Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form267,273Jun-14

2

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

3

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

4

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network [OSTI]

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

Wang, Z. Jane

5

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

6

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

7

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

8

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

009 "Public Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’s

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

9

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

McCormick, S.H.; Pigott, W.R.

1997-12-30T23:59:59.000Z

10

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, Steve H. (Idaho Falls, ID); Pigott, William R. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

11

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

12

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

13

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks  

E-Print Network [OSTI]

As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semi-analytical model...

Khabibullin, Tagir R.

2010-10-12T23:59:59.000Z

14

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network [OSTI]

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

15

Design of a diesel exhaust-gas purification system for inert-gas drilling  

SciTech Connect (OSTI)

To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

Caskey, B.C.

1982-01-01T23:59:59.000Z

16

X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin  

E-Print Network [OSTI]

International Conference of Gas Hydrates, Yokohama, Japan.Prospectus, Drilling Gas Hydrates On Hydrate Ridge, CascadiaLeg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia

Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

2002-01-01T23:59:59.000Z

17

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

18

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

19

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

20

The Ecological Society of America www.frontiersinecology.org Natural gas drilling has dramatically expanded with  

E-Print Network [OSTI]

of new gas wells and the use of modern drilling and extraction methods have now been identified to surface waters. Improved drilling and extraction technology used to access low per- meability natural gas503 © The Ecological Society of America www.frontiersinecology.org Natural gas drilling has

Entrekin, Sally

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

22

Gas investigation for laser drilling Matthieu Schneidera), Laurent Berthe, Rmy Fabbro, Maryse Muller, and Mariette Nivard  

E-Print Network [OSTI]

Gas investigation for laser drilling Matthieu Schneidera), Laurent Berthe, Rémy Fabbro, Maryse L'Hôpital 75013 Paris, France This article deals with the gas effect on percussion laser drilling and facilitates the deposition of metallic liquid around the front surface holes. Key words: laser drilling

Paris-Sud XI, Université de

23

A leading index of drilling activity: Update and improvements  

SciTech Connect (OSTI)

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

24

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect (OSTI)

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

25

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

26

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

27

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

28

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

SciTech Connect (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01T23:59:59.000Z

29

BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE  

E-Print Network [OSTI]

Drilling Costs and Rates . . . • . . . • • . . . . , . .TABLES I. II. III. Costs of Core Drilling Per Meter. . . . .ABSTRACT . . • L vi vi vii INTRODUCTION DRILLING . • Surface

Kurfurst, P.J.

2011-01-01T23:59:59.000Z

30

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

31

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network [OSTI]

The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics...

Nunn, Andrew Howard

2012-02-14T23:59:59.000Z

32

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations  

E-Print Network [OSTI]

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

33

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding

34

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

35

Shallow gas well drilling with coiled tubing in the San Juan Basin  

SciTech Connect (OSTI)

Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

1996-12-31T23:59:59.000Z

36

Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling  

E-Print Network [OSTI]

Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling O Abstract Cemented carbides are used in rock drilling for mining tools and wear resistant parts the service life of drilling tools. A continuous composition gradient on several millimetres is generated

Paris-Sud XI, Université de

37

The Public Heath Implications of Unconventional Gas Drilling For presentation to the  

E-Print Network [OSTI]

is hearing from industry, and from the government, that exciting new technology permits obtaining gas from1 The Public Heath Implications of Unconventional Gas Drilling For presentation to the Energy and Environment Subcommittee, Committee on Science, Space, and Technology Feb 1, 2012 Bernard D. Goldstein, MD

Jiang, Huiqiang

38

Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment  

SciTech Connect (OSTI)

The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

Dosch, M.W.; Hodgson, S.F.

1981-01-01T23:59:59.000Z

39

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

40

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011. References to popular press and advocacy groups, both of which are numerous and described in detail elsewhere of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners

Manning, Sturt

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Early gas detection system for a drill stem test  

SciTech Connect (OSTI)

A method for testing earth formations informs the operator of the density of the formation fluid being produced before it reaches the surface. In the method, a bypass sub is secured to the drill string. The bypass sub has a bore for receiving a wireline tool that has sensing instruments. The wireline tool also has arms that will shift a sleeve to open and close the bypass sub. The wireline tool has a density measuring device for measuring the density of the formation fluid and providing a concurrent surface indication. A reversing valve is located above the bypass sub and is of a type that provides a port for reverse circulation while the wireline tool is still downhole. Preferably, the reversing valve is shifted by the wireline tool to the open position.

Rankin, E.E.

1983-07-12T23:59:59.000Z

42

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

43

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

44

Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota  

SciTech Connect (OSTI)

Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

Murphy, E.C.; Kehew, A.E.

1984-01-01T23:59:59.000Z

45

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form 2003Costs of

46

Costs of Crude Oil and Natural Gas Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts of Crude Oil and Natural Gas

47

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

48

The Shorthorn: Casey Crane Robert Arrowood, Carrizo Oil and Gas, Inc. representative, takes local homeowners' questions about on-campus natural gas drilling in an Arlington office complex Tuesday.  

E-Print Network [OSTI]

homeowners' questions about on-campus natural gas drilling in an Arlington office complex Tuesday. Jenna that plans to drill on university property. Carrizo Oil and Gas, Inc. recently signed a one-year lease with the university and called the meeting to alleviate con- cerns about the drilling. They also strived to get

Chiao, Jung-Chih

49

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993  

SciTech Connect (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

Eggington, W.J.

1993-09-01T23:59:59.000Z

50

Proposed scientific activities for the Salton Sea Scientific Drilling Project  

SciTech Connect (OSTI)

The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

Not Available

1984-05-01T23:59:59.000Z

51

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network [OSTI]

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

52

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

53

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

54

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

55

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

56

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

57

Evaluation of using cyclocranes to support drilling & production of oil & gas in wetland areas. Sixth quarterly technical progress report, incorporating milestone schedule/status, October 1993--December 1993  

SciTech Connect (OSTI)

This report is a progress report on a planned program falling under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. During this period, task 5, subscale tests, and task 7, environmental impacts, were completed. Work was continued on task 10, technology transfer, and the preparation of the final report as part of task 11.

Eggington, W.J.

1994-04-01T23:59:59.000Z

58

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

SciTech Connect (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

59

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

60

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and  

E-Print Network [OSTI]

used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

Boyer, Elizabeth W.

62

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

63

GEOLOGIC ASSESSMENT OF DRILLING, COMPLETION, AND STIMULATION METHODS IN SELECTED GAS SHALE PLAYS WORLDWIDE  

E-Print Network [OSTI]

The United States regularly imports majority of the transportation oil, and several TCF of natural gas annually. Nevertheless, there is very large resource of natural gas in unconventional reservoirs, with over 2,200 TCF of natural gas in just...

Patel, Harsh Jay

2014-04-11T23:59:59.000Z

64

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also from a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis

2006-02-01T23:59:59.000Z

65

Natural gas monthly, March 1998  

SciTech Connect (OSTI)

The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

NONE

1998-03-01T23:59:59.000Z

66

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

2008-07-01T23:59:59.000Z

67

U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWells Drilled (Feet per

68

Ocean Drilling Program Texas A&M University  

E-Print Network [OSTI]

December 2002 Leg 204 Preliminary Report Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental

69

Drill pipe corrosion control using an inert drilling fluid  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.; Copass, K.S.

1981-01-01T23:59:59.000Z

70

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

71

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

72

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993  

SciTech Connect (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

Eggington, W.J.

1993-12-31T23:59:59.000Z

73

Oil and Gas Conservation (South Dakota)  

Broader source: Energy.gov [DOE]

The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and...

74

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List This list is in no way exhaustive. Rather, it attempts to provide a set of primary references that offer key pieces of  

E-Print Network [OSTI]

development Impact Assessment of Natural Gas Production in the New York City Water Supply Watershed (2009). NYCDEP http://home2.nyc.gov/html/dep/html/news/natural_gas_drilling.shtml Review of water related and infiltration events Short Scholarly Features Natural Gas Plays in the Marcellus Shale: Challenges & Potential

Wang, Z. Jane

75

DOE/Fossil Energy`s drilling, completion, and stimulation RD&D: A technologies/products overview  

SciTech Connect (OSTI)

An overview of natural gas drilling, completion, and stimulation RD&D sponsored by the US Department of Energy is reported in this paper. Development of high rate-of-penetration drilling systems and underbalanced drilling technologies are detailed among other RD&D activities. The overview serves as a technology transfer medium and is intended to accelerate the deployment of the products and technologies described.

Duda, J.R.; Yost, A.B. II

1995-12-31T23:59:59.000Z

76

ENVIRONMENTAL ASSESSMENT OF OKLAHOMA ABANDONED DRILLING AND PRODUCTION SITES AND ASSOCIATED PUBLIC EDUCATION/OUTREACH ACTIVITIES  

SciTech Connect (OSTI)

The U.S. Department of Energy has participated with the Oklahoma Energy Resource Board (OERB) since 1995 by providing grant funding for on-going work in both environmental assessment of abandoned oilfield exploration and production sites and associated public education/outreach activities. The OERB, a state agency created in 1993 by the Oklahoma legislature, administers programs funded by an assessment of one tenth of one percent on all oil and natural gas produced and sold in the state of Oklahoma. Approximately one half of the funds are used to assess and remediate abandoned oilfield sites and the other half are being used to educate about the importance of the oil and natural gas industry and OERB's environmental efforts. Financial participation through grant funding by the U.S. D.O.E. has been $200,000 annually which represents approximately 3 percent of OERB's private funding. Most of OERB's revenues come from an assessment of 1/10th of 1% on the sale of crude and natural gas in Oklahoma. The assessment is considered voluntary in that any interest owner may ask for a refund annually of their contributions to the fund. On average, 95% of the assessment dollars have remained with OERB, which shows tremendous support by the industry. This Final Report summarizes the progress of the three year grant. The purpose of this three-year project was to continue the progress of the OERB to accomplish its environmental and educational objectives and transfer information learned to other organizations and producing states in the industry.

Mike Terry

2002-03-01T23:59:59.000Z

77

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network [OSTI]

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

78

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

Varnado, S.G.; Maish, A.B.

1980-01-01T23:59:59.000Z

79

Dust and gas in active galaxies  

E-Print Network [OSTI]

There are strong evidences which favour the existence of dust in active galaxies. Understanding the way in which dust interacts with the radiation and influences the physical conditions of the gas is crucial if we want to learn about the nature of the central active nucleus and about the physical conditions of the ISM in such galaxies. Not taking into account such effects may lead us towards misleading interpretations. Many intriguing questions concerns to the nature and the existence of dust in active galaxies: for instance, under which conditions does the very hard ionizing continuum of an AGN allows the survival of dust grains? Is the composition and size distribution of the dust the same as in our local interstellar medium? How is dust distributed compared to the gas which is at least in part highly ionized by the central AGN? Does dust also exist in radio galaxies at very high redshifts? The work developed in this thesis tries to find answers to some of these questions, through a detailed theoretical and observational research of the mechanisms which control the interaction of dust with the radiation and with the ions. The observable effects of the dust on the emission line spectrum are also analyzed in detail. The final goal has been to give clues about more general questions: origin of the emitting gas, ionization mechanisms, geometry, connection between low and high redshift active galaxies or the validity of the unification scenario. This thesis tries, in summary, to provide a clearer understanding of active galaxies in general.

