59:59.000Z

    A procedure for separating and characterizing highboiling distillates was developed by the U.S. Bureau of Mines in cooperation with the American Petroleum Institute. However, their studies focused chiefly on U.S. crude oils, and very little has been reported for Middle East crude oils-particularly Saudi Arabian crude oils. The work reported here deals with the separation and characterization of 370-535/sup 0/C and 535-675/sup 0/C distillates from four Saudi Arabian crude oils produced by Arabian American Oil Company (ARAMCO).

  3. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09T23:59:59.000Z

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

  4. Dry effluent

    SciTech Connect (OSTI)

    Brady, J.D. (Anderson, 2000 Inc., Peachtree City, GA (US))

    1988-01-01T23:59:59.000Z

    The available choices of pollution control systems depend on what is being burned and how stringent the regulations are. The common systems are gas cooling by a waste heat boiler or an air-air heat exchanger followed by fabric filtration or electrostatic precipitation for particulate removal; alkaline spray absorbers followed by fabric filters (dry scrubbers) for particulate and acid gas removal; wet scrubbers for simultaneous particulate and acid gas removal, and; the newest - spray evaporation, followed by wet scrubbing for particulate and acid gas removal. Each has advantages and each has disadvantages. This paper discusses the advantages and disadvantages of the spray evaporator and wet scrubber combination.

  5. ,"Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude

  6. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas,Crude Oil

  7. Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0579,766 568,661Dry Production

  8. New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(BillionFeet) Dry

  9. ,"North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPriceCoalbed Methane Proved+Dry

  10. ,"West Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNetCoalbed MethaneDry

  11. ,"Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (DollarsSummary"Coalbed Methane+Dry

  12. Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame52,051per0 1Dry

  13. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry Production

  14. California--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecadeCalifornia23 46 47 62Dry

  15. Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011Dry Production (Million

  16. Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation,Cubic Feet) Dry

  17. ,"Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)" ,"ClickCoalbed+Dry

  18. ,"Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbedUnited KingdomShaleDry Natural

  19. LAMBOT et al. (1979) found comparable results : the optimum crude protein concentration for growth and nitrogen utilisation is about 13.3 -12.2 and 11.4 per cent at body weights

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1979-01-01T23:59:59.000Z

    LAMBOT et al. (1979) found comparable results : the optimum crude protein concentration for growth for protein are expressed as digestible crude protein (DCP). #12;Energy value of feeds The content of SFU per= digestible crude protein, per cent of dry matter X! = digestible crude fat, per cent of dry matter X3

  20. Costs of Imported Crude Oil for Selected Crude Streams

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 51 Table 29. F.O.B. a Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  1. Simulation of Gas Dynamic Behavior in Dry-Wall Inertial Fusion Energy Chambers

    E-Print Network [OSTI]

    Tillack, Mark

    . In this work, the code TSUNAMI [2] was used to model chamber gas dynamics for different shapes, sizes of size scaling. Previous- ly, TSUNAMI was used primarily for studying liquid protec- ted chambers which the basic response charac- teristics (with emphasis on the evolution towards a quiescent state

  2. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31T23:59:59.000Z

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  3. ,"Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.PlantandCoalbed Methane

  4. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlantCoalbedExpected

  5. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, Wet AfterDec.Dec.12 12

  6. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0 0

  7. Florida Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers byExtensionsNew

  8. Field evaluation of natural gas and dry sorbent injection for MWC emissions control

    SciTech Connect (OSTI)

    Wohadlo, S.; Abbasi, H.; Cygan, D. [Institute of Gas Technology, Chicago, IL (United States)] Institute of Gas Technology, Chicago, IL (United States)

    1993-10-01T23:59:59.000Z

    The Institute of Gas Technology (IGT), in cooperation with the Olmsted Waste-to-Energy Facility (OWEF) and with subcontracted engineering services from the Energy and Environmental Research Corporation (EER), has completed the detailed engineering and preparation of construction specifications for an Emissions Reduction Testing System (ERTS). The ERTS has been designed for retrofit to one of two 100-ton/day municipal waste combustors at the OWEF, located in Rochester, Minnesota. The purpose of the retrofit is to conduct a field evaluation of a combined natural gas and sorbent injection process (IGT`s METHANE de-TOX{sup SM}, IGT Patent No. 5,105,747) for reducing the emissions of oxides of nitrogen (NO{sub x}), hydrochloric acid (HCI), oxides of sulfur (SO{sub x}), carbon monoxide (CO), total hydrocarbons (THC), and chlorinated hydrocarbons (dioxin/furans). In addition, the design includes modifications for the control of heavy metals (HM). Development of the process should allow the waste-to-energy industry to meet the Federal New Source Performance Standards for these pollutants at significantly lower costs when compared to existing technology of Thermal deNO{sub x} combined with spray dryer scrubber/fabric filters. Additionally, the process should reduce boiler corrosion and increase both the thermal and power production efficiency of the facility.

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  10. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  11. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent

    SciTech Connect (OSTI)

    Yannick J. Heintz; Laurent Sehabiague; Badie I. Morsi; Kenneth L. Jones; David R. Luebke; Henry W. Pennline [United States Department of Energy (U.S. DOE), Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    The mole fraction solubilities (x{asterisk}) and volumetric liquid-side mass-transfer coefficients (kLa) for H{sub 2}S and CO{sub 2} in the ionic liquid, TEGO IL K5, (a quaternary ammonium polyether) were measured under different pressures (up to 30 bar) and temperatures (up to 500 K) in a 4 L ZipperClave agitated reactor. CO{sub 2} and N{sub 2}, as single gases, and a H{sub 2}S/N{sub 2} gaseous mixture were used in the experiments. The solubilities of H{sub 2}S and CO{sub 2} were found to increase with pressure and decrease with temperature within the experimental conditions used. The H{sub 2}S solubilities in the ionic liquid (IL) were greater than those of CO{sub 2} within the temperature range investigated (300-500 K) up to a H{sub 2}S partial pressure of 2.33 bar. Hence, the IL can be effectively used to capture both H{sub 2}S and CO{sub 2} from dry fuel gas stream within the temperature range from 300 to 500 K under a total pressure up to 30 bar. The presence of H{sub 2}S in the H{sub 2}S/N{sub 2} mixture created mass-transfer resistance, which decreased k{sub L}{alpha} values for N{sub 2}. The k{sub L}{alpha} and x{asterisk} values of CO{sub 2} were found to be greater than those of N{sub 2} in the IL, which highlight the stronger selectivity of this physical solvent toward CO{sub 2} than toward N{sub 2}. In addition, within the temperature range from 300 to 500 K, the solubility and k{sub L}{alpha} of H{sub 2}S in the IL were greater than those of CO{sub 2}, suggesting that not only can H{sub 2}S be more easily captured from dry fuel gas streams but also a shorter absorber can be employed for H{sub 2}S capture than that for CO{sub 2}. 56 refs., 8 figs., 4 tabs.

  12. On-line optimization of a crude unit heat exchanger Statoil Mongstad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    On-line optimization of a crude unit heat exchanger network Tore Lid #3; Statoil Mongstad N-5954 modeling and on-line optimization of a crude unit heat exchanger network at the Statoil Mongstad re#12;nery. The objective is to minimize the energy input in the gas #12;red heater by optimally distributing the cold crude

  13. Competitiveness of Mexican crude

    SciTech Connect (OSTI)

    Not Available

    1983-12-28T23:59:59.000Z

    Mexico is under great pressure to maintain oil export revenue levels if it is to avoid a reversal in its economic recovery program. While the country's vulnerability to a price plunge is also applicable to OPEC countries, the North Sea producers, and others, Mexico does have an ace. The ace is that its heavier, metals-ridden and sulfur-laden Maya crude, which had to be pushed on customers until about 1981, is now in strong demand. Comparisons are presented of the market value of five crude oils refined in the US Gulf Coast: West Texas Intermediate (or WTI, a 40/sup 0/ API, light), Arabian Light and Isthmus (both 34/sup 0/ medium-light), Alaska North Slope (or ANS, a 27/sup 0/ API, a medium), and Maya (22/sup 0/ API, medium-heavy). In this mix, the heavier the crude, the greater is the refining margin (except for Arabian Light, for which freight cost and product yield provide lower margins than those derived from WTI). The sacrifice by OPEC and other producers cutting crude oil prices was to the benefit to refiners' improved margins during the first half of 1983. Those cuts were on the lighter-quality oils. But prices for heavier Venezuelan, Californian, and Mexican crudes increased during the second half of 1983, due to developing refinery technologies in extracting favorable product yields from them. This issue of Energy Detente presents their fuel price/tax series and industrial fuel prices for December 1983 for countries of the Western Hemisphere.

  14. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S. [and others

    1995-04-01T23:59:59.000Z

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  15. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in the

  16. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996) in the2009

  17. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  18. Stability of natural gas in the deep subsurface

    SciTech Connect (OSTI)

    Barker, C.

    1996-07-01T23:59:59.000Z

    Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.

  19. ,"California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonshCrude Oil +

  20. ,"Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural

  1. Crude Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX ImeansCrude2009 2010

  2. Crude Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX ImeansCrude2009

  3. Table 1. Crude Oil Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    December 1980; Form EIA-14, "Refiners' Monthly Cost Report," January 1981 to present. 1. Crude Oil Prices 2 Energy Information Administration Petroleum Marketing Annual 1996...

  4. Table 1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    December 1980; Form EIA-14, "Refiners' Monthly Cost Report," January 1981 to present. 1. Crude Oil Prices 2 Energy Information Administration Petroleum Marketing Annual 1997...

  5. Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993

    SciTech Connect (OSTI)

    Jones, R.E.; Jirik, L.A.; Hower, T.L.

    1993-07-01T23:59:59.000Z

    An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

  6. ,"Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas, Wet After

  7. Textile Drying Via Wood Gasification 

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  8. Textile Drying Via Wood Gasification

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01T23:59:59.000Z

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  10. ,"Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas, Wet

  11. Crude Oil and Natural Gas Drilling Activity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4:4CompanyNov-14 Dec-14Oct-14Jun-14

  12. ,"Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNGLiquids LeaseShaleDry

  13. ,"U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ LeaseDry Natural

  14. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  15. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  17. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect (OSTI)

    Elliott, Doug

    2013-12-17T23:59:59.000Z

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  18. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema (OSTI)

    Elliott, Doug

    2014-06-02T23:59:59.000Z

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  19. Polarity characterization of crude oils predicts treatment trends in field development

    SciTech Connect (OSTI)

    Andrade Bruening, I.M.R. de

    1995-11-01T23:59:59.000Z

    A method for determining crude oil polarity using inverse gas chromatography proved successful for classifying crudes as well as for assessing their ability to form stable emulsions with water. Polarity determinations have been applied to the formation test crude oil samples collected in Albacora and Marlim deepwater fields of the Campos Basin, Rio de Janeiro, Brazil. The results have been compared with the polarities of the first produced crudes of the Basin and showed that the emulsion separation problems tend to increase. Polarity results provided substantial data to help production field development decisions.

