Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

2

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

3

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

4

Oil recovery from condensed corn distillers solubles.  

E-Print Network [OSTI]

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

5

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

6

Distillate and Spot Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This slide shows the strong influence crude oil prices have on retail distillate prices. The price for distillate fuel oil tracks the crude price increases seen in 1996 and the subsequent fall in 1997 and 1998. Distillate prices have also followed crude oil prices up since the beginning of 1999. Actual data show heating oil prices on the East Coast in June at $1.20 per gallon, up 39 cents over last June. However, if heating oil prices are following diesel, they may be up another 5 cents in August. That would put heating oil prices about 40 cents over last August prices. Crude oil prices are only up about 25 cents in August over year ago levels. The extra 15 cents represents improved refiner margins due in part to the very low distillate inventory level.

7

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Retail distillate prices follow the spot distillate markets, and crude oil prices have been the main driver behind distillate spot price increases until recently. Crude oil rose about 36 cents per gallon from its low point in mid February 1999 to the middle of January 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, heating oil spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled slightly higher as the New York Harbor market began to

8

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

9

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

10

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

11

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

12

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

13

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

14

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

15

Spot Distillate & Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

mid-January, 2000. WTI crude oil price rose about $17 per mid-January, 2000. WTI crude oil price rose about $17 per barrel or 40 cents per gallon from its low point in mid February 1999 to January 17, 2000. Over this same time period, New York Harbor spot heating oil had risen about 42 cents per gallon, reflecting both the crude price rise and the beginning of a return to a more usual seasonal spread over the price of crude oil. The week ending January 21, distillate spot prices in the Northeast spiked dramatically to record levels, closing on Friday at $1.26 per gallon -- up 50 cents from the prior week. Gulf Coast prices were not spiking, but were probably pulled higher as the New York Harbor market began to draw on product from other areas. They closed at 83 cents per gallon, an increase of 11 cents from the prior Friday. Crude oil had risen about 4 cents from

16

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining  

Science Journals Connector (OSTI)

Contaminants in Used Lubricating Oils and Their Fate during Distillation/Hydrotreatment Re-Refining ...

Dennis W. Brinkman; John R. Dickson

1995-01-01T23:59:59.000Z

17

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

18

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

19

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

20

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

22

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

23

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

24

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

25

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

26

Winter Distillate  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Throughout the summer, gasoline prices have drawn most of the public's attention, but EIA has been concerned over winter heating fuels as well. q Distillate inventories are likely to begin the winter heating season at low levels, which increases the chances of price volatility such as that seen last winter. q Natural gas does not look much better. q Winter Distillate http://www.eia.doe.gov/pub/oil_gas/petroleum/presentati...00/winter_distillate_and_natural_gas_outlook/sld001.htm [8/10/2000 4:35:57 PM] Slide 2 of 25 Notes: Residential heating oil prices on the East Coast (PADD 1) were 39 cents per gallon higher this June than last year (120 v 81 cents per gallon). As many of you already know, the increase is due mainly to increased crude oil prices.

27

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

28

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

29

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

30

Distillation  

Science Journals Connector (OSTI)

A critical review on new developments in desalination by distillation processes, with the multistage flash evaporation process as the reference, was presented by Veenman. These developments refer to vertical t...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

31

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

32

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

33

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

34

Deepwater Oil & Gas Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

35

Oil and Gas Conservation (Montana)  

Broader source: Energy.gov [DOE]

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

36

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

37

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

38

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

39

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Former Corporation/Refiner Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2012 Antelope Refining LLC Garco Energy LLC 3/12 Douglas, WY 3,800 Delta Air Lines/Monroe Energy LLC ConocoPhillips Company 4/12 Trainer, PA 185,000 Phillips 66 Company ConocoPhillips Company 5/12 Belle Chasse, LA 252,000 Billings, MT 59,000 Ferndale, WA 101,000 Linden, NJ 238,000 Ponca City, OK 198,400 Rodeo, CA 120,200 Sweeny, TX 247,000 Westlake, LA 239,400 Wilmington, CA 139,000 Nustar Asphalt LLC (50% Nustar Energy LP and 50% Lindsay Goldberg LLC) Nustar Energy LP/Nustar Asphalt Refining LLC 9/12 Paulsboro, NJ 70,000 Savannah, GA 28,000 Carlyle Group/Philadelphia Energy Solutions Refining and Marketing LLC Sunoco Inc./Sunoco Inc. R&M

40

Primary and Secondary Distillates as Marine Fuel Oil  

Science Journals Connector (OSTI)

The component compositions of marine fuel oils satisfying the requirements of TU 38. ... were developed. Light gasoils replace standard diesel fuel in marine fuel oil. The demulsifiability of light and heavy ... ...

T. N. Mitusova; I. A. Pugach; N. P. Averina…

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The conversion of natural gas to liquid fuels using the Sasol Slurry Phase Distillate Process  

SciTech Connect (OSTI)

The natural gas and energy industries have long sought an economically attractive means of converting remote gas reserves into transportable products, such as fuels or petrochemicals. Applicable gas sources include: undeveloped gas fields in locations so remote that pipeline construction is prohibitively expensive and associated gas from oil wells that is either flared, which is becoming environmentally unacceptable in many parts of the world, or reinjected, which is costly. Projects which have been developed to exploit such feeds typically have converted the gas into one of the following: (1) liquefied natural gas (LNG)--the process plants for LNG production are expensive, need to be very large to be economically viable, have costly dedicated shipping requirements, and suffer from a limited market concentrated in few countries; (2) methanol--the market for petrochemical feedstock methanol is limited, for use as a fuel, further downstream processing is needed, for example in a methyl tertiary butyl ether (MTBE) or methanol to gasoline (MTG) unit. Clearly, there is a need for an alternative that produces high quality fuels or value added products that can be transported to far-off markets, while yielding an attractive return on the developers` investment. The Sasol Slurry Phase Distillate Process will fulfill this need.

Silverman, R.W. [Raytheon Engineers and Constructors, Cambridge, MA (United States); Hill, C.R. [Sastech, Johannesburg (South Africa)

1997-12-31T23:59:59.000Z

42

Oil & Gas Technology Center | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Research Oil & Gas Technology Center GE Global Research Oil & Gas Technology Center Mark Little, SVP and chief technology officer for GE, and Eric Gebhardt, vice president...

43

Oil and Gas Research| GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas Innovation...

44

Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance  

SciTech Connect (OSTI)

In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

Eaton, Scott J [ORNL; Bunting, Bruce G [ORNL; Lewis Sr, Samuel Arthur [ORNL; Fairbridge, Craig [National Centre for Upgrading Technology, Canada

2009-01-01T23:59:59.000Z

45

Demand growth to continue for oil, resume for gas this year in the U.S.  

SciTech Connect (OSTI)

Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

Beck, R.J.

1998-01-26T23:59:59.000Z

46

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation.  

E-Print Network [OSTI]

??Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation… (more)

Plazas Garcia, Joyce Vivia

2012-01-01T23:59:59.000Z

47

First Factor Impacting Distillate Prices: Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: World oil prices have tripled from their low point in December 1998 to August this year, pulling product prices up as well. But crude prices are expected to show a gradual decline as increased oil production from OPEC and others enters the world oil market. We won't likely see much decline this year, however, as prices are expected to end the year at about $30 per barrel. The average price of WTI was almost $30 per barrel in March, but dropped to $26 in April as the market responded to the additional OPEC production. However, prices strengthened again, averaging almost $32 in June, $30 in July, and $31 in August. The continued increases in crude oil prices indicate buyers are having trouble finding crude oil, bidding higher prices to obtain the barrels available.

48

International Oil and Gas Board International Oil and Gas Board...  

Open Energy Info (EERE)

Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

49

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network [OSTI]

Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

50

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

51

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

52

Liens for Oil and Gas Operations (Nebraska)  

Broader source: Energy.gov [DOE]

This section contains regulations concerning lien allowances made to operators of oil and gas operations.

53

State Oil and Gas Board State Oil and Gas Board Address Place Zip Website  

Open Energy Info (EERE)

State Oil and Gas Board Address Place Zip Website State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Tuscaloosa Alabama http www gsa state al us ogb ogb html Alaska Division of Oil and Gas Alaska Division of Oil and Gas W th Ave Suite Anchorage Alaska http dog dnr alaska gov Alaska Oil and Gas Conservation Commission Alaska Oil and Gas Conservation Commission W th Ave Ste Anchorage Alaska http doa alaska gov ogc Arizona Oil and Gas Commission Arizona Oil and Gas Commission W Congress Street Suite Tucson Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Little Rock Arkansas http www aogc state ar us JDesignerPro JDPArkansas AR Welcome html California Division of Oil Gas and Geothermal Resources California

54

U.S. oil, natural gas demand still climbing  

SciTech Connect (OSTI)

Steady economic growth and slightly lower prices will boost demand for petroleum and natural gas in the US again this year. Economic growth will lag behind last year`s level but will remain strong. Increased worldwide petroleum production should lower oil prices and encourage fuel-switching, which will suppress natural gas prices. In the US, total energy consumption will grow less rapidly than economic activity due to continuing improvement in energy efficiency. US petroleum product demand will move up to 1.5% in 1997 to average 18.45 million b/d. And natural gas consumption will be up 0.7% at 22.05 tcf. Despite the oil price increases of 1996, US crude oil production will continue to slide in 1997; Oil and Gas Journal projects a drop of 1.1%. US production has been falling since 1985, except for a modest increase in 1991 related to the Persian Gulf War. The rate of decline has diminished in the past 2 years, but US crude oil production has still fall at an average rate of about 226,000 b/d/year since 1985. The paper discusses the economy, total energy consumption, the oil supply, imports, stocks, refining, refining margins and prices, demand for motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products, and natural gas demand and supply.

Beck, R.J.

1997-01-27T23:59:59.000Z

55

State Oil and Gas Board State Oil and Gas Board Address Place...  

Open Energy Info (EERE)

Board State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Alabama http www gsa state al us ogb ogb html Alaska...

56

Oil and Gas Outlook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

57

Gross Input to Atmospheric Crude Oil Distillation Units  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 PADD 1 1,134 1,188 1,178 1,142 1,122 1,130 1985-2013 East Coast 1,077 1,103 1,080 1,058 1,031 1,032 1985-2013 Appalachian No. 1 57 85 98 84 90 97 1985-2013 PADD 2 3,151 3,087 3,336 3,572 3,538 3,420 1985-2013 Ind., Ill. and Ky. 2,044 1,947 2,069 2,299 2,330 2,266 1985-2013

58

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

59

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

60

Oil, Gas, and Mining Leases (Nebraska)  

Broader source: Energy.gov [DOE]

This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Interstate Oil and Gas Conservation Compact (Montana)  

Broader source: Energy.gov [DOE]

This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

62

Oil and Gas Air Heaters  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies for energy efficiency Vol.III-1-2 Oil and Gas Air Heaters1 Guangxiao Kou Hanqing Wang Jiemin Zhou Doctoral Ph.D Ph.D Candidate Professor Professor Hunan University of Technology Hunan...

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

63

OIL & GAS HISTORY 1 History in California  

E-Print Network [OSTI]

OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

64

Effects of mitigating fouling on the energy efficiency of crude-oil distillation  

SciTech Connect (OSTI)

An analysis was performed to determine the effects of fouling of the preheat train on the energy efficiency of a typical crude-distillation unit with a capacity of 100,000 bbl/day. A spreadsheet analysis was developed to calculate the thermal duty for each of the heat exchanger groups that heat the crude oil from ambient conditions to the distillation temperature. A fouling-rate model developed in a previous study was applied to calculate the fouling resistance as a function of time. Improvements in the energy efficiency were analyzed for different mitigation scenarios. The analysis shows economic incentives for new and improved techniques for mitigating fouling of the preheat train.

Panchal, C.B.; Huangfu, E.P.

2000-06-01T23:59:59.000Z

65

Division of Oil, Gas, and Mining Permitting  

E-Print Network [OSTI]

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

66

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

67

Extended end-point distillate fuels from shale oil by hydrotreating coupled with catalytic dewaxing  

SciTech Connect (OSTI)

It is generally accepted that shale oils derived by either surface or in situ retorting of western oil shale require relatively severe hydrotreatment as a consequence of their high oxygen, nitrogen and olefin contents. However, the hydrotreated syn crudes so produced typically possess pour points on the order of 20-30/sup 0/C which may require transport in heated pipelines. In addition distillates derived from the hydrotreated shale oil may also be unacceptable as jet and diesel fuels as a consequence of their poor low temperature fluidity characteristics. The authors report here a relatively simple process modification which overcomes these problems, i.e., addition of a shape-selective ZSM-5 dewaxing reactor in series with the conventional hydrotreating reactor. This process scheme is shown to be operative without interstage separation of light products from the hydrotreater including ammonia. Processing conditions for the dewaxing reactor are compatible with those of the hydrotreater. Surprisingly low levels of zeolite acidity are required for substantial pour point reduction. As a result of such processing, naphthas with octanes higher than those typically obtained by hydrocracking are produced in addition to a high yield of extended end point distillate which meets essentially all requirements for acceptable diesel fuel.

LaPierre, R.B.; Gorring, R.L.; Smith, R.L.

1986-03-01T23:59:59.000Z

68

Oil and Natural Gas Subsector Cybersecurity Capability Maturity...  

Broader source: Energy.gov (indexed) [DOE]

Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

69

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University relevant to the oil and gas industry. You will develop a versatile analytical, computational of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture

Henderson, Gideon

70

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network [OSTI]

2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

71

Conservation of Oil and Gas (Texas)  

Broader source: Energy.gov [DOE]

This legislation prohibits the production, storage, or transportation of oil or gas in a manner, in an amount, or under conditions that constitute waste. Actions which may lead to the waste of oil...

72

Oil and Gas General Provisions (Montana)  

Broader source: Energy.gov [DOE]

This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

73

Oil & Gas Research | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions |...

74

Gas and Oil (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Oil (Maryland) and Oil (Maryland) Gas and Oil (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the Department is required prior to the drilling of a well for exploration, production, or underground storage of oil or gas. An environmental assessment must be submitted along with the permit application, and the Department may deny permits that propose drilling which may pose a substantial threat to public safety or

75

Form:Federal Oil and Gas Statute | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Statute Jump to: navigation, search Federal Oil and Gas Statute This is the "Federal Oil and Gas Statute" form. To create a page with this form, enter the page name...

76

Application of High-Temperature Simulated Distillation to the Residuum Oil Supercritical Extraction Process in Petroleum Refining  

Science Journals Connector (OSTI)

......fractions from the residual oil supercritical...JOURNAL ARTICLE The gas chromatographic method...presented for refinery residual feed, deasphalted...fractions from the residual oil supercritical...fuels, gasoline, turbine (jet) fuels, diesel...high-value deasphalted gas oil (DAO) from......

Joe C. Raia; Dan C. Villalanti; Murugesan Subramanian; Bruce Williams

2000-01-01T23:59:59.000Z

77

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

78

Strategic Environmental Assessment in Norway's Offshore Oil and Gas.  

E-Print Network [OSTI]

??Strategic environmental assessment (SEA) is used as a policy tool in the management of offshore oil and gas. As offshore oil and gas exploration continues… (more)

Ohman, Tyra

2014-01-01T23:59:59.000Z

79

Common Products Made from Oil and Natural Gas | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Common Products Made from Oil and Natural Gas Common Products Made from Oil and Natural Gas Educational poster developed by the Office of Fossil Energy that graphically displays...

80

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...  

Broader source: Energy.gov (indexed) [DOE]

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Office of Environmental Management (EM)

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17,...

82

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Broader source: Energy.gov (indexed) [DOE]

Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and...

83

The role of interruptible natural gas customers in New England heating oil markets: A preliminary examination of events in January-February 2000  

SciTech Connect (OSTI)

This report provides an analysis of data collected from gas service providers and end-use customers in the six New England States and offers a preliminary assessment of the impact of interruptible gas customers on the distillate fuel oil market this past winter. Based on information collected and analyzed as of October 2000, the main findings areas follows: (1) For interruptible gas customers with distillate fuel oil as a backup fuel, their volume of interruptions was equivalent to about 1 to 2 percent of the total sales of distillate fuel oil in New England during January-February 2000. For the two peak weeks of gas supply interruptions, however, the equivalent volume of distillate fuel oil amounted to an estimated 3 to 6 percent of total sales in New England. There were no interruptions of the natural gas service during the 2-month period. (2) Purchases of distillate fuel oil by interruptible gas customers may have contributed somewhat to the spike in the price of distillate fuel oil in January-February 2000, especially during the peak weeks of gas interruptions. Nevertheless, other factors--a sudden drop in temperatures, low regional stocks of distillate fuels, and weather-related supply problems during a period of high customer demand--appear to have played a significant role in this price spike, as they have in previous spikes. (3) While this preliminary analysis suggests that interruptible natural gas service does not threaten the stability of the home heating oil market, several steps might be taken-without undermining the benefits of interruptible service--to reduce the potential adverse impacts of gas supply interruptions in times of market stress. Regardless of the magnitude of the impact of distillate fuel oil purchases by interruptible gas customers on Northeast heating oil markets, the threat of future heating oil price spikes and supply problems still remains. To help counter the threat, President Clinton in July 2000 directed Secretary Richardson to establish a heating oil component of the Strategic Petroleum Reserve in the Northeast, and 2 million barrels of heating oil are now stored in the reserve. Other possible policy options are outlined.