M. Villar-Martin

1996-05-21T23:59:59.000Z

80

W. Canada boom to outshine second half U. S. drilling rise  

SciTech Connect (OSTI)

Drilling in the US will pick up slightly during second half 1994, but the first half to second half increase proportionally will not be as large as in Canada. Operators appear likely to drill nearly half as many wells this year in western Canada as they will drill in the US. Oil and Gas Journal estimates that drilling and completion spending will total $9.511 billion in the US this year, up about one third of 1% from spending in 1993. This steady investment is forecast despite a 2.3% drop in expected wellhead revenue to $72.53 billion. Highlights to OGJ's midyear drilling forecast for 1994 include: operators will drill 24,705 wells, compared with the 26,840 OGJ estimated in its early year forecast before the slump in crude oil prices; the active rotary rig count will average 810 rigs, 7% higher than in 1993; operators will drill about 3,684 wildcats, down from the 4,170 that OGJ predicted in January; the surveyed group of major operators will drill 3,091 wells in the US, including 246 exploratory wells; and drilling in western Canada will total a year record 11,531 wells, dwarfing the 4,654 wells drilled in 1992.

Petzet, G.A.; Beck, R.J.

1994-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect (OSTI)

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

82

Comprehensive Ocean Drilling  

E-Print Network [OSTI]

Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

83

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

84

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

85

Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado  

SciTech Connect (OSTI)

The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

Daniels Jeffrey I.,Chapman Jenny B.

2012-01-01T23:59:59.000Z

86

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

87

Communication adapter for use with a drilling component  

DOE Patents [OSTI]

A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Hall; Jr.; H. Tracy (Provo, UT); Bradford, Kline (Orem, UT); Rawle, Michael (Springville, UT)

2007-04-03T23:59:59.000Z

88

Drilling/producing depths; Two records and a revision  

SciTech Connect (OSTI)

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available

1992-02-01T23:59:59.000Z

89

Recent developments in drill-stem test interpretation useful to explorationists in tight gas sand plays and in identifying reservoirs with linear geometry  

SciTech Connect (OSTI)

Two major areas of recent development in drill-stem testing are of particular interest to geologists. The first is the use of closed chamber DST's to evaluate the very tight gas sands currently under intense exploration in areas such as Alberta's Deep basin and various intermontane basins in the US Rocky Mountain province. Field examples from the Deep basin of Alberta are shown together with results after completion. Other applications are shown. The second development is the use of DST data to identify reservoirs with linear flow geometry. Geologic situations where flow into the well bore during a test can be considered linear rather than truly radial include long narrow reservoirs with parallel boundaries such as channel sands, zones bounded by parallel sealing-fault boundaries, or naturally fractured reservoirs where an open fracture intersects the well bore.

Reid, H.W.; Davis, T.B.; Alexander, L.G.

1981-05-01T23:59:59.000Z

90

U.S. drilling: Solid reasons for optimism  

SciTech Connect (OSTI)

One year ago, it was apparent that 1996 would be a better year for drilling in the US, primarily because 1995 performance was lower than expected due to low oil and natural gas prices in mid-year during the peak drilling season. Improving energy prices last year did spur more drilling, and a 2.9% increase to a total 23,560 wells is estimated for 1996. This year should show an even stronger increase, as the US gas market remains attractive and industry`s perception is that crude prices are stabilizing at higher levels, i.e., $20--25, instead of $15--20. The US rotary rig count followed the price up, from a low near 700 in January/February to slightly over 850 in December. To drill the expected wells this year will require an average number at the 850 level. Operators are investing more in their established oil producing areas to take advantage of improved cast flows. This will generate higher activity nearly everywhere. Gas drilling activity will be more geographical, depending on transport availability to surging winter markets and Canadian competition. The US, and world, hot spot is the Gulf of Mexico led by renewed activity on the shelf and an exciting new deepwater play. The expected activity surge has already taxed a service industry that has not yet upgraded its capacity from the long downturn. And spot shortages will temper the activity rise, particularly offshore. The following discussion and six statistical presentations detail these basic concepts and other key factors.

NONE

1997-02-01T23:59:59.000Z

91

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

92

Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

Not Available

1988-09-01T23:59:59.000Z

93

Use of an inert drilling fluid to control geothermal drill pipe corrosion  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.

1981-04-01T23:59:59.000Z

94

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

95

Drill string enclosure  

DOE Patents [OSTI]

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

96

A gas kick model for the personal computer  

E-Print Network [OSTI]

differential between a formation and the wellbore that allows gas to flow into the well. This differential, or underbalance, can occur during various drilling or workover activities. This model concentrates on the occurrence of kicks while drilling a well... for their interest and suggestions, and for serving on the author's committee. The individuals at Chevron Services Company's Drilling Technology Center in Houston, Texas, for generously providing information from their Simtran and Digitran simulators. Dr...

Miller, Clayton Lowell

1987-01-01T23:59:59.000Z

97

RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

Stephen A. Holditch; Emrys Jones

2002-09-01T23:59:59.000Z

98

Ice Drilling Gallonmilkjugs  

E-Print Network [OSTI]

Ice Drilling Materials · Gallonmilkjugs · Syringes,largeand small · Pitchers · Spraybottles · 13x9? ·Isitbettertosquirtthewaterslowlyorasquicklyaspossible? ·Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? ·Doesthetypeof`drill

Saffman, Mark

99

Using Bayesian Network to Develop Drilling Expert Systems  

E-Print Network [OSTI]

in foam UBD ............................................ 82 67 Overall air and gas UBD ........................................................................... 83 68 Rotary and hammer drilling options... .......................................................... 84 69 A list of limits and challenges for air and gas UBD .................................. 85 70 A list of possible gas drilling operations ................................................... 86 71 A list of possible rig equipment...

Alyami, Abdullah

2012-10-19T23:59:59.000Z

100

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network [OSTI]

Energy Hydrothermal Cooling 90% saving over Mechanical cooling Coordination With Offshore OTEC Plant to seep in #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND Not BOTH From the SAME Conduit Investment OFFSHORE Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water DRILLED HYDROTHERMAL

102

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

103

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

104

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

105

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network [OSTI]

the energy events of the 1970s, in whose wake we are still reeling. Julian Darley has done far more than just, as well as a meticulously researched warning about our next potentially catastrophic energy crisis. Did due to the looming NG crisis? HIGH NOON FOR NATURAL GAS The New Energy Crisis JULIAN DARLEY $18

Keeling, Stephen L.

106

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

Gellman, Andrew J.

107

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

108

Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site  

SciTech Connect (OSTI)

The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

1999-06-01T23:59:59.000Z

109

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

110

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

111

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

112

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

113

Solidi cation of a high-Reynolds-number ow in laser percussion drilling  

E-Print Network [OSTI]

Solidi#12;cation of a high-Reynolds-number ow in laser percussion drilling W. R. Smith y and R. M laser percussion drilling. 1 Introduction Laser percussion drilling is used to machine gas turbine with conventional mechanical drills. The term percussion refers to the repeated operation of the laser in short

Eindhoven, Technische Universiteit

114

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

drilling problem Oil and gas reserves are found in distinctreserves are typically buried under many layers of rock that do not contain oil or gas.

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

115

Compare All CBECS Activities: Natural Gas Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel Oil UseNatural

116

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

117

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

Duran, E.L.; Lundin, R.L.

1988-06-20T23:59:59.000Z

118

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

119

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

120

The production of activated silica with carbon dioxide gas  

E-Print Network [OSTI]

Ional to the per cent of carbon dioxi. de 1n the flue gas for a constant total gas flow rate. REFE REN CES l. Andrews, R. V, , Hanford Works Eocument (1952), 2. Andrews, R. V. & J. A. W. W. A, , ~46 82 (1954). 3. Andrews, R. V, , Personal Communication 4... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

Hayes, William Bell

1956-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

122

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-  

E-Print Network [OSTI]

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

123

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

124

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

125

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY  

E-Print Network [OSTI]

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY DUILIA DE MELLO and TOMMY;ENVIRONMENTAL EFFECTS IN GALAXIES 69 a. log(MH2 /LB) versus Morphology b. Kolmogorov-Smirnov Statistic Figure 2 in dense envir- onments and in the field and to study whether there is any correlation between nuclear

Maia, Marcio Antonio Geimba

126

Drill Rig Safety Topics of the Presentation  

E-Print Network [OSTI]

;Inspect Cooling System & Fan #12;The Most Injury Related Activity Handling Drill Pipe Tools Casing #12;Automated Loading Arms w/ Radio Remote Controls #12;Automatic Pipe Handling System w/ Tilt Out Top Head #12

127

Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis  

SciTech Connect (OSTI)

Objective: To investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI). Methods: A model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n = 6) and TMDRSI group (n = 6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1{sub {alpha}} (SDF-1{sub {alpha}}) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points. Results: Six weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P < 0.001). Conclusions: The new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI. -- Highlights: Black-Right-Pointing-Pointer The effects of TMDR and bFGF-stent on myocardial regeneration were studied in a pig model of AMI. Black-Right-Pointing-Pointer TMDR and bFGF-stent implantation activated CSCs via the SDF-1/CXCR4 axis. Black-Right-Pointing-Pointer CSC-mediated myocardial regeneration improved cardiac function. Black-Right-Pointing-Pointer It may be a new therapeutic strategy for AMI.

Zhang, Guang-Wei [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Wen, Ti [College of Life Science, Nankai University, Tianjin 300036 (China)] [College of Life Science, Nankai University, Tianjin 300036 (China); Gu, Tian-Xiang, E-mail: cmugtx@sina.com [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Li-Ling, Jesse [Department of Medical Genetics, China Medical University, Shenyang 110001 (China) [Department of Medical Genetics, China Medical University, Shenyang 110001 (China); Institute of Medical Genetics, School of Life Science and Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Chun; Zhao, Ye; Liu, Jing; Wang, Ying [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China)] [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Liu, Tian-Jun; Lue, Feng [Institute of Biomedical Engineering, Peking Union Medical College, Beijing 100730 (China)] [Institute of Biomedical Engineering, Peking Union Medical College, Beijing 100730 (China)

2012-02-15T23:59:59.000Z

128

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

129

Remote drill bit loader  

SciTech Connect (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

130

Innovative approach for restoring coastal wetlands using treated drill cuttings  

SciTech Connect (OSTI)

The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

Veil, J. A.; Hocking, E. K.

1999-11-02T23:59:59.000Z

131

Geothermal drilling in Cerro Prieto  

SciTech Connect (OSTI)

To date, 71 goethermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion - the most important aspect for the success of a well - that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300/sup 0/C (572/sup 0/F), it has been necessary to use an organic polymer to stabilize the mud properties.