  20. Virent is Replacing Crude Oil

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

  1. West African crude production diversifies

    SciTech Connect (OSTI)

    Aalund, L.

    1983-06-01T23:59:59.000Z

    Nigeria, with its seven crude-oil export streams, dominated West African production and accounted for over 70% of the depressed 1.8 million b/d output from the region last year. However, during the 1970s a flurry of new producing fields, primarily off the African coast, diversified production among a number of countries and touched off a wave of oil activity. The Journal takes a close look at the quality of West African oil in this installment of assays on world export crudes. This issue covers, in alphabetical order, Bonny Light (Nigeria) to Espoir (Ivory Coast). A following issue will wrap up West Africa by presenting assays on crudes from Forcados Blend (Nigeria) to Zaire Crude (Zaire).

  2. Table 1. Crude Oil Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    can be the month of loading, the month of landing, or sometime between those events. Prices for crude oil can be determined at a time other than the acquisition date. See the...

  3. Overcoming Fuel Gas Containment Limitations to Energy Improvement 

    E-Print Network [OSTI]

    Davis, J.

    2004-01-01T23:59:59.000Z

    Oil refineries convert crude oil into high value products such as gasoline, diesel, liquefied petroleum gas (LPG), and petrochemical feedstocks. After squeezing as much saleable product from the crude oil as possible, there remains a light gas...

  4. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  5. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,

  6. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  7. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31T23:59:59.000Z

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  8. Hog Fuel Drying Using Vapour Recompression 

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01T23:59:59.000Z

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  9. Standard guide for determining corrosivity of crude oils

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide presents some generally accepted laboratory methodologies that are used for determining the corrosivity of crude oil. 1.2 This guide does not cover detailed calculations and methods, but rather a range of approaches that have found application in evaluating the corrosivity of crude oil. 1.3 Only those methodologies that have found wide acceptance in crude oil corrosivity evaluation are considered in this guide. 1.4 This guide does not address the change in oil/water ratio caused by accumulation of water at low points in a pipeline system. 1.5 This guide is intended to assist in the selection of methodologies that can be used for determining the corrosivity of crude oil under conditions in which water is present in the liquid state (typically up to 100°C). These conditions normally occur during oil and gas production, storage, and transportation in the pipelines. 1.6 This guide does not cover the evaluation of corrosivity of crude oil at higher temperatures (typically above 300°C) that oc...

  10. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation

    SciTech Connect (OSTI)

    Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

    1988-01-01T23:59:59.000Z

    Crude oil generated by the Lower Smackover source facies migrated to Upper Smackover reservoirs where slow thermal cracking of crude oil resulted in the formation of gas-condensate and late solid bitumen. Ultimately, only pyrobitumen, methane, and nonhydrocarbon gases including hydrogen sulfide persist in the deepest Smackover reservoirs. The carbon isotopic compositions of crude oils became heavier during crude oil destruction. The carbon isotopic compositions of asphaltenes, NSO-compounds, and saturated hydrocarbons in late solid bitumen and the Lower Smackover source facies became isotopically lighter during crude oil destruction. It is suggested that some isotopically-light components from crude oils were incorporated in late solid bitumen by reactions involving thermochemical sulfate reduction. Thermochemical sulfate reduction and crude oil destruction occurred over a long span of geologic time at temperatures in the 120-150C range.

  11. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Marketing Annual 1998 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  12. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Marketing Annual 1999 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  13. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  14. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    E-Print Network [OSTI]

    Kahrl, Fredrich James

    2011-01-01T23:59:59.000Z

    Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].Commission (NDRC), 2007. Natural Gas Use Policy [??? ????].coal, crude oil, and natural gas. Hydropower, nuclear, and

  15. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

  16. instructions HisTrap FF crude,

    E-Print Network [OSTI]

    Lebendiker, Mario

    · p1 instructions HisTrap FF crude, 1 ml and 5 ml i 11-0012-38 Edition AA HisTrapTM FF crude, such as degradation and oxidation of sensitive target proteins, and is therefore of great importance. HisTrap FF crude properties HisTrap FF crude 1-ml and 5-ml columns are prepacked with the affinity medium Ni Sepharose 6 Fast

  17. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01T23:59:59.000Z

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  18. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  19. Rumen disappearance of organic matter, crude protein, crude fibre, ADF and NDF from grasses, white clover

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rumen disappearance of organic matter, crude protein, crude fibre, ADF and NDF from grasses, white observed in crude fiber, ADF and NDF degradation among forages. For 24 h incubation, the lowest values of crude fiber, ADF and NDF degradations were obtained for Poa pratensis (50, 41, 51 %) and the highest

  20. Maps of crude oil futures

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01T23:59:59.000Z

    The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

  1. Benchmark West Texas Intermediate crude assayed

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-08-15T23:59:59.000Z

    The paper gives an assay of West Texas Intermediate, one of the world's market crudes. The price of this crude, known as WTI, is followed by market analysts, investors, traders, and industry managers around the world. WTI price is used as a benchmark for pricing all other US crude oils. The 41[degree] API < 0.34 wt % sulfur crude is gathered in West Texas and moved to Cushing, Okla., for distribution. The WTI posted prices is the price paid for the crude at the wellhead in West Texas and is the true benchmark on which other US crudes are priced. The spot price is the negotiated price for short-term trades of the crude. And the New York Mercantile Exchange, or Nymex, price is a futures price for barrels delivered at Cushing.

  2. Dry Natural Gas Reserves Acquisitions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,498 3,968 12,748

  3. Dry Natural Gas Reserves Adjustments

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,498 3,968

  4. Dry Natural Gas Reserves Extensions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,498

  5. Dry Natural Gas Reserves Sales

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,4983,8027,603

  6. Oil and gas developments in New York in 1981

    SciTech Connect (OSTI)

    Van Tyne, A.M.

    1982-11-01T23:59:59.000Z

    In 1981, there were 646 wells completed in New York. This figure is partly estimated. In existing fields, 107 oil and 450 gas wells were completed. The results of exploratory drilling included 12 new gas field discoveries, 4 new gas pool discoveries, 3 deeper pool discoveries, 1 shallower pool discovery, and 36 extensions to existing gas fields. Two Medina Sandstone discoveries were made in Allegany County, Nine Devonian black shale wells were completed in western New York. An Onondaga reef discovery was made in Cattaraugus County. Three Trenton Limestone discoveries were made in central New York. Arco completed a dry hole in eastern New York near the Eastern Overthrust area. A significant oil discovery from the Bass islands zone below the Onondaga Limestone was made in eastern Chautauqua County. Thirty-five extensions to Medina Sandstone gas fields were completed in 1981. There was also 1 extension to the Houghton, Marcellus black shale gas field. In all, 8 Devonian black shale discoveries, 8 Silurian Medina Sandstone discoveries, and 3 Ordovician Trenton Limestone discoveries were made in New York during 1981. Oil production in 1981 was 848,969 bbl and gas production amounted to 19,000 mmcf. The price for New York stripper crude was $38.00/bbl on January 1, 1981, and ended the year at $35.00/bbl. Wellhead gas prices ranged up to $3.18/mcf. Drilling for Medina Sandstone gas production and Devonian black shale gas production will continue. However, it is expected that overall drilling will decline due to a softening in crude oil prices and an oversupply of gas. Federal government approval of leasing and drilling for gas in Lake Erie has still not been forthcoming.

  7. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil + Lease

  8. Process Considerations in the Biodesulfurization of Crude Oil

    SciTech Connect (OSTI)

    Borole, A.P.; Kaufman, E.N.

    1998-10-20T23:59:59.000Z

    Biodesulfurization offers an attractive alternative to conventional hydrodesulfurization due to the mild operating conditions and reaction specificity afforded by the biocatalyst. The enzymatic pathway existing in Rhodococcus has been demonstrated to oxidatively desulfhrize the organic sulfbr occurring in dibenzothiophene while leaving the hydrocarbon intact. In order for biodesulfiization to realize commercial success, a variety of process considerations must be addressed including reaction rate, emulsion formation and breakage, biocatalyst recovery, and both gas and liquid mass transport. This study compares batch stirred to electro-spray bioreactors in the biodesulfurization of both model organics and actual crudes in terms of their operating costs, ability to make and break emulsions, ability to effect efficient reaction rates and enhance mass transport. Further, sulfim speciation in crude oil is assessed and compared to the sulfur specificity of currently available biocatalyst.

  9. Chemical Characterization of Crude Petroleum Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solvents that are rarely used for petroleum characterization. Citation: Eckert PA, PJ Roach, A Laskin, and J Laskin.2012."Chemical Characterization of Crude Petroleum Using...

  10. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect (OSTI)

    Not Available

    1984-01-25T23:59:59.000Z

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  11. Strategic petroleum reserve crude oil assays

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This booklet provides background information on the purchase of crude oils for the Strategic Petroleum Reserve (SPR), procedures used to assess quality of the stored petroleum, and methods used in generating assays of the various streams which may be sold. Current assays of the eight SPR crude oil streams are included.

  12. Drying Foods at Home Safely Drying Herbs

    E-Print Network [OSTI]

    jars, freezer bags, and airtight plastic containers. Like other foods dried at home, dried herbs in an airtight container and store in a cool, dry, and dark place. Recommended containers include glass canning

  13. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    and ranks 17th in crude oil production globally (EIA 2008).the country’s crude oil production averaged only 157,770s production of nearly 2 million barrels of crude oil per

  14. The Importance of the Oil & Gas Industry to Northern Colorado and

    E-Print Network [OSTI]

    of Crude Oil 0% Pipeline Transportation of Natural Gas 3% Pipeline Transportation of Refined Petroleum,681 Natural Gas Distribution Natural Gas Liquid Extraction Pipeline Transportation of Crude Oil Pipeline Transportation of Refined... Pipeline Transportation of Natural Gas Petroleum Refineries Oil and Gas Pipeline

  15. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas plays:Domestic Crude

  16. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  17. Determinants of official OPEC crude prices

    SciTech Connect (OSTI)

    Verleger, P.K. Jr.

    1982-05-01T23:59:59.000Z

    The hypothesis of this paper is that crude oil, like any other unfinished commodity, is valued for the products derived from it; the purpose is to offer an empirical explanation for changes in the crude price charged by the members of OPEC. The model results show that the market-clearing prices reported to prevail for petroleum products on the principal petroleum spot market at Rotterdam are the primary determinants of changes in official crude prices. A systematic relationship between offical and spot prices is argued to have prevailed since 1974. An appendix clarifies five types of data required for the model. 13 references, 4 tables.