None

2000-11-01T23:59:59.000Z

84

Distillation of liquid fuels by thermogravimetry  

SciTech Connect (OSTI)

In this paper, design and operation of a custom-built thermogravimetric apparatus for the distillation of liquid fuels are reported. Using a sensitive balance with scale of 0.001 g and ASTM distillation glassware, several petroleum and petroleum-derived samples have been analyzed by the thermogravimetric distillation method. When the ASTM distillation glassware is replaced by a micro-scale unit, sample size could be reduced from 100 g to 5-10 g. A computer program has been developed to transfer the data into a distillation plot, e.g. Weight Percent Distilled vs. Boiling Point. It also generates a report on the characteristic distillation parameters, such as, IBP (Initial Boiling Point), FBP (Final Boiling Point), and boiling point at 50 wt% distilled. Comparison of the boiling point distributions determined by TG (thermogravimetry) with those by SimDis GC (Simulated-Distillation Gas Chromatography) on two liquid fuel samples (i.e. a decanted oil and a filtered crude oil) are also discussed in this paper.

Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

1996-12-31T23:59:59.000Z

85

Oil & Gas Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Research Research Oil & Gas Research Section 999 Report to Congress DOE issues the 2013 annual plan for the ultra-deepwater and unconventional fuels program. Read more DOE Signs MOU with Alaska New accord to help develop Alaska's potentially vast and important unconventional energy resources. Read more Methane Hydrate R&D DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates. Read more LNG Safety Research Report This Report to Congress summarizes the progress of DOE's LNG safety research Read more FE's Office of Oil & Natural Gas supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas. Resource/Safety R&D Hydraulic Fracturing & Shale Gas Research. Natural gas from shales has the

86

Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller  

E-Print Network [OSTI]

Abstract—This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance. Keywords—Fuzzy Logic controller, steam temperature, steam distillation, real time control. T I.

Nurhani Kasuan; Zakariah Yusuf; Mohd Nasir Taib; Mohd Hezri; Fazalul Rahiman; Nazurah Tajuddin; Mohd Azri; Abdul Aziz

87

Iran Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Iran Oil and Gas Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Country Iran Name Iran Oil and Gas Address Unit #16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. City Tehran, Iran Website http://www.iranoilgas.com/news Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development of modules for a web-based decision support tool that will be used by mid- and small-sized oil and gas exploration and production companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of oil and gas reserves in sensitive areas in the Fayetteville Shale Play in central Arkansas. This decision support tool will rely on creation of a database of existing exploration and production (E&P) technologies that are known to have low ecosystem impact. Performers University of Arkansas, Fayetteville, Arkansas

89

Oil and Gas Drilling Bit Tribology  

Science Journals Connector (OSTI)

A drilling bit is used in petroleum exploration to drill a wellbore through various layers of rock formations to access oil or natural gas resources. It is engineered...1). A roller cone drill bit is categorized ...

Dr. Chih Lin Ph.D.

2013-01-01T23:59:59.000Z

90

2013 Unconventional Oil and Gas Project Selections  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

91

Volatility in natural gas and oil markets  

E-Print Network [OSTI]

Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in ...

Pindyck, Robert S.

2003-01-01T23:59:59.000Z

92

Oil, Gas, and Metallic Minerals (Iowa)  

Broader source: Energy.gov [DOE]

Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

93

Oil and gas journal databook, 1987 edition  

SciTech Connect (OSTI)

This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

Not Available

1987-01-01T23:59:59.000Z

94

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

95

Feasibility study for the retrofitting of used oil re-refineries to the BETC solvent treatment/distillation process  

SciTech Connect (OSTI)

Federal policy encourages recycle of used oil, but requires that recycling be done in an environmentally sound manner. In order to encourage such recycling the Bartlesville Energy Technology Center of the US Department of Energy has developed the DOE/BETA solvent treatment/distillation re-refining process. The feasibility of retrofitting existing used oil re-refineries to the DOE/BETC process has been studied in this work. Twelve potential sites were chosen from almost 300 firms thought to be interested in re-refining technology. Three of these twelve sites have been recommended as prime candidates.

Weinstein, N.J.; Brinkman, D.W.

1980-09-01T23:59:59.000Z

96

Oil-Spill Identification by Gas Chromatography-Mass Spectrometry  

Science Journals Connector (OSTI)

...May-June research-article Articles Oil-Spill Identification by Gas Chromatography-Mass Spectrometry...the identification of a contaminant caused by the spilling of oil or oil products in water. A capillary gas chromatography (CGC......

A. Pavlova; D. Papazova

97

Oil and Natural Gas Subsector Cybersecurity Capability Maturity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural...

98

College of Law LLM in Oil and Gas Law  

E-Print Network [OSTI]

College of Law LLM in Oil and Gas Law New LLM in Oil and Gas Law launched to complement our other internationally acclaimed LLM degrees NEW Holman Fenwick Willan is proud to sponsor the LLM Prize in Oil and Gas impressive range of courses on maritime and commercial law, the new LLM in Oil and Gas Law will allow

Martin, Ralph R.

99

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

100

NETL: Oil & Natural Gas Projects - Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FCC Tail Gas olefins conversion to gasoline via catalytic distillation with aromatics  

SciTech Connect (OSTI)

The goal of every refiner is to continually improve profitability by such means as increasing gasoline production, increasing gasoline octane pool and in cases where fuel balance becomes a problem, decreasing refinery fuel gas production. A new refinery process is currently being developed which accomplish these goals. Chemical Research and Licensing Company (CR and L) developed Catalytic Distillation technology in 1978 to produce MTBE. They have since used the Catalytic Distillation technique to produce cumene. CR and L has further developed this technology to convert olefin gases currently consumed as refinery fuel, to high octane gasoline components. The process, known as CATSTILL, alkylates olefin gases such as ethylene, propylene and butylene, present in FCC Tail Gas with light aromatics such as benzene, toluene and xylene, present in reformate, to produce additional quantities of high octane gasoline components. A portable CATSTILL demonstration plant has been constructed by Brown and Root U.S.A., under an agreement with CR and L, for placement in a refinery to further develop data necessary to design commercial plants. This paper presents current data relative to the CATSTILL development.

Partin, E.E. (Brown and Root U.S.A., Inc., Houston, TX (US))

1988-01-01T23:59:59.000Z

102

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

312014 Next Release Date: 1302015 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

103

Scientific Visualization Applications in Oil & Gas Exploration and Production  

E-Print Network [OSTI]

Scientific Visualization Applications in Oil & Gas Exploration and Production SIBGRAPI 2009 #12 Property cross plots #12;Oil and gas production analysis and optimization SIBGRAPI 2009 Structural maps with property distributions Well schematics Production network Gas injection optimization Reservoir slices #12

Lewiner, Thomas (Thomas Lewiner)

104

Illinois DNR oil and gas division | Open Energy Information  

Open Energy Info (EERE)

DNR oil and gas division DNR oil and gas division Jump to: navigation, search State Illinois Name Illinois DNR oil and gas division City, State Springfield, IL Website http://dnr.state.il.us/mines/d References Illinois DNR Oil and Gas[1] The Illinois DNR Oil and Gas division is located in Springfield, Illinois. About The Oil and Gas Division is one of four divisions within the Illinois Department of Natural Resources, Office of Mines and Minerals. Created in 1941, the Division of Oil & Gas is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and enforces standards for the construction and operation of related production equipment and facilities. References

105

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumers (Thousand Gallons)","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway...

106

oil-gas-announcements | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil and Gas Announcements Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Oil Operators Gain Powerful,...

107

Oil shale retorting with steam and produced gas  

SciTech Connect (OSTI)

This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

Merrill, L.S. Jr.; Wheaton, L.D.

1991-08-20T23:59:59.000Z

108

Oil gas J report. Mexico. [Mexico  

SciTech Connect (OSTI)

Mexico's oil industry continues its rise, but it has not yet been able to ignite sluggish sectors of the economy nor bring national prosperity. Petroleos Mexicanos (PEMEX) has accomplished about everything an oil company can do. Total claimed proved reserves of oil, gas liquids, and gas (oil equivalent) climbed 12 billion bbl to 72,000 billion bbl in 1981. They could hit 80 billion bbl by year-end 1982. Production (oil, gas, and gas liquids) rose by half a million barrels per day to 3,125,000 bpd. With the proper market and mandate, PEMEX could top that in 1982. Exports grew 300,000 bpd in 1981, but may be flat in 1982, though not due to a lack of capacity to export. PEMEX lost its authority to set sales volumes after the first big discoveries. It has also lost its ability to negotiate prices. This report indicates the impact of economic factors on drilling and production. New finds and production statistics on existing fields are highlighted. Technologic progress also is documented.

Not Available

1982-08-30T23:59:59.000Z

109

Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California  

E-Print Network [OSTI]

which associate with oil and gas platforms offshoredamaging consequence of oil and gas development. The studycollection was done by oil and gas company personnel who

MBC Applied Environmental Sciences

1987-01-01T23:59:59.000Z

110

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

111

Prediction of ASTM Method D86 Distillation of Gasolines and Naphthas according to the Fugacity-Filmmodel from Gas Chromatographic Detailed Hydocarbon Analysis  

Science Journals Connector (OSTI)

......were provided by Dennis Sutton, Marathon Oil Company, TX. * Results of GC...were provided by Dennis Sutton, Marathon Oil Company, TX. Figure 6. D86 distillation...were provided by Dennis Sutton, Marathon Oil Company, TX). Five ASTM D86......

Walter Spieksma

1998-09-01T23:59:59.000Z

112

FE Oil and Natural Gas News  

Broader source: Energy.gov (indexed) [DOE]

oil-natural-gas-news Office of Fossil Energy Forrestal oil-natural-gas-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas http://energy.gov/articles/energy-department-authorizes-additional-volume-proposed-freeport-lng-facility-export Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas

113

Burning Behaviour of Heavy Gas Oil from the Canadian Oil Sands.  

E-Print Network [OSTI]

??This work presents the first systematic investigation and characterisation of the burning behaviour of untreated heavy gas oil from the Canadian oil sands, an intermediate… (more)

Mulherin, Patrick

2014-01-01T23:59:59.000Z

114

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma DE-FC26-00NT15125 Project Goal The Hunton formation in Oklahoma has some unique production characteristics, including large water production, initially decreasing gas-oil ratios, and excellent dynamic continuity—but poor geological continuity. The overall goal of the project is to understand the mechanism of gas and oil production from the Hunton Formation in Oklahoma so that similar reservoirs in other areas can be efficiently exploited. An additional goal is to develop methodologies to improve oil recovery using secondary recovery techniques. Performers University of Tulsa, Tulsa, OK Marjo Operating Company, Tulsa, OK University of Houston, Houston, TX Orca Exploration, Tulsa, OK

115

OIL AND NATURAL GAS SUBSECTOR CYBERSECURITY CAPABILITY MATURITY...  

Energy Savers [EERE]

OIL AND NATURAL GAS SUBSECTOR CYBERSECURITY CAPABILITY MATURITY MODEL (ONG-C2M2) Version 1.1 February 2014 Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model...

116

Form:Federal Oil and Gas Regulation | Open Energy Information  

Open Energy Info (EERE)

Regulation Jump to: navigation, search Federal Oil and Gas Regulation This is the "Federal Oil and Gas Regulation" form. To create a page with this form, enter the page name below;...

117

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed study on...

118

16 TAC 3 - Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

TAC 3 - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract...

119

WSDNR Oil and Gas Forms | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: WSDNR Oil and Gas FormsLegal Abstract The Washington State...

120

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...oil and natural gas wells passing through drinking-water aquifers (1–4). In PNAS, Ingraffea et al. (5) examine one of...Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon...

Robert B. Jackson

2014-01-01T23:59:59.000Z

122

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

123

Second AEO2014 Oil and Gas Working Group Meeting Summary  

Gasoline and Diesel Fuel Update (EIA)

TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert...

124

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

125

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

126

The Challenge of Producing Oil and Gas in Deep Water  

Science Journals Connector (OSTI)

...institutions (Joides). The oil industry has drilled controlled...major unexplored frontier for oil and gas. The paper emphasizes...engineering geology natural gas offshore petroleum production 1977 06...1981 The challenge of producing oil and gas in deep water van Eek...

1978-01-01T23:59:59.000Z

127

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD  

E-Print Network [OSTI]

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD INFRASTRUCTURE UNDER COMPLEX FISCAL Pittsburgh, PA 15213 Abstract The optimal development planning of offshore oil and gas fields has received development planning. Keywords Multiperiod Optimization, Planning, Offshore Oil and Gas, MINLP, MILP, FPSO

Grossmann, Ignacio E.

128

Aspects of seismic reflection prospecting for oil and gas  

Science Journals Connector (OSTI)

......filled with water, oil or gas. Colour graphics work stations are just being introduced...of sea streamers, Oil and Gas J., 70 (48), 102-109...filled with water, oil or gas. Colour graphics work stations are just being introduced......

P. N. S. O'Brien

1983-07-01T23:59:59.000Z

129

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

130

Oil and Gas Production Optimization; Lost Potential due to Uncertainty  

E-Print Network [OSTI]

Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

Johansen, Tor Arne

131

Cefas contract report: -SLEA2 Oil and Gas Fisheries Risk  

E-Print Network [OSTI]

Cefas contract report: - SLEA2 Oil and Gas Fisheries Risk Assessment Advice Updated Cefas: Oil and Gas Fisheries Risk Assessment Advice Submitted to: Department of Energy and Climate Change Recommendations for Spawning Finfish ­ English & Welsh Blocks Oil and Gas Fisheries Risk Assessment Advice Updated

132

Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas  

Science Journals Connector (OSTI)

If observed oil and gas field size distributions are obtained ... should approximate that of the parent population of oil and gas fields. However, empirical evidence ... the observable size distributions change w...

Lawrence J. Drew; Emil D. Attanasi; John H. Schuenemeyer

1988-11-01T23:59:59.000Z

133

Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils  

E-Print Network [OSTI]

Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

Abdullayev, Azer

2009-06-02T23:59:59.000Z

134

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

135

OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,  

E-Print Network [OSTI]

About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

Dixon, Juan

136

Pilot-scale used oil re-refining using a solvent treatment/distillation process  

SciTech Connect (OSTI)

Approximately 1000 gallons of used automotive lubricating oil were collected from service stations in the Bartlesville region. This oil was then processed using the patented technology developed by the Bartlesville Energy Technology Center (BETC) in earlier work. The resulting lube oil basestock was tested by both physical and chemical analytical techniques and rigorous engine sequence tests. The end product was a high-quality lubricating oil which passed all requirements for SE service. Analyses of the oil are presented at the end of each stage of processing to demonstrate the effects of that phase. 7 figures, 18 tables.

Cotton, F.O.; Brinkman, D.W.; Reynolds, J.W.; Goetzinger, J.W.; Whisman, M.L.

1980-01-01T23:59:59.000Z

137

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil  

E-Print Network [OSTI]

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

Henderson, Gideon

138

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

139

Colorado Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Commission Oil and Gas Conservation Commission Name Colorado Oil and Gas Conservation Commission Place Denver, Colorado References COGCC Website[1] This article is a stub. You can help OpenEI by expanding it. Colorado Oil and Gas Conservation Commission is an organization based in Denver, Colorado. The mission of the Colorado Oil and Gas Conservation Commission (COGCC) is to foster the responsible development of Colorado's oil and gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public health, safety and welfare The prevention of waste The protection of mineral owners' correlative rights The prevention and mitigation of adverse environmental impacts

140

Interstate Oil and Gas Conservation Compact (Multiple States) | Department  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Alabama Program Type Environmental Regulations Provider Interstate Oil and Gas Compact Commission The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health, safety and the environment. The Commission serves as the collective voice of member governors on oil and gas issues and advocates states' rights to govern petroleum resources within their borders. The Commission formed the Geological CO2 Sequestration Task Force, which

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

142

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf E&P Focus Newsletter Banner The oil and gas exploration and production R&D newsletter, E&P Focus, highlights the latest developments in R&D being carried out by NETL. E&P Focus promotes the widespread dissemination of research results among all types of oil and gas industry stakeholders: producers, researchers, educators, regulators, and policymakers. Each issue provides up-to-date information regarding extramural projects managed under the Strategic Center for Natural Gas and OilÂ’s traditional oil and gas program, the EPAct Section 999 Program administered by the Research Partnership to Secure Energy for America (RPSEA), and in-house oil and gas research carried out by NETLÂ’s Office of Research and Development.