Dominguez, B.; Sanchez, G.

1981-01-01T23:59:59.000Z

132

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

133

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

134

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

135

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

136

a microsoft white paper Drilling for new Business Value  

E-Print Network [OSTI]

a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

Bernstein, Phil

137

Tight Oklahoma gas sands remain an attractive play  

SciTech Connect (OSTI)

The Cherokee tight gas sands of Oklahoma remain an attractive play because of improvements in drilling and completion practices and actions by the Oklahoma Corporation Commission (OCC) that allow separate allowables for new wells. The expired federal tax credits for tight gas wells have not been the only reason for increased activity. Since decontrol of most regulated gas pricing and since 1986, the number of wells drilled and gas production per well have been increasing in the cherokee area while overall drilling in Oklahoma has decreased. These conclusions are based on wells as categorized by permit date and not by the spud, completion, or first production date. A few wells outside but adjacent to the Cherokee area may have been included, although, their impact on the conclusions is considered nominal. The paper discusses the tight gas credit, proration units, the concept of separate allowables, costs, completion efficiency, and the economic outlook for this area.

Cartwright, G.L. [Marathon Oil Co., Oklahoma City, OK (United States)

1995-04-24T23:59:59.000Z

138

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

139

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

140

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ammonia-Activated Mesoporous Carbon Membranes for Gas Separations  

SciTech Connect (OSTI)

Porous carbon membranes, which generally show improved chemical and thermal stability compared to polymer membranes, have been used in gas separations for many years. In this work, we show that the post-synthesis ammonia treatment of porous carbon at elevated temperature can improve the permeance and selectivity of these membranes for the separation of carbon dioxide and hydrocarbons from permanent gases. Hierarchically structured porous carbon membranes were exposed to ammonia gas at temperatures ranging from 850 C to 950 C for up to 10 min and the N{sub 2}, CO{sub 2}, and C{sub 3}H{sub 6} permeances were measured for these different membranes. Higher treatment temperatures and longer exposure times resulted in higher gas permeance values. In addition, CO{sub 2}/N{sub 2} and C{sub 3}H{sub 6}/N{sub 2} selectivities increased by a factor of 2 as the treatment temperature and time increased up to a temperature and time of 900 C, 10 min. Higher temperatures showed increased permeance but decreased selectivity indicating excess pore activation. Nitrogen adsorption measurements show that the ammonia treatment increased the porosity of the membrane while elemental analysis revealed the presence of nitrogen-containing surface functionalities in the treated carbon membranes. Thus, ammonia treatment at high temperature provides a controlled method to introduce both added microporosity and surface functionality to enhance gas separations performance of porous carbon membranes.

Mahurin, Shannon Mark [ORNL; Lee, Jeseung [ORNL; Wang, Xiqing [ORNL; Dai, Sheng [ORNL

2011-01-01T23:59:59.000Z

142

Sixty-sixth annual report of the state oil and gas supervisor  

SciTech Connect (OSTI)

This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

Not Available

1981-01-01T23:59:59.000Z

143

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

144

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

145

Utah coalbed gas exploration poised for growth  

SciTech Connect (OSTI)

Coalbed methane production in eastern Utah is growing despite a relaxed pace of exploratory drilling. Leasing has been active the past 2 years, but a delay in issuance of a federal environmental impact statement could retard drilling. Only 19 new wells began producing coalbed gas during 1995, but gas production increased from existing wells as dewatering progressed. The US Bureau of Land Management will allow limited exploration but no field development on federal lands until the EIS is completed, possibly as early as this month. The paper discusses production of coalbed methane in Utah.

Petzet, G.A.

1996-08-05T23:59:59.000Z

146

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies .  

E-Print Network [OSTI]

??DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are… (more)

Rahim, Ryan

2010-01-01T23:59:59.000Z

147

Report of the Offset Drilling Workshop Ocean Drilling Program  

E-Print Network [OSTI]

Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

148

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration  

E-Print Network [OSTI]

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated of a sufficient number of neurosurgeons [3]. The cranial drilling device described in this paper designed to allow

149

Advanced geothermal foam drilling systems (AFS) -- Phase 1 final report, Part 1  

SciTech Connect (OSTI)

An advanced coiled-tubing foam drilling system is being developed where two concentric strings of coiled tubing are used to convey water and air to the hole bottom where they are mixed together to produce foam for underbalanced drilling. This system has the potential to significantly reduce drilling costs by increasing drilling rates (due to the motor being powered by water), and reducing compressor and nitrogen costs (due to lower gas pressures and volumes).

W. C. Maurer

1999-06-30T23:59:59.000Z

150

International oil and gas exploration and development activities  

SciTech Connect (OSTI)

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

151

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents [OSTI]

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

152

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

153

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

154

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

155

Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites  

SciTech Connect (OSTI)

The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

NONE

1995-09-01T23:59:59.000Z

156

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

157

January 2003 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

158

December 2001 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

159

Directional drilling sub  

SciTech Connect (OSTI)

A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

Benoit, L.F.

1980-09-02T23:59:59.000Z

160

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

162

E-Print Network 3.0 - aluminum drill pipes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fifty Years of Soviet and Russian Drilling Activity in Polar and Non-Polar Ice... recovered with the TELGA 14M thermal drill in hole (5G), Vostok Station (photo from...

163

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

genoa arrrZgg zo gaamWra gHZ. zo ZaaXm axz:gVm VZXgg DRILL WEhR: ITS EFFECT ON THE DlhEETER GF DRILLED HOLES h Thesis Villian Frederick Reiehert, Jr. hpproved as to style and oontent by: a rman o onn ee ea o par nen hugus t 1955 h.... I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat...

Reichert, William Frederick

1955-01-01T23:59:59.000Z

164

Finite Element Modeling of Drilling Using DEFORM  

E-Print Network [OSTI]

Vijayaraghavan, A. (2005), “Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool” ABSTRACT DEFORM-

Gardner, Joel D.; Dornfeld, David

2006-01-01T23:59:59.000Z

165

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect (OSTI)

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

166

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

167

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)  

SciTech Connect (OSTI)

The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

None

1981-09-01T23:59:59.000Z

168

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

169

Pioneering work, economic factors provide insights into Russian drilling technology  

SciTech Connect (OSTI)

In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

Gaddy, D.E.

1998-07-06T23:59:59.000Z

170

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena  

E-Print Network [OSTI]

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

Skogestad, Sigurd

171

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network [OSTI]

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

172

Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa  

SciTech Connect (OSTI)

This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

Not Available

1993-08-01T23:59:59.000Z

173

Combination drilling and skiving tool  

DOE Patents [OSTI]

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

174

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc u.s. DEPARTUEN T OF ENERG EERE PROJECT MANAGEMENT CENT ER NEPA DEIERlIINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS...

175

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

176

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

177

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie �cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

178

Well drilling tool  

SciTech Connect (OSTI)

There is disclosed a turbodrill having an axial thrust bearing section which is contained within a lubricant chamber arranged within an annular space between the case and shaft of the turbodrill above the turbine section, and which is defined between means sealing between the shaft and the case which, in use of the turbodrill, are above the drilling fluid circulating therethrough.

Fox, F.K.

1981-04-07T23:59:59.000Z

179

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

180

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado  

SciTech Connect (OSTI)

As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

182

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

183

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

184

Active microuidic mixer and gas bubble lter driven by thermal bubble micropump$  

E-Print Network [OSTI]

to be proportional to the one-third power of the input pulse frequency. Furthermore, a gas bubble ®lter is integratedActive micro¯uidic mixer and gas bubble ®lter driven by thermal bubble micropump$ Jr-Hung Tsaia Abstract A micro¯uidic mixer with a gas bubble ®lter activated by a thermal bubble actuated nozzle

Lin, Liwei

185

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

186

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

187

Development of a micro-drilling burr-control chart for PCB drilling  

E-Print Network [OSTI]

single- or double-sided). Drilling provides the holes forstandard conditions. Fig. 4. Drilling experimental setup.a standard procedure in PCB drilling). These were clamped

2014-01-01T23:59:59.000Z

188

Production of Onshore Lower-48 Oil and Gas-model methodology and data description. [PROLOG  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower-48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. A linear program is used to select drilling activities for conventional oil and gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using an exogenously specified price path, net present values are computed for fixed amounts of drilling activity for oil and gas, and for exploration and development in each of six onshore regions. Forecasts of drilling for enhanced gas recovery (EGR) are exogenously determined, and this drilling is included when considering the constraints on drilling rigs. The report is organized as follows. Chapter 2 is a general overview of the model, describing the major characteristics of the methodology and the logical interaction of the various modules. Chapter 3 specifies the structure of the linear program including the equations for the objective function and the constraints. The details of the methodology used to model exploratory, developmental, and deep gas drilling are presented in Chapters 4-6, respectively. Chapter 7 presents a discussion of the economic evaluation which takes place in each discounted cash flow calculation performed by the model. Cost equations are presented, and various user-specified options as to how to incorporate these costs are discussed. Methodological details and equations used to model finding rates and revisions are given in Chapter 8. Possible areas of future enhancements to the PROLOG model are presented in Chapter 9.

Carlson, M.; Kurator, W.; Mariner-Volpe, B.; O'Neill, R.; Trapmann, W.

1982-06-01T23:59:59.000Z

189

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents [OSTI]

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

190

The drilling of a horizontal well in a mature oil field  

SciTech Connect (OSTI)

This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

Rougeot, J.E.; Lauterbach, K.A.

1991-01-01T23:59:59.000Z

191

Oil and gas developments in western Canada in 1987  

SciTech Connect (OSTI)

Exploratory drilling in western Canada increased by 21% in 1987 whereas total drilling increased by 32%. The seismic crew count increased 4% to 671 crew-months, and land expenditures increased 166% to $793 million. No major plays broke during 1987 in western Canada. The 2 major plays resulting from 1986 activity - Caroline, Alberta, and Tableland, Saskatchewan - continued to expand in 1987. By year end at Caroline, industry drilled 14 wells, which included 6 Swan Hills gas wells, 3 uphole gas wells, 3 wells standing or suspended, and 2 dry holes. The reserves for this field now are 17 billion m/sup 3/ of sales gas, 32 million m/sup 3/ of condensate, and 20 million MT of sulfur. At Tableland and surrounding areas, industry has drilled 11 oil wells and 16 dry holes. No overall reserve figures have been published for this play. In Alberta, operators had their best exploratory oil success in the Cretaceous Second White Specks and in the Devonian Nisku, Leduc, Gilwood, and Keg River; the best exploratory gas success was in the Cretaceous Viking and Paddy, and Devonian Nisku and Leduc. In British Columbia, gas drilling was successful in the Cretaceous of the Deep Basin, as well as in the Mississippian Kiskatinaw and the Triassic Halfway. In Saskatchewan, both the shallow Cretaceous gas play and the deep Devonian Winnipegosis oil play continued to expand, whereas in Manitoba the main exploration target was the Mississippian carbonates and Bakken Formation. The Northwest Territories, Beaufort Sea, and Arctic Islands had a poor year, with only 4 exploratory wells drilled - all dry holes. 7 figs., 10 tabs.