  18. June7-8, 2001 A. R. Raffray, et al., Completion of Assessment of Dry Chamber Wall Option Without Protective Gas,

    E-Print Network [OSTI]

    Raffray, A. René

    Wall Option 3 Changing Chamber Radius Affects Photon and Ion Times of Flight and Energy Deposition for Ions Based on Direct Drive Spectra and 6.5 m Chamber Debris Ions Time 10ns 0.2µs 1µs 2.5µs Fast IonsJune7-8, 2001 A. R. Raffray, et al., Completion of Assessment of Dry Chamber Wall Option Without

  19. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease,,,"Associated-DissolvedDry

  20. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30T23:59:59.000Z

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  1. ERCB updates estimated reserves of crude bitumen and synthetic crude oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    The Alberta Energy Resources Conservation Board prepares yearly updates of Alberta reserves of crude bitumen and synthetic crude oil. The latest figures are as of the end of 1985. Alberta's crude bitumen reserves are contained in designated deposits with the oil sand areas of Athabasca, Cold Lake, and Peace River. The total initial volume of crude bitumen in-place for the designated deposits at December 31, 1985 was estimated as 266.4 billion cubic meters. Within the potentially mineable areas, the initial mineable volume in-place of crude bitumen was established to be 11.9 billion cubic meters. After allowing for surface facilities (plant sites, tailings ponds, discard dumps), environmental protection corridors along major rivers, isolated mineable areas, and assuming a combined mining/extraction recovery factor of 0.78, the resulting initial established mineable reserve of crude bitumen is estimated to be 5.2 billion cubic meters. Data are presented in three tables.

  2. Membrane degumming of crude vegetable oil

    E-Print Network [OSTI]

    Lin, Lan

    1997-01-01T23:59:59.000Z

    Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

  3. Supercritical Water desulfurization of crude oil

    E-Print Network [OSTI]

    Kida, Yuko

    2014-01-01T23:59:59.000Z

    Supercritical Water (SCW) desulfurization was investigated for both model sulfur compounds and Arab Heavy crude. In part 1, the reactions of alkyl sulfides in SCW were studied. During hexyl sulfide decomposition in SCW, ...

  4. Geochemical studies of crude oil generation, migration, and destruction in Mississippi salt basin

    SciTech Connect (OSTI)

    Sassen, R.; Moore, C.H.; Nunn, J.A.; Meendsen, F.C.; Heydari, E.

    1987-09-01T23:59:59.000Z

    The main source for crude oil in the Mississippi salt basin is the laminated lime mudstone facies of the lower Smackover. Crude oil generation and migration commenced at a level of thermal maturity equivalent to about 0.55% vitrinite reflectance. Short-range lateral migration of crude oil was focused on upper Smackover and Norphlet reservoirs, but vertical migration also charged some overlying Cotton Valley, Rodessa, lower Tuscaloosa, and Eutaw reservoirs. Following migration from the lower Smackover, thermal maturity history of reservoir rocks controls the preservation of crude oil, gas condensate, and methane. Slow thermal cracking of crude oil occurred in deep upper Smackover reservoirs, resulting in formation of gas condensate and precipitation of solid bitumen. The maximum thermal maturity for preservation of condensate is equivalent to about 1.3% vitrinite reflectance. Only methane, pyrobitumen, and nonhydrocarbon gases, including hydrogen sulfide, persist at higher levels of thermal maturity. Early destruction of methane in deep upper Smackover reservoirs near the Wiggins arch is driven by thermochemical sulfate reduction. Lesser availability of sulfate in Norphlet reservoirs could account for methane preservation at higher levels of thermal maturity. One basic geochemical strategy for further exploration of the Mississippi salt basin is to focus exploration effort on traps with reservoirs in the thermal maturity window for hydrocarbon preservation. Another strategy is to avoid drilling traps with overmature reservoir rocks.

  5. Predicting Forage Nutritive Value Using an In Vitro Gas Production Technique and Dry Matter Intake of Grazing Animals Using n-Alkanes

    E-Print Network [OSTI]

    Aguiar, Andre D.

    2011-08-08T23:59:59.000Z

    In the first experiment, forage samples (n = 39) were collected during 4 years (2006 ? 2009) from pastures grazed by Santa Gertrudis cattle at the King Ranch, TX. The in vitro gas production technique (IVGP) was performed to understand the pattern...

  6. Crude Depletion Conditions for XKCM1 Arshad Desai

    E-Print Network [OSTI]

    Mitchison, Tim

    Crude Depletion Conditions for XKCM1 Arshad Desai 3/17/95 Problems: The main problem with immunodepletion of crude CSF extracts is that they activate during or soon after immunodepletion. Empirically well in crude). However, we have never been able to cycle a depleted crude - all assays were performed

  7. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  8. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude Oil +

  9. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    19.47 16.46 15.72 18.06 20.07 15.57 20.05 See footnotes at end of table. 30. Landed Costs of Imported Crude Oil for Selected Crude Streams Energy Information Administration ...

  10. Improved measurement of crude oil vapor pressure via PVT study methods

    SciTech Connect (OSTI)

    Roehner, R. [Alyeska Pipeline Service Co., Anchorage, AK (United States); Wetzel, G.; Stonestreet, W.; Lievios, J.; Reed, D.

    1996-12-31T23:59:59.000Z

    A technical task force created by owner companies of the Trans-Alaska Pipeline System (TAPS) including BP Pipelines (Alaska), and Arco Transportation Alaska, Inc., and Alyeska Pipeline Service Company (APSC), the operator of TAPS, have investigated new technology for measuring the saturated liquid bubble point vapor pressure (BPVP) of crude oils. This technology is based on Pressure-Volume-Temperature (PVT) Cell study methods and consists of an on-line Vapor Pressure Analyzer (VPA) developed by Arco Oil & Gas Company and marketed by Fluid Data (TVP-1000), and a mercury-free automated PVT lab system (RUSKA 2370 Lab System) marketed by Ruska Instrument Corporation and modified to meet APSC requirements. In this methodology, the BPVP for the multicomponent fluid crude oil is defined and approximated by the intersection of the liquid compressibility and two phase lines on the isothermal pressure-volume (PV) curve for the fluid. The Task Force finds that this new technology provides saturated liquid bubble point vapor pressure values of TAPS crude oils which differ by 15 to 95 kPa from True Vapor Pressure (TVP) values obtained using API Publication 2517, Figure 18B-Equation for of Crude Oils With A Reid Vapor Pressure of 2-15 Pounds per Square Inch and corresponding RVP data from the crude oils tested. The range in difference between the BPVP and the TVP for each of five different TAPS crude oils tested was found to be due to differences in crude oil composition. 3 refs., 1 fig., 1 tab.

  11. Arabian crude-oil residues evaluated

    SciTech Connect (OSTI)

    Ali, M.F.; Bukhari, A.; Hasan, M.; Saleem, M.

    1985-08-12T23:59:59.000Z

    This article evaluates detailed physical and chemical characteristics for four important Saudi Arabian resids. Petroleum residues are composed of a mixture of large and complex hydrocarbon molecules along with one or more heteroatoms such as sulfur, oxygen, nitrogen, vanadium, and nickel. The amount of residue and its physical and chemical composition depend on the source of the crude oil and methods of processing. Residues from four Saudi Arabian crude oils produced by the Arabian American Oil Co. (Aramco) were evaluated. The crude oils are 38.5 degrees API Arabian Extra Light, 33.8 degrees API Arabian Light, 30.4 degrees Api Arabian Medium, and 28.03 degrees API Arabian Heavy. Results are presented and residue preparation, and physical and chemical characteristics are analyzed.

  12. ,"New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas,Crude

  13. ,"New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas,CrudePlant

  14. Oxford Institute for Energy Studies Natural Gas Research Programme

    E-Print Network [OSTI]

    Texas at Austin, University of

    demand and price dynamics than by crude oil or oil product prices. The author, Dr Michelle Michot Foss concludes that the relationship between petroleum liquids and natural gas prices going forward will be less, this means that as long as crude oil prices remain significantly in excess of $35/bbl, European gas markets

  15. Systemic toxicity of dermally applied crude oils in rats

    SciTech Connect (OSTI)

    Feuston, M.H.; Mackerer, C.R.; Schreiner, C.A.; Hamilton, C.E. [Stonybrook Labs., Inc., Princeton, NJ (United States)] [Stonybrook Labs., Inc., Princeton, NJ (United States)

    1997-12-31T23:59:59.000Z

    Two crude oils, differing in viscosity (V) and nitrogen (N) and sulfur (S) content, were evaluated for systemic toxicity, In the Crude I (low V, low N, low S) study, the material was applied to the clipped backs of rats at dose levels of 0, 30, 125, and 500 mg/kg. In the Crude II (high V, high N, moderate S) study, the oil was applied similarly at the same dose levels. The crude oils were applied for 13 wk, 5 d/wk. Exposure sites were not occluded. Mean body weight gain (wk 1-14) was significantly reduced in male rats exposed to Crude II; body weight gain of all other animals was not adversely affected by treatment. An increase in absolute (A) and relative (R) liver weights and a decrease in A and R thymus weights were observed in male and female rats exposed to Crude II at 500 mg/kg; only liver weights (A and R) were adversely affected in male and female rats exposed to Crude I. In general, there was no consistent pattern of toxicity for serum chemistry endpoints; however, more parameters were adversely affected in Crude II-exposed female rats than in the other exposed groups. A consistent pattern of toxicity for hematology endpoints was observed among male rats exposed to Crude I and male and female rats exposed to Crude II. Parameters affected included: Crudes I and II, red blood cell count, hemoglobin, and hematocrit, Crude II, platelet count. Microscopic evaluation of tissues revealed the following treatment-related findings: Crude I, treated skin, thymus, and thyroid; Crude II, bone marrow, treated skin, thymus, and thyroid. The LOEL (lowest observable effect level) for skin irritation and systemic toxicity (based on marginal effects on the thyroid) for both crude oils was 30 mg/kg; effects were more numerous and more pronounced in animals exposed to Crude II. Systemic effects are probably related to concentrations of polycyclic aromatic compounds (PAC) found in crude oil.

  16. Nuclear salt-in-crude monitor

    SciTech Connect (OSTI)

    Sheikh, S.; Richter, A.P.

    1983-05-01T23:59:59.000Z

    The Arabian American Oil Co. (ARAMCO) recently installed a nuclear salt-in-crude monitor (SICM) that continuously measures the salt content of a flowing stream of crude oil. This device was developed by Texaco Inc.'s Bellaire (TX) Research Laboratory. The monitor consists of two parts: a counting chamber and an instrument console. The counting chamber is a length of 24-in.-diameter pipe containing a long-life neutron source and a gamma ray detector, both mounted in cross pipes so that there is no direct contact with the flowing crude. Neutrons from the source are absorbed by chloride ions in the stream, which in turn emit gamma rays. The intensity of the gamma rays is proportional to the amount of chlorine in the crude. The gamma ray detector is electrically connected to the instrument console, which is located in a control room. The console contains the necessary instrumentation to process the data from the detector, to compute the salt concentration, and to provide a continuous printed record of the salt per thousand barrels (PTB).

