Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

2

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect (OSTI)

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

3

Flue gas desulfurization: Physicochemical and biotechnological approaches  

SciTech Connect (OSTI)

Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

2005-07-01T23:59:59.000Z

4

Workshop on sulfur chemistry in flue gas desulfurization  

SciTech Connect (OSTI)

The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

Wallace, W.E. Jr.

1980-05-01T23:59:59.000Z

5

Rubber linings as surface protection in flue gas desulfurization plants  

SciTech Connect (OSTI)

The manufacturers of the German rubber lining industry have executed the rubber lining of over 1 million m{sup 2} of steel surfaces in over 150 scrubbers of flue gas desulfurization (FGD) plants, thereby effectively protecting them against corrosion. The application of rubber linings as surface protection in FGD plants has proven effective.

Fenner, J.

1997-04-01T23:59:59.000Z

6

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect (OSTI)

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

7

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect (OSTI)

Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

NONE

1998-12-01T23:59:59.000Z

8

Analysis of a pilot-scale constructed wetland treatment system for flue gas desulfurization wastewater.  

E-Print Network [OSTI]

??Coal-fired generation accounts for 45% of the United States electricity and generates harmful emissions, such as sulfur dioxide. With the implementation of Flue Gas Desulfurization (more)

Talley, Mary Katherine

2012-01-01T23:59:59.000Z

9

Re-lining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as corrosion protection material in scrubbers, tanks, pipe systems etc of European flue gas desulfurization plants. Although these rubber linings show in cases more than 15 years life, re-rubber lining is still necessary. Due to the expected higher availability of the power station units the time scale of such replacement must be kept to a minimum. As an efficient method for removal of the old lining the high pressure water systems has proven successful. Based on one such case of re-lining the working steps and time scale are demonstrated.

Fenner, J. [Keramchemie GmbH, Siershahn (Germany)

1999-11-01T23:59:59.000Z

10

Relining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as a corrosion protection material in European flue gas desulfurization plants, for scrubbers, tanks, pipe systems, etc. Although these rubber linings can last more than 15 years, relining still is necessary. The difficulty of shutting down power station units requires that the time scale of this replacement be kept to a minimum. High-pressure water systems have proven successful as an efficient method for removal of the old lining. The working steps and time scale are demonstrated for one such relining case.

Fenner, J. [Keramchemie GmbH (Germany)

1999-09-01T23:59:59.000Z

11

Process for production desulfurized of synthesis gas  

DOE Patents [OSTI]

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

1993-01-01T23:59:59.000Z

12

Desulfurization of coke oven gas from the coking of coking coal blended with a sorbent and waste plastic  

Science Journals Connector (OSTI)

A new way to implement the simultaneous reutilization of solid waste, the desulfurization of coke oven gas (COG), and even the desulfurization of coke by the co-coking of coking coal (CC) and waste plastic (WP).....

Zhao Rongfang; Ye Shufeng; Xie Yusheng

2007-03-01T23:59:59.000Z

13

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

14

Manganese-based sorbents for coal gas desulfurization  

SciTech Connect (OSTI)

The intent of this study is to perform a preliminary screening on a particular Mn-based sorbent, CST-939 (from Chemetals), for hot gas desulfurization. The purpose of the preliminary screening is to determine which temperature and type of coal gas this sorbent demonstrates the greatest capacity and efficiency for sulfur removal. The following conclusions were made from the data collected on the CST-939 sorbent: The sorbent efficiency and capacity are much greater at 343{degrees}C (650{degrees}F) than at 871{degrees}C (1,600{degrees}F). The sorbent efficiency and capacity are much greater in the presence of the more highly-reducing Shell gas than with the less-reducing KRW gas. The sorbent showed tremendous capacity for sulfur pickup, with actual loadings as high as 21 weight percent. Oxidative regeneration at 871{degrees}C (1,600{degrees}F) appeared to decompose sulfate; however, unusually high SO{sub 2} release during the second sulfidations and/or reductive regenerations indicated incomplete regeneration. The average crush strength of the reacted sorbent did not indicate any loss of strength as compared to the fresh sorbent. Superior sorbent performance was obtained in the presence of simulated Shell gas at 538{degrees}C (1,000{degrees}F).

Gasper-Galvin, L.D.; Fisher, E.P. [USDOE Morgantown Energy Technology Center, WV (United States); Goyette, W.J. [Chemetals, Inc., Baltimore, MD (United States)

1996-12-31T23:59:59.000Z

15

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network [OSTI]

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

16

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

17

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

18

A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas  

SciTech Connect (OSTI)

The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

Wheelock, T.D.; Hasler, D.J.L.

2002-09-19T23:59:59.000Z

19

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

20

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

22

Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents  

Science Journals Connector (OSTI)

The performance of adsorbents in the breakthrough tests is summarized in Tables 1 and 2, where besides the capacity expressed in milligrams per unit mass of an adsorbent or in milligrams per unit bed volume, the amount of water adsorbed during prehumidification, bed density, and pH before and after exposure to DG are listed. ... Probably the most important negative effect can be linked to the engagement of magnesium and calcium oxides in the carbonate entities, which, besides lowering surface pH and thus the number of HS- ions formed, limits the extent of reactions 2 and 7. Nevertheless, the performance of our adsorbents in desulfurization of DG is better than that of catalytically activated carbons, such as Midas or DarcoH2S, for which 73 and 39 mg/g of H2S adsorbed, respectively, was reported. ... result in adsorbents whose capacity, although smaller than that for the single-component waste oil sludge-based adsorbent, is high compared to that of conventional activated carbons. ...