Portigal, M.H.; Creed, R.M.; Hogg, J.R.; Hewitt, M.D.

1988-10-01T23:59:59.000Z

192

Argentine drilling equipment to go on auction block  

SciTech Connect (OSTI)

Yacimientos Petroliferos Fiscales (YPF) is preparing to sell all state owned drilling rigs and related assets as part of a plan to privatize Argnetina's oil and gas industry. YPF expects to offer the equipment to private companies by summer in a sealed bid auction in Buenos Aires. More than 30 mostly late model U.S. and Romanian rigs rated to 1,800-7,000 m will be included in the sale. Drilling contracts covering all major Argentina exploration areas will be offered with many of the rigs being sold. This paper reports that the YPF sale will include well completion units, drill pipe and collars, large equipment yards, shops, and warehouses, and possibly the largest inventory of fishing tools in South America, says a company helping to organize the sale. YPF will set up a data room in Buenos Aires to provide information about drilling, conditions, rigs and equipment, and other assets.

Not Available

1992-04-27T23:59:59.000Z

193

Four rigs refurbished for West Africa drilling  

SciTech Connect (OSTI)

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

194

Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks  

SciTech Connect (OSTI)

Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

2005-08-02T23:59:59.000Z

195

Advanced Mud System for Microhole Coiled Tubing Drilling  

SciTech Connect (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

196

Apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

197

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a  

E-Print Network [OSTI]

processes. 2. Optimal operation of a PRICO liquefaction plant 2.1. Plant description The PRICO processActive constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a , Sigurd Keywords: Self-optimizing control Liquefied natural gas LNG PRICO Disturbances Optimal operation a b s t r

Skogestad, Sigurd

198

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

199

Transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

Hall, David R; Fox, Joe R

2006-05-30T23:59:59.000Z

200

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect (OSTI)

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Drilling Productivity Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9Drilling

202

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with  

E-Print Network [OSTI]

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

Demouchy, Sylvie

203

The Public Health Implications of Marcellus Shale Activities  

E-Print Network [OSTI]

INCIDENT #12;#12;#12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - EnvironmentalThe Public Health Implications of Marcellus Shale Activities Bernard D. Goldstein, MD Department using Data.FracTracker.org. #12;Drilling Rig in Rural Upshur County, WV Source: WVSORO, Modern Shale Gas

Jiang, Huiqiang

204

The objectives for deep scientific drilling in Yellowstone National Park  

SciTech Connect (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

205

Report on ignitability testing of flammable gasses in a core sampling drill string  

SciTech Connect (OSTI)

This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

Witwer, K.S., Westinghouse Hanford

1996-12-01T23:59:59.000Z

206

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

207

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

208

Geothermal Drilling and Completion Technology Development Program Annual Progress Report  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

Varnado, S. G.

1981-03-01T23:59:59.000Z

209

Foam drilling simulator  

E-Print Network [OSTI]

, ...............................................................................................................(2.25) where; =b Pressure drop across the bit Pbh = Bottom-hole pressure nn = Nozzle velocity M = Gas molecular weight mg = Mass of gas ml = Mass of liquid Heat Capacity Like any two-phase mixture, heat capacity of foam is the average... weighted heat capacity of each phase. Heat capacity of liquid-phase which is usually water, is a constant known value, however, heat capacity of gas-phase varies with temperature and pressure. Variation of gas specific heat with pressure...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

210

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

211

DOE Project Leads to New Alliance to Promote Low-Impact Drilling  

Broader source: Energy.gov [DOE]

A project supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling.

212

Distribution network modeling and optimization for rapid and cost-effective deployment of oilfield drilling equipment  

E-Print Network [OSTI]

AAA, a large oil and gas field services company, is in the business of providing drilling services to companies that extract and market hydrocarbons. One of the key success factors in this industry is the ability to provide ...

Martchouk, Alexander

2010-01-01T23:59:59.000Z

213

Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion  

E-Print Network [OSTI]

The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low...

Odunowo, Tioluwanimi Oluwagbemiga

2012-07-16T23:59:59.000Z

214

Natural Gas_v2 (9764 - Activated, Traditional).xps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNewNatural Gas Natural

215

Numerical studies of gas production from several CH4-hydrate zones at the Mallik Site, Mackenzie Delta, Canada  

E-Print Network [OSTI]

JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenziepermafrost- associated gas hydrate accumulation in theTerritories, Canada. A gas hydrate research well was drilled

Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Steven; Weatherill, Brian

2002-01-01T23:59:59.000Z

216

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...  

Open Energy Info (EERE)

and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago....

217

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

218

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

219

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 19 Gien N. Foss Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Bradley D. Julson Ocean Drilling Program Texas A&M University 1000 Discovery Drive

220

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

222

HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

223

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

224

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

225

INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)  

E-Print Network [OSTI]

INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

226

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

227

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

228

OCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

designed bare rock guide base and use new drilling technology. The drillship JOIDES Resolution is scheduledOCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS BARE ROCK DRILLING IN THE KANE FRACTURE ZONE Drilling Program Texas A & M University College Station, TX 77843-3469

229

Geothermal drill pipe corrosion test plan  

SciTech Connect (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

230

Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report  

SciTech Connect (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

231

Exploration and drilling for geothermal heat in the Capital District, New York. Final report  

SciTech Connect (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

232

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

Jill S. Buckley; Norman R. Morrow

2004-11-01T23:59:59.000Z

233

The Study of Drilling and Countersink Technology in Robot Drilling End-effector  

E-Print Network [OSTI]

The Study of Drilling and Countersink Technology in Robot Drilling End-effector Chengkun Wang--Aiming at the drilling verticality in aircraft assembly, this paper presents a design method of a Double- Eccentricdisc by the interaction of two eccentric discs, and make the drill axis coincide with the normal direction of the drilling

234

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

Boyer, Edmond

235

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

236

Framework for a comparative environmental assessment of drilling fluids  

SciTech Connect (OSTI)

During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.

Meinhold, A.F.

1998-11-01T23:59:59.000Z

237

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

238

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2008-06-24T23:59:59.000Z

239

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

240

Comment on the “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”  

SciTech Connect (OSTI)

A communication in response to the excellent and timely paper entitled “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”.

Granite, E.J.; Presto, A.A.

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

releases during drilling, and well integrity issues duringand ? Ensuring well structural integrity with subsidence inat nearby wells, seal integrity loss and associated gas

Moridis, G.J.

2011-01-01T23:59:59.000Z

242

Application of integrated reservoir management and reservoir characterization to optimize infill drilling  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

NONE

1997-04-01T23:59:59.000Z

243

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

244

An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine component  

E-Print Network [OSTI]

An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine in gas turbine compressors. However, the model disc (blisk) designs which are used by the aerospace industry in gas turbine compressors. The tool

Sóbester, András

245

A Compendium of Reports on the Salton Sea Scientific Drilling Project  

SciTech Connect (OSTI)

The Salton Sea Scientific Drilling Program was undertaken by the Department of Energy, the National Science Foundation, and the U.S. Geological Survey in order to investigate, by drilling a well and conducting scientific experiments, the roots of the Salton Sea hydrothermal system. A two-element organizational structure was established to focus on integration of the drilling and activities. This management plan, the delegation of site-operational authority to an on-site coordinating group, and the cooperative spirit of the participants have resulted in achievement of the drilling, engineering, and scientific objectives of the program. [DJE 2005

Elders, Wilfred A.

1986-01-01T23:59:59.000Z

246

MOLECULAR GAS AND NUCLEAR ACTIVITY IN ULTRALUMINOUS INFRARED GALAXIES WITH DOUBLE NUCLEI  

E-Print Network [OSTI]

an assumption that the radio and infrared emission arise from supernovae and dust heating by massive starsMOLECULAR GAS AND NUCLEAR ACTIVITY IN ULTRALUMINOUS INFRARED GALAXIES WITH DOUBLE NUCLEI A. S August 2 ABSTRACT High-resolution CO(1 ! 0) observations of five ultraluminous infrared galaxies [ULIGs

Evans, Aaron S.

247

Atlantic update, July 1986--June 1990: Outer Continental Shelf oil and gas activities  

SciTech Connect (OSTI)

This report describes outer continental shelf oil and gas activities in the Atlantic Region. This edition of the Atlantic Update includes an overview of the Mid-Atlantic Planning Area and a summary of the Manteo Prospect off-shore North Carolina. 6 figs., 8 tabs.

Karpas, R.M.; Gould, G.J.

1990-10-01T23:59:59.000Z

248

Steerable BHAs drill storage wells with difficult trajectories. [Bottom Hole Assembly  

SciTech Connect (OSTI)

The use of steerable downhole motor assemblies allows greater variation in well bore trajectory for drilling gas and oil storage wells in salt domes in areas with surface site restrictions. With modern directional drilling tools, the cavern wells are drilled vertically, kicked off in an S turn, and then finished with a vertical section. The last 100 m of a cavern well above the last cemented casing shoe must be vertical because of the technical demands of brining and completion. To date, Kavernen Bauund Betriebs-GmbH has successfully drilled and completed three directional cavern boreholes in Germany. These directional drilling techniques have also been used successfully for vertical boreholes with strict deviation limits. The paper describes this technology.

Gomm, H.; Peters, L. (Kavernen Bau- und Betriebs-GmbH, Hannover (Germany))

1993-07-19T23:59:59.000Z

249

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

250

Greening PCB Drilling Process: Burr Minimization and Other Strategies  

E-Print Network [OSTI]

of Analytical Model for Drilling Burr Formation in DuctileJ. and Chen, L. , “Drilling Burr Formation in Titaniumfor Burr Minimization in Drilling,” PhD dissertation, The

Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

2011-01-01T23:59:59.000Z

251

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

252

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

253

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network [OSTI]

information on the history of Mars. To access the hydrosphere some device must be used to penetrate the surface to depths of 3-5 kilometers. On Earth these depths are routinely achieved in petroleum and natural gas applications by drilling rigs. By far... the most common type of drilling employed on Earth is rotary drilling. Rotary drilling involves the uses of a rotating drill bit, attached to the surface by a long string of steel pipe, that grinds or cuts the rock, and forms a hole in the formation...

McConnell, Joshua B

2000-01-01T23:59:59.000Z

254

Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments  

SciTech Connect (OSTI)

Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

Hoover, E.R.; Pope, L.E.

1981-09-01T23:59:59.000Z

255

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

256

Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas  

SciTech Connect (OSTI)

Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

Lee, S.H.D.; Swift, W.M.; Johnson, I.