  17. Combination process for upgrading reduced crude

    SciTech Connect (OSTI)

    Hettinger, W.P. Jr.

    1986-07-15T23:59:59.000Z

    A reduced crude conversion process is described for heavy oil feeds having Conradson carbon numbers above two, which process comprises contacting a heavy oil feed with a catalyst to form products comprising lower molecular weight hydrocarbons and coke-on-catalyst, the coke containing minor amounts of hydrogen, and thereafter regenerating the catalyst by removing at least a portion of the coke.

  18. Development of reduced crude cracking catalysts

    SciTech Connect (OSTI)

    Hettinger, W.P. Jr. (Ashland Petroleum Company, KY (USA))

    1987-08-01T23:59:59.000Z

    In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

  19. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  20. The Weak Tie Between Natural Gas and Oil Prices

    E-Print Network [OSTI]

    Ramberg, David J.

    Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

  1. Simulation, integration, and economic analysis of gas-to-liquid processes 

    E-Print Network [OSTI]

    Bao, Buping

    2009-05-15T23:59:59.000Z

    Gas-to-liquid (GTL) process involves the chemical conversion of natural gas (or other gas sources) into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. A leading...

  2. Costs of Crude Oil and Natural Gas Wells Drilled

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4:4Company LevelCoos Bay FieldCosts

  3. Crude Oil and Natural Gas Exploratory and Development Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4:4CompanyNov-14

  4. Footage Drilled for Crude Oil and Natural Gas Wells

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5ValuesJune

  5. Average Depth of Crude Oil and Natural Gas Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on the Site MapDepth of

  6. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1Information Administration (EIA)Electricity

  7. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1Information AdministrationNov-14 Dec-14

  8. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0 Year-1InformationDieselAnnualFORMPageValuesFootage Drilled for

  9. Factors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    to the petroleum industry. Nonaqueous foams occur in the production of and refining of crude oil. Crude oil foamsFactors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems Nael N. Zaki, Michael K August 28, 2001 The influence of petroleum asphaltenes and resins on stabilizing model oil foams

  10. Asphaltene Precipitation in Crude Oils: Theory and Experiments

    E-Print Network [OSTI]

    Wu, Jianzhong

    of the production of crude oil in deep-water environments and the operations of enhanced oil recovery by miscible asphaltenes and resins. Asphaltenes are defined as the fraction separated from crude oil or petroleum productsAsphaltene Precipitation in Crude Oils: Theory and Experiments Eduardo Buenrostro

  11. MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on

    E-Print Network [OSTI]

    MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

  12. Using Crude Corrective Movements to Learn Accurate Motor Programs for

    E-Print Network [OSTI]

    Fagg, Andrew H.

    Using Crude Corrective Movements to Learn Accurate Motor Programs for Reaching Andrew H. Fagg University School of Medicine Chicago, IL 60611 Abstract A computational model that uses crude corrective of #12; Fagg, Zelevinsky, Barto, & Houk: Crude Corrective Movements for Learning Accurate Motor Programs

  13. PRIMARY RESEARCH Open Access Anticonvulsant and analgesic activities of crude

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PRIMARY RESEARCH Open Access Anticonvulsant and analgesic activities of crude extract and its with anticonvulsant and analgesic activities. We investigated the efficacy of crude extract and its semi in mice. Among the series the crude extract exhibited interesting analgesic activity in a dose dependent

  14. Effect of pore geometry in porous media on the miscibility of crude oil and carbon dioxide

    E-Print Network [OSTI]

    Sarkhosh, Hamed

    1977-01-01T23:59:59.000Z

    or low pressure gas, capillary forces and interfacial tensions will result in the leaving behind of a fixed residual oil saturation. Therefore complete or total recovery of oil from an oil bearing for- mation is impossible, even though many pore...EFFECT OF PORE GEOMETRY IN POROUS MEDIA ON THE MISCIBILITY OF CRUDE OIL AND CARBON DIOXIDE A Thesis by HAMED SARKHOSH Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree...

  15. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil + Lease

  16. Volatility in natural gas and oil markets

    E-Print Network [OSTI]

    Pindyck, Robert S.

    2003-01-01T23:59:59.000Z

    Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in ...

  17. Reduced crude processing with Ashland's RCC process

    SciTech Connect (OSTI)

    Zandona, O.J.; Busch, L.E.; Hettinger, W.P.

    1982-05-01T23:59:59.000Z

    Ashland Oil has long recognized the need to improve the process for the direct conversion of residual feedstocks into transportation fuels and other lighter products. The reduced crude oil conversion (RCC) unit now under construction at the Catlettsburg, Kentucky, refinery was developed to meet these demands. The facility incorporates RCC process innovations and recent catalyst technology improvements, and provides increased operating flexibility. Heavier, higher-sulfur crude oils can be processed under several economically attractive scenarios. They allow for an excellent balance between the production of transportation fuels, and reduced amounts of heavy fractions. An outstanding feature of the RCC process is the highoctane quality of full-boiling-range gasoline that results when converting residual feedstocks.

  18. ,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrude Oil Reserves

  19. ,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed MethaneShaleCoalbedCrude

  20. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil +

  1. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas,PlantCrude Oil

  2. Displacement of crude oil by carbon dioxide

    E-Print Network [OSTI]

    Omole, Olusegun

    1980-01-01T23:59:59.000Z

    by Carbon Dioxide (December 1980) Olusegun Omole, B. S. , University of Ibadan, Nigeria Chairman of Advisory Committee: Dr. J. S. Osoba It has long been recognized that carbon dioxide could be used as an oil recovery agent. Both laboratory and field...- tion. Crude oil from the Foster Field in West Texas, of 7 cp and 34 API, 0 was used as the oil in place. Oil displacements were conducted at pres- sures between 750 psig and 1800 ps1g, and at a temperature of 110 F. 0 Carbon dioxide was injected...

  3. Crude Oil Imports From Persian Gulf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX ImeansCrude Oil Imports

  4. Proved Nonproducing Reserves of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April 25, 2013 IndependentProduct: Crude

  5. This Week In Petroleum Crude Oil Section

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9.The U.S.Crude

  6. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30T23:59:59.000Z

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  7. Kansas Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1301 163Year

  8. Kentucky Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AK LiquefiedCubic Feet)

  9. Louisiana Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0 0 0

  10. Michigan Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet)Year JanYear52 55 59

  11. Miscellaneous Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349 350 379 222

  12. Mississippi Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349252 254

  13. Montana Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889 11,502 13,84575 37 64 25Year00

  14. Texas Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559 8,762 10,130 13,507Year

  15. Alabama Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w3,290 2,871 2,629

  16. Alaska Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear Jan Feb Mar Apr3,5667,699

  17. Arkansas Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14DecadeDecade(Million31 22 28 215,626

  18. California Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan,835

  19. Colorado Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan3,302 23,058

  20. Dry Natural Gas Estimated Production (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 2010 2008Year

  1. Dry Natural Gas Proved Reserves Acquisitions (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 20108,498 3,968

  2. Dry Natural Gas Proved Reserves Adjustments (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 20108,498 3,968207

  3. Dry Natural Gas Proved Reserves Extensions (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May 20108,498

  4. Dry Natural Gas Proved Reserves Sales (Summary)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May

  5. Dry Natural Gas Reserves Estimated Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,498 3,96820,523

  6. Dry Natural Gas Reserves Revision Decreases

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,4983,802 33,035

  7. Dry Natural Gas Reserves Revision Increases

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8 Final May8,4983,802

  8. West Virginia Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810Year Jan Feb39,28720 21 51

  9. Wyoming Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicleTrading,781Year

  10. Utah Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional2009893 725 718Year

  11. Virginia Dry Natural Gas Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers35,9291 22,378 3,091

  12. NM, East Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523 507

  13. NM, West Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474

  14. New Mexico Dry Natural Gas Proved Reserves

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1Lease

  15. New York Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)per ThousandDecade Year-0389 196

  16. North Dakota Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire" "Unit","SummerperDecade541 1,079

  17. North Louisiana Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct(Dollars81 131 136

  18. Ohio Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet) Year Jan5985 896 832

  19. Oklahoma Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9Thousand Cubic Feet)7Year

  20. Pennsylvania Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan MonthlyCubic17 34 44 67Year

  1. asphaltenic crude oils: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Options for the Future University of California eScholarship Repository Summary: capex will go to exploration and production in an attempt to keep up faltering crude...

  2. aqueous crude leaf: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Experiments Eduardo Buenrostro.interscience.wiley.com). The precipitation of asphaltenes in two Mexican crude oils was measured using a combination of high- and tank-oil...

  3. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  4. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  5. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  6. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing...

  7. Sandia National Laboratories Releases Literature Survey of Crude...

    Energy Savers [EERE]

    Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport Sandia National Laboratories Releases Literature...

  8. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    with good mechanical properties - Loading approaching targets - Process parameter optimization necessary to make thinner films with better density characteristics Images of dry...

  9. Transporting Dry Ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements for Shipping Dry Ice IATA PI 904 Source: Reg of the Day from ERCweb 2006 Environmental Resource Center | 919-469-1585 | webmaster@ercweb.com http:...

  10. Cooking with Dry Beans

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritonal value and safe storage of dry beans, a commodity food. It also offers food preparation ideas....

  11. Sandia National Laboratories: DRI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRI ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  12. Bioremediation techniques on crude oil contaminated soils in Ohio. First quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Hodges, D.

    1996-03-27T23:59:59.000Z

    The objective of this project is to develop environmentally-sound and cost-effective remediation techniques for crude oil contaminated soils. By providing a guidance manual to oil and gas operators, the Ohio Division of Oil and Gas regulatory authority hopes to reduce remediation costs while improving voluntary compliance with soil clean-up requirements. This shall be accomplished by conducting a series of field tests to define the optimum range for nutrient, oxygen and organic enhancement to biologically remediate soils contaminated with brines and crude oil having a wide range of viscosity. Task one of the bioremediation project began on July 3, 1995 with the selection and preparation of a site in Smith township. Mahoning County. The plots were arranged and parameters were varied. Plots, 1, 3, 5, 7, 9 and 11 were contaminated with 159 liters (42 gal. ) of Corning grade crude oil and plots 2, 4, 6, 8 and 12 were contaminated with 159 liters (42 gal.) of Pennsylvania grade crude oil. Plots 13 through 21 were contaminated with 159 liters (42 gal.) of Pennsylvania grade crude oil and 477 liters (126 gal.) of Clinton sandstone brine with a 160,000 mg/liter concentration of chloride. Treatment and administration of variables were conducted from August 17, 1995 to October 26, 1995. During this period samples were collected twice from each plot and analyzed for the parameters specified in the contract. Results from both sampling events of total petroleum hydrocarbons suggest that crude oil spread on surface is not easily mixed into soils as tillage depth, resulting in considerably variable composite samples from plot to plot.