143

NETL: Oil and Natural Gas: Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deepwater Technology Deepwater Technology Research Project Summaries Reference Shelf O&G Document Archive Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industryÂ’s most advanced engineering accomplishments. NETL is funding research to catalyze further advances that can help Gulf of Mexico discoveries progress to production quickly and safely, and that can help maximize oil and gas recovery from fields that are currently at the edge of industry capabilities. Many of these efforts are focused on subsea production

144

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

145

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network [OSTI]

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

146

Oil/gas separator for installation at burning wells  

DOE Patents [OSTI]

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

147

Oil/gas separator for installation at burning wells  

SciTech Connect (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

148

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Company Oil and Gas Company Address Place Zip Website Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat Petroleum Company Damascus Syria http www afpc sy com new history htm Dolphin Energy Dolphin Energy Abu Dhabi Trade Center Building Abu Dhabi United Arab Emirates http www dolphinenergy com Public default index htm ExxonMobil ExxonMobil Las Colinas Boulevard Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United Kingdom W1S LG http www gulfsands com s Home asp Kuwait Petroleum Corporation Kuwait Petroleum Corporation Safat Kuwait http www kpc com kw default aspx

149

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use  

E-Print Network [OSTI]

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

Bertini, Robert L.

150

Faculty of MANAGEMENT Alberta Oil & Gas Company1  

E-Print Network [OSTI]

Faculty of MANAGEMENT Alberta Oil & Gas Company1 Daphne Jackson, operations manager for Alberta Oil "unitize") which will then be operated by a single organization, maximizing oil production while reducing expense and environmental impacts. Oilfield exploration and development An underground deposit of oil

Nakayama, Marvin K.

151

International Oil and Gas Exploration and Development 1991  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Oil and Gas Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, D.C. 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration International Oil and Gas Exploration and Development 1991 iii Contacts International Oil and Gas Exploration and Development 1991 was prepared by the Energy Information Administration (EIA), Office of Oil and Gas, Reserves and Natural Gas Division, Reserves and Production Branch.

152

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Natural Gas Projects & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of CO2 Last Reviewed 12/24/2013 DE-FE0000880 Goal The goal of this project is to enhance the Risk Based Data Management System (RBDMS) by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery, reporting, stripper wells, and other operations to enhance the protection of ground water resources. The FracFocus website will be maintained to ensure transparent reporting of HF additives. A

153

Texas--State Offshore Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

154

Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

155

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

156

Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

157

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

158

Process Balances of Vegetable Oil Hydrogenation and Coprocessing Investigations with Middle-Distillates  

Science Journals Connector (OSTI)

The hydrogenation of vegetable oil is a promising technology for the production of highly valuable diesel components. ... Finding a sustainable energy supplement as well as the need for carbon dioxide reduction leads to the necessity to integrate more and more renewable energy sources into the transportation fuel markets. ... A possibility for introduction of hydrogenated vegetable oils on the market is the coprocessing in conventional hydrotreater and hydrocracker units in a refinery. ...

Matthias Endisch; Thomas Kuchling; Jan Roscher

2013-03-19T23:59:59.000Z

159

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

160

NETL: News Release - NETL's Oil and Natural Gas Program Provides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

24, 2007 24, 2007 Oil and Natural Gas Program Uses Stranded Gas to Revive Oil Production Project Generates Energy from Waste Gas to Restore Marginal Fields WASHINGTON, DC - A U.S. Department of Energy (DOE) project is turning "stranded" natural gas at marginal, or low-production, oil fields into fuel for distributed electric power. The breakthrough is bringing previously idle oil fields back into production and could boost domestic oil production by some 28 million barrels per year within the next 10 years, helping to reduce the Nation's dependence on foreign oil sources. Stranded gas is natural gas that is uneconomic to produce for one or more reasons: the energy, or Btu content, may be too low; the gas may be too impure to use; or, the volume may be too small to warrant a pipeline connection to the gas infrastructure. Non-commercial gas is sometimes produced along with oil, becoming an environmental liability. This unwanted byproduct of oil production has become a major problem in California oil fields where producers have been forced to abandon sites early, leaving valuable reserves of domestic oil untapped.

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

162

Oil and gas resources in the West Siberian Basin, Russia  

SciTech Connect (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

163

Oil and Gas Production (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

164

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

165

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

166

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

167

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

168

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

169

Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Pacific Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Pacific by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Pacific "} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

170

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges… (more)

Overĺ, Lars

2010-01-01T23:59:59.000Z

171

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

172

Robust Offshore Networks for Oil and Gas Facilities :.  

E-Print Network [OSTI]

??Offshore Communication Networks utilize multiple of communication technologies to eradicate any possibilities of failures, when the network is operational. Offshore Oil and Gas platforms and… (more)

Maheshwari, D.

2010-01-01T23:59:59.000Z

173

Costs of Crude Oil and Natural Gas Wells Drilled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

174

State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search State Oil and Gas Board and Commission sites are related to oil and gas production, well sites, and any other relevant data and information. The Interstate Oil and Gas Compact Commission is a multi-state government agency that promotes the quality of life for all Americans. This list is where information for OpenEI pages is held, and also, in most cases, where oil and gas data can be derived, open to the public. In many cases, EIA may hold the data related to Oil and Gas. Also, some datasets may only contain a state report pdf, in which case the data would need to be pulled out of the pdf and put into an excel or xml. Here are the states: State link Information Contact info Alabama Alabama Oil and Gas Board The State Oil and Gas Board of Alabama is a regulatory agency of the State of Alabama with the statutory charge of preventing waste and promoting the conservation of oil and gas while ensuring the protection of both the environment and the correlative rights of owners. The Board is granted broad authority in Alabama oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. 420 Hackberry Lane Tuscaloosa, AL 35401 205.349.2852

175

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2012 Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Nine new research projects aimed...

176

California Department of Conservation, Division of Oil, Gas,...  

Open Energy Info (EERE)

Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Place: Sacramento, California Coordinates: 38.5815719,...

177

Lean Manufacturing in the Oil and Gas Industry .  

E-Print Network [OSTI]

??This research aims to investigate the lean production tools and techniques in the oil and gas industry with a focus on the oilfield services industry.… (more)

Sakhardande, Rohan

2011-01-01T23:59:59.000Z

178

NETL: Oil & Natural Gas - Energy Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil and Natural Gas Supply Oil and Natural Gas Supply Energy Infrastructure NETL's Energy Infrastructure and Security Research Group (EISRG) has a key supporting role in emergency preparedness and response. The EISRG develops high-level analytical visualizations that are used to study critical U.S. energy infrastructures and their inter-relationships during natural and manmade emergencies. By deploying resources and providing vital information in a timely manner, EISRG improves the ability of government agencies and the energy sector to prevent, prepare for, and respond to hazards, emergencies, natural disasters, or any other threat to the nation's energy supply. NETL coordinated and provided information on an ongoing basis during every major landfall event of the 2005 hurricane season , including Hurricanes Katrina and Rita, as well as during Hurricanes Charley, Frances, and Ivan in 2004. NETL also has participated in exercises to prepare for events with varying degrees of impact, such as pipeline disruptions, local power outages, and transportation interruptions, such as the 2005 Powder River Basin rail service suspension, which resulted in curtailment of coal deliveries to major customers over a six-month period.

179

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

180

Oil and Gas- Leases to remove or recover (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Category:Federal Oil and Gas Regulations | Open Energy Information  

Open Energy Info (EERE)

Add a new Federal Oil and Gas Regulation This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:FederalOilandGasReg...

182

Oil and Gas CDT Structural and depositional controls on shale gas resources in  

E-Print Network [OSTI]

Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK, #12;environmental geoscience for oil and gas) are all possibles. References & Further Reading https), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland

Henderson, Gideon

183

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

184

Oil and Gas Program (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Department Of Environment and Conservation The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas Board, composed of the commissioner of environment and conservation or the commissioner's designee, who shall act as chair, the designee of the commissioner of

185

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and 1997  

Gasoline and Diesel Fuel Update (EIA)

Cheryl Cheryl J. Trench, an independent petroleum analyst, contributed to this article. Unless otherwise referenced, data in this article are taken from the following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208; Petroleum Supply Monthly, DOE/EIA-0109; Petroleum Supply Annual, DOE/EIA-0340; Petroleum Marketing Monthly, DOE/EIA-0380; Short-Term Energy Outlook, DOE/EIA-0202; and Short-Term Integrated Forecasting System. 1996 Factor 1997 Record low Previous end-winter stocks In the historical range High Prevailing prices $5/barrel lower (WTI) Falling prices Price expectations (overall) Stable prices Falling prices Price expectations (heating oil) Seasonally higher prices Strong growth Off-season demand Weaker growth Europe out-bidding US World competition for heating oil Europe's markets calm Untested; Trainor

186

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network [OSTI]

Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

187

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

188

IFP --Oil & Gas Science and Technology --(Script : 1er specimen) --1 --Oil & Gas Science and Technology --rev. IFP, Vol. xx (2009), No X, pp. 00-00  

E-Print Network [OSTI]

IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 1 -- Oil & Gas Science2010 Author manuscript, published in "Oil & Gas Science and Technology - Rev. IFP, 65, 3 (2010) 435-444" DOI : 10.2516/ogst/2010007 #12;IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 2

Boyer, Edmond

189

Aspects of seismic reflection prospecting for oil and gas  

Science Journals Connector (OSTI)

......1942. The production of elastic waves...1942. The production of elastic waves...prospecting for oil and gas P. N. s.O'Brien...long as the real cost of digital computers...present; in coal production planning they...exploration for oil and gas, which is the...exploration - costs several millions......

P. N. S. O'Brien

1983-07-01T23:59:59.000Z

190

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network [OSTI]

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

191

Staff Listing - Office for Oil and Gas Global Security and Supply...  

Broader source: Energy.gov (indexed) [DOE]

Staff Listing - Office for Oil and Gas Global Security and Supply Staff Listing - Office for Oil and Gas Global Security and Supply Director of the Office for Oil and Gas Global...

192

Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal Abstract Section 226 - Lease of Oil and Gas Lands in Subchapter IV: Oil and Gas under Title 30: Mineral Lands and...

193

Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.  

E-Print Network [OSTI]

's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

194

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network [OSTI]

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

195

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

196

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

009 "Public Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’s

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

197

UK Oil and Gas Collaborative Doctoral Training Centre For applications to the University of Aberdeen  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre For applications. IMPORTANT In section 2 Programme The Oil and Gas projects are all being BOX: PUT Oil and Gas CDT and the name of the project you're interested

Levi, Ran

198

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Solicitations Project Summaries Publications News Releases Software/Databases CDs/DVDs EOR Illustrations Welcome to the NETL Oil & Natural Gas Technologies Reference Shelf. Recently released and in-demand reference materials are available directly from this page using the links below. Online Database of Oil and Natural Gas Research Results Now Available The Knowledge Management Database (KMD) provides easy access to the results of nearly four decades of research supported by the Office of Fossil EnergyÂ’s Oil and Natural Gas Program. The database portal provides access to content from dozens of CDs and DVDs related to oil and natural gas research that FE's National Energy Technology Laboratory has published over the years. It

199

Regulation of Oil and Gas Resources (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Department of Environmental Protection It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment of the rights of landowners, producers, and interested parties; and to safeguard the health,

200

Outlook for U.S. shale oil and gas  

Gasoline and Diesel Fuel Update (EIA)

shale oil and gas shale oil and gas IAEE/AEA Meeting January 4, 2014 | Philadelphia, PA By Adam Sieminski, EIA Administrator Key insights on drilling productivity and production trends Adam Sieminski, IAEE/AEA January 4, 2014 2 * The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources * Six tight oil and shale gas plays taken together account for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth over the last 2 years * Higher drilling efficiency and new well productivity, rather than an increase in the rig count, have been the main drivers of recent production growth * Steep legacy production decline rates are being offset by growing

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make “one-size-fits-all” programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

202

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 DE-NT0005683 Goal The goal of this project is to develop a general scientific, engineering, and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing solutions to economic, environmental, and cultural concerns. Performers University of Alaska Fairbanks Systems, Fairbanks, AK 99775-7880 Texas A&M University, College Station, TX 77843-3136 PBS&J, Inc., Marietta, GA 30067 Background AlaskaÂ’s North Slope hosts a phenomenal wealth of natural, cultural, and economic resources. It represents a complex system, not only in terms of its biophysical system and global importance, but also from the standpoint

203

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

204

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in polar latitudes of Alaska over a very significant part of each year. With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic and subarctic regions. The general reasoning behind ice road construction is

205

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FFf Task 222.01.01 FFf Task 222.01.01 ADDENDUM REPORT Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOE/NETL-2009/1385 April 2009 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe probably owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

206

Chapter 7 - General Regularities in Oil and Gas Distribution  

Science Journals Connector (OSTI)

Publisher Summary The chapter provides a detailed geological description of the South Caspian Sea area, focusing on the major characteristics and patterns found in the distribution of oil and gas producing areas of the region. The chapter has divided the South Caspian Sea into three major areas: the Azerbaijan portion, the Turkmenistan portion, and the areas adjacent to the South Caspian basin. The chapter analyzes these areas, focusing on various topics related to the geological aspect of oil and gas production such as issues relating to depositional environments, oil and gas traps, lithology and properties of reservoir rocks, composition and properties of argillaceous rocks, effects of pressure and temperature, effects of abnormally high formation pressures, distribution of oil reserves, oil composition and its properties, properties of natural gas, the formation waters related properties, oil and gas migration and accumulation, and the potential of very deep oil and gas bearing deposits. The chapter also highlights the areas worthy of future exploration to find oil and gas reserves.

Leonid A. Buryakovsky; George V. Chilingar; Fred Aminzadeh

2001-01-01T23:59:59.000Z

207

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

208

Oil and Gas Wells: Regulatory Provisions (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or manager, to use or permit the use of gas by direct well pressure. Any person or persons, firm, company or corporation violating any of the provisions of this act shall be deemed guilty of a misdemeanor, and upon conviction shall be fined in any

209

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

210

Oil production from thin oil columns subject to water and gas coning  

E-Print Network [OSTI]

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

2012-06-07T23:59:59.000Z

211

EIA - Assumptions to the Annual Energy Outlook 2010 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2010 Oil and Gas Supply Module Figure 8. Natural Gas Transmission and Distribution Model Regions. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas natural gas exploration and development on a regional basis (Figure 7). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2010), (Washington, DC, 2010). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural

212

Investing in Oil and Natural Gas A Few Key Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40 $60 $80 $100 $120 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 WTI $/barrel Annual averages Large Gulf of Mexico Facility Costs by Segment Avg $28.31 Avg $59.13 Source: PFC Energy Investing in Oil and Gas| PFC Energy| Page 4 Near term Spending Cuts will be Significant

213

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

214

The Relationship Between Crude Oil and Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Administration, Office of Oil and Gas, October 2006 Administration, Office of Oil and Gas, October 2006 1 The Relationship Between Crude Oil and Natural Gas Prices by Jose A. Villar Natural Gas Division Energy Information Administration and Frederick L. Joutz Department of Economics The George Washington University Abstract: This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price. Typically, this relationship has been approached using simple correlations and deterministic trends. When data have unit roots as in this case, such analysis is faulty and subject to spurious results. We find a cointegrating relationship relating Henry Hub prices to the WTI and trend capturing the relative demand and supply effects over the 1989-through-2005 period. The dynamics of the relationship

215

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil and Natural Gas Proved Reserves With Data for 2013 | Release Date: December 4, 2014 | Revision: December 19, 2014 Next Release Date: December 2015 | full report Previous...

216

Oil and Gas Conservation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (South Dakota) Conservation (South Dakota) Oil and Gas Conservation (South Dakota) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and the SD Codified Laws contain provisions pertaining to well testing, classification, metering, operation, and spacing. Additional regulations are contained in the SD

217

The Oil and Gas Journal databook, 1986 edition  

SciTech Connect (OSTI)

This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

Not Available

1986-01-01T23:59:59.000Z

218

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

219

Oil and Gas Conservation (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (Nebraska) Conservation (Nebraska) Oil and Gas Conservation (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the greatest ultimate

220

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

222

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect (OSTI)

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

223

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2013" "Contents" "Table 1: U.S. proved reserves, and reserves changes, 2012-2013" "Table 2: Principal...

224

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deep Trek Re-configurable Processor for Data Acquisition Deep Trek Re-configurable Processor for Data Acquisition DE-FC26-06NT42947 Goal The goal of this project is to develop and qualify a Re-configurable Processor for Data Acquisition (RPDA) by packaging previously developed components in an advanced high-temperature Multi-Chip Module (MCM), and by developing configuration software that may be embedded within the RPDA to link data-acquisition system Analog Front-Ends to digital system busses. Performer Honeywell International Inc., Plymouth, MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components from which such systems are built will not operate reliably at the high temperatures encountered in deep wells. As well depths increase beyond 15,000 feet, temperatures above 200°C are relatively common. In some cases the target reservoir temperature may be as high as 300°C.