1980-01-01T23:59:59.000Z

257

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

258

OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

259

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

260

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference  

E-Print Network [OSTI]

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid and how to free stuck drill strings. IADC Middle East Drilling Conference, Dubai, Nov. 3 - 4, 1998. P

Aamodt, Agnar

262

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS**, Dr. VASILIS  

E-Print Network [OSTI]

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS, antoniadis@dpem.tuc.gr Abstract: Twist drills are geometrically complex tools, which are used in industry and experimental approaches for drilling simulation. The present paper is based on the ground that the increasing

Aristomenis, Antoniadis

263

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database  

E-Print Network [OSTI]

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

264

Biologically active filtration for treatment of produced water and fracturing flowback wastewater in the O&G industry.  

E-Print Network [OSTI]

??Sustainable development of unconventional oil and gas reserves, particularly tight oil, tight gas, and shale gas, requires prudent management of water resources used during drilling,… (more)

Freedman, Daniel E.

2014-01-01T23:59:59.000Z

265

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

266

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger® and JackBit® technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

267

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

268

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

269

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

270

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

271

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

272

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

273

SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

274

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

275

OCEAN DRILLING PROGRAM LEG 100 REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

276

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

277

drilling in Tapping Automaker Ingenuity to  

E-Print Network [OSTI]

drilling in detroit Tapping Automaker Ingenuity to Build Safe and Efficient Automobiles DAVID paper #12;iiiDrilling in Detroit Figures v Tables vii Acknowledgements xi Executive Summary xiii 1. Actual Motor Vehicle Crash Statistics 97 #12;vDrilling in Detroit Figures 1. US Oil Product Demand 2 2

Kammen, Daniel M.

278

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

279

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

280

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

Purkis, Sam

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

282

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

283

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

284

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

285

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

286

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

287

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

Current research and development in the following areas are presented: geothermal roller cone bits, polycrystalline diamond compact bits, a continuous chain drill, drilling fluids test equipment, mud research, inert fluids, foam fluids, lost circulation control, completion technology, and advanced drilling and completion systems. (MHR)

Varnado, S.G.

1980-01-01T23:59:59.000Z

288

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

289

DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS  

E-Print Network [OSTI]

for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

290

NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS  

SciTech Connect (OSTI)

Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet's nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

Combi, M. R.; Tenishev, V. M.; Rubin, M.; Fougere, N.; Gombosi, T. I., E-mail: mcombi@umich.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

2012-04-10T23:59:59.000Z

291

CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER  

E-Print Network [OSTI]

hearings on the issues of horizontal drilling and hydraulic fracturing for shale gas extraction. 3 Unlike viable in recent years due to advances in horizontal drilling and hydraulic fracturing techniques, which prohibits both horizontal drilling and the injection of waste (including hydraulic fracturing fluids

Jackson, Robert B.

292

Directional drilling and equipment for hot granite wells  

SciTech Connect (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

293

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

294

Horizontal well drill-in fluid utilizing alcohol ethoxylate  

SciTech Connect (OSTI)

The drilling of horizontal wells in the last 6 years has significantly improved the economics of oil and gas production from depleted reservoirs or tight sands. This paper illustrates the application of an alcohol ethoxylate into a drill-in fluid designed to minimize formation damage in low permeability sandstones while drilling horizontal sections as long as 1,617 meters (5,306 ft) at depths approaching 6,580 meters (21,600 ft) and to facilitate formation cleanup. The chemistry of alcohol ethoxylates/alkoxylates are described and the more popular names used within the industry will be discussed. Laboratory results are presented which illustrate colloidal phenomena not previously reported with these systems, the routes taken for successful application into a drill-in fluid and how complex these particular colloidal systems are from a physical chemical viewpoint, along with the inevitable learning curve required to fully optimize these systems. Generalized case histories from the UK Southern North Sea will be described, along with field observations which back up the colloidal phenomena seen in the laboratory.

Jachnik, R.P.; Green, P.

1995-11-01T23:59:59.000Z

295

High-temperature directional drilling turbodrill  

SciTech Connect (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

296

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

297

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

298

Conformable apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

299

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

300

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network [OSTI]

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas-phase CO2 emission toward Cepheus A East: the result of shock activity?  

E-Print Network [OSTI]

We report the first detection of gas-phase CO2 emission in the star-forming region Cepheus A East, obtained by spectral line mapping of the v2 bending mode at 14.98 micron with the Infrared Spectrograph (IRS) instrument onboard the Spitzer Space Telescope. The gaseous CO2 emission covers a region about 35'' x 25'' in extent, and results from radiative pumping by 15 micron continuum photons emanating predominantly from the HW2 protostellar region. The gaseous CO2 exhibits a temperature distribution ranging from 50 K to 200 K. A correlation between the gas-phase CO2 distribution and that of H2 S(2), a tracer of shock activity, indicates that the CO2 molecules originate in a cool post-shock gas component associated with the outflow powered by HW2. The presence of CO2 ice absorption features at 15.20 micron toward this region and the lack of correlation between the IR continuum emission and the CO2 gas emission distribution further suggest that the gaseous CO2 molecules are mainly sputtered off grain mantles -- by the passage of slow non-dissociative shocks with velocities of 15-30 km/s -- rather than sublimated through grain heating.

P. Sonnentrucker; E. González-Alfonso; D. A. Neufeld; E. A. Bergin; G. J. Melnick; W. J. Forrest; J. L. Pipher; D. M. Watson

2006-09-05T23:59:59.000Z

302

Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia  

SciTech Connect (OSTI)

Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities. Preliminary results identified few differences at low habitat disturbance levels but highlight the need for continued monitoring with increasing disturbance. file:

Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

2011-01-01T23:59:59.000Z

303

Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment  

SciTech Connect (OSTI)

The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.

M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

2012-05-06T23:59:59.000Z

304

Top drive drilling systems  

SciTech Connect (OSTI)

This patent describes a well apparatus which consists of: a back-up tool for holding the upper end of a string of pipe against rotating as an additional section of pipe is connected thereto; and powered means for moving the tool to engage the upper end of the string: the powered means being operable through a predetermined range of movement, and acting to move the back-up tool vertically during an initial portion of the range of movement and then move the tool between an active position at the axis of the well and a retracted position offset to a side of the axis at the end of the range of movement.

Boyadjieff, G.I.

1986-08-12T23:59:59.000Z

305

Filter for a drill string  

DOE Patents [OSTI]

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

306

Potter Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage,Austin, PennsylvaniaPotter Drilling

307

Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado  

SciTech Connect (OSTI)

The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

Carter, T.E.; Wayland, T.E.

1981-09-01T23:59:59.000Z

308

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

SciTech Connect (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

309

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

310

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect (OSTI)

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

311

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

SciTech Connect (OSTI)

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

312

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

313

Introduction to the Ocean Drilling Program JOIDES RESOLUTION  

E-Print Network [OSTI]

Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

314

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2009 Produced by Integrated Ocean Drilling Program

315

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2008 Produced by Integrated Ocean Drilling Program

316

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2012 Produced by Integrated Ocean Drilling Program

317

Silica dust control when drilling concrete Page 1 of 2  

E-Print Network [OSTI]

Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

Knowles, David William

318

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2007 Produced by Integrated Ocean Drilling Program

319

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2011 Produced by Integrated Ocean Drilling Program

320

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Loaded transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

2006-02-21T23:59:59.000Z

322

PDM vs. Turbodrill: A drilling comparison  

SciTech Connect (OSTI)

This study was undertaken to investigate and compare the two most prevalent down-hole motor types, Positive-Displacement and Turbodrill. The intent of this comparison was to evaluate the technical and operational performance characteristics and present them in a manner to aid the drilling contractor or drilling engineer in determining the best down-hole motor for a specific drilling application. Each type of drilling tool utilizing either power source possesses unique characteristics which can be tailored to the overall system to optimize the target objective; increase ROP at less cost.

De Lucia, F.; Herbert, P.

1984-09-01T23:59:59.000Z

323

Driltac (Drilling Time and Cost Evaluation)  

SciTech Connect (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

324

Newberry exploratory slimhole: Drilling and testing  

SciTech Connect (OSTI)

During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1997-11-01T23:59:59.000Z

325

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

326

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

327

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

328

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

SciTech Connect (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

329

Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluids  

E-Print Network [OSTI]

Designing a fit-for-purpose drilling fluid for high-pressure, high-temperature (HP/HT) operations is one of the greatest technological challenges facing the oil and gas industry today. Typically, a drilling fluid is subjected to increasing...

Ibeh, Chijioke Stanley

2009-05-15T23:59:59.000Z

330

Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor  

E-Print Network [OSTI]

potential as a self-powered active gas sensor This article has been downloaded from IOPscience. Please on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor Xinyu Xue1 as a power source, but also as a response signal to the gas, demonstrating a possible approach as a self-powered

Wang, Zhong L.

331

Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires  

E-Print Network [OSTI]

27–29 in T. Wirth, editor. Inventory of U.S. greenhouse gasfor national greenhouse gas inventories. Volume 2.National Greenhouse Gas Inventories Programme Task Force

Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

2012-01-01T23:59:59.000Z

332

E-Print Network 3.0 - active gas handling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geopolitics of gas working paper series THE BELARUS CONNECTION: EXPORTING RUSSIAN GAS TO GERMANY... AND POLAND david victor and nadejda makarova victor 12;The Belarus Connection:...

333

Geopressured geothermal drilling and completions technology development needs  

SciTech Connect (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

334

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint Oceanographic Institutions, Inc. Executive Director, Ocean Drilling Programs Joint Oceanographic Institutions.................................... 19 3.3.1. Drilling and Science Services

335

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

Lamb, D.W.

2013-01-01T23:59:59.000Z

336

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

337

Failure Mode and Sensitivity Analysis of Gas Lift Valves  

E-Print Network [OSTI]

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

Gilbertson, Eric W.

338

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

339

Multi-gradient drilling method and system  

DOE Patents [OSTI]

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

340

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

342

Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes  

SciTech Connect (OSTI)

This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

Puder, Markus G.; Bryson, Bill; Veil, John A.

2003-03-03T23:59:59.000Z

343

Measurement-While-Drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

344

A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling  

E-Print Network [OSTI]

A concept for marine shallow drilling Drill test from R/V HÃ¥kom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

Kristoffersen, Yngve

345

Westinghouse GOCO conduct of casualty drills  

SciTech Connect (OSTI)

Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

Ames, C.P.

1996-02-01T23:59:59.000Z

346

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies  

E-Print Network [OSTI]

DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are used at a rig, they are transported to the closest repair and maintenance (MTC) ...

Rahim, Ryan

2010-01-01T23:59:59.000Z

347

Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE  

E-Print Network [OSTI]

is providing Tiger Bullets to two major exploration and production companies, one in the Fayetteville ShaleBUSINESS Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE Advocate staff process to make wood-plastic composites has found a new application in the oil and gas business

348

Development of a Hydrothermal Spallation Drilling System for...  

Open Energy Info (EERE)

eliminating bit wear and drill string fatigue, hydrothermal spallation drilling can transform the costs of geothermal well construction and enable widespread deployment of...