  13. Physical stability of spray dried solid dispersions of amorphous tolfenamic acid and polyvinylpyrolidone K30

    E-Print Network [OSTI]

    Thybo, Pia

    2006-10-25T23:59:59.000Z

    Droplet-Gas Contact mixing and flow pattern Drying of Droplets moisture / volatiles evaporation (~ 10 sec.) Product Recovery separation of particles from the gas GPEN October 2006 Side 8 Pia Thybo The Danish University of Pharmaceutical Sciences... Formation of surface GPEN October 2006 Side 11 Pia Thybo The Danish University of Pharmaceutical Sciences Schematic picture of spray drying process Feed Heater 2 fluid nozzle Feed flow Nozzle gas flow Drying chamber Cyclone Collection vessel Bag filter...

  14. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

  15. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  16. DYNAMIC HEDGING STRATEGIES: AN APPLICATION TO THE CRUDE OIL MARKET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DYNAMIC HEDGING STRATEGIES: AN APPLICATION TO THE CRUDE OIL MARKET Delphine LAUTIER 1 , Professor-5Jul2013 Author manuscript, published in "Review of futures markets 19, 1 (2010) 7-41" #12;ABSTRACT ratios. Different strategies, with maturities up to seven years, are tested on the American crude oil

  17. Volatility Persistence in Crude Oil Markets Amlie CHARLES

    E-Print Network [OSTI]

    Boyer, Edmond

    , reflecting rising demand for crude oil, particularly from developing nations. Oil prices have been veryVolatility Persistence in Crude Oil Markets Amélie CHARLES Audencia Nantes, School of Management oil markets ­ Brent, West Texas Intermediate (WTI) and Organization of Petroleum Exporting Countries

  18. Waxy crude oil handling in Nigeria; Practices, problems, and prospects

    SciTech Connect (OSTI)

    Ajienka, J.A.; Ikoku, C.U. (Dept. of Petroleum Engineering, Univ. of Port Harcourt, Choba, Port Harcourt (NG))

    1990-01-01T23:59:59.000Z

    With case studies, the practices, problems, and prospects of handling waxy crude oils in Nigeria are discussed. Using a rotational viscometer, the temperature dependence of rheological properties and thixotropy of these crudes were determined. Suggestions are given on how to improve handling practices. These suggestions include adequate screening and ranking of wax inhibitors, taking into account pour-point depression, viscosity, and yield value.

  19. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  20. Spent fuel integrity during dry storage

    SciTech Connect (OSTI)

    McKinnon, M.A.

    1995-07-01T23:59:59.000Z

    Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at the Idaho National Engineering Laboratory (INEL) offers significant opportunities for confirmation of the benign nature of long-term dry storage. The cask performance tests conducted at INEL included visual observation and ultrasonic examination of the condition of cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of the fuel; and a qualitative determination of the effect of dry storage and fuel consolidation on fission gas release from the spent fuel rods. A variety of cover gases and cask orientations were used during the cask performance tests. Cover gases included vacuum, nitrogen, and helium. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the conclusion of each performance test, periodic gas sampling was conducted on each cask as part of a surveillance and monitoring activity. Continued surveillance and monitoring activities are being conducted for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are reported in this paper.

  1. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  2. Table 7: Crude oil proved reserves, reserves changes, and production, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7: Crude oil

  3. Table 7: Crude oil proved reserves, reserves changes, and production, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7: Crude oil:

  4. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil + Lease

  5. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas,Coalbed Methane ProvedCrude

  6. A study of natural gas extraction in Marcellus shale

    E-Print Network [OSTI]

    Boswell, Zachary (Zachary Karol)

    2011-01-01T23:59:59.000Z

    With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

  7. Outlook for U.S. shale oil and gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

  8. Table 25. Landed Costs of Imported Crude Oil by Selected Country

    Gasoline and Diesel Fuel Update (EIA)

    "Monthly Foreign Crude Oil Acquisition Report," July 1984 to present. 25. Landed Costs of Imported Crude Oil, by Selected Country Energy Information Administration ...

  9. Analysis on Falls Death Crude Rate in Western Region of United States

    E-Print Network [OSTI]

    Ng, Lung Fai

    2012-01-01T23:59:59.000Z

    Falls Death Crude Rate in Western Region of United States AFalls Death Crude Rate in Western Region of United States by

  10. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum...

  11. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  12. EIAs U.S. Crude Oil Import Tracking Tool

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    onshore production will be dominated by light crudes, issues surrounding the absorption of domestic crude by increased runs, by like-for-like replacement of import streams...

  13. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    Ratecapacity match cathode 12 8. Down-select low cost anode process 50% vs baseline capex + opex 13 9. Scale cathode film to support task 16 10 m 17 10. Lab prototype cell dry...

  14. Fluorescent spectra of chromatographic fractions of crude oils

    E-Print Network [OSTI]

    Dixon, William Samuel

    1952-01-01T23:59:59.000Z

    . For this investigation, n-heptane, cyclohexane, iso-octane, benzene, chloroform, ether, and methanol were used in that order. The volume of eluent depended upon the size of the charged crude. Splitting sess eluent charges into two or three fractions gave a... better fractionat. '. on. hecovery of the oil raried from BO. Q to 89. 5 per cent on tests on four different crudes. Analysis of the fractions in iso-prapyl ether 'by spectrographic means revealed a distinct di ference between the crude oils...

  15. Urethane coatings rehabilitate large crude oil pipeline

    SciTech Connect (OSTI)

    Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

    1995-10-01T23:59:59.000Z

    Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

  16. Crude Oil Movements of Crude of by Rail between PAD Districts

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4:4Company LevelCoosProduct: Crude

  17. ,"Domestic Crude Oil First Purchase Prices for Selected Crude Streams"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"for Selected Crude

  18. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  19. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  20. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  1. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  2. Literature Survey of Crude Oil Properties Relevant to Handling...

    Office of Scientific and Technical Information (OSTI)

    time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events...

  3. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  4. Conductivity factor in the electrostatic coalescence of crude oil emulsions

    E-Print Network [OSTI]

    Nelson, James B

    1998-01-01T23:59:59.000Z

    parameter on the rate of coalescence. Using previously established procedures, the potential for enhancement of the electrostatic coalescence rate for oil/water emulsions of highly refined oils and different grades of crude oils was explored using a 2-L...

  5. arabian crude oil: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and subsequent treatment by in-situ burning in a coastal marsh in the western Gulf of Mexico.Crude Oil, Pollution Control, Skimmer Leavitt, M. 1990. New Mexico's Louisiana...

  6. arabian crude oils: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and subsequent treatment by in-situ burning in a coastal marsh in the western Gulf of Mexico.Crude Oil, Pollution Control, Skimmer Leavitt, M. 1990. New Mexico's Louisiana...

  7. Supply and demand planning for crude oil procurement in refineries

    E-Print Network [OSTI]

    Nnadili, Beatrice N. (Beatrice Nne)

    2006-01-01T23:59:59.000Z

    The upstream petroleum supply chain is inefficient and uneconomical because of the independence of the four complex and fragmented functions which comprise it. Crude oil exploration, trading, transportation, and refining ...

  8. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  9. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01T23:59:59.000Z

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

  10. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  11. Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol

    E-Print Network [OSTI]

    Silvey, Luke

    2012-05-31T23:59:59.000Z

    Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol By Copyright 2011 Luke Grantham Silvey Submitted to the graduate degree program in the Chemical and Petroleum Program, School of Engineering and the Graduate Faculty...D ________________________________ Christopher Depcik , PhD Date Defended: December 15, 2011 ii The Thesis Committee for Luke Grantham Silvey certifies that this is the approved version of the following thesis: Hydrogen and Syngas Production from Biodiesel Derived Crude...

  12. A comparative study of continuous-time modelings for scheduling of crude oil operations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    on its efficient performance for industrial problems. Keywords: Crude oil scheduling; event-based model problem is the first and critical stage of the crude oil refining process. The problem involves crude oilA comparative study of continuous-time modelings for scheduling of crude oil operations Xuan Chena

  13. Molecular Characterization of Wax Isolated from a Variety of Crude Oils

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    . It can aid emulsification of the crude in the production and refining of crudes, as well as in oil spillsMolecular Characterization of Wax Isolated from a Variety of Crude Oils Barbara J. Musser and Peter Carolina 27695-7905 Received November 5, 1997 Petroleum waxes from sixteen different crude oils were

  14. A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid

    E-Print Network [OSTI]

    A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid Christopher J features of waxy crude oils. We first develop a series of model crude oils, which are characterized the model crude oil under conditions of imposed steady shearing. These instabilities are a result

  15. The Proof: and The approximate and of crude circuits CC(X) and

    E-Print Network [OSTI]

    Lyuu, Yuh-Dauh

    The Proof: and · The approximate and of crude circuits CC(X) and CC(Y) is CC(pluck({Xi Yj : Xi X that the resulting crude circuit has "a lot" of false positives or false negatives. c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 718 #12;The Final Crude Circuit Lemma 93 Every final crude circuit either

  16. Cooking with Dried Potatoes

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    make a tasty vegetable dish. For added flavor, you can add salt and pepper along with small amounts of grated cheese, margarine or butter. Be careful: Adding large amounts of cheese, butter or margarine can turn a low-fat vegetable, such as potatoes..., into a high-fat dish. How to store them Store packages of dried potatoes in a cool, dry, place. After the package is opened, store the potatoes in an airtight container. Store cooked potatoes in a covered dish in the refrigerator. Use within 3 days...

  17. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477theNov-14 1Nov-14U.S.

  18. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7.Cubic Foot)inState

  19. Gas intrusion into SPR caverns

    SciTech Connect (OSTI)

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.; Giles, H.N. [Dept. of Energy, Washington, DC (United States). Strategic Petroleum Reserve

    1995-12-01T23:59:59.000Z

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  20. Natural gas exports and macroeconomic performance

    SciTech Connect (OSTI)

    Naini, A. [Alberta Energy and Utilities Board, Calgary, Alberta (Canada). Economics and Policy Development

    1998-08-01T23:59:59.000Z

    Alberta, in volumetric terms, is Canada`s leading exporter of natural gas, crude oil, bitumen, and coal. Alberta natural gas shipments to other Canadian provinces and exports to the United States have developed into an increasingly important component of Alberta economy. This article attempts to measure the impact of gas production and exports on different sectors of the Alberta economy as the energy producing province of Canada.

  1. Cooling Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17T23:59:59.000Z

    , little work has been done on the responses of cooling cows in this period. The dry period is particularly crucial because it involves regen- eration of the mammary gland and rapid fetal growth. This is also when follicles begin develop- ing and maturing...

  2. hal-00200422,version1-20Dec2007 Arbitrage free cointegrated models in gas and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    market. The dependence between gas and oil prices could be economically explained with gas long termhal-00200422,version1-20Dec2007 Arbitrage free cointegrated models in gas and oil future markets Gr we present a continuous time model for natural gas and crude oil future prices. Its main feature

  3. Crude Distillation Unit Heat Recovery Study

    E-Print Network [OSTI]

    John, P.