225

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

226

Pricey Oil, Cheap Natural Gas, and Energy Costs  

E-Print Network [OSTI]

Historically, oil and natural gas prices have moved hand in hand. However, in the past few years, while oil prices climbed to near record peaks, natural gas prices fell to levels not seen since the mid-1970s as a result of new hydraulic fracturing technology. U.S. consumer energy expenditures are still mainly driven by oil prices, so household energy bills got little relief as natural gas prices fell. Moreover, even though the United States has trimmed crude oil imports, they still equal a substantial share of gross domestic product. The price of oil approached record high levels earlier this year. At the same time though, natural gas prices reached their lowest level since the mid-1970s, as Figure 1 shows. How has this price divergence affected U.S. consumer energy costs? Have households and businesses moved away from expensive oil to cheaper natural gas to meet their energy needs? In this Economic Letter, we examine the extent to which U.S. consumers already have benefited by substituting natural gas for oil, and how much they potentially stand to gain if they were to continue to do so. We also analyze recent trends in domestic crude oil production and imports in order to grasp how much the United States pays foreign producers for oil. Oil prices neared historically high levels earlier this year. From December 2008 to their recent peak in March 2012, Brent crude prices more than tripled. This included a 28 % jump during the first four months of 2011, when oil prices responded to Middle East oil supply disruptions by climbing to $124 per barrel. It also includes a 17 % increase in the first three months of 2012. Since that peak, crude oil prices have dropped 25%. But they are still up 137 % from their most recent low in December 2008. By contrast, since January 2010, natural gas fell from $5.67 per thousand cubic feet to $2.42, or 57%, thanks in large part to the growing use of hydraulic fracturing technology. This divergence in oil and natural gas prices is unprecedented in magnitude and duration. Moreover, it is expected to persist throughout the year, according to prices in the futures market.

Hale; Fernanda Nechio

2012-01-01T23:59:59.000Z

227

Oil and stock market activity when prices go up and down: the case of the oil and gas industry  

Science Journals Connector (OSTI)

We examine the asymmetric effects of daily oil price changes on equity returns, market betas, oil betas, return variances, and trading volumes for the US oil and gas industry. The responses of stock returns assoc...

Sunil K. Mohanty; Aigbe Akhigbe…

2013-08-01T23:59:59.000Z

228

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

229

Arizona Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Commission Oil and Gas Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission State Arizona Name Arizona Oil and Gas Commission Address 416 W. Congress Street, Suite 100 City, State Tucson, Arizona Zip 85701 Website http://www.azogcc.az.gov/ Coordinates 32.221642°, -110.977439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221642,"lon":-110.977439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

231

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and delivered remarks to the Turkmenistan Industrial Oil and Gas Exhibition. Secretary Bodman highlighted the role of international investment in developing Turkmenistan's vast resources and expanding infrastructure. He also discussed the importance of establishing a stable and transparent

232

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Broader source: Energy.gov (indexed) [DOE]

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

233

Oil and Gas Field Code Master List - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Field Code Master List Oil and Gas Field Code Master List With Data for 2012 | Release Date: May 8, 2013 | Next Release Date: April 2014 Previous Issues Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2012 Definition of a Field Afield is defined as "an area consisting of a single reservoir ormultiple reservoirs all grouped on, or related to, the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both." More › About the Field Code Master List Related Links

234

Bahrain National Gas and Oil Authority | Open Energy Information  

Open Energy Info (EERE)

Bahrain National Gas and Oil Authority Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Country Bahrain Name Bahrain National Gas and Oil Authority Address 1435 Manama-Bahrain City Manama, Bahrain Website http://www.noga.gov.bh/en/defa Coordinates 26.231155°, 50.5705391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.231155,"lon":50.5705391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Category:Federal Oil and Gas Statutes | Open Energy Information  

Open Energy Info (EERE)

Statutes Statutes Jump to: navigation, search Add a new Federal Oil and Gas Statute You need to have JavaScript enabled to view the interactive timeline. Further results for this query.DECADEFederal Oil and Gas Royalty Simplification and Fairness Act of 19961996-01-010Year: 1996 Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)1987-01-010Year: 1987 Federal Oil and Gas Royalty Management Act of 19821982-01-010Year: 1982 Indian Mineral Development Act of 19821982-01-010Year: 1982 Federal Land Policy and Management Act of 19761976-01-010Year: 1976 Mining and Minerals Policy Act of 19701970-01-010Year: 1970 Mineral Leasing Act for Acquired Lands of 19471947-01-010Year: 1947 Indian Mineral Leasing Act of 19381938-01-010Year: 1938 Mineral Leasing Act of 19201920-01-010Year: 1920

236

12th Annual Turkmenistan International Oil and Gas Exhibition | Department  

Broader source: Energy.gov (indexed) [DOE]

2th Annual Turkmenistan International Oil and Gas Exhibition 2th Annual Turkmenistan International Oil and Gas Exhibition 12th Annual Turkmenistan International Oil and Gas Exhibition November 15, 2007 - 5:05pm Addthis Remarks as Prepared for Secretary Bodman Good morning ladies and gentlemen. I'm very pleased to be here with you today. Congratulations to our hosts on what appears to be the great success of this 12th annual Turkmenistan International Oil and Gas Exhibition. I understand that this year, for the first time ever, TIOGE is over-subscribed. This shouldn't surprise anyone. World demand for energy will increase by more than 50 percent over the next 25 years, requiring all of us to find significant new supplies and suppliers of energy. An astounding $22 trillion of new investment will be needed between now and 2030 to meet this expected demand.

237

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

238

Oil and Gas Environmental Review and Approval Processes (New Brunswick,  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Environmental Review and Approval Processes (New Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) < Back Eligibility Commercial Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State New Jersey Program Type Environmental Regulations Provider New Brunswick Natural Resources Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact Assessment (EIA) process. The process will identify potential environmental impacts at the early stages before a project is implemented so that negative environmental impacts can be avoided.

239

Assessment of Eagle Ford Shale Oil and Gas Resources  

E-Print Network [OSTI]

, and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

Gong, Xinglai

2013-07-30T23:59:59.000Z

240

Montana Oil and Natural Gas Production Tax Act (Montana)  

Broader source: Energy.gov [DOE]

The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Outlook for U.S. shale oil and gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

242

The U.S. Oil and Natural Gas Production Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

243

Oil and gas entrapment, Louisiana shelf, offshore Gulf Coast region  

SciTech Connect (OSTI)

Oil and gas accumulations in the Louisiana offshore are caused by vertical hydrocarbon migration. Source beds for both thermal gas and oil lie considerably deeper than reservoirs. The required vertical pathways are steeply dipping faults and salt structures (ridges and diapirs). Faults and salt structures indicate the continuing presence of rift structures that began along a normal passive continental margin during the Pennsylvanian. Tectonic trends are northeast, northwest, north, and west-east; they follow well-established regional stress systems. Listric and growth faults commonly are too shallow for vertical hydrocarbon migration and require connection with vertical faults. Vertical oil and gas migration is predictable in its directions. The underlying geological, geophysical, and geochemical processes are understood and are not different from such processes in other productive basins. Secondary salt layers at shallower levels cause interruptions of vertical oil and gas migration; at the same time these interruptions seem to indicate a large future exploration potential on the Louisiana shelf.

Pratsch, J.C.

1989-09-01T23:59:59.000Z

244

Oman Ministry of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Oman Ministry of Oil and Gas Oman Ministry of Oil and Gas Jump to: navigation, search Logo: Oman Ministry of Oil and Gas Country Oman Name Oman Ministry of Oil and Gas Address Al-Khuwair, Ministry Streets, Opposite Sultan Qaboos Street City Muscat Website http://www.mog.gov.om/english/ Coordinates 23.6138199°, 58.5922413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.6138199,"lon":58.5922413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling...

246

Form:Oil and Gas Company | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Company" form. To create a page with this form, enter the page name below; if a page with that name already exists, you will be sent to a form to edit that page. Create...

247

Oil and Natural Gas Program Commericialized Technologies and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technology Laboratory (NETL) works to ensure that domestic natural gas and oil can remain part of the U.S. energy portfolio for decades to come. Research focused on...

248

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationÂ’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

249

A study of water driven oil encroachment into gas caps  

E-Print Network [OSTI]

A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS LIBRARY A S I COLLEGE OF TEXAS A Thesis By HARLAN J. RITCH ~ ~ ~ Submitted to the Graduate School oi' the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May, 1958 Major Subject: Petroleum Engineering A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS A Thesis By HARLAN J. RITCH Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ritch, Harlan J

1958-01-01T23:59:59.000Z

250

Recovery of oil from fractured reservoirs by gas displacement  

E-Print Network [OSTI]

RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

Unneberg, Arild

2012-06-07T23:59:59.000Z

251

A Survey of Inputs to the North Sea Resulting from Oil and Gas Developments [and Discussion  

Science Journals Connector (OSTI)

...annual inputs from the offshore oil and gas exploration and...of fresh, unweathered oil rapidly enters otherwise uncontaminated offshore sediments, producing...remain little affected by offshore oil and gas developments...

1987-01-01T23:59:59.000Z

252

Oil & Gas Tech Center Breaks Ground in Oklahoma | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Reasons Why We're Excited about the New Oil & Gas Technology Center 10 Reasons Why We're Excited about the New Oil & Gas Technology Center Michael Ming 2014.05.12 At the Oil &...

253

UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO  

E-Print Network [OSTI]

UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO FOR GAS CONDENSATE AND VOLATILE OIL RESERVOIRS. In this work, we develop a new approach to calculate oil-gas ratio (Rv) by matching PVT experimental data laboratory analysis of eight gas condensate and five volatile oil fluid samples; selected under a wide range

Fernandez, Thomas

254

Low gas-liquid ratio foam flooding for conventional heavy oil  

Science Journals Connector (OSTI)

The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liqu...

Jing Wang; Jijiang Ge; Guicai Zhang; Baodong Ding; Li Zhang…

2011-09-01T23:59:59.000Z

255

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil and Natural Gas News Oil and Natural Gas News FE Oil and Natural Gas News RSS November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. August 23, 2013 DOE and the Bureau of Safety and Environmental Enforcement Sign Memorandum of Collaboration for Safe Offshore Energy Development The Department of Energy's (DOE) Office of Fossil Energy and The Bureau of Safety and Environmental Enforcement (BSEE) signed a Memorandum of

256

The Intricate Puzzle of Oil and Gas Reserves Growth  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 Energy Information Administration / Natural Gas Monthly July 1997 The Intricate Puzzle of Oil and Gas "Reserves Growth" by David F. Morehouse Developing the Nation's discovered oil and gas resources This article begins with a background discussion of the for production is a complex process that is often methods used to estimate proved oil and gas reserves characterized by initial uncertainty as regards the and ultimate recovery, which is followed by a discussion ultimate size or productive potential of the involved of the factors that affect the ultimate recovery estimates reservoirs and fields. Because the geological and of a field or reservoir. Efforts starting in 1960 to analyze hydrological characteristics of the subsurface cannot - and project ultimate resource appreciation are then

257

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

258

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

259

West Virginia Office of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Virginia Office of Oil and Gas Virginia Office of Oil and Gas Jump to: navigation, search State West Virginia Name West Virginia Office of Oil and Gas Address 601 57th Street, SE City, State Charleston, West Virginia Zip 25304-2345 Website http://www.dep.wv.gov/oil-and- Coordinates 38.31256°, -81.570616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.31256,"lon":-81.570616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Analysis of Olive Oil and Seed Oil Triglycerides by Capillary Gas Chromatography as a Tool for the Detection of the Adulteration of Olive Oil  

Science Journals Connector (OSTI)

......April 2001 research-article Articles Analysis of Olive Oil and Seed Oil Triglycerides by Capillary Gas Chromatography as a Tool for the Detection of the Adulteration of Olive Oil N.K. Andrikopoulos * * Author to whom correspondence......

N.K. Andrikopoulos; I.G. Giannakis; V. Tzamtzis

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

262

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

263

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Authors: Charles B. McComas, PE; J. Daniel Arthur, PE; Gerry Baker; G. Lee Moody; and David B. Cornue, PG, CHMM Venue: American Chemical Society (53rd Pentasectional Meeting) – Halliburton Energy Services Technology Center, Duncan, OK, March 8, 2008 (http://www.acs.org [external site]) Abstract: Research funded by the United States Department of Energy’s National Energy Technology Laboratory and conducted under the direction of the Interstate Oil and Gas Compact Commission has examined concerns related to air emissions resulting from domestic onshore oil and gas exploration and production operations. Current air issues such as ambient air quality standards and non-attainment areas, regulatory compliance and regional inconsistencies, as well as global climate change and carbon sequestration are a few of the subjects perceived to represent potential barriers to energy development. The topic of air quality and how it relates to onshore oil and gas exploration and production activities is examined from the position of environmental sustainability. These concerns can be addressed through reasonable and prudent practices that industry may implement in order to avoid, minimize, or mitigate air emissions. Additionally, air emissions parameters that are not currently regulated (e.g.: CH4 and CO2) may become the subject of increased concern in the future and, therefore, add to the list of issues facing oil and gas exploration and production. Suggestions for further research opportunities with the potential to benefit responsible energy resource development are also presented.

264

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

265

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

266

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 23, 2010 June 23, 2010 Successful Oil and Gas Technology Transfer Program Extended to 2015 The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's National Energy Technology Laboratory. March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

267

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

268

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

269

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

270

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of producing crude oil from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus requiring the development of new completion and fracturing technologies.

271

Documentation of the oil and gas supply module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM.

NONE

1996-01-01T23:59:59.000Z

272

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...storage, and even geothermal energy (16–20...Expect a lot more research on this topic to...Impact of shale gas development on regional water...Alberta, Canada . Energy Procedia 1 : 3531...unconventional shale gas development and hydraulic fracturing...

Robert B. Jackson

2014-01-01T23:59:59.000Z

273

Assumptions to the Annual Energy Outlook 2001 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2001), (Washington, DC, January 2001). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

274

Assumptions to the Annual Energy Outlook 2002 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2002), (Washington, DC, January 2002). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

275

SkyHunter: A Multi-Surface Environment for Supporting Oil and Gas Exploration  

E-Print Network [OSTI]

}@ucalgary.ca ABSTRACT The process of oil and gas exploration and its result, the decision to drill for oil in a specific exploration process overlook fundamental user issues such as collaboration, interaction and visualization in the context of a specific domain, oil and gas exploration. The oil and gas exploration process is both complex

Maurer, Frank

276

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications  

E-Print Network [OSTI]

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

Slatton, Clint

277

Study Guide 2012 for Full-Time Students Master of Oil and Gas Engineering  

E-Print Network [OSTI]

Study Guide 2012 for Full-Time Students Master of Oil and Gas Engineering Graduate Diploma in Oil Oil & Gas Economics PETR8503 Reservoir Engineering Possible Options (example only) PETR8510 Petroleum freedom to choose units from the available options listed in the Master of Oil and Gas Engineering Table

Tobar, Michael

278

Study Guide 2010 for Full-Time Students Master of Oil and Gas Engineering  

E-Print Network [OSTI]

Study Guide 2010 for Full-Time Students Master of Oil and Gas Engineering Graduate Diploma in Oil Oil & Gas Economics PETR8503 Reservoir Engineering Possible Options (example only) CIVL4130 Offshore freedom to choose units from the available options listed in the Master of Oil and Gas Engineering Table

Tobar, Michael

279

Manufacture of naphthenic type lubricating oils  

SciTech Connect (OSTI)

A process for making naphthenic type lubricating oils from a low viscosity waxy crude which comprises distilling said low viscosity waxy crude to 500 to 650/sup 0/F. At atmospheric pressure to separate distillable fractions therefrom, subjecting the residue to a vacuum distillation at about 25 to about 125 mm Hg absolute pressure to obtain one or more gas oil fractions, optionally hydrotreating said gas oil fractions in the presence of a Ni/Mo catalyst at 550 to 650/sup 0/F, 0.25 to 1.0 lhsv, and 700-1500 psig, and catalytically dewaxing said distillates in the presence of a H+ form mordenite catalyst containing a group VI or group VIII metal at 550 to 750/sup 0/F, 500 to 1500 psig and 0.25 to 5.0 lhsv, to obtain said naphthenic type oils having pour points of from about -60 to +20/sup 0/F.

Reynolds, R.W.

1981-02-24T23:59:59.000Z

280

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

282

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

283

EIA-Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2007 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

284

EIA - Assumptions to the Annual Energy Outlook 2008 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2008 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Module. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2007), (Washington, DC, 2007). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

285

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

286

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

287

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Natural Gas in Sub-Saharan Africa Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 2 Sub-Saharan Africa Source: U.S. Department of State Liquid Fuels Reserves and Production in Sub-Saharan Africa 3 4 Sub-Saharan Africa (SSA) produced nearly 6 million bbl/d of liquid fuels in 2012, which was about 7% of total world oil production. Overview Sub-Saharan Africa contains 62.6 billion barrels of proved crude oil reserves. The Middle East has 13 times that amount and Central and South America has 5 times that amount. Middle East 30% North America 20% Eurasia 15% Sub-Saharan Africa 7% North Africa 5% Asia & Oceania 10% Central & South America 9% Europe 4% Global Liquid Fuels Production, 2012 Source: EIA, International Energy Statistics 0 200 400 600 800 1,000 Middle East Central & South America

288

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

289

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network [OSTI]

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

290

Royalty break eyed for U. S. deepwater oil, gas  

SciTech Connect (OSTI)

This paper reports that Sen. Bennett Johnston (D-La.) wants to amend the U.S. omnibus energy bill to waive initial royalties for deepwater production. Johnston recently introduced the bill and is pressing for the bush administration's support. Johnston's bill would defer federal oil and gas royalty on leases in 200 m or more of water until payout of development costs. Producers would pay full royalty if the price of oil topped $34/bbl for 6 months.