349

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

350

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

351

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

352

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

353

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

354

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

355

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

356

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

357

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

358

Temporary Bridging Agents for Use in Drilling and Completions...  

Broader source: Energy.gov (indexed) [DOE]

Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 -...

359

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

360

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining… (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Negative refraction with tunable absorption in an active dense gas of atoms  

E-Print Network [OSTI]

Applications of negative index materials (NIM) presently are severely limited by absorption. Next to improvements of metamaterial designs, it has been suggested that dense gases of atoms could form a NIM with negligible losses. In such gases, the low absorption is facilitated by quantum interference. Here, we show that additional gain mechanisms can be used to tune and effectively remove absorption in a dense gas NIM. In our setup, the atoms are coherently prepared by control laser fields, and further driven by a weak incoherent pump field to induce gain. We employ nonlinear optical Bloch equations to analyze the optical response. Metastable Neon is identified as a suitable experimental candidate at infrared frequencies to implement a lossless active negative index material.

P. P. Orth; R. Hennig; C. H. Keitel; J. Evers

2012-10-17T23:59:59.000Z

362

Coal seam natural gas producing areas (Louisiana)  

Broader source: Energy.gov [DOE]

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

363

Oil, Gas, and Metallic Minerals (Iowa)  

Broader source: Energy.gov [DOE]

Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

364

The DOE Thermal Regimes Drilling Program through 1987  

SciTech Connect (OSTI)

In response to strong endorsement from the scientific community, in the form of a report by the Continental Scientific Drilling Committee of the National Academy of Sciences (CSDC, 1984), the Office of Basic Energy Sciences of the DOE undertook a program of investigations of young magmatic intrusions and their associated thermal systems. To date, the effort has encompassed the first phases of a program to investigate the roots of active hydrothermal systems and has also investigated the thermal, chemical, and mechanical behavior of geologically recent (less than 600 years) magmatic extrusions. Shallow to intermediate-depth holes have been drilled and cored into hydrothermal systems in the silicic Valles and Long Valley calderas and at the crustal spreading center of the Salton Trough. These projects are briefly summarized here and are covered in greater detail in the accompanying appendices.

Not Available

1988-07-01T23:59:59.000Z

365

Black Warrior: Sub-soil gas and fluid inclusion exploration and...  

Broader source: Energy.gov (indexed) [DOE]

Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling John Casteel Nevada Geothermal Power Co. Validation of Innovative Exploration Technologies May...

366

Low natural gas prices may drive up FY 2014-2015 power rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural gas prices? Production Much has been written over the past few years about "fracking," the technology of hydraulic fracturing in horizontally drilled wells that has made...

367

Drill stem test method and apparatus  

SciTech Connect (OSTI)

This patent describes an apparatus for causing formation fluid to flow upwardly during a drill stem test of a fluid well. The apparatus consists of: a drill string positioned in the bore of the fluid well and seated with a packer seal; the drill string containing a first opening below the packer through which formation fluid can flow into the drill string; means for creating a second opening in the drill string above the packer through which treatment fluid can flow; and jet pump means including a fluid crossover, the jet pump means being mounted within the drill string for increasing the rate of flow of the treatment fluid near the second opening a substantial amount such that the upward flow of the treatment fluid draws the formation fluid upwardly therewith, the means for creating the second opening including a sleeve initially surrounding and covering the fluid crossover, and means for moving the sleeve in response to fluid pressure from within the drill string to uncover the second opening.

Snider, P.M.

1989-07-11T23:59:59.000Z

368

A study of fatigue in drill collars  

E-Print Network [OSTI]

A STUDY OF FATIGUE IN DRILL COLLARS A Thesis by Joe Robert Feeler Approved as to style and content by: Chairman of Committee Head of Department Member /n/X~l~~ Member Member January 1969 ABSTRACT A Study of Fatigue in Drill Collars.... (January, 1969) Joe R. Fowler, B. S. , Texas A&M University; Directed by: Dr. P. D. Neiner Fatigue failures of drill collar connectors are presently cost- ing the major oil companies enormous sums of money in ruined equipment and lost time...

Fowler, Joe Robert

1969-01-01T23:59:59.000Z

369

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

370

The effect of surface active agents on the relative permeability of brine and gas in porous media  

SciTech Connect (OSTI)

All oil and gas producing wells produce hydrocarbon at some residual water saturation. Therefore, the relative permeability to the hydrocarbon at the effective water saturation dictates performance and not the absolute permeability of the formation. Surface active agents are included in most aqueous treating fluids to improve the compatibility of aqueous fluids with the hydrocarbon containing reservoir. A review of the literature indicates very little core flow data to describe the effects to be expected. Traditionally, it is believed that the reduced surface tension will reduce capillary pressure and enhance the recovery of water after the treatment. The reduced water saturation is then believed to result in higher effective gas saturation and higher relative permeability to gas after the treatment. The principal emphasis of this study has been the development of non-damaging stimulation fluids to improve the production of methane from coalbed methane and other low permeability gas reservoirs.

Conway, M.W. [STIM-LAB, Inc., Duncan, OK (United States); Schraufnagel, R.A. [Gas Research Inst., Chicago, IL (United States); Smith, K.; Thomas, T.

1995-11-01T23:59:59.000Z

371

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

372

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

373

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY10 Annual Report #12;Crane ball #12;The Integrated Ocean Drilling Program (IODP) is an international marine research program Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs that revolutionized our view

374

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg  

E-Print Network [OSTI]

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

Bromberg, Kenneth

375

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY13 Annual Report #12;Tripping Integrated Ocean Drilling Program (IODP) monitored subseafloor environments and explored Earth's history Drilling Project (DSDP) and the Ocean Drilling Program (ODP), which revolutionized our view of Earth

376

Acronyms and Abbreviations Used in the Ocean Drilling Program  

E-Print Network [OSTI]

Stone Soup Acronyms and Abbreviations Used in the Ocean Drilling Program Ocean Drilling Program Texas A&M University Technical Note No. 13 Compiled by Elizabeth A. Heise Ocean Drilling Program Texas A orpersonalresearchpurposes; however,republicationof any portion requires the written consent of the Director, Ocean Drilling

377

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

378

Engineering task plan for the development of a high pressure water drill system for BY-105 saltwell screen installation  

SciTech Connect (OSTI)

This engineering task plan identifies the activities required for developing an ultra high pressure water drill system for installation of a saltwell screen in Tank BY-105. A water drill system is needed to bore through the hard waste material in this tank because of the addition of Portland cement in the 1960s and/or 1970s. The activities identified in this plan include the design, procurement, and qualification testing of the water drill along with readiness preparations including developing operating procedures, training Operations personnel, and conducting an assessment of readiness.

RITTER, G.A.

1999-02-24T23:59:59.000Z

379

Versatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department of Aerospace and Mechanical Engineering  

E-Print Network [OSTI]

temperature (250°C ­ 400°C), a catalyst is required. Breakdown products of chemical-agent molecules eitherVersatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department Number: CBDIF-2006-PRO01 (Individual Protection) Motivation and approach Practically all chemical

380

Oil and gas developments in North Africa in 1983  

SciTech Connect (OSTI)

Petroleum rights in the 6 countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered by this paper amounted to 1,821,966 km/sup 2/ at the end of 1983, an 11% decrease from the 2,044,851 km/sup 2/ at the end of 1982. This decrease is mostly due to relinquishments in Sudan. Onshore seismic activity decreased in all countries except Sudan, where it slightly increased. Marine seismic activity increased by 85%, mostly due to significant efforts in Morocco and Egypt. Exploration drilling activity increased with 179 wildcats completed in 1983 compared to 166 in 1982. The success rate was 44.7% compared to 36% in 1982. No discoveries were made in Morocco. No new hydrocarbon province was discovered in 1983. Development drilling sharply increased in Egypt and remained at about the same levels in the other countries as in 1982. In Sudan, Chevron started in late September the first development drilling operations in Unity field. Oil production, with a daily average of 2,872,000 bbl, was at the same level as in 1982. In Egypt, 7 new fields went on-stream in the Gulf of Suez, 2 in the Western Desert, and 1 in the Eastern Desert. One field was put on-stream in Libya and 4 in Tunisia. Utilized gas production probably remained at the same level as in 1982 (2000 mmcf/day). 9 figures, 28 tables.

Nicod, M.A.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

382

OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

383

OCEAN DRILLING PROGRAM LEG 166 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

Director ODP/TAMU _____________________ Jack Baldauf Manager Science Operations ODP Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

384

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

385

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents [OSTI]

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

386

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.14,September2012 ScientificDrilling ISSN: 1816-8957 Exp. 333: Nankai Trough Subduction Input and Records of Slope Instability 4 Lake Drilling In Eastern Turkey 18 Exp. 326 and 332: Nan

Gilli, Adrian

387

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

Paris-Sud XI, Université de

388

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change in the Bering Sea 4 San Andreas Fault Zone Drilling 14 Climate History from Lake El'gygytgyn, Siberia 29 World

Demouchy, Sylvie

389

Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation.

Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

1995-08-01T23:59:59.000Z

390

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect (OSTI)

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

391

Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms  

SciTech Connect (OSTI)

The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig`s percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized.

Dougherty, L.F., Westinghouse Hanford

1996-09-10T23:59:59.000Z

392

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

393

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

SciTech Connect (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

394

Method and apparatus for balancing discharge fluid flow in drilling mud treatment units  

SciTech Connect (OSTI)

A method of controlling fluid flow in the drilling mud treatment units of an oil/gas well drilling rig such as, for example, the shale shaker, desander, desilter, and mud cleaner portions thereof provides floating the inlet of an intake conduit at the supernatent liquid layer of the drilling rig reserve pit and providing a common distributor head for routing the supernatent liquid to the various solid control units. A pump is connected to the intake conduit and the header at the intake and discharge respectively. The pump transmits the reserve pit supernatent from the reserve pit to the header by pumping. There is provided one or more branch lines affixed to the header each discharging respectively into the drain of a drilling mud treatment unit associated with the drilling rig with the flow of reserve pit supernatent liquid keeping the various drains open. The drains are positioned to discharge back into the reserve pit. The method saves the use of fresh water for the purpose of keeping drains open by the use of the supernatent liquid.

Gay, C.J.

1983-03-29T23:59:59.000Z

395

Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model  

SciTech Connect (OSTI)

The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO{sub 2} sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO{sub 2} on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO{sub 2} on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M. [Oklahoma State University, Stillwater, OK (United States). School of Chemical Engineering

2006-11-07T23:59:59.000Z

396

E-Print Network 3.0 - activity gas exchange Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leading edge packaging High... Cell Market Opportunity US Stationary - APU & CHP Natural Gas, LPG ... Source: DOE Office of Energy Efficiency and Renewable Energy,...