    1979-01-01T23:59:59.000Z

    to 426?F. There is no preheat of tower bottoms. All heat beyond the prefractionator comes from fired furnaces. But there is steam generation at 25 pounds pressure from hot oil and an approved project to generate ISO-pound steam from flue gas. Pipe Still... Sinks Sources Difference Disposition Sinks 110 (110) (213) Furnace Duty 400/690 430/720 255 152 (103) l50-Pound Steam Production 365/400 395/430 25 44 19 50-Pound Steam Production 300/365 330/395 47 80 33 29 25-Pound Steam...

  4. Combination process for upgrading reduced crude

    SciTech Connect (OSTI)

    Hettinger, W.P.

    1986-08-19T23:59:59.000Z

    A process is described for the conversion of a feed containing high boiling hydrocarbons and having Conradson carbon producing materials, which process is carried out in a hydrocarbon conversion system comprising a riser conversion zone and a regeneration zone. The process consists of: A. contacting the feed with a fluid hydrocarbon conversion catalyst in the riser conversion zone in the presence of water and a first CO-rich flue gas to form a gasiform effluent containing lower molecule weight hydrocarbons and coke on the catalyst; B. separating the gasiform effluent from the coked catalyst; C. regenerating the coked catalyst in the regeneration zone consisting of a first regeneration stage and a second regeneration stage; D. sending the regenerated catalyst to the riser conversion zone; E. separating the gasiform effluent from and riser conversion zone into a C/sub 2/-minus gaseous product, a C/sub 3/-plus hydrocarbon product and a water-containing condensation product and recovering separately therefrom hydrogen; F. purifying the hydrogen to form purified hydrogen for use in producing a synthesis gas; and G. recovering useful hydrocarbon products from the C/sub 3/-plus hydrocarbon product.

  5. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  6. Reduced Crude Conversion-2: demetallization unit broadens RCC feed slate

    SciTech Connect (OSTI)

    Busch, L.E.; Hettinger, W.P.; Krock, R.P.

    1984-12-24T23:59:59.000Z

    The Reduced Crude Conversion (RCC) process has been shown as capable of handling feedstocks with high levels of heavy metals contamination. This article extends the applicability of the RCC process further to handle feedstock derived in part from extremely high metal crude oils, in discussing a commercial unit installed by Ashland which is capable of metals removal using the ART technology. Nickel and vanadium removal from certain highly contaminated RCC feedstocks shown that the RCC unit with ART technology benefits from substantial catalyst savings while extending RCC technology to more challenging feedstocks. The demetallized product is mixed with virgin reduced crude oil and with lower metal content asphalts to provide feedstock for the RCC unit.

  7. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01T23:59:59.000Z

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  8. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15T23:59:59.000Z

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  9. 2010 Dry Bean Research Report

    E-Print Network [OSTI]

    2010 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production RESEARCH ADVISORY BOARD #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  10. 2012 Dry Bean Research Report

    E-Print Network [OSTI]

    2012 Dry Bean Research Report Assessment of Narrow Row Technology Michigan Dry Edible Bean Production Research Advisory Board #12;The Michigan Bean Commission was awarded a grant from the MDA Technology for the Michigan Dry Bean Industry". Expected outcomes from this project are: 1. Identification

  11. Design of Crude Oil Pre-Heat Trains

    E-Print Network [OSTI]

    Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

    Design of Crude Oil Pre-heat Trains G.T.Po]Jey B.L.Yeap D.I.Wilson M.H.Panjeh Shahi Pinchtechnology.com Dept of Chern. Engng. Dept. of Chern. Engng. University of Cambridge University of Tehran Pre-heat trains differ from most other heat... recovery networks in a number of important ways. Combination offactors gives rise to the need for a design procedure specific to pre heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat...

  12. ,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed Methane

  13. Heat-transfer characteristics of a dry and wet/dry advanced condenser for cooling towers

    SciTech Connect (OSTI)

    Fricke, H.D.; McIlroy, K.; Webster, D.J.

    1982-06-01T23:59:59.000Z

    An EPRI-funded, experimental evaluation of two types of advanced, air-cooled ammonia condensers for a phase-change dry/wet cooling system for electric power plants is described. Condensers of similar design, but much bigger, are being tested in a 15 MWe demonstration plant at the Pacific Gas and Electric Kern Power Station in Bakersfield, California. These condensers, featuring different air-side augmentation, were tested in Union Carbide's ammonia phase-change pilot plant (0.3 MWe). The first unit consisted of the Curtiss-Wright integral shaved-fin extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face velocities (600 to 1000 FPM) and initial temperature differences, ITD (20 to 60/sup 0/F). Overall heat transfer coefficients (based on air-side surface), U, ranged between 7.0 to 8.6 Btu/hr ft/sup 2/ F. The second configuration constituted the Hoterv aluminum plate-fin/tube assembly of which two different sizes (5 ft/sup 2/ and 58 ft/sup 2/ frontal area) were performance tested; in both dry and wet modes at 200 to 800 FPM air face velocities, ITD's of 10 to 60/sup 0/F and at water deluge rates up to 3.0 gpm/ft. of core width. In the dry mode, U's ranged from 7.0 to 12.0 Btu/hr ft/sup 2/ F. Increasing water deluge greatly enhanced the heat rejection capacity over dry operation - as high as 4 times, depending on operating conditions. This deluge augmentation was greater for lower air relative humidities and lower ITD's. A brief description of the recently completed ammonia phase-change dry/wet-dry cooling demonstration plant at the Kern Power Station concludes this document.

  14. Drying Rough Rice in Storage.

    E-Print Network [OSTI]

    Sorenson, J. W. Jr.; Crane, L. E.

    1960-01-01T23:59:59.000Z

    Drying. Rough Rice in Storage Ih AGRf""' TURP YPERIMENT STAT10 I. TEXAS SUMMARY Research was conducted at the Rice-Pasture Experiment Station near Beaumont during 7 crop years (1952-53 through 1958-59) to determine the engineering problems... and the practicability of dry- ing rough rice in storage in Texas. Drying rice in storage means drying rice in the same bin in which it is to be stored. Rough rice, with initial moisture contents of 15.0 to 23.0 percent, was dried at depths of 4 to 10 feet...

  15. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  16. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  17. Factors Contributing to Petroleum Foaming. 1. Crude Oil Systems

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    Factors Contributing to Petroleum Foaming. 1. Crude Oil Systems Michael K. Poindexter,*, Nael N production, producers often determine beforehand various processing issues that might be encountered during full-scale production. A host of issues are considered pertinent, some of which include production line

  18. Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha , Kevin C at the front-end of a petroleum refinery. The model relies on a continuous time representation making use-412-268-7139. Email address: grossmann@cmu.edu (I.E. Grossmann) #12;2 Keywords: Refinery scheduling; Nonconvex MINLP

  19. Tolerance of nitrobacter to toxicity of some Nigerian crude oils

    SciTech Connect (OSTI)

    Okpokwasili, G.C.; Odokuma, L.O. (Univ. of Port Harcourt (Nigeria))

    1994-03-01T23:59:59.000Z

    Crude oil spillage in aquatic systems affects thousands of aquatic species including bacteria. Some of the crude oil components are rapidly evaporated or biologically degraded. Other components continue to remain for several months and perhaps several years. Some of these components may be toxic to microorganisms, while some may stimulate microbial activity especially at low concentrations. The use of bacteria as bioassay organisms is now gaining wide acceptance. It offers a number of advantages such as ease of handling, economy of space, short life cycles and low cost. Their uses in bioassays are based on cell lysis, mutagenic properties and the inhibition of physiological processes such as respiration. Recently, a number of workers have proposed the use of Nitrobacter as a test organism. The organism has a number of advantages in toxicity testing: obligate autotrophy, its sensitivity to various toxicants and its predominance in wastewater environments are some of them . Of recent, the inhibition of bacterial enzyme biosynthesis have been suggested in bacterial assays. The objective of this study was to determine the effects of six Nigerian crude oils on the cell reproduction rate (LC, lethal concentration), cellular respiration (EC, effective concentration) and biosynthesis of enzyme responsible for nitrite oxidation (IC, inhibition concentration) in Nitrobacter. In addition, the goal was to identify which of these was the most sensitive to crude oil and which may thus be used for detecting the toxicity of these chemicals. 18 refs., 2 figs., 1 tab.

  20. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11T23:59:59.000Z

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  1. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06T23:59:59.000Z

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  2. The rheological complexity of waxy crude oils : yielding, thixotropy and shear heterogeneities

    E-Print Network [OSTI]

    Dimitriou, Christopher (Christopher J.)

    2013-01-01T23:59:59.000Z

    Precipitate-containing crude oils are of increasing economic importance, due to diminishing oil reserves and the increased need to extract hydrate and wax-containing crude oil from ultra deep-water resources. Despite this ...

  3. Sapphire Energy Out to Prove That Crud Can Take On Crude | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sapphire Energy Out to Prove That Crud Can Take On Crude Sapphire Energy Out to Prove That Crud Can Take On Crude December 16, 2011 - 2:48pm Addthis An aerial view of Sapphire...

  4. Implementation issues for realtime optimization of a crude unit heat exchanger network

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1 Implementation issues for real­time optimization of a crude unit heat exchanger network Tore Lid­ mentation of real time optimization results in a crude unit heat exchanger network. Two di#erent control

  5. Implementation issues for real-time optimization of a crude unit heat exchanger network

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1 Implementation issues for real-time optimization of a crude unit heat exchanger network Tore Lid of real time optimization results in a crude unit heat exchanger network. Two different control strategies

  6. Crude caffeine reduces memory impairment and amyloid b142 levels in an Alzheimer's mouse model

    E-Print Network [OSTI]

    Lockery, Shawn

    Crude caffeine reduces memory impairment and amyloid b1­42 levels in an Alzheimer's mouse model Yi the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic

  7. A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid

    E-Print Network [OSTI]

    Dimitriou, Christopher J.

    Guided by a series of discriminating rheometric tests, we develop a new constitutive model that can quantitatively predict the key rheological features of waxy crude oils. We first develop a series of model crude oils, ...

  8. Heavier Crude, Changing Demand for Petroleum Fuels, Regional Climate Policy, and the Location of Upgrading Capacity:

    E-Print Network [OSTI]

    Reilly, John

    The crude slate is likely to become heavier in the future with greater reliance on bitumens, tar sands, heavy oils, and eventually possibly shale oil. Under standard refining processes these crude oil sources produce a ...

  9. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  10. Effect of ozonation on the composition of crude coal-tar benzene

    SciTech Connect (OSTI)

    Semenova, S.A.; Patrakov, Y.F. [Russian Academy of Sciences, Kemerovo (Russian Federation)

    2007-05-15T23:59:59.000Z

    The effect of ozonation on the composition of crude benzene produced by the coal-tar chemical industry was studied.