Not Available

1992-08-31T23:59:59.000Z

291

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery DE-FC26-03NT15413 Project Goal The overall objective of this project is to understand the role of mineralogy of reservoir rocks in determining interactions of reservoir minerals and their dissolved species with externally added reagants (surfactants/polymers) and their effects on solid-liquid and liquid-liquid interfacial properties, such as adsorption, wettability, and interfacial tension. A further goal is to devise schemes to control these interactions in systems relevant to reservoir conditions. Particular emphasis will be placed on the type and nature of different minerals in oil reservoirs. Performer Columbia University, New York, NY Background

292

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

293

Mississippi State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Mississippi Name Mississippi State Oil and Gas Board Address 500 Greymont Ave., Suite E City, State Jackson, MS Zip 39202-3446 Website http://www.ogb.state.ms.us/ Coordinates 32.304339°, -90.169735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.304339,"lon":-90.169735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Railroad Commission of Texas, Oil and Gas Division | Open Energy  

Open Energy Info (EERE)

Railroad Commission of Texas, Oil and Gas Division Railroad Commission of Texas, Oil and Gas Division Jump to: navigation, search State Texas Name Texas Railroad Commission, Oil and Gas Division Address 1701 N. Congress City, State Austin, Texas Zip 78711-2967 Website http://www.rrc.state.tx.us/dat Coordinates 30.2759689°, -97.7359951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2759689,"lon":-97.7359951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Pennsylvania Bureau of Oil and Gas Management | Open Energy Information  

Open Energy Info (EERE)

Bureau of Oil and Gas Management Bureau of Oil and Gas Management Jump to: navigation, search State Pennsylvania Name Pennsylvania Bureau of Oil and Gas Management Address Rachel Carson State Office Building City, State Harrisburg, PA Zip 17105-8765 Website http://www.dep.state.pa.us/dep Coordinates 40.267244°, -76.886214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.267244,"lon":-76.886214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

297

Oklahoma Corporate Commission Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Corporate Commission Oil and Gas Corporate Commission Oil and Gas Jump to: navigation, search State Oklahoma` Name Oklahoma Corporate Commission Oil and Gas City, State Oklahoma City, Oklahoma Zip 73152-2000 Website http://www.occeweb.com/og/ogho Coordinates 35.49°, -97.51° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.49,"lon":-97.51,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Louisiana DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Louisiana Name Louisiana DNR Oil and Gas Division Address P.O. Box 94396 City, State Baton Rouge, LA Zip 70804-9396 Website http://dnr.louisiana.gov/index Coordinates 30.45°, -91.15° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.45,"lon":-91.15,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1995 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources These regulations describe standards relevant to reclamation that must be followed both during and after the completion of mining in a given area. An

300

Arkansas Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Jump to: navigation, search State Arkansas Name Arkansas Oil and Gas Commission Address 301 Natural Resources Dr. Ste 102 City, State Little Rock, AR Zip 72205 Website http://www.aogc.state.ar.us/JD Coordinates 34.7586275°, -92.3894219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7586275,"lon":-92.3894219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oil and Gas Exploration (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

302

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

303

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations American Petroleum Institute The oil and natural gas industry provides the fuel for American life, warming our homes, powering our businesses and giving us the mobility to enjoy this great land. As the primary trade association of that industry, API represents more than 400 members involved in all aspects of the oil and natural gas industry. Our association draws on the experience and expertise of our members and staff to support a strong and viable oil and natural gas industry. International Petroleum Industry Environmental Conservation Association The International Petroleum Industry Environmental Conservation Association (IPIECA) is comprised of petroleum companies and associations from around the world. Founded in 1974 following the establishment of the United

305

Montana Board of Oil and Gas Conservation | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Oil and Gas Conservation Jump to: navigation, search State Montana Name Montana Board of Oil and Gas Conservation Address 2535 St. Johns Avenue City, State Billings, Montana Zip 59102 Website http://bogc.dnrc.mt.gov/defaul Coordinates 45.772091°, -108.580921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.772091,"lon":-108.580921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Virginia Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Virginia Name Virginia Division of Oil and Gas Address 1100 Bank Street City, State Richmond, Virginia Zip 23219 Website http://www.dmme.virginia.gov/d Coordinates 37.5373074°, -77.4334187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5373074,"lon":-77.4334187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Kentucky DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Kentucky Name Kentucky DNR Oil and Gas Division Address 1025 Capital Center Drive City, State Frankfort, KY Zip 40601 Website http://oilandgas.ky.gov/Pages/ Coordinates 38.1819649°, -84.8153457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1819649,"lon":-84.8153457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Oil and Gas on Public Lands (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

on Public Lands (Texas) on Public Lands (Texas) Oil and Gas on Public Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands that may be leased include: (1) islands, saltwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits; (2) the portion of the Gulf of Mexico within the jurisdiction of the state; (3) all unsold surveyed and

310

California Department of Conservation, Division of Oil, Gas, and Geothermal  

Open Energy Info (EERE)

Department of Conservation, Division of Oil, Gas, and Geothermal Department of Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Offshore oil and gas: global resource knowledge and technological change  

Science Journals Connector (OSTI)

It is argued that the contribution of technological change to the offshore oil and gas industry's progress is under-researched. As a prelude this theme, the changing geography of known offshore oil and gas resources is reviewed. Significant, and largely technologically dependent, developments are identified in terms of the industry's global spread, its extension into deep and ultradeep waters and its ability to enhance output from well-established oil and gas provinces. Three sections (on the evolution of exploration and production rigs, drilling techniques and the application of IT to improve resource knowledge and access) then examine the relationships between technological change and the offshore industry's progress. It is concluded that new technologies improve knowledge of, and access to, resources via four distinctive routes, but that the full impact of R & D is frequently related to the inter-dependence of technologies. Opportunities for further research are identified.

David Pinder

2001-01-01T23:59:59.000Z

312

Utah Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Utah Name Utah Oil and Gas Board Address 1594 West North Temple City, State Salt Lake City, Utah Zip 84116 Website http://oilgas.ogm.utah.gov/ Coordinates 40.7721389°, -111.9374208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7721389,"lon":-111.9374208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006  

E-Print Network [OSTI]

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas and Natural Gas Development Impacts on Prairie Grouse 2 disturbances such as oil and gas development

Beck, Jeffrey L.

314

U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL  

E-Print Network [OSTI]

AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

Laughlin, Robert B.

315

Sandia National Laboratories: oil and gas technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

316

Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

represents a non-renewable energy sector. Retrieved from "http:en.openei.orgwindex.php?titleOilandGas&oldid335172" Category:...

317

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs DE-FC26-04NT15508 Project Goal The project goal is to provide a methodology that will allow operators of oil reservoirs in carbonate reefs to better image the interior structure of those reservoirs and to identify those areas that contain the most oil remaining after initial production. Performers Michigan Technological University, Houghton, MI Z-Seis Inc., Houston, TX Results This study provides a significant step forward in reservoir characterization by demonstrating that crosswell seismic imaging can be used over considerable distances to better define features within a reservoir and by showing that pre-stack characteristics of reflection events can be used to reduce ambiguity in determination of lithology and fluid content. Crosswell seismic imaging of the two reefs has provided data that is well beyond any that a reservoir engineer or development geologist has previously had for improved characterization and production.

318

Optimization Methods in Oil and Gas Exploration  

Science Journals Connector (OSTI)

......function of the cumulative number of well-feet...where c denotes cumulative discoveries in billions...barrels, d denotes cumulative drilling in thousands...in an established oil-producing region...resources between production drilling, delineation...finding a large field, and another specified......

E. M. L. BEALE

1986-01-01T23:59:59.000Z

319

World Oil and Gas Picture Bright  

Science Journals Connector (OSTI)

The world's hydrocarbon energy picture is rosy and promises to shape up even better in coming years. ... World oil reserves may eventually hit 500 billion metric tons, more than 10 times those estimated for the end of 1962, according to Prof. E. H. A. Bentz. ...

1962-11-26T23:59:59.000Z

320

Category:State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

State Oil and Gas Board State Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Natural Gas Crude Oil and Natural Gas Proved Reserves, 2011 August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. August 2013 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 ii

322

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

323

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 4, 2012 January 4, 2012 DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers. December 21, 2011 DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory, a facility of the U.S. Department of Energy's Office of Fossil Energy. November 22, 2011 DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater The U.S. Department of Energy's Office of Fossil Energy has selected six

324

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil  

Science Journals Connector (OSTI)

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil ... This technique has been applied to shale oils, tar sands, and petroleum in both the mid-distillate (400-680°F) and gas oil boiling ranges (680-1000°F). ... enables anal. of petroleum high ends, i.e., heavy oils, residua and asphaltenes. ...

Hongxing Ni; Chang Samuel Hsu; Chao Ma; Quan Shi; Chunming Xu

2013-04-26T23:59:59.000Z

325

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations DE-FC26-04NT15425 Project Goal This project is being conducted in two phases. The objective of the first phase is to characterize the reservoir using advanced evaluation methods in order to assess the potential of a CO2 flood of the target reservoir. This reservoir characterization includes advanced petrophysical, geophysical, geological, reservoir engineering, and reservoir simulation technologies. The objective of the second project phase is to demonstrate the benefits of using advanced seismic methods for the monitoring of the CO2 flood fronts. Performers Schlumberger Data & Consulting Services - Pittsburgh, PA New Horizon Energy - Traverse City, MI

326

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

327

Unconventional Hydrocarbons: Oil Shales, Heavy Oil, Tar Sands, Shale Gas and Gas Hydrates  

Science Journals Connector (OSTI)

For many decades conventional oil which could be produced at low cost was present in abundance. A low oil price gave no incentive to look for other types of resources. It is now clear, however, that we are gra...

Knut Bjřrlykke

2010-01-01T23:59:59.000Z

328

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

329

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

330

Alaska Oil and Gas Conservation Commission: February 2011 Drilling & Permit  

Open Energy Info (EERE)

Oil and Gas Conservation Commission: February 2011 Drilling & Permit Oil and Gas Conservation Commission: February 2011 Drilling & Permit Records Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly

331

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

332

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...  

Gasoline and Diesel Fuel Update (EIA)

Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

333

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

334

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

335

Taking Oil and Gas Exploration to New Depths | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Taking Oil and Gas Exploration to New Depths Taking Oil and Gas Exploration to New Depths Oliver Astley 2014.11.12 The challenges of offshore, deep sea drilling are, in a word,...

336

Title 25 CFR 225 Oil and Gas, Geothermal, and Solid Minerals...  

Open Energy Info (EERE)

to library Legal Document- Federal RegulationFederal Regulation: Title 25 CFR 225 Oil and Gas, Geothermal, and Solid Minerals AgreementsLegal Abstract Part 225 Oil and Gas,...

337

Taking Oil & Gas Pumping to a New Level | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Pumping Technology for Unconventional Oil and Gas Wells New Pumping Technology for Unconventional Oil and Gas Wells Jeremy Van Dam 2014.04.16 About a year ago at this time, I...

338

Oil and Gas Recovery Data from the Riser Insertion Tub - ODS...  

Broader source: Energy.gov (indexed) [DOE]

ODS Oil and Gas Recovery Data from the Riser Insertion Tub - ODS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected...

339

New Global Oil & Gas Hub in Oklahoma City | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation GE Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation New Center to...

340

16 TAC, part 1, chapter 3 Oil and Gas Division | Open Energy...  

Open Energy Info (EERE)

Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC, part 1, chapter 3 Oil and Gas DivisionLegal...

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oil and Gas Recovery Data from the Riser Insertion Tub - XLS...  

Broader source: Energy.gov (indexed) [DOE]

XLS Oil and Gas Recovery Data from the Riser Insertion Tub - XLS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected...

342

RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information  

Open Energy Info (EERE)

RCW 79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

343

Upstream Financial Review of the Global Oil and Natural Gas Industry 2013  

Reports and Publications (EIA)

This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

2014-01-01T23:59:59.000Z

344

Know-How Intersects at the New Oil & Gas Tech Center | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Know-How Intersects at the New Oil & Gas Tech Center Know-How Intersects at the New Oil & Gas Tech Center Jeremy Van Dam 2013.04.03 Hi, my name is Jeremy, and I'm a senior...

345

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

346

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Depth of Crude Oil and Natural Gas Wells Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 5,426 5,547 5,508 5,613 6,064 5,964 1949-2008 Crude Oil 4,783 4,829 4,836 4,846 5,111 5,094 1949-2008 Natural Gas 5,616 5,757 5,777 5,961 6,522 6,500 1949-2008 Dry Holes 5,744 5,848 5,405 5,382 5,578 5,540 1949-2008 Exploratory Wells 6,744 6,579 6,272 6,187 6,247 6,322 1949-2008 Crude Oil 6,950 8,136 8,011 7,448 7,537 7,778 1949-2008 Natural Gas 6,589 5,948 5,732 5,770 5,901 5,899 1949-2008 Dry Holes 6,809 6,924 6,437 6,340 6,307 6,232 1949-2008

347

Department of Natural Resources Division of Oil, Gas and Mining  

E-Print Network [OSTI]

of the population within Utah. Worldwide and regional commodity prices have historically been the most significantDepartment of Natural Resources Division of Oil, Gas and Mining The division does not anticipate of few states with this incentive.) 2. Half-price day-use access for seniors who choose not to purchase

Tipple, Brett

348

CO2 gas/oil ratio prediction in a multi-component reservoir by combined seismic and electromagnetic imaging  

E-Print Network [OSTI]

CO 2 flooding of an oil reservoir are inverted to producein a complex reservoir containing oil, water, hydrocarbonincluding oil, water and gas) and reservoir pressure. The

Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

2002-01-01T23:59:59.000Z

349

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a  

E-Print Network [OSTI]

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

Paris-Sud XI, Université de

350

The oil and gas potential of the South Caspian Sea  

SciTech Connect (OSTI)

For 150 years, the oil fountains of Baku have fueled the imaginations of oilmen around the world. The phrase {open_quotes}another Baku{close_quotes} often has been used to describe major new discoveries. The production of oil and gas from onshore Azerbaijan and from the shallower waters of the Caspian Sea offers tantalizing evidence for the hydrocarbon yet to be discovered. Today, the Azeri, Guneshli, and Chirag oil fields, with over four billion barrels of recoverable reserves, have refocused the attention of the petroleum industry on Baku. The rapid subsidence of the South Caspian Basin and accumulation of over 20 kilometers of Late Mesozoic and Cenozoic sediments have resulted in that rare combination of conditions ideal for the generation and entrapment of numerous giant oil and gas accumulations. Working with existing geological, geophysical, and geochemical data, SOCAR geologists, geophysicists, and geochemists have identified numerous structural and stratigraphic prospects which have yet to be tested by drilling. In the South Caspian Basin, undrilled prospects remain in relatively shallow water, 200-300 meters. As these shallow-water prospects are exhausted, exploration will shift farther offshore into deeper water, 300-1000 meters. The deepwater region of the South Caspian is unquestionably prospective. Exploration and development of oil and gas fields in water depths in excess of 300 meters will require the joint efforts of international companies and the Azerbaijan petroleum enterprises. In the near future, water depth and drilling depth will not be limiting factors in the exploration of the Caspian Sea. Much work remains to be done; and much oil and gas remain to be found.

Jusufzade, K.B.

1995-08-01T23:59:59.000Z

351

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

352

National Energy Board Act Part VI (Oil and Gas) Regulations (Canada)  

Broader source: Energy.gov [DOE]

These regulations from the National Energy Board cover licensing for oil and gas, including the exportation and importation of natural gas. The regulations also cover inspections, reporting...

353

The future of oil and gas in Northern Alaska  

SciTech Connect (OSTI)

The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, oil fields and all future oil field development is the continued operation of TAPS (Trans-Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

1995-04-01T23:59:59.000Z

354

Features of hydrotreating catalytic cracking feed and heavy slow coking gas oils  

SciTech Connect (OSTI)

A possible means of more extensive processing of crude oil is the use, in catalytic cracking, of heavy coking gas oils (HCGOs), a feature of which is a higher content of polycyclic aromatic compounds and resins by comparison with straight-run vacuum distillates. The presence of these compounds in catalytic cracking feed causes a reduction in the product yield and increased coke formation. Therefore, one of the problems of hydrotreating feedstock of this kind is the hydrogenation of polycyclic arenes. Processes of extensive desulphurization and denitration occur in parallel, since the sulphur and nitrogen compounds of HCGO are chiefly condensed benzoderivatives of thiophene, pyridine and carbazole, and largely concentrated in heavy aromatic and resinous fractions. The composition of the saturated part of the cracking feed plays a large role in achieving the optimum yields of gaseous and gasoline fractions. Thus an increase in the proportion of cyclanes in the feed raises the gasoline yield. In this way, an investigation of the hydrocarbon conversions during the hydrotreatment of cracking feed is of great importance. The present paper sets out the results for studying the change in the group-structural characteristics of the hydrogenation products of a mixture containing 30% HCGOs according to data of {sup 1}H and {sup 13}C NMR spectroscopy. 7 refs., 7 figs., 1 tab.