397

ACTIVE CONTROL STRATEGY FOR DENSITY-WAVE IN GAS-LIFTED WELLS  

E-Print Network [OSTI]

Saint-Pierre Pierre Lem´etayer CAS, ´Ecole des Mines de Paris, France CSTJF, TOTAL Exploration-Production: Process Control, Gas-Lifted Well, Density-wave, Stabilization. 1. INTRODUCTION Producing oil from deep) and the production pipe (tubing, point D) where it enters. Oil produced from the reservoir (point F) and injected gas

398

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

399

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

and Henry Licis, “Improving Drilling Performance ThroughJ.F. and K.K. Millheim, “The Drilling Performance Curve: AYardstick for Judging Drilling Performance,” Society of

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

400

Tax Treatment of Natural Gas The "landowner" referred to in  

E-Print Network [OSTI]

. There are a number of oil and gas regulations and laws such as the Oil and Gas Act, Coal and Gas Resource Coor OGM, including the Clean Streams Law, the Dam Safety and Encroach- ments Act, the Solid Waste Manage advances in drilling technology and rising natural gas prices have attracted new interest

Boyer, Elizabeth W.

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

402

Deep drilling technology for hot crystalline rock  

SciTech Connect (OSTI)

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

403

Waste minimization in the oil and gas industries  

SciTech Connect (OSTI)

Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

Smith, K.P.

1992-01-01T23:59:59.000Z

404

Waste minimization in the oil and gas industries  

SciTech Connect (OSTI)

Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

Smith, K.P.

1992-09-01T23:59:59.000Z

405

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect (OSTI)

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

406

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

407

Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report  

SciTech Connect (OSTI)

Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

2014-12-30T23:59:59.000Z

408

Air drilling has some pluses for horizontal wells  

SciTech Connect (OSTI)

Drilling horizontal wells with air as the circulating medium is not a common practice; however, air has come distinct advantages over drilling mud. They are: Significant increase in rate of penetration which leads to shorter drilling time. Elimination of lost circulation problems, especially in areas of very low bottom hole pressures. Continual drill stem test of potential producing formations. Minimal damage to the formation. Unfortunately, there are some disadvantages to drilling with air. Downhole motor life is shorter and less predictable. No measurement-while-drilling (MWD) system is currently available that will work consistently in air drilling environments. Hole cleaning is a problem at inclinations above 50{degree}. The horizontal section length is reduced because of the increased friction (drag) between the drillstring and borehole. The types of lithologies and targets are limited. Several horizontal wells have been successfully drilled with air or foam since 1986. At a minimum, operators drill the horizontal section with air or foam to eliminate lost circulation problems in low pressure or partially depleted reservoirs and to reduce formation damage due to drilling fluid invasion. However, problems have been encountered in drilling horizontal wells with air. Not all of the problems are unique to air drilling, but some may be exaggerated by the conditions in an air-drilled hole.

Carden, R.S. (Grace, Shursen, Moore and Associates, Inc., Amarillo, TX (US))

1991-04-08T23:59:59.000Z

409

Footage Drilled for Crude Oil and Natural Gas Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.

410

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current861 ANNUALUSFootage

411

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformation GreatersourceOhmsettZipWell

412

Analysis of drill stem test data  

E-Print Network [OSTI]

LI8RARY A s IN CNLLEGE OF TEXAS ANALYSIS OF DRILL STEM TEST DATA A THESIS By ALBIN J. ZAK, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1956 Major Subject: Petroleum Engineering ANALYSIS OF DRILL STEM TEST DATA A THESIS ALBIN J. ZAK, JR. Approved as to style and content by; h irman of Committee Head of Department TABLE OF CONTENTS Page I. ABSTRAC...

Zak, Albin Joseph

1956-01-01T23:59:59.000Z

413

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

414

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

415

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

of a flue gas condenser with a steam boiler. ? Improvedsteam dryers by gas ? Dryers and filtration equipment ? Applied CHP ? Purchased flue gas condensers ?

Price, Lynn

2010-01-01T23:59:59.000Z

416

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

417

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2002-01-01T23:59:59.000Z

418

Adaptive tool selection strategies for drilling in flexible manufacturing systems  

E-Print Network [OSTI]

The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS...

Chander, Karthik Balachandran

2004-09-30T23:59:59.000Z

419

Development of a High-Temperature Diagnostics-While-Drilling...  

Energy Savers [EERE]

Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

420

Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...  

Open Energy Info (EERE)

Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network [OSTI]

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non

Ullmer, Brygg

422

The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams  

E-Print Network [OSTI]

, and especially oil and gas (O&G) exploration and production wastewaters. High salt concentrations, decentralized generated during exploration and production (E&P) (e.g., drilling muds, hydraulic fracturing flowback water processes, have identified its sweet spot: treatment and desalination of complex industrial streams

423

Nuclear Tools For Oilfield Logging-While-Drilling Applications  

SciTech Connect (OSTI)

Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

Reijonen, Jani [Schlumberger PTC, 20 Wallace Rd., Princeton Junction, NJ 08550 (United States)

2011-06-01T23:59:59.000Z

424

Systems study of drilling for installation of geothermal heat pumps  

SciTech Connect (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

425

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

426

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

427

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

428

Molecular gas streamers feeding and obscuring the active nucleus of NGC1068  

E-Print Network [OSTI]

We report the first direct observations of neutral, molecular gas streaming in the nucleus of NGC1068 on scales of hydrogen emission around the nucleus in the central arcsec reveals two prominent linear structures leading to the AGN from the north and south. The kinematics of the gas in these features are dominated by non-circular motions and indicate that material is streaming towards the nucleus on highly elliptical or parabolic trajectories whose orientations are compatible with that of the disk plane of the galaxy. We interpret the data as evidence for fueling of gas to the central region. The radial transport rate from ~30 pc to a few parsec from the nucleus is ~15 M$_\\sun$ yr$^{-1}$. One of the infalling clouds lies directly in front of the central engine. We interpret it as a tidally disrupted streamer that forms the optically thick outerpart of an amorphous clump...

Sanchez, F Mueller; Genzel, R; Tacconi, L J; Eisenhauer, F; Hicks, E K S; Friedrich, S; Sternberg, A

2008-01-01T23:59:59.000Z

429

Molecular gas streamers feeding and obscuring the active nucleus of NGC1068  

E-Print Network [OSTI]

We report the first direct observations of neutral, molecular gas streaming in the nucleus of NGC1068 on scales of hydrogen emission around the nucleus in the central arcsec reveals two prominent linear structures leading to the AGN from the north and south. The kinematics of the gas in these features are dominated by non-circular motions and indicate that material is streaming towards the nucleus on highly elliptical or parabolic trajectories whose orientations are compatible with that of the disk plane of the galaxy. We interpret the data as evidence for fueling of gas to the central region. The radial transport rate from ~30 pc to a few parsec from the nucleus is ~15 M$_\\sun$ yr$^{-1}$. One of the infalling clouds lies directly in front of the central engine. We interpret it as a tidally disrupted streamer that forms the optically thick outerpart of an amorphous clumpy molecular/dusty structure which contributes to the nuclear obscuration.

F. Mueller Sanchez; R. I. Davies; R. Genzel; L. J. Tacconi; F. Eisenhauer; E. K. S. Hicks; S. Friedrich; A. Sternberg

2008-09-29T23:59:59.000Z

430

Impedance-matched drilling telemetry system  

DOE Patents [OSTI]

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

431

Recovery Act Weekly Video: 200 West Drilling  

ScienceCinema (OSTI)

President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

None

2012-06-14T23:59:59.000Z

432

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

433

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

434

Deep-hole drilling Fruit Flies & Zebrafish  

E-Print Network [OSTI]

surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

Li, Yi

435

OCEAN DRILLING PROGRAM LEG 136 PRELIMINARY REPORT  

E-Print Network [OSTI]

Operations ODP/TAI Timothy J.G. Francis Deputy Director ODP/TAMU May 1991 #12;This informal report Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Environment Research Council (United Kingdom) Ocean Research Institute of the University of Tokyo (Japan) Any

436

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network [OSTI]

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

437

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS PHILIPPINE SEA Michael A. Storms Supr. of Development Engineering Ocean Drilling Program Texas A & M University College Station, Texas 77840 Philip D. Rabinowitz Director ODP/TAMU- Barry W. Harding Manager of Engineering and Drilling Operations ODP/TAMU Louis

438

FY04 Annual Report Integrated Ocean Drilling Program  

E-Print Network [OSTI]

#12;#12;FY04 Annual Report Integrated Ocean Drilling Program United States Implementing and the Science Community . . . . . . . . . . 34 RESEARCH TOWARD ENHANCED DRILLING CAPABILITY . . . 37 JOI of the goals of scientific ocean drilling for 8 years (ODP: 1997­2003; IODP: 2003­2005), making many invaluable

439

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS EAST PACIFIC RISE Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling Operations Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

440

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY12 Annual Report #12;Handling downhole tool string #12;The Integrated Ocean Drilling Program (IODP) is an international marine research in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Applications of CBR in oil well drilling "A general overview"  

E-Print Network [OSTI]

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar. In this paper we present the evolving story of CBR applied in petroleum engineering especially in drilling engineering. Drilling engineering contains several potential domains of interest, in which CBR can be employed

Aamodt, Agnar

442

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY11 Annual Report #12;Sunset aboard the JOIDES Resolution #12;The Integrated Ocean Drilling Program (IODP) is an international marine as recorded in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling

443

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS BARBADOS ACCRETIONARY PRISM LOGGING WHILE DRILLING (LWD) Dr. J. Casey Moore Co-Chief Scientist, Leg 171A University of California, Santa Cruz Earth Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

444

A simple model for laser drilling Jeb Collins a,1  

E-Print Network [OSTI]

A simple model for laser drilling Jeb Collins a,1 , Pierre Gremaud b,2, aDepartment of Mathematics drilling is proposed. Assuming axi-symmetry of the process around the axis of the laser beam, a one, implemented and validated for drilling using lasers with intensities in the GW/cm2 range and microsecond

445

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION FISCAL YEAR 2008 ANNUAL REPORT #12;#12;INTEGRATED OCEAN DRILLING PROGRAM UNITED STATES IMPLEMENTING ORGANIZATION CONSORTIUM FOR OCEAN LEADERSHIP FOUNDATION CONTRACT OCE-0352500 1 OCTOBER 2007­30 SEPTEMBER 2008 #12;INTEGRATED OCEAN DRILLING PROGRAM ii

446

CARD No. 33 Consideration of Drilling Events in Performance Assessments  

E-Print Network [OSTI]

CARD No. 33 Consideration of Drilling Events in Performance Assessments 33.A.1 BACKGROUND have an effect on the disposal system (61 FR 5228). Section 194.33, "Consideration of drilling events in performance assessments," sets forth specific requirements for incorporation of human-initiated drilling

447

A Novel Membrane Finite Element with Drilling Rotations  

E-Print Network [OSTI]

A Novel Membrane Finite Element with Drilling Rotations Reijo Kouhia 1 Abstract. A new low order interpolation is used for the drill rotation #12;eld. Both triangular and quadrilateral elements are considered of freedom. 1 INTRODUCTION In-plane rotational degrees of freedom, \\drilling de- grees of freedom

Kouhia, Reijo

448

ResonantSonic drilling. Innovative technology summary report  

SciTech Connect (OSTI)

The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes.