  11. Comparison of Precipitation and Extrography in the Fractionation of Crude Oil Residua

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    , the formation of stable emulsions and sludges in petroleum refineries comprised of water, crude oil, and solidComparison of Precipitation and Extrography in the Fractionation of Crude Oil Residua Joseph D. Mc the stability of emulsions or sludges which are produced by these crudes in refinery processing. The resin

  12. How Increased Crude Oil Demand by China and India Affects the International Market

    E-Print Network [OSTI]

    1 How Increased Crude Oil Demand by China and India Affects the International Market. Abstract The global crude oil market is characterised by complex interactions between demand and supply. The question that we address in this paper is how increased demand for crude oil by China and India affects

  13. Energy security and crude oil in Atlantic Canada Larry Hughes, PhD

    E-Print Network [OSTI]

    Hughes, Larry

    ) where upwards of 70% of the crude oil is imported to meet refining demand (Hughes, 2010). The problemEnergy security and crude oil in Atlantic Canada Larry Hughes, PhD Energy Research Group Department, Atlantic Canada relies heavily on light fuel oil for space heating Over 80% of the crude oil used

  14. Submitted to Energy Policy, 16 November 2009 Eastern Canadian crude oil supply and its implications

    E-Print Network [OSTI]

    Hughes, Larry

    with declining production. This paper examines crude oil production, supply, and its refining in eastern Canada shortages, or both. Keywords: Energy security, NAFTA, Canadian crude oil production 1 Introduction In 2007 Canada's crude oil supply and growing reliance on imports from countries with declining production

  15. The Quarterly Publication of NCEER Volume 9, Number 3, July 1995 Crude Oil Transmission Study

    E-Print Network [OSTI]

    Nagarajaiah, Satish

    . The production and delivery of crude oil is critical to every major in- dustry and business sector in the UnitedThe Quarterly Publication of NCEER Volume 9, Number 3, July 1995 Crude Oil Transmission Study States. This nation's most crucial crude oil system traverses the midwest and is subject to seismic

  16. The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance of the

    E-Print Network [OSTI]

    Texas at Austin, University of

    The Possible Loss of Venezuelan Heavy Crude Oil Imports Underscores the Strategic Importance crude, making reliance on Canadian heavy crude oil more significant, and the approval of the Keystone XL of ConocoPhillips' Petrozuata- Hamaca and ExxonMobil's Cerro Negro Orinoco Belt heavy oil projects

  17. Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating

    E-Print Network [OSTI]

    Cui, Yi

    Application of Carbon Nanocatalysts in Upgrading Heavy Crude Oil Assisted with Microwave Heating, Stanford, California 94305, United States *S Supporting Information ABSTRACT: Heavy crude oil can that by using carbon nano- catalysts, heavy crude oil can be efficiently upgraded to lighter oil at a relatively

  18. Influence of the dietary crude protein level during gestation on long term performance

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of the dietary crude protein level during gestation on long term performance of sows crude protein levels during gestation (12 and 14.5 p. 100). The feed restriction level during gestation including 14.5 p. 100 crude protein. The experiment was made with 219 Large White sows corresponding to 309

  19. A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Nael N State University, Raleigh, North Carolina 27695-7905 CO2 was used to break several water-in-crude oil density and mole fraction. The proposed mechanism by which CO2 destabilizes water-in-crude oil emulsions

  20. Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda

    E-Print Network [OSTI]

    Majda, Andrew J.

    Crude closure dynamics through large scale statistical theories Marcus J. Grote and Andrew J. Majda 10012-1185 Received 22 January 1997; accepted 9 July 1997 Crude closure algorithms based on equilibrium on equilibrium energy-enstrophy statistical theory, or two parameters, the energy and circulation, for crude

  1. Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity

    E-Print Network [OSTI]

    Effects of dietary crude protein levels on development, antioxidant status, and total midgut crude protein on the development, antioxidant enzymatic activity, and total midgut protease activity in the test. Dietary treatments were pure rape pollen (Control) and pollen substitutes (PS) with crude protein

  2. "No Crude Surfeit": A Critical Appreciation of The Reign of Department of Philosophy and

    E-Print Network [OSTI]

    Howard, Don

    "No Crude Surfeit": A Critical Appreciation of The Reign of Relativity Don Howard Department no crude surfeit reigns. John Milton. Comus (1634). Introduction Tom Rykcman's The Reign of Relativity and philosophical #12;Don Howard. "No Crude Surfeit": Ryckman's Reign Page 2 Pacific APA, March 2005 sophistication

  3. Nested Column Generation applied to the Crude Oil Tanker Routing and Scheduling Problem with

    E-Print Network [OSTI]

    Lübbecke, Marco

    Nested Column Generation applied to the Crude Oil Tanker Routing and Scheduling Problem with Split, Germany March 7, 2012 Abstract The split pickup split delivery crude oil tanker routing and scheduling, because of the large expenses in crude oil shipping it is attractive to make use of optimization

  4. WAX DEPOSITION IN CRUDE OILS: A NEW APPROACH Antonio Fasano -Mario Primicerio

    E-Print Network [OSTI]

    Primicerio, Mario

    WAX DEPOSITION IN CRUDE OILS: A NEW APPROACH Antonio Fasano - Mario Primicerio abstract. The complex phenomenon of solid wax deposition in wax sat- urated crude oils subject to thermal gradients has. Introduction Crude oils are complex mixtures containing parans, aromatics, naph- tenics, resins, asphaltenes

  5. Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils

    E-Print Network [OSTI]

    Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils Christopher J. Dimitriou@mit.edu Abstract Waxes are a commonly encountered precipitate that can result in gelation of crude oils behavior similar to waxy crude oils encountered in production scenarios. To study the consequences

  6. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils

    E-Print Network [OSTI]

    Loh, Watson

    Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils Anto and crude oils and discuss the implications of these data on the aggregation, adsorption on solid surfaces Brazilian crude oils. Surface tension measurements in solutions formed by any of these two types

  7. Compressed Gas Cylinder Policy

    E-Print Network [OSTI]

    contained in cylinders display chemical hazards that include toxic, flammable, corrosive, pyrophoric on their side but stored in a way to prevent damage to the product label. In a free standing gas cylinder the height of the cylinder. So that the cylinder label is easily viewed. On a dry surface allowing no contact

  8. On the dry deposition of submicron particles

    SciTech Connect (OSTI)

    Wesely, M. L.

    1999-10-08T23:59:59.000Z

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  9. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    2005. Bassey, Nnimmo. 2000. “Oil and Gas in Africa. ” Paperat the Gulf of Guinea Oil and Gas Conference. February 5 –6,Mercury from Discharges from Oil and Gas Platforms. http://

  10. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    Mercury from Discharges from Oil and Gas Platforms. http://2003. “The Question of Oil and Gas, Its Impact on the SocialMore Deep- water Reserves. Oil and Gas Journal. 101(44):54.

  11. ,"Texas Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil

  12. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    water Reserves. Oil and Gas Journal. 101(44):54. NovemberSteady Worldwide. Oil and Gas Journal. 101(44):49. November

  13. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01T23:59:59.000Z

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  14. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, Janda K. G. (Edgewood, NM); Jellison, James L. (Albuquerque, NM); Staley, David J. (Los Lunas, NM)

    1995-01-01T23:59:59.000Z

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  15. Dry soldering with hot filament produced atomic hydrogen

    DOE Patents [OSTI]

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25T23:59:59.000Z

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  16. Wetting of mercury electrode by crude oil in surfactant solutions

    SciTech Connect (OSTI)

    Kuvshinov, V.A.; Altumina, L.K.; Genkina, L.F.

    1985-09-01T23:59:59.000Z

    A study has been made of electrosurface phenomena in the system consisting of crude oil, mercury, and a surfactant solution. The type of relationship between the wetting of mercury by oil in surfactant solutions and the electric potential of the mercury has been determined. Feasibility has been demonstrated for the use of the mercury/oil/surfactant solution system as a model in studying the oil-displacing capabilities of various surfactants.

  17. Induced biochemical interactions in immature and biodegraded heavy crude oils

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Shelenkova, L.; Zhou, W.M.

    1998-11-01T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  18. INDUCED BIOCHEMICAL INTERACTIONS IN IMMATURE AND BIODEGRADED HEAVY CRUDE OILS

    SciTech Connect (OSTI)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; SHELENKOVA,L.; ZHOU,W.M.

    1998-10-27T23:59:59.000Z

    Studies in which selective chemical markers have been used to explore the mechanisms by which biocatalysts interact with heavy crude oils have shown that the biochemical reactions follow distinct trends. The term biocatalyst refers to a group of extremophilic microorganisms which, under the experimental conditions used, interact with heavy crude oils to (1) cause a redistribution of hydrocarbons, (2) cause chemical changes in oil fractions containing sulfur compounds and lower the sulfur content, (3) decrease organic nitrogen content, and (4) decrease the concentration of trace metals. Current data indicate that the overall effect is due to simultaneous reactions yielding products with relatively higher concentration of saturates and lower concentrations of aromatics and resins. The compositional changes depend on the microbial species and the chemistry of the crudes. Economic analysis of a potential technology based on the available data indicate that such a technology, used in a pre-refinery mode, may be cost efficient and promising. In the present paper, the background of oil biocatalysis and some recent results will be discussed.

  19. 2013 Dry Bean Research Report

    E-Print Network [OSTI]

    Page 1 2013 Dry Bean Research Report Black Bean Color Retention and White Mold Control in Narrow Row Production Systems Michigan Dry Edible Bean Production Research Advisory Board #12;Page 2 The Michigan Bean Commission was awarded a grant from the MDARD Specialty Crop Block Grant Program-Farm Bill

  20. Natural gas monthly, November 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-31T23:59:59.000Z

    Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during November 1988, were estimated at 1755 billion cubic feet, 1.3 percent above withdrawals during November 1987. Of the total quantity, an estimated 215 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 35 billion cubic feet of nonhydrocarbon gases were removed; and 13 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1492 billion cubic feet. Dry gas production (wet marketed production minus 70 billion cubic feet of extraction loss) totaled an estimated 1422 billion cubic feet, similar to the November 1987 level. The total dry gas supply available for disposition in November 1988 was estimated at 1702 billion cubic feet, including 173 billion cubic feet withdrawn from storage, 12 billion cubic feet of supplemental supplies, and 95 billion cubic feet that were imported. In November 1987, dry gas available for disposition totaled 1684 billion cubic feet. Of the total dry gas supply available for disposition in November 1988, an estimated 1467 billion cubic feet were consumed, 148 billion cubic feet were injected into underground storage reservoirs, and 5 billion cubic feet were exported, leaving 82 billion cubic feet unaccounted for.