Yefremov, N.I.; Kushnarev, D.F.; Frolov, P.A.; Chagovets, A.N.; Kalabin, G.A.

1993-12-31T23:59:59.000Z

355

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network [OSTI]

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

356

The National Energy Modeling System: An Overview 1998 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

OIL AND GAS SUPPLY MODULE OIL AND GAS SUPPLY MODULE blueball.gif (205 bytes) Lower 48 Onshore and Shallow Offshore Supply Submodule blueball.gif (205 bytes) Deep Water Offshore Supply Submodule blueball.gif (205 bytes) Alaska Oil and Gas Submodule blueball.gif (205 bytes) Enhanced Oil Recovery Submodule blueball.gif (205 bytes) Foreign Natural Gas Supply Submodule The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. The driving assumption of the OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the

357

Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 91,312 93,175 97,872 97,384 98,180 87,471 1993-2013 PAD District 1 27,017 30,786 32,127 33,208 33,382 29,157 1993-2013 Connecticut 1,014 1,154 1,120 1,502 1,791 1,688 1993-2013 Delaware 560 578 385 599 686 319 1993-2013 District of Columbia 1993-2004 Florida 1,990 2,023 2,226 2,051 2,270 1,838 1993-2013 Georgia 1,192 1,278 1,161 1,174 1,257 1,003 1993-2013 Maine 1,180 1,147 1,033 969 1,076 1,200 1993-2013 Maryland 822 1,446 1,543 1,592 1,506 940 1993-2013 Massachusetts 1,258 1,358 1,615 1,490 1,827 2,066 1993-2013 New Hampshire 239 238 224 158 254 542 1993-2013 New Jersey 6,805 8,676 9,534 10,341 9,576 7,169 1993-2013 New York 2,734 3,650 3,433 4,141 3,783 3,601 1993-2013

358

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines DE-FC26-04NT42264 Goal The goal of this project is to enhance the reliability and integrity of the Nation’s natural gas infrastructure through the development, construction, integration and testing of a long-range non-destructive evaluation (NDE) inspection capability in a modular robotic locomotion platform (Explorer II). The Explorer II will have an integrated inspection sensor (developed under a separate project) to provide enhanced in-situ, live, and real-time assessments of the status of a gas pipeline infrastructure. The Explorer II system will be capable of operating in 6-inch- and 8-inch-diameter, high-pressure (piggable and non-piggable) distribution and transmission mains. The system will also be enhanced to form an “extended” platform with additional drive and battery modules allowing the system the potential to carry alternative sensors that are heavier or more drag intensive than the current technology.

359

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...some-states-confirm-water-pollution-drilling. Accessed June 19, 2014 . 11 Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon BR ( 2012 ) Water use for Shale-gas production in Texas, U...

Robert B. Jackson

2014-01-01T23:59:59.000Z

360

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...collected ?$225 million in impact fees. What Pennsylvania...Pennsylvania. Most of the impact fees that Pennsylvania...Yoxtheimer D Abad JD ( 2013 ) Impact of shale gas development on regional...environmental costs and benefits of fracking. Annu Rev Environ Resour...

Robert B. Jackson

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 11–12% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (16–20). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

362

Wireless sensor networks for off-shore oil and gas installations  

E-Print Network [OSTI]

the production process, to either prevent or detect oil and gas leakage or to enhance the production flow ­ Underwater development and production of oil and gas needs networked sensors and actuators to monitor and communication technology (ICT) enables the oil, gas and energy (OGE) industries to increase productivity

Gjessing, Stein

363

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1  

E-Print Network [OSTI]

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

364

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network [OSTI]

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

Wang, Jianwei

2010-01-14T23:59:59.000Z

365

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

366

OIL and GAS ENGINEERING Page 1 of 2 Pre-and/or Co-Requisites  

E-Print Network [OSTI]

OIL and GAS ENGINEERING Page 1 of 2 1st Year Pre- and/or Co-Requisites FALL 1 AMAT 217 Calculus 259 Electricity and Magnetism AMAT 217; MATH 211 2nd Year Oil and Gas Engineering: Regular Program Pre 12 ENGG 317 Mechanics of Solids ENGG 202 or 205; AMAT 217 3rd Year Oil and Gas Engineering: Regular

Calgary, University of

367

The integrity of oil and gas wells Robert B. Jacksona,b,1  

E-Print Network [OSTI]

COMMENTARY The integrity of oil and gas wells Robert B. Jacksona,b,1 a Department of Environmental concerns about oil and natural gas extraction these days inevitably turn to hydraulic fracturing, where--nearer the surface--emphasizing risks from spills, wastewater disposal, and the integrity of oil and natural gas

Jackson, Robert B.

368

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network [OSTI]

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

369

Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1  

E-Print Network [OSTI]

Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1 Foam can improve the sweep efficiency of gas injected into oil reservoirs for enhanced oil recovery University William Richard Rossen Email: W.R.Rossen@tudelft.nl Abstract Transport of gas across

Cox, Simon

370

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network [OSTI]

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

371

Parameter identification in large-scale models for oil and gas production  

E-Print Network [OSTI]

Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

Van den Hof, Paul

372

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR  

E-Print Network [OSTI]

ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR Conference Report - September 2007 & The Oil And Gas Development Partnership #12;ECONOMIC DEVELOPMENT BENEFITS OF THE OIL AND GAS INDUSTRY IN NEWFOUNDLAND AND LABRADOR May 16, 2007 St. John's Conference Report September

deYoung, Brad

373

OIL and GAS ENGINEERING Page 1 of 3 2009/2010 Curriculum  

E-Print Network [OSTI]

OIL and GAS ENGINEERING Page 1 of 3 1st Year 2009/2010 Curriculum Pre- and/or Co-Requisites FALL 1 complementary studies courses must be taken prior to graduation. ENOG 2010/2011 Curriculum #12;OIL and GAS ENGINEERING Page 2 of 3 2nd Year Oil and Gas Engineering: Regular Program BLK WK - WINTER ENCH 101 Computing

Calgary, University of

374

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration  

E-Print Network [OSTI]

Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration Stefano Savazzi1 of new oil and gas reservoir. Seismic exploration requires a large number (500 Ă· 2000 nodes, MAC and network layer to develop wireless sensors networks tailored for oil (and gas) exploration

Savazzi, Stefano

375

Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and  

E-Print Network [OSTI]

Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource Unitization: Compulsory unitization legislation enables a majority of producers on an oil or gas field resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

Garousi, Vahid

376

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network [OSTI]

1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

Grossmann, Ignacio E.

377

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas) Engineering  

E-Print Network [OSTI]

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas with oil and gas specialization at the assistant- or associate professor-level, commencing April 12, 2010 in the area of oil and gas, and process engineering, to supervise graduate students, to participate in other

George, Glyn

378

Oil and Gas CDT Predicting fault permeability at depth: incorporating natural  

E-Print Network [OSTI]

Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

Henderson, Gideon

379

GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS  

E-Print Network [OSTI]

1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

Johansen, Tor Arne

380

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network [OSTI]

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oil and Gas CDT Are non-marine organic-rich shales suitable exploration  

E-Print Network [OSTI]

Oil and Gas CDT Are non-marine organic-rich shales suitable exploration targets? The University will receive 20 weeks residential training of broad relevance to the oil and gas industry: 10 weeks in Year 1 and also experienced oil and gas industry professionals. The supervisors at Oxford and Exeter have

Henderson, Gideon

382

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry  

E-Print Network [OSTI]

A Multimedia Workflow-Based Collaborative Engineering Environment for Oil & Gas Industry Ismael H the control and execution of large and complex industrial projects in oil and gas industry. The environment governmental oil & gas company. The necessity of collaboration is especially acute in the field of computer

Barbosa, Alberto

383

Climate VISION: PrivateSector Initiatives: Oil and Gas  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Answering the Challenge: A U.S. Oil and Natural Gas Industry Initiative on Climate Change Through its leading trade association, the American Petroleum Institute, the U.S oil and natural gas industry is implementing an initiative to address climate change. API's Climate Challenge Programs feature three components: The API Climate Action Challenge focuses on strategies for reducing emissions. Under the Climate Action Challenge, companies are taking action to reduce, sequester, offset, or avoid their greenhouse gas emissions. Additionally, under the Challenge, API-member refining companies are working to improve their energy efficiency by 10% by 2012 and are on track to meeting this goal. The API Climate R&D Challenge involves support for enhanced research and

384

Oil and Gas Commission General Rules and Regulations (Arkansas) |  

Broader source: Energy.gov (indexed) [DOE]

Commission General Rules and Regulations (Arkansas) Commission General Rules and Regulations (Arkansas) Oil and Gas Commission General Rules and Regulations (Arkansas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Natural Resources The Oil and Gas Commission General Rules and Regulations are the body of rules and regulations that relate to natural gas production in Arkansas. The statutory law is found Arkansas Code Annotated Title 15 chapter 72. Contained in this summary are the rules and regulations most relevant to

385

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

386

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mud System for Microhole Coiled Tubing Drilling Mud System for Microhole Coiled Tubing Drilling DE-FC26-03NT15476 Project Goal The goal of the project is to develop an innovative mud system for coiled tubing drilling (CTD) and small-diameter holes (microholes) for vertical, horizontal and multilateral drilling and completion applications. The system will be able to mix the required fluids (water, oil, chemicals, muds, slurries), circulate that mixture downhole (modified 350 gpm @1,000 psi and 15 gpm@ 5,000 psi), clean and store (200 bbls) the base fluids, and be able to perform these functions in an underbalanced condition with zero discharge and low environmental impact. Another primary and most important goal of this project is to develop key components for a new abrasive slurry drilling system.

387

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

As of December 29, distillate fuel oil stocks were about 116 million As of December 29, distillate fuel oil stocks were about 116 million barrels, which is over 14 percent below their 5 year average for this time of year. Heating oil stocks were at 47.4 million barrels, or about 28 percent lower than their seasonal 5-year average. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall. Unless the second half of the winter in the Northeast is unusually

388

Distillation 29 Chem 355 Jasperse DISTILLATION  

E-Print Network [OSTI]

Distillation 29 Chem 355 Jasperse DISTILLATION Background Distillation is a widely used technique for purifying liquids. The basic distillation process involves heating a liquid such that liquid molecules that is condensed and collected must be more pure than the original liquid mix. Distillation can be used to remove

Jasperse, Craig P.

389

U.S. Distillate Market  

Gasoline and Diesel Fuel Update (EIA)

diesel and heating fuel prices diesel and heating fuel prices surged. The largest increases occurred in the distillate-based fuels (heating oil and diesel) in the Northeast. The main factors driving up these prices were low stocks leading into January, followed by a bout of severe weather that impacted both supply and demand. Warmer weather and the arrival of new supply, mainly imports, relieved the supply/demand imbalance and brought prices back down. The spike is now behind us, but high crude prices are keeping prices above year-ago levels. The low stock situation that set the stage for the distillate price spike was not unique to the United States, Low stocks exist worldwide and are not limited to distillate. The low stock situation stems from what is happening in the crude oil markets. A crude oil supply shortage drove crude

390

Crude oil and crude oil derivatives transactions by oil and gas producers.  

E-Print Network [OSTI]

??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

Xu, He

2007-01-01T23:59:59.000Z

391

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling DE-FC26-04NT15533 Project Goal The goal of this project is to use molecular modeling and experimental results to design inexpensive, environmentally benign, CO2-soluble compounds that can decrease the mobility of CO2 at typical enhanced oil recovery (EOR) reservoir conditions. Performers University of Pittsburgh, Pittsburgh, PA Yale University, New Haven, CT Background The research group previously formulated the only known CO2 thickener, a (fluoroacrylate-styrene) random copolymer, but this proof-of-concept compound was expensive and environmentally unacceptable because it was fluorous. They then identified the most CO2-soluble, high-molecular-weight, conventional polymer composed solely of carbon, hydrogen, and oxygen: poly(vinyl acetate), or PVAc. PVAc could not dissolve at pressures below the minimum miscibility pressure (MMP), however. The current research effort, therefore, was directed at using molecular modeling and experimental tools to design polymers that are far more CO2-soluble than PVAc. The subsequent goal was to incorporate this polymer into a thickening agent that will dissolve in CO2 below the MMP and generate a two- to ten-fold decrease in CO2 mobility at concentrations of 0.01–1.0 percent by weight. Although most of the thickeners envisioned are copolymers, researchers will also evaluated several small hydrogen-bonding agents and surfactants with oligomeric (very short polymer) tails that form viscosity-enhancing structures in solution , and novel CO2 soluble surfactants that may be able to generate foams in situ as they mix with reservoir brine (without the need for the injection of alternating slugs of water).

392

File:Uscells1msmall.oil.gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Uscells1msmall.oil.gas.pdf Uscells1msmall.oil.gas.pdf Jump to: navigation, search File File history File usage US Oil & Natural Gas Production Map Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 3.33 MB, MIME type: application/pdf) Description US Oil & Natural Gas Production Map Sources USGS Authors derived from Mast, et al, 1998 Related Technologies Oil, Natural Gas Extent country Countries United States UN Region Northern America US Oil & Natural Gas Production Map (PDF Format) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:31, 6 January 2011 Thumbnail for version as of 17:31, 6 January 2011 1,650 × 1,275 (3.33 MB) Kch (Talk | contribs) US Oil & Natural Gas Production Map (PDF Format)

393

Federal Oil and Gas Royalty Simplification and Fairness Act of 1996 | Open  

Open Energy Info (EERE)

Simplification and Fairness Act of 1996 Simplification and Fairness Act of 1996 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Simplification and Fairness Act Year 1996 Url Royaltysimplact.jpg Description To improve the management of royalties from Federal and outer continental shelf oil and gas leases References Federal Oil and Gas Royalty Simplification and Fairness Act of 1996[1] The Federal Oil and Gas Royalty Simplification and Fairness Act of 1996 was created to improve the management of royalties from Federal and outer continental shelf oil and gas leases, and for other purposes. References ↑ "Federal Oil and Gas Royalty Simplification and Fairness Act of 1996" Retrieved from "http://en.openei.org/w/index.php?title=Federal_Oil_and_Gas_Royalty_Simplification_and_Fairness_Act_of_1996&oldid=334637

394

Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities  

E-Print Network [OSTI]

Reservoir oil bubblepoint pressures revisited; solution gas­oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

ValkĂł, Peter

395

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

396

Oil and gas developments in western Canada in 1987  

SciTech Connect (OSTI)

Exploratory drilling in western Canada increased by 21% in 1987 whereas total drilling increased by 32%. The seismic crew count increased 4% to 671 crew-months, and land expenditures increased 166% to $793 million. No major plays broke during 1987 in western Canada. The 2 major plays resulting from 1986 activity - Caroline, Alberta, and Tableland, Saskatchewan - continued to expand in 1987. By year end at Caroline, industry drilled 14 wells, which included 6 Swan Hills gas wells, 3 uphole gas wells, 3 wells standing or suspended, and 2 dry holes. The reserves for this field now are 17 billion m/sup 3/ of sales gas, 32 million m/sup 3/ of condensate, and 20 million MT of sulfur. At Tableland and surrounding areas, industry has drilled 11 oil wells and 16 dry holes. No overall reserve figures have been published for this play. In Alberta, operators had their best exploratory oil success in the Cretaceous Second White Specks and in the Devonian Nisku, Leduc, Gilwood, and Keg River; the best exploratory gas success was in the Cretaceous Viking and Paddy, and Devonian Nisku and Leduc. In British Columbia, gas drilling was successful in the Cretaceous of the Deep Basin, as well as in the Mississippian Kiskatinaw and the Triassic Halfway. In Saskatchewan, both the shallow Cretaceous gas play and the deep Devonian Winnipegosis oil play continued to expand, whereas in Manitoba the main exploration target was the Mississippian carbonates and Bakken Formation. The Northwest Territories, Beaufort Sea, and Arctic Islands had a poor year, with only 4 exploratory wells drilled - all dry holes. 7 figs., 10 tabs.

Portigal, M.H.; Creed, R.M.; Hogg, J.R.; Hewitt, M.D.

1988-10-01T23:59:59.000Z

397

Assumptions to the Annual Energy Outlook 1999 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4836 bytes) oil.gif (4836 bytes) The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(99), (Washington, DC, January 1999). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery and unconventional gas recovery from tight gas formations, gas shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG).