NONE

1995-04-01T23:59:59.000Z

449

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents [OSTI]

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

450

Suggested drilling research tasks for the Federal Government  

SciTech Connect (OSTI)

A brief summary discussion of drilling, drilling research and the role of the government in drilling research is presented. Specific research and development areas recommended for federal consideration are listed. The technical nature of the identified tasks is emphasized. The Appendices present the factual basis for the discussion and recommendations. Numerous references are noted in the Appendices.

Carson, C.C.

1984-04-01T23:59:59.000Z

451

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

452

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-01-01T23:59:59.000Z

453

Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course  

SciTech Connect (OSTI)

This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

Not Available

1988-10-01T23:59:59.000Z

454

Outer continental shelf oil and gas activities. Pacific update: August 1987 - November 1989  

SciTech Connect (OSTI)

This Pacific Update focuses on the geology and petroleum potential of the Central California and Washington-Oregon OCS Planning Areas. This report discusses the following topics: offshore oil and gas resources of the Pacific region; project-specific developments and status; and magnitude and timing of offshore developments. (CBS)

Slitor, Douglas L.; Wiese, Jeffrey D.; Karpas, Robert M.

1990-01-01T23:59:59.000Z

455

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...  

Open Energy Info (EERE)

inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the...

456

Process Design and Integration of Shale Gas to Methanol  

E-Print Network [OSTI]

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

Ehlinger, Victoria M.

2013-02-04T23:59:59.000Z

457

Gas sales starting from Indiana`s fractured New Albany shale  

SciTech Connect (OSTI)

The Indiana Department of Natural Resources, Division of Oil and Gas issued 138 drilling permits from Dec. 1, 1994, through July 31, 1996, in 17 counties in a growing play for gas in Devonian New Albany shale in southern Indiana. The permits are active in the form of locations, drilling wells, wells in the completion process, and wells producing gas in the dewatering stage. Geologically in southwestern Indiana the New Albany shale exploration play is found in three provinces. These are the Wabash platform, the Terre Haute reef bank, and the Vincennes basin. Exploration permits issued on each of these geologic provinces are as follows: Wabash platform 103, Terra Haute reef bank 33, and Vincennes basin two. The authors feel that the quantity and effectiveness of communication of fracturing in the shale will control gas production and water production. A rule of thumb in a desorption reservoir is that the more water a shale well makes in the beginning the more gas it will make when dewatered.

Minihan, E.D.; Buzzard, R.D. [Minihan/Buzzard Consulting Geologists, Fort Worth, TX (United States)

1996-09-02T23:59:59.000Z

458

Closed chamber drill stem test detects deep damage  

SciTech Connect (OSTI)

Closed chamber drill stem tests are a relatively new development in drill stem testing. The technique was originated to reduce operational and safety problems caused by hydrate formation during conventional drill stem tests in the Canadian Arctic. During the 1970s, closed chamber testing found widespread acceptance in Canada and is now becoming more widely used in the US. The closed chamber testing method is used in conjunction with conventional drill stem testing tools and equipment. The only additional requirement is a means of continuously monitoring pressure at the surface; therefore, the method can be conducted anywhere conventional drill stem testing equipment is available. The advantage and disadvantages of the system are discussed.

Berkstresser, M.

1982-02-01T23:59:59.000Z

459

Semisubmersible rigs attractive for tender-assisted drilling  

SciTech Connect (OSTI)

Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

1994-09-19T23:59:59.000Z

460

Sublethal metabolic responses of the hermatypic coral Madracis decactis exposed to drilling mud enriched with ferrochrome lignosulfonate  

E-Print Network [OSTI]

to each measurement period, aquaria were flushed with 0. 45-um filteresi seawater to remove the drill mud-ferrochrome lignosulfonate suspen- sion so that it and natural particulates present in the aquaria during the normia 1 flow-through mode did... 1 coral protein h ~). Figure A-3: 0/NH4-N ratio for each drill mud + FCLS regime. . . 63 65 . . 67 INTRODUCTI OTN Dr~illin Muds and Dril1 indi Fluids. According to the U. S. Bureau of Land Manage!sent (1976), ove! 8700 oil an!I gas wells have...

Krone, Michael August

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Down hole drilling motor with pressure balanced bearing seals  

SciTech Connect (OSTI)

A downhole drilling motor, e.g., a turbodrill is described, which is connected to a string of drill pipe has a rotating shaft for driving a drill bit which may be a rotary bit or a high speed solid head diamond bit. The turbine section has rotor and stator blades which are crescent shaped in cross section with each blade having an exit angle of 14-23/sup 0/ for maximum turbine efficiency. The drilling motor may alternatively be a positive displacement motor. The bearing shaft is provided with chevron rotary seals positioned below the rotary bearings carrying both radial and vertical thrust. Fluid lubricant fills the space from the rotary seals to a predetermined level above the bearings. A piston seals the lubricant chamber and is pressurized by drilling fluid (i.e. mud) flowing through the tool. A layer of lubricant fluid overlies the first piston and has a second piston covering said fluid and transmitting pressure from the drilling fluid to the lubricant fluid surrounding the bearings. The drilling mud is divided into two streams, one of which rotates the drill bit, and the other of which passes through the drill bit. The pressure drop across the drilling motor equals the pressure drop across the drill bit, thus balancing the pressure on the bearing seals.

Maurer, W.C.

1980-09-30T23:59:59.000Z

462

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

SciTech Connect (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

463

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas information  

E-Print Network [OSTI]

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas Health, GSPH. Background Natural gas drilling in shale formations worldwide employs relatively new drilling in the Marcellus Shale (See Figure 1.) of the northeastern United States necessitates better

Sibille, Etienne

464

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

465

Oil and gas developments in North Africa in 1984  

SciTech Connect (OSTI)

Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

Michel, R.C.

1985-10-01T23:59:59.000Z

466

Oil and gas developments in North Africa in 1984  

SciTech Connect (OSTI)

Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

Michel, R.Ch.

1985-10-01T23:59:59.000Z

467

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-Print Network [OSTI]

increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have produce enough natural gas from shale formations to make the wells economically viable. Because

Boyer, Elizabeth W.

468

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network [OSTI]

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

469

Natural gas monthly  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01T23:59:59.000Z

470

Surface readout drill stem test control apparatus  

SciTech Connect (OSTI)

A surface readout (SRO) system for use with a wire line drill stem testing apparatus is disclosed. More particularly, the preferred and illustrated embodiment sets forth control circuitry for such a system. At the time that a well has been drilled and a potentially productive formation has been located, test apparatus incorporating a probe assembly is lowered on a wire line. The probe assembly incorporates a latch mechanism and a motorized tester valve opening apparatus. THis disclosure sets forth a control system for the latch to fasten the probe in the downhole apparatus for conducting pressure and temperature testing of the formation to determine its flow and production potential. Moreover, a motor control circuit is also included to open the tester valve. These devices are located in the probe and are triggered into operation by signals transmitted on the wire line to the probe.

Maddock Jr., A. W.

1984-11-20T23:59:59.000Z

471

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

472

Gas lift valve failure mode analysis and the design of a thermally-actuated positive-locking safety valve  

E-Print Network [OSTI]

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

Gilbertson, Eric (Eric W.)

2010-01-01T23:59:59.000Z

473

Microhole Wireless Steering While Drilling System  

SciTech Connect (OSTI)

A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

John Macpherson; Thomas Gregg

2007-12-31T23:59:59.000Z

474

Drilling fluids and reserve pit toxicity  

SciTech Connect (OSTI)

Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

1988-11-01T23:59:59.000Z

475

Restored drill cuttings for wetlands creation: Results of a two year mesocosm approach to emulate field conditions under varying hydrologic regimes  

SciTech Connect (OSTI)

It is well documented that Louisiana has the highest rate of wetland loss in the United States. Deep-water channel dredging and leveeing of the Mississippi River since the 1930s have interrupted the natural delta cycle that builds new marshes through sediment deposition. Many of the areas that are subsiding and deteriorating are isolated from riverine sediment sources; therefore alternative methods to deposit sediment and build marshes must be implemented. This project demonstrates that the earthen materials produced when drilling oil and gas wells can be used as a suitable substrate for growing wetland plants. Drilling fluids (muds) are used to lubricate drill bits and stabilize the earth around drill holes and become commingled with the earthen cuttings. Two processes have been reported to restore drill cuttings to acceptable levels by removal of any toxic components found in drilling muds. The main objective of this project was to assess the potential of drill cuttings processed by these two methods in terms of their ability to support wetland vegetation and potential toxicity.

Shaffer, G.P.; Hester, M.W.; Miller, S.; DesRoches, D.J.; Souther, R.F.; Childers, G.W.; Campo, F.M.

1998-11-01T23:59:59.000Z

476

Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation  

SciTech Connect (OSTI)

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2013-02-15T23:59:59.000Z

477

National Advanced Drilling and Excavation Technologies Program  

SciTech Connect (OSTI)

The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

None

1993-06-15T23:59:59.000Z

478

FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM  

SciTech Connect (OSTI)

Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

2012-08-01T23:59:59.000Z

479

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

480

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas drilling activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New oilfield air bit improves drilling economics in Appalachian Basin  

SciTech Connect (OSTI)

Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

1994-12-31T23:59:59.000Z

482

Friction Reduction for Microhole CT Drilling  

SciTech Connect (OSTI)

The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

Ken Newman; Patrick Kelleher; Edward Smalley

2007-03-31T23:59:59.000Z

483

Biased insert for installing data transmission components in downhole drilling pipe  

DOE Patents [OSTI]

An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

Hall, David R. (Provo, UT); Briscoe, Michael A. (Lehi, UT); Garner, Kory K. (Payson, UT); Wilde, Tyson J. (Spanish Fork, UT)

2007-04-10T23:59:59.000Z

484

[NiFe] dithiolene diphosphine complex for hydrogen gas activation: a Theoretic Insight  

E-Print Network [OSTI]

A diphosphino-nickel-iron dithiolene complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1-bis(diphenylphosphino)ferrocene), has been recently found to be reasonably active on proton reduction to dihydrogen (J. Am. Chem. Soc. 2015, 137, 1109). Interestingly, this exceptional complex was found to be also reactive towards dihydrogen activation as indicated by the electrochemical investigation. However, a pure nickel dithiolene diphosphine theoretical mode, excluding the contributions from iron moiety, was applied to attribute the experimental catalytic observation. We have re-visited the theoretical approach in details for this [NiFe] catalyst and compared it with the non-active nickel dithiolene diphosphine complexes. We found that both nickel and iron moieties in this newly developed complex were imperative for the observed catalytic per-formance, particularly towards the activation of dihydrogen.

GuYan, Jing

2015-01-01T23:59:59.000Z