  1. Natural gas monthly, March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-05-23T23:59:59.000Z

    Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during March 1989, were estimated at 1777 billion cubic feet, 0.4 percent below withdrawals during March 1988. Of the total quantity, an estimated 211 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 36 billion cubic feet of nonhydrocarbon gases were removed; and 12 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1518 billion cubic feet. Dry gas production (wet marketed production minus 71 billion cubic feet of extraction loss) totaled an estimated 1447 billion cubic feet, similar to the March 1988 level. The total dry gas supply available for disposition in March 1989 was estimated at 1881 billion cubic feet, including 319 billion cubic feet withdrawn from storage, 14 billion cubic feet of supplemental supplies, and 101 billion cubic feet that were imported. In March 1988, dry gas available for disposition totaled 1841 billion cubic feet. Of the total dry gas supply available for disposition in March 1989, an estimated 1837 billion cubic feet were consumed, 93 billion cubic feet were injected into underground storage reservoirs and 8 billion cubic feet were exported, leaving 57 billion cubic feet unaccounted for.

  2. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  3. New inflow performance relationships for gas condensate reservoirs

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) production. These correlations...

  4. New inflow performance relationships for gas condensate reservoirs 

    E-Print Network [OSTI]

    Del Castillo Maravi, Yanil

    2004-09-30T23:59:59.000Z

    In this work we propose two new Vogel-type Inflow Performance Relations (or IPR) correlations for gas-condensate reservoir systems. One correlation predicts dry gas production the other predicts condensate (liquid) ...

  5. 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT

    E-Print Network [OSTI]

    Schechter, David S.

    44 2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE of imbibition or oil production rate, particularly after seven days or more aging time with oil. However in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine

  6. The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-Khamsin

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-temperature oxidation (LTO) of four Arabian crudes as well as blends of naphtha with a super-light crude-saturates increased. The lightest crude with 51.1 şAPI gravity and un-saturates fraction of 0.2 showed the least LTO

  7. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01T23:59:59.000Z

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  8. ,"New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed Methane Proved+

  9. Spent fuel drying system test results (second dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

  10. Libya, Algeria and Egypt: crude oil potential from known deposits

    SciTech Connect (OSTI)

    Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.

    1982-04-01T23:59:59.000Z

    An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicated additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.

  11. Economics of natural gas upgrading

    SciTech Connect (OSTI)

    Hackworth, J.H.; Koch, R.W.

    1995-07-01T23:59:59.000Z

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

  12. SCADA computer sytem controls major Saudi Aramco crude oil pipeline

    SciTech Connect (OSTI)

    Dempsey, J.; Al-Habib, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    A replacement Supervisory Control and Data Acquisition (SCADA) computer system which monitors and controls two 1,100 kilometer pipelines and eleven associated pump stations is described. The SCADA system was designed to meet two objectives: (1) decentralize the overall control system and provide a distributed control system capable of regulatory control at each pump and pressure reducing station, and (2) provide system wide monitoring and supervisory control function during normal operations at the crude oil terminal. The SCADA computer system hardware (host computers and consoles), software modules, and applications are overviewed. A data flow diagram and a hardware configuration diagram are provided. 3 figs.

  13. New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed Methane ProvedCrude

  14. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude Oil + Lease

  15. California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) CrudeReserves

  16. Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 Independent StatisticsCrude Oil

  17. Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 Independent StatisticsCrude

  18. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude Oil +

  19. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude Oil

  20. Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels) Crude Oil

  1. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProductionReservesCrude

  2. U.S. Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrude Oil andNov-14

  3. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels) Crude Oil

  4. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion CubicCrude

  5. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProvedCrude Oil

  6. Spot Prices for Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPricesSpot Prices (Crude

  7. Louisiana - North Crude Oil + Lease Condensate Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will beProvedShaleBarrels) Crude

  8. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  9. U.S. Natural Gas Supply to 2030 Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    LNG Total Figure 1: U.S. natural gas supply (reference case) It should be noted that this is the reference case; the "side cases", based upon the volume of projected LNG (liquefied natural gas) imports gas supply projections for 2030 (TCF) Production Low LNG Reference High LNG Dry gas 21.99 20.83 19

  10. Wax precipitation for gas condensate fluids was studied in detail with a thermodynamic model. It was found that the precipitated

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Summary Wax precipitation for gas condensate fluids was studied in detail with a thermodynamic to that in gas condensates. As a result of pressure decrease (at a constant tem- perature), the amount is undesirable. The flowlines may be plugged by wax deposition. For both crude oils and gas condensates, one may

  11. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  12. Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications 

    E-Print Network [OSTI]

    Eshraghi, R. R.; Welch, D. E.

    1999-01-01T23:59:59.000Z

    A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

  13. Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications

    E-Print Network [OSTI]

    Eshraghi, R. R.; Welch, D. E.

    A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

  14. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04T23:59:59.000Z

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  15. Asphaltenes in crude oil and bitumen: Structure and dispersion

    SciTech Connect (OSTI)

    Speight, J.G. [Western Research Inst., Laramie, WY (United States)

    1996-12-31T23:59:59.000Z

    Crude petroleum is a mixture of compounds boiling at different temperatures that can be separated into a variety of generic fractions by distillation and by fractionation. In fact, such methods provide a better sense of the overall composition of petroleum and the behavioral characteristics. However, petroleum from different sources exhibits different characteristics, and the behavioral characteristics are often difficult to define with any degree of precision. As anticipated and inasmuch as there is a wide variation in the properties of petroleum, the proportions in which the different constituents occur will also vary widely. Thus, some crude oils have higher proportions of the lower boiling constituents, whereas others (such as bitumen, also referred to as natural asphalt) have higher proportions of the higher boiling constituents (often called the {open_quotes}asphaltic components{close_quotes} or {open_quotes}residuum{close_quotes}). It is these higher boiling constituents that often lead to problems during recovery and refining operations. 105 refs., 14 figs., 1 tab.

  16. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    data reported. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information Administration Petroleum Marketing Annual...

  17. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    12.17 12.80 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual...

  18. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    17.18 17.64 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual...

  19. Markets slow to develop for Niger delta gas reserves

    SciTech Connect (OSTI)

    Thomas, D. [Thomas and Associates, Hastings (United Kingdom)

    1995-11-27T23:59:59.000Z

    Nigeria produces a very high quality, light, sweet crude oil but with a large percentage of associated gas derived from a high gas-to-oil ratio. Official proved gas reserves, both associated and nonassociated, are 120 tcf. Proved and probable reserves are estimated as high as 300 tcf. The internal market for gas has only begun to develop since the 1980s, and as a result approximately 77% of associated gas production is flared. Domestic gas consumption is currently approximately 700 MMcfd and is projected to have a medium term potential of 1.450 bcfd. The article discusses resource development, gas markets, gas flaring, gas use programs, the Bonny LNG scheme, the gas reserve base, LNG project status, competition, and energy opportunities.

  20. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  1. Spent fuel drying system test results (first dry-run)

    SciTech Connect (OSTI)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01T23:59:59.000Z

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental results provided in Section 4.0. These results are further discussed in Section 5.0.

  2. Economical analysis of a new gas to ethylene technology 

    E-Print Network [OSTI]

    Abedi, Ali Abdulhamid

    2007-09-17T23:59:59.000Z

    . In Europe and Japan, where natural gas is not abundant, thermal cracking of naphtha using a fired heater is the most common process. In addition to these processes; ethylene could also be produced from crude oil by autothermic and fluidized bed techniques...

  3. Correlation structure and principal components in global crude oil market

    E-Print Network [OSTI]

    Dai, Yue-Hua; Jiang, Zhi-Qiang; Jiang, George J; Zhou, Wei-Xing

    2014-01-01T23:59:59.000Z

    This article investigates the correlation structure of the global crude oil market using the daily returns of 71 oil price time series across the world from 1992 to 2012. We identify from the correlation matrix six clusters of time series exhibiting evident geographical traits, which supports Weiner's (1991) regionalization hypothesis of the global oil market. We find that intra-cluster pairs of time series are highly correlated while inter-cluster pairs have relatively low correlations. Principal component analysis shows that most eigenvalues of the correlation matrix locate outside the prediction of the random matrix theory and these deviating eigenvalues and their corresponding eigenvectors contain rich economic information. Specifically, the largest eigenvalue reflects a collective effect of the global market, other four largest eigenvalues possess a partitioning function to distinguish the six clusters, and the smallest eigenvalues highlight the pairs of time series with the largest correlation coefficie...

  4. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF

    E-Print Network [OSTI]

    Weston, Ken

    Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 Ion Cyclotron Resonance User Program Solid deposits and emulsions from crude oil can that contain carbons, hydrogens, and two oxygen atoms. #12;A major problem in oil production, both

  5. Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition Sylvain: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian-study and a larger refinery problem show that the Lagrangian decomposition algorithm is more robust than the other

  6. Optimization of Crude-Oil Blending Operations Sylvain Mouret Ignacio E. Grossmann Pierre Pestiaux

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    refinery Crude-oil blending scheduling Scheduling formulations 2 Proposed approach Basic idea MINLP model Proposed approach Results and comparisons Conclusion Oil refinery A typical oil refinery Refining crude definition Given Refinery configuration Logistics constraints Initial tank inventory and composition Vessel

  7. U.S. Crude Oil and Natural Gas Proved Reserves, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^ U NCrude Oil

  8. EIA-914 Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report Methodology

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets 8, 3:00Markets 3,EIA-914 Monthly

  9. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720Sales (Million(Number

  10. U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720Sales

  11. U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion Cubic

  12. U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion

  13. U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbed Methane Proved ReservesYearto2009

  14. U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbed Methane Proved

  15. U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision Decreases

  16. U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision DecreasesElements) Year

  17. Quantitative microscopic spectral fluorescence measurement of crude oil, bitumen, kerogen, and coal

    SciTech Connect (OSTI)

    Mukhopadhyay, P.K.; Rullkoetter, J.

    1986-05-01T23:59:59.000Z

    Ten samples each of black shale (kerogen and bitumen fractions) from Lias epsilon, coal from Western Canada and nine crude oil and condensate samples from Alaska and northern Germany have been studied using quantitative microscopic spectral fluorescence. The parameters used are lambda/sub max/, red/green quotient (Q), and alteration of fluorescence emission intensity under UV excitation. Using the same parameters, the data show that kerogen and crude oil have opposite maturation trends. Autochthonous bitumens include both kerogen and crude oil characters. Immature, biodegraded, or normal crude oil of different maturity can be characterized using these parameters. Quantitative spectral fluorescence microscopy yields more accurate maturation parameters for the Type I and II kerogens than vitrinite reflectance because the fluorescence of liptinites are used (i.e., the main oil-generating macerals). This method may become the most suitable inexpensive scanning technique for the characterization of crude oil, condensate, and autochthonous/allochthonous source rock bitumens.

  18. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01T23:59:59.000Z

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  19. Kansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1301 163Year Jan

  20. Kansas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base7 3 2 1301