398

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

The VBA code provided at the bottom of this document is an updated version The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't add area to convex portions to maintain buffer spacing Fills in non-field "islands" smaller than buffer size Joins separate polygon rings with a "bridge" if sufficiently close Minimizes increase in total field area Methodology: creates trapezoids between neighboring wells within an oil/gas

399

Category:Oil and Gas Companies | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Oil and Gas Companies Jump to: navigation, search Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

400

Alaska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Conservation Commission Conservation Commission Jump to: navigation, search Logo: Alaska Oil and Gas Conservation Commission State Alaska Name Alaska Oil and Gas Conservation Commission Address 333 W. 7th Ave., Ste. 100 City, State Anchorage, Alaska Zip 9950 Website http://doa.alaska.gov/ogc/ Coordinates 61.215808°, -149.8889769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.215808,"lon":-149.8889769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alabama Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Board Board Jump to: navigation, search Logo: Alabama Oil and Gas Board State Alabama Name Alabama Oil and Gas Board Address 420 Hackberry Lane City, State Tuscaloosa, AL Zip 35401 Website http://www.gsa.state.al.us/ogb Coordinates 33.2121633°, -87.5431231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2121633,"lon":-87.5431231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

The oil and gas journal databook, 1991 edition  

SciTech Connect (OSTI)

This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

Not Available

1991-01-01T23:59:59.000Z

403

A Study of Strategies for Oil and Gas Auctions  

E-Print Network [OSTI]

offshore lease sale bids for single tracts are plotted on probability paper to demonstrate this log-normal distribution behavior. He also provides an example of a tract that did not exhibit the typical behavior. He speculates that nonconforming bids... prices up and make less profit. Lohrenz [1988] documents past performance and projection of future profits from federal oil and gas lease sales are poor. He advises to be wary of reasons that justify high bonuses. Meade studies showed rate...

Nordt, David Paul

2010-10-12T23:59:59.000Z

404

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 1976–2009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

405

Economy key to 1992 U. S. oil, gas demand  

SciTech Connect (OSTI)

This paper provides a forecast US oil and gas markets and industry in 1992. An end to economic recession in the U.S. will boost petroleum demand modestly in 1992 after 2 years of decline. U.S. production will resume its slide after a fractional increase in 1991. Drilling in the U.S. will set a record low. Worldwide, the key questions are economic growth and export volumes from Iraq, Kuwait, and former Soviet republics.

Beck, R.J.

1992-01-27T23:59:59.000Z

406

The displacement of gas by oil in the presence of connate water  

E-Print Network [OSTI]

mixed stream of oil and gas. The mobile gas phase established within the core was then dis- placed by an oil flood. The assumption was made that the residual gas saturation within the oil bank would be the same as that which would occur within a... water bank resulting from a waterflood. The results indicate that the residual gas saturation within and behind the oil bank increases as the gas saturation prior to the flood increases. The relationship between the initial and residual gas...

Dardaganian, Stephen Garabed

2012-06-07T23:59:59.000Z

407

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392ËšF (200ËšC) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitterÂ’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

408

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Exploratory and Development Wells Exploratory and Development Wells Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 View History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Exploratory NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Development Wells Drilled NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012

409

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

410

Produce More Oil Gas via eBusiness Data Sharing  

SciTech Connect (OSTI)

GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

Paul Jehn; Mike Stettner

2004-09-30T23:59:59.000Z

411

NORM Management in the Oil and Gas Industry  

SciTech Connect (OSTI)

It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat [Environmental Protection Department, Saudi Aramco Dhahran 31311 (Saudi Arabia)

2008-08-07T23:59:59.000Z

412

North Dakota Industrial Commission, Oil and Gas Divisioin | Open Energy  

Open Energy Info (EERE)

North Dakota Industrial Commission, Oil and Gas Divisioin North Dakota Industrial Commission, Oil and Gas Divisioin Jump to: navigation, search State North Dakota Name North Dakota Industrial Commission, Oil and Gas Divisioin Address 600 East Boulevard Ave Dept 405 City, State Bismarck, North Dakota Zip 58505-0840 Website https://www.dmr.nd.gov/oilgas/ Coordinates 46.8206977°, -100.7827515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.8206977,"lon":-100.7827515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Author: Thomas C. Chidsey, Petroleum Section Chief, Utah Geological Survey, Salt Lake City, UT. Venue: International Oil Scouts Association’s 84th annual meeting, Stein Eriksen Lodge, Park City, UT, June 17–20, 2007, (http://www.oilscouts.com/index-main.html [external site]). Abstract: Utah’s natural gas and oil exploration history extends back more than 100 years, fluctuating greatly due to discoveries, price trends, and changing exploration targets. During the boom period of the early 1980s, activity peaked at over 500 wells per year. After slowing in the 1990s, drilling activity has again increased, reaching an all-time peak of 1,058 wells spudded and over 2,000 APDs (application for permit to drill) filed in 2006. This increase in activity has been spurred by high prices for both natural gas and oil and by the perception that Utah is highly prospective and underexplored. In recent years, the proportion of new wells exploring for gas has increased greatly. Total cumulative natural gas production from Utah fields now exceeds 8 Tcf. Recent successful drilling has been expanding reserves by about 10 percent per year, one of the highest rates of gas reserves increase in the country. Although gas production from some fields declined during the late 1990s, two factors caused overall gas production to increase. The development of coalbed natural gas (CBNG) accumulations in the Cretaceous Ferron Sandstone play, in particular Drunkards Wash field in central Utah, has increased the State’s annual gas production by 20–30 percent. Also, deeper exploratory and development drilling in the eastern and southern Uinta Basin during the past 5 years has led to discoveries of substantial gas accumulations in tight-sand reservoirs of the Tertiary Wasatch Formation, Cretaceous Mesaverde Group, and Jurassic Entrada and Wingate Sandstones. Significant potential exists for other coalfields (Book Cliffs, Sego, and Wasatch Plateau) around the Uinta Basin to yield CBNG, and the extent of deeper conventional and tight-gas plays remains to be explored. In addition, shale gas reservoirs in the Mississippian Manning Canyon Shale, Pennsylvanian Hermosa Group, and Cretaceous Mancos Shale of central, southeastern, and northeastern Utah, respectively, have tremendous untapped potential. Utah oilfields have produced a cumulative total of 1.3 billion barrels (bbl) of oil. Although annual production decreased from a peak of 41 million bbl in 1985 to 13 million bbl in 2003, the trend has since reversed, and 2005 production reached nearly 17 million bbl. A component (about one-third of the increase) of this turnaround has been the 2004 discovery of Covenant field in the central Utah thrust belt, or "Hingeline." This new field has already produced 3 million bbl of Mississippian-sourced oil from the Jurassic Navajo Sandstone in a thrusted anticline formed during the Sevier orogeny. This new oil play is the focus of extensive leasing and exploration activity—comparable to the late 1970s and early 1980s in the Utah-Wyoming salient of the thrust belt to the north.

414

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network [OSTI]

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

415

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

416

Federal Oil and Gas Royalty Management Act of 1982 | Open Energy  

Open Energy Info (EERE)

of 1982 of 1982 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Management Act of 1982 Year 1982 Url RoyaltyAct.jpg Description The Royalty Management Act affirmed the authority of the Secretary of the Interior to administer and enforce all rules and regulations governing oil and gas leases on Federal or Indian Land References Federal Oil and Gas Royalty Management Act of 1982[1] The Federal Oil and Gas Royalty Management Act of 1982 (30 U.S.C. § 1701 et seq.) - The Royalty Management Act affirmed the authority of the Secretary of the Interior to administer and enforce all rules and regulations governing oil and gas leases on Federal or Indian Land, and established a policy aimed at developing a comprehensive system to manage royalties derived from leased oil and gas operations. Typically, oil and

417

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK  

E-Print Network [OSTI]

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK University of Birmingham expert academics from across the CDT and also experienced oil and gas industry professionals of a CDT cohort, you will receive 20 weeks bespoke, residential training of broad relevance to the oil

Henderson, Gideon

418

Apparatus for operating a gas and oil producing well  

SciTech Connect (OSTI)

Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

Wynn, S. R.

1985-07-02T23:59:59.000Z

419

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

420

Catalytic Distillation  

E-Print Network [OSTI]

removing both will occur in the temperature range ne~ded high and low boilers to maintain the tower for reaction. One limitation may be .I the composition profile, exothermic reactions critical point of the system, above w~ich can be easily temperature... with significantly less energy. There are two primary reasons for energy reduction: 1. The heat of reaction for exothermic reactions is fully re covered as useful boilup for fractionation. 2. Fewer attendant distillations are normally required than for a...

Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

422

Climate VISION: Private Sector Initiatives: Oil and Gas: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The following are summary descriptions of actions taken to date by the American Petroleum Institute (API) and its members, as related to the Climate VISION program and GHG emissions intensity reduction, in general. For more complete information, please visit API's website (www.api.org) and view Climate Challenge:A Progress Report and, for the most recent examples, please see Companies Address Climate Change. (Also please browse API member company websites for additional information on company climate change initiatives.) API Climate Greenhouse Gas Estimation & Reporting Challenge API has developed and is distributing accurate greenhouse gas emissions estimating tools via its Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB). The Compendium implements more robust

423

Bio-oil Stabilization and Upgrading by Hot Gas Filtration  

Science Journals Connector (OSTI)

Removal of char and minerals from pyrolysis oil for the production of biomass-derived boiler and turbine fuels has been demonstrated at Solar Energy Research Institute (SERI)/National Renewable Energy Laboratory (NREL) using a ceramic cloth hot gas filter (HGF). ... Non-condensable gaseous products were vented through a 2 ?m filter for collection of any residual aerosol and then to a totalizing dry-gas meter for flow rate measurement. ... The composition of the feed and product vapors to and from the HGF test stand was monitored continuously with the molecular beam mass spectrometer (MBMS), and the composition of the product gases from the HGF test stand was monitored continuously by gas chromatography (GC). ...

Robert M. Baldwin; Calvin J. Feik

2013-04-22T23:59:59.000Z

424

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

425

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs Author: Mohan Kelkar, University of Tulsa, Tulsa, OK. Venue: Tulsa Association of Petroleum Landmen meeting in Tulsa, OK, April 19, 2007 (http://www.landman.org [external site]). Abstract: The Hunton reservoir in Oklahoma represents one of the largest discoveries in Oklahoma in recent history. Since 1995, several Hunton reservoir fields have been exploited by various operators. The principle behind this exploitation remains the same: The wells produce large quantities of water, and along with it, significant quantities of natural gas and sometimes oil. Examination of various fields producing from the Hunton reservoir indicates that the economic success from these fields is not uniform. Some fields produce significant quantities of oil, whereas some fields only produce gas. In some fields, horizontal wells work best, whereas in some other fields, vertical wells do a good job. The water production from the fields ranges from as low as few hundred barrels per day to several thousand barrels per day. In this paper, we present the results from various fields to indicate the parameters needed in a Hunton field to make it economically successful. We restrict our evaluation to parameters that can be easily measured or are readily available. These include log data (gamma ray, resistivity, neutron, and density), initial potential data, production data (oil, gas, and water—if available) and well configuration (vertical or horizontal). By analyzing the recovery of oil and gas according to various reservoir parameters, we developed a methodology for predicting the future success of the field. For example, a clear relationship exists between porosity of the rock and initial hydrocarbon saturation: The higher the oil saturation, the better the recovery factor. Initial potential is critical in determining possible recovery. Horizontal wells cost 1.5 to 2 times more than vertical wells and may not provide the additional recovery to justify the costs. The Hunton formation is extensive in Oklahoma. If we want to extend the success of some of the fields to other areas, we need clear guidelines in terms of what is needed to exploit those fields. This paper provides some of those guidelines based on the examination of the currently producing fields.

426

Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

427

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil Wells (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 475,614 500,196 1993...

428

US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

429

TNRC, Title 2, Chapter 52.186 Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

TNRC, Title 2, Chapter 52.186 Oil and Gas Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: TNRC, Title 2, Chapter 52.186 Oil and...

430

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

XLS Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - XLS Updated through 12:00 AM on July 16, 2010. 52Item84Recovery...

431

Combined Total Amount of Oil and Gas Recovered Daily from the...  

Broader source: Energy.gov (indexed) [DOE]

ODS format Combined Total Amount of Oil and Gas Recovered Daily from the Top Hat and Choke Line oil recovery systems - ODS format Updated through 12:00 AM on July 16, 2010....

432

20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy...  

Open Energy Info (EERE)

20 AAC 25 Alaska Oil and Gas Conservation Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 20 AAC 25 Alaska Oil...

433

U.S. oil reserves highest since 1975, natural gas reserves set...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. oil reserves highest since 1975, natural gas reserves set new record U.S. proved oil reserves have topped 36 billion barrels for the first time in nearly four decades, while...

434

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

435

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

436

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

437

Where the offshore search for oil and gas is headed  

SciTech Connect (OSTI)

This overview of the world's potential offshore oil and gas frontiers points out that although solutions to technical and political problems have opened up some promising areas for exploration, many key frontier basins have yet to be explored by modern technology. Long-standing disputes between bordering countries over offshore rights have deterred exploration activities in the Malvinas basin off Argentina and in the Gulf of Venezuela. Political problems have also slowed activity in the US Atlantic offshore, where Mesozoic reef trends may be related to Mexico's large oil fields. In Canada's Labrador Sea and Grand Banks, the problems are largely operational because of the inclement weather and threatening icebergs. The thick sediments off northern Norway remain untapped due to the deep water, Arctic conditions, and boundary disputes with the USSR. The main areas of active exploration are the Gulf of Thailand-Penyu-Natuna basin in Southeast Asia and Ireland's Porcupine Bight basin.

King, R.E.

1980-10-01T23:59:59.000Z

438

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices  

E-Print Network [OSTI]

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

Paris-Sud XI, Université de

439

IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1  

E-Print Network [OSTI]

IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1 Jeffrey L and natural gas development on grouse populations and habitats. The purpose of this review is to summarize current knowledge on the effects of oil and gas development and production on prairie grouse based

Beck, Jeffrey L.

440

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis  

E-Print Network [OSTI]

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

Guerin, Gilles

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact  

E-Print Network [OSTI]

Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact Score Fit score Rank NE oil and gas industries offshore. 7 4 9 NE/M007286/1 Professor Kevin Taylor The University to petrophysical models for shale gas reservoirs based on sensitivity analysis of key variables 7 5 2 NE/M007235

442

Summary Short-Term Petroleum and Natural Gas Outlook  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Petroleum and Natural Gas Outlook Short-Term Petroleum and Natural Gas Outlook 1/12/01 Click here to start Table of Contents Summary Short-Term Petroleum. and Natural Gas Outlook WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Total OECD Oil Stocks* U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Costs U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Current Natural Gas Spot Prices: Well Above the Recent Price Range Natural Gas Spot Prices: Base Case and 95% Confidence Interval Working Gas in Storage (Percentage Difference fron Previous 5-Year Average)

443

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

444

Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url FederalOnshore1987.jpg Description Another amendment to the Mineral Leasing Act, The Federal Onshore Oil and Gas Leasing Reform Act of 1987 granted the USDA Forest Service the authority to make decisions and implement regulations concerning the leasing of public domain minerals on National Forest System lands containing oil and gas. References Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)[1] Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) (30 U.S.C. § 181 et seq.) - Another amendment to the Mineral Leasing Act, The Federal

445

DOE to Unveil New Online Database of Oil and Natural Gas Research Results |  

Broader source: Energy.gov (indexed) [DOE]

DOE to Unveil New Online Database of Oil and Natural Gas Research DOE to Unveil New Online Database of Oil and Natural Gas Research Results DOE to Unveil New Online Database of Oil and Natural Gas Research Results October 2, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009. By providing easy access to the results of nearly four decades of research supported by the Office of Fossil Energy's Oil and Natural Gas Program, the knowledge management database could ultimately help boost recovery of the nation's oil and gas resources. The database largely evolved from a recommendation made by the Federal

446

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

447

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

448

USGS National Oil and Gas Assessment: GIS Data | OpenEI  

Open Energy Info (EERE)

National Oil and Gas Assessment: GIS Data National Oil and Gas Assessment: GIS Data Dataset Summary Description The USGS Central Region Energy Team assessed the oil and gas resources of the United States. Cell maps for each oil and gas production area were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play. Each cell represents a one-mile (or a one-quarter mile) square of the land surface, and the cells are coded to represent whether the wells included with the cell are predominantly oil-producing, gas-producing, or dry. The data used are current as of December, 1990. Source USGS Date Released March 26th, 1996 (18 years ago) Date Updated Unknown Keywords gas oil Data application/zip icon 1/4 mile cells (well information); plus metadata (zip, 41.8 MiB)

449

Wireless technology collects real-time information from oil and gas wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

450

File:BOEMRE OCS.oil.gas.2007-12.map.pdf | Open Energy Information  

Open Energy Info (EERE)

OCS.oil.gas.2007-12.map.pdf OCS.oil.gas.2007-12.map.pdf Jump to: navigation, search File File history File usage Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Size of this preview: 700 × 600 pixels. Full resolution ‎(5,250 × 4,500 pixels, file size: 1.39 MB, MIME type: application/pdf) Description Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2008-09-12 Extent Continental US plus Alaska Countries United States UN Region Northern America US Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012. Includes Atlantic, Gulf of Mexico, Pacific and Alaska Regions.Shows existing leases, areas available for leasing, areas withdrawn from leasing,

451

DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery,  

Broader source: Energy.gov (indexed) [DOE]

DOE, States Seek Closer Collaboration on Oil and Gas Supply and DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation October 1, 2009 - 1:00pm Addthis Washington, DC - An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy (DOE) and the Interstate Oil and Gas Compact Commission (IOGCC). The Memorandum of Understanding (MOU) provides a framework for states and DOE to work more closely on "responsible domestic production of oil and natural gas; carbon capture, transport and geologic storage; and other topics of mutual interest." The document was signed by DOE's Assistant

452

Category:International Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search Add a new International Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

453

Wetland regulations affecting coal mining and oil and gas operations  

SciTech Connect (OSTI)

Although the total acreage of wetlands in Appalachia is relatively small, the impact of wetlands on coal mining and the oil and gas industry can be significant. Wetlands are strongly protected from degradation and diminution under both federal and state regulatory programs, and both environmental protection groups and the public are concerned about the disturbance of natural wetlands. If an owner or operator of site is unable to obtain an appropriate permit, the presence of wetlands may completely preclude energy development. This article strives to provide an insight into the regulatory scheme surrounding wetlands and the risks of wetlands development.

Tokarz, A.P. [Bowles Rice McDavid Graff & Love, Charleston, WV (United States); Dulin, B.E. [Univ. Center for Environmental, Geotechnical, and Applied Sciences, Huntington, WV (United States)

1995-12-31T23:59:59.000Z

454

International oil and gas exploration and development activities  

SciTech Connect (OSTI)

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

455

Outsourcing Logistics in the Oil and Gas Industry  

E-Print Network [OSTI]

-2016 Drilling and Exploration (Upstream) $329.9bn 3.10% 5.50% $158.4bn 48.00% Refining (Downstream) $698.9bn 4.60% 3.10% $90.9bn 13.00% 9 CHAPTER II METHODOLOGY The study includes literature review from academic and industry specific journals... Outsourcing Outlook in the Oil and Gas Industry Industry Segment Drilling and Exploration Refining Revenue $329.9bn $698.9bn Average Total Logistic Expenditure (ATLE) (11% of Revenue*) $36.29bn $76.88bn Average Total Logistics Expenditure Outsourced...

Herrera, Cristina 1988-

2012-04-30T23:59:59.000Z

456

Audit implications of supplementary oil and gas reserve reporting  

SciTech Connect (OSTI)

To help decision makers judge the reliability and usefulness of information reported in the supplementary oil and gas disclosures required by Regulation S-X of the Securities Exchange Commission and the Statement of Financial Accounting Standards No. 60, the author provides an auditor's view of the implications of the accounting guidelines, with an emphasis on the supplementary disclosures and resultant responsibilities assumed by the auditor. She reviews pertinent definition and recent changes in reporting requirements. Statement of Accounting Standards (SAS) Nos. 11, 27, and 33 relate to review procedures used by the auditor.

Welker, D.L.

1984-12-01T23:59:59.000Z

457

Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Solutions for Mitigating Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity The mission of the Environmental Program is to promote a reliable, affordable, and secure supply of domestic oil and clean-burning natural gas, by providing cost-effective environmental regulatory compliance technologies, enhancing environmental protections during oil and gas E&P operations, and facilitating the development and use of scientific, risk-based environmental regulatory frameworks.

458

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure  

Science Journals Connector (OSTI)

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ... Offshore oil and gas field development represents a very complex problem and involves multibillion dollar investments and profits (Babusiaux et al.(1)). ... This paper focuses on a nonconvex MINLP model for the strategic/tactical planning of the offshore oil and gas fields, which includes sufficient details to make it useful for realistic oilfield development projects, as well as for extensions to include fiscal and uncertainty considerations. ...

Vijay Gupta; Ignacio E. Grossmann

2012-04-07T23:59:59.000Z

459

OIL and GAS ENGINEERING Page 1 of 3 SEMESTER OFFERED COURSE PRE-REQUISITES listed in this column.  

E-Print Network [OSTI]

OIL and GAS ENGINEERING Page 1 of 3 1st Year SEMESTER OFFERED COURSE PRE-REQUISITES listed and Magnetism AMAT 217; MATH 211; recommended co-req: AMAT 219 2nd Year Oil and Gas Engineering: Regular Program correct. 2013/2014 Curriculum (Updated June 18, 2013) #12;OIL and GAS ENGINEERING Page 2 of 3 3rd Year Oil

Calgary, University of

460

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear  

Broader source: Energy.gov [DOE]

Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

462

Exploration and Development of Oil and Gas on School and Public Lands (Nebraska)  

Broader source: Energy.gov [DOE]

This statute authorizes the Board of School Lands and Funds to lease school and public lands under its jurisdiction for oil and gas exploration and development purposes.

463

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Broader source: Energy.gov [DOE]

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

464

Towards effective regulation of offshore oil and gas waste management in Nigeria.  

E-Print Network [OSTI]

??The development of the offshore oil and gas industry has been going on for many decades with little thought of the consequences of its activities… (more)

Ofuani, Anwuli Irene

2009-01-01T23:59:59.000Z

465

The informational content of oil and natural gas prices in energy fund performance  

Science Journals Connector (OSTI)

This paper explores whether the informational content of oil and gas prices has an impact on energy mutual fund returns. We first re-visit the relationship between oil and gas prices and energy index returns; our findings confirm that better energy index performance is associated with oil and gas price increases. Using the Fama and MacBeth (1973) two-stage regressions, we find that the information contained in oil and gas prices also plays a significant role in explaining energy mutual fund returns, making these an alternative investment to direct energy stock investments.

Viet Do; Tram Vu

2012-01-01T23:59:59.000Z

466

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network [OSTI]

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and… (more)

[No author

2012-01-01T23:59:59.000Z

467

Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

468

Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...  

Open Energy Info (EERE)

Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

469

An Institutional Analysis of Oil and Gas Sector Development and Environmental Management in the Yukon Territory.  

E-Print Network [OSTI]

??This thesis investigates the ways in which oil and gas development priorities and concern for the environment are integrated within strategic planning and management frameworks,… (more)

May, Jason C.

2007-01-01T23:59:59.000Z

470

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions (PDF 2.0 MB) Download Acrobat Reader IPIECA, as part of a joint industry task force with the American Petroleum Institute (API) and the International Association of Oil and Gas Producers (OGP), has developed, on behalf of the petroleum industry, a voluntary industry-endorsed approach for measuring and reporting GHG emissions. The petroleum industry has recognized the need for GHG accounting and reporting guidance that is focused specifically on the industry. Current approaches vary among government reporting programs. Companies also differ in how they voluntarily report their emissions data. This variability in approaches has resulted in a lack of comparability of reported GHG

471

Fuel oil and kerosene sales 1996  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

472

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Total distillate stocks rose only marginally in November, to about 117 million barrels from about 115 million barrels at the end of October. The "normal" or average inventory level at end November is 146 million barrels. Thus, by the end of November, instead of seeing an improvement, US distillate inventories were 30 million barrels less than normal rather than the 26 million barrels less as of the end of October, indicating greater tightness in markets for heating oil and diesel fuel. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. In fact, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable

473

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: At the end of December, distillate fuel oil stocks were about 116 million barrels, which is more than 14 percent below their 5-year average for this time of year, and about 7 percent less than last year's low levels. As of January 19, the most recent weekly data, distillate stocks remained at about that level, which is slightly higher than a year ago. If the currently depressed level of distillate stocks continues, the result could be strong upward pressure on prices for the distillate fuels through the winter. Recently, the tightness in distillate markets, particularly in the Northeast, has worsened and left the heating oil market more vulnerable to near-term shocks from potential cold weather events or disruptions in the logistical system than was expected earlier this fall.

474

Evaluating incentives in the tax legislation applicable to the South African oil, petroleum and gas industry / Moolman A.M.  

E-Print Network [OSTI]

??The oil and gas sector holds several advantages for South Africa: direct benefits include providing growth in the country’s economy by optimising available oil and… (more)

Moolman, Anneke Maré.

2012-01-01T23:59:59.000Z

475

Kansas Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kansas Oil and Gas Conservation Commission Jump to: navigation, search State Kansas Name Kansas Oil and Gas Conservation Commission Address 1500 SW Arrowhead Road City, State Topeka, KS Zip 66604-4027 Website http://www.kcc.state.ks.us/con Coordinates 39.04059°, -95.756198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.04059,"lon":-95.756198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Indiana DNR Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indiana DNR Division of Oil and Gas Jump to: navigation, search State Indiana Name Indiana DNR Division of Oil and Gas Address 402 W. Washington St., Rm. 293 City, State Indianapolis, IN Zip 46204 Website http://www.in.gov/dnr/dnroil/ Coordinates 39.741129°, -86.412336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741129,"lon":-86.412336,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Authors: Michael D. Vanden Berg, Stephanie Carney, Michael D. Laine, Craig D. Morgan, Utah Geological Survey; and Paul B. Anderson, consulting geologist. Venue: Poster Session: Responsible Development, Sustainability, and Climate Science—Groundwater and Site Remediation, June 9, 2009, American Association of Petroleum Geologists annual meeting, Denver, CO, June 7 to 10, 2009. http://www.aapg.org/denver/ [external site] Abstract: Saline water disposal is the single most pressing issue with regard to increasing petroleum and natural gas production in the Uinta Basin of Utah. Conventional oil and gas fields in the basin provide 67% of Utah’s total crude oil production and 71% of Utah’s total natural gas, the latter of which has increased 175% in the last 10 years. As petroleum production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of fresh water sources. Many Uinta Basin operators claim that petroleum and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. Researchers have begun efforts to re-map the base of the moderately saline aquifer within the Uinta Basin using more robust data and more sophisticated GIS techniques than previous efforts. Below this base, they believe that saline water can be injected without damage to the overlying freshwater reservoirs. Water chemistry data are being collected from wells of operators and governmental agencies. These ground-truth data are supplemented with water chemistry information calculated from geophysical logs. In addition to the new GIS-based map, the researchers are constructing cross sections showing the stratigraphic position of the moderately saline to very saline transition and its relationship to potential seals and disposal zones in the Uinta Basin. A potentially suitable disposal zone for large volume saline water disposal is the fresh to slightly saline Bird’s-Nest aquifer. This aquifer is located in the oil shale zone of the Green River formation’s Parachute Creek member and is 200 to 300 ft above the kerogen-rich Mahogany zone. A significant concern is that saline water disposal into the Bird’s-Nest by conventional gas producers may hinder oil shale development by creating unforeseen economic and technical hurdles. With increased saline water disposal, the water quality in the Bird’s-Nest could degrade and create additional water disposal problems for oil shale development companies. Researchers have examined this aquifer in outcrop, core, and geophysical logs and have gained a better understanding of its areal extent, thickness, and zones of differing water chemistry

478

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

479

Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) |  

Open Energy Info (EERE)

Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

480

Barnett Shale Municipal Oil and Gas Ordinance Dynamics: A Spatial Perspective  

E-Print Network [OSTI]

with the recent optimization of horizontal drilling, has substantially increased United States oil and gas production. Hydrocarbon firms perfected and use hydraulic fracturing on the Barnett Shale in North Texas; due to the nature of the formation, gas companies...

Murphy, Trey Daniel-Aaron

2013-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas distillate oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Formation mechanism and geochemical characteristics of shallow natural gas in heavy oil province, China  

Science Journals Connector (OSTI)

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relat...

GuangYou Zhu; ShuiChang Zhang; WenZhi Zhao…

2008-05-01T23:59:59.000Z

482

Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

Not Available

1988-09-01T23:59:59.000Z

483

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

484

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

485

Management of produced water in oil and gas operations  

E-Print Network [OSTI]

of adsorption for oil removal from produced water............... 13 2.3 Adsorption terminologies ...................................................................... 17 2.4 Evaluation of new organoclay adsorbent for oil removal...................... 19 2... to the experimental data of percentage of oil adsorbed with time.................................................................................................53 5.4 A straight line fit to the experimental data of oil adsorption vs. oil inflow...

Patel, Chirag V.

2005-02-17T23:59:59.000Z

486

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities  

Science Journals Connector (OSTI)

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities ... As the demand for offshore oil platforms and eco-friendly oil production has increased, it is necessary to determine the optimal conditions of offshore oil production platforms to increase profits and reduce costs as well as to prevent environmental pollution. ... To achieve a practical design for an offshore platform, it is necessary to consider environmental specifications based on an integrated model describing all units concerned with oil and gas production. ...

Ik Hyun Kim; Seungkyu Dan; Hosoo Kim; Hung Rae Rim; Jong Min Lee; En Sup Yoon

2014-05-05T23:59:59.000Z

487

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

488

Population enumeration and the effects of oil and gas development on dune-dwelling lizards  

E-Print Network [OSTI]

abundances of dune-dwelling lizards among sites that varied in oil and gas development. I conducted distance line transects and compared those density estimates to densities obtained from total removal plots. I quantified the amount of oil and gas development...

Smolensky, Nicole Limunga

2009-05-15T23:59:59.000Z

489

Oil & Gas Science and Technology --Rev. IFP Energies nouvelles Copyright 2010 IFPEN Energies nouvelles  

E-Print Network [OSTI]

Oil & Gas Science and Technology -- Rev. IFP Energies nouvelles Copyright © 2010 IFPEN Energies to an effective thermal management system and to maintain safety, perfor- #12;2 Oil & Gas Science and Technology of Michigan, Ann Arbor, Michigan, 48109 - USA 2 U.S. Army Tank Automotive Research, Development

Stefanopoulou, Anna

490

Energy (Oil and Gas) Exploration (and Development) on the U.S.  

E-Print Network [OSTI]

Energy (Oil and Gas) Exploration (and Development) on the U.S. Arctic Continental Shelf Jeff Walker Regional Supervisor, Field Operations Minerals Management Service, Alaska Region Jeffrey.walker@mms.gov 3rd of an Ice-Diminishing Arctic on Exploratory Activities Arctic nations will pursue oil and gas. Offshore

Kuligowski, Bob

491

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

492

Access to DOE Database of Oil and Natural Gas Research Results Expanded |  

Broader source: Energy.gov (indexed) [DOE]

Access to DOE Database of Oil and Natural Gas Research Results Access to DOE Database of Oil and Natural Gas Research Results Expanded Access to DOE Database of Oil and Natural Gas Research Results Expanded January 12, 2011 - 12:00pm Addthis Washington, DC - The results of nearly four decades of research supported by the U.S. Department of Energy (DOE) are now available through the OnePetro online document repository. TheOnePetro website now contains NETL's Oil & Gas Knowledge Management Database. DOE's Knowledge Management Database (KMD) provides access to content from dozens of CDs and DVDs related to oil and natural gas research that the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) has published over the years. It also provides links to reports, data sets, and project summaries from ongoing research supported

493

Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Arctic Oil and Natural Gas Potential Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration Office of Integrated Analysis and Forecasting Oil and Gas Division October, 2009 Introduction The Arctic is defined as the Northern hemisphere region located north of the Arctic Circle, the circle of latitude where sunlight is uniquely present or absent for 24 continuous hours on the summer and winter solstices, respectively. The Arctic Circle spans the globe at 66.56° (66°34') north latitude (Figure 1). 1 The Arctic could hold about 22 percent of the world's undiscovered conventional oil and natural gas resources. The prospects for Arctic oil and natural gas production are discussed taking into consideration the nature of the resources, the cost of developing them, and the

494

EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale  

Broader source: Energy.gov (indexed) [DOE]

31: Proposed Natural Gas Protection Program for Naval Oil 31: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado SUMMARY This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that would encompass a total of 200 wells in Garfield County, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 1991 EA-0531: Final Environmental Assessment Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 August 9, 1991 EA-0531: Finding of No Significant Impact

495

Oil and Gas Commission General Rules and Regulations Continued(Arkansas) |  

Broader source: Energy.gov (indexed) [DOE]

Oil and Gas Commission General Rules and Regulations Oil and Gas Commission General Rules and Regulations Continued(Arkansas) Oil and Gas Commission General Rules and Regulations Continued(Arkansas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Arkansas Program Type Siting and Permitting Provider Department of Natural Resources The General Rules have been adopted by the Oil and Gas Commission in accordance with applicable state law requirements and are General Rules of state-wide application, applying to the conservation and prevention of waste of crude oil and natural gas in the State of Arkansas and protection

496

EIA Data: 2011 United States Oil and Gas Supply | OpenEI  

Open Energy Info (EERE)

Oil and Gas Supply Oil and Gas Supply Dataset Summary Description This dataset is the 2011 United States Oil and Gas Supply, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (3 years ago) Date Updated Unknown Keywords AEO EIA energy gas oil Supply Data application/vnd.ms-excel icon Oil and Gas Supply (xls, 32.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data