Mykola Seredych; Teresa J. Bandosz

2007-01-12T23:59:59.000Z

23

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

NONE

1997-05-01T23:59:59.000Z

24

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

25

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect (OSTI)

The three main conclusions of this report are: (1) The pilot plant successfully demonstrated the continuous, fully-integrated, long-term process operation, including the mixing, pelletizing, and curing steps for aggregate production. The curing vessel, which was designed for the pilot plant test, was operated in a mass flow mode and performed well during pilot plant operation. (2) The pilot plant test demonstrated process flexibility. The same equipment was used to produce lightweight, medium-weight, and road aggregates. The only change was the mix formulation. Aggregates were produced from a variety of mix designs and from FGD sludge with solids concentrations between 45.0% and 56.7% and moisture contents between 55.0% and 43.3%. (3) The pilot plant provided operating data and experience to design and cost a commercial plant, which was not part of the cooperative agreement.

M.M. Wu; D.C. McCoy; R.O. Scandrol; M.L. Fenger; J.A. Withum; R.M. Statnick

2000-05-01T23:59:59.000Z

26

Gas Chromatographic EquipmentIV  

Science Journals Connector (OSTI)

......53. J.V. Hinshaw, Jr. and W. Seferovic. Gas...22-28 (1985). 54. R.T. Wiedemer, S.L...1984). 114. M.E. McNally and R.L. Grob. A review...1985). 115. M.E. McNally and R.L. Grob. Current applications......

F.L. Bayer

27

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents [OSTI]

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

28

Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994  

SciTech Connect (OSTI)

The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

Hepworth, M.T.; Slimane, R.B.

1994-11-01T23:59:59.000Z

29

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

SciTech Connect (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

30

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

31

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers  

Science Journals Connector (OSTI)

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers ... The authors thank the High-Tech Research and Development Program of China (No. 2008AA05Z306), the Natural Science Foundation of Jiangsu Province (No. BK2008283), and the Scientific Research Foundation of Graduate School of Southeast University for their financial support. ... with high performance by cascading packed columns. ...

Jingjing Bao; Linjun Yang; Shijuan Song; Guilong Xiong

2012-02-15T23:59:59.000Z

32

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

33

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

34

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

35

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

36

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 102-Small General Service and 152...

37

Greenhouse Gas Mitigation Planning for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Fleets, non-fleet vehicles, aircraft, ships, and mobile equipment contribute to a large percentage of the Federal government's comprehensive Scope 1 and 2 greenhouse gas (GHG) emissions inventory.

38

Flue gas desulfurization sludge: establishment of vegetation on ponded and soil-applied waste. Final report January 1977-September 1981  

SciTech Connect (OSTI)

The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and percolation losses of some chemical nutrients in the sludge. Several vegetation schemes were evaluated between 1977 and 1982 for covering and stabilizing LSS at Colbert Steam Plant, Cherokee, AL, and Shawnee Steam Plant, Paducah, KY. Eleven tree and 10 grass or legume species were tested for adaptability and survival when planted directly in LSS or in LSS amended with soil, municipal sewage sludge, or standard potting mix. Other studies indicated that LSS apparently has sufficient unreacted limestone to be a satisfactory soil liming agent.

Giordano, P.M.; Mays, D.A.; Soileau, J.M.

1984-01-01T23:59:59.000Z

39

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

40

Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Commercial High-Efficiency Equipment Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Weatherization Commercial Heating & Cooling Water Heating Maximum Rebate General: 50% of price Boiler Steam Trap: 25% of price Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Modulating Burner Control: $10,000 Boiler O2 Trim Control Pad: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Storage Water Heater: 50% of cost, up to $1,100 Tankless Water Heater: 50% of cost, up to $450 Griddle: 50% of cost, up to $600 Fryer: 50% of cost, up to $1,350

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

42

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

43

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect (OSTI)

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

44

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov (indexed) [DOE]

Vehicles and Mobile Vehicles and Mobile Equipment Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment October 7, 2013 - 11:32am Addthis YOU ARE HERE Step 2 To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

45

Evaluate Greenhouse Gas Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Reducing petroleum consumption is the principal means to reduce greenhouse gas (GHG) emissions from vehicles and mobile equipment. Each agency has the flexibility to evaluate a variety of options to ensure its strategy best fits the mission and makeup of its fleets.

46

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization  

Science Journals Connector (OSTI)

Abstract The wet flue gas desulfurization process (FGD) in fossil fired power plants offers the advantage of simultaneously removing SO2 and other water soluble pollutants, such as certain oxidized mercury compounds (Hg2+). In order to maximize SO2 removal efficiency of installed FGD units, organic additives can be utilized. In the context of multi-pollutant control by wet FGD, the effect of formic and adipic acid on redox reactions of dissolved mercury compounds is investigated with a continuously operated lab-scale test-rig. For sulfite ( SO 3 2 - ) concentrations above a certain critical value, their potential as reducing agent leads to rapidly increasing formation and re-emission of elemental mercury (Hg0). Increasing chloride concentration and decreasing pH and slurry temperature have been identified as key factors for depressing Hg0 re-emissions. Both organic additives have a negative impact on Hg-retention and cause increased Hg0 re-emissions in the wet FGD process, with formic acid being the significantly stronger reducing agent. Different pathways of Hg2+ reduction were identified by qualitative interpretation of the pH-dependence and by comparison of activation enthalpies and activation entropies. While the first mechanism proposed identifies SO 3 2 - as reducing agent and is therefore relevant for any FGD process, the second mechanism involves the formate anion, thus being exclusively relevant for \\{FGDs\\} utilizing formic acid as additive.

Barna Heidel; Melanie Hilber; Gnter Scheffknecht

2014-01-01T23:59:59.000Z

47

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect (OSTI)

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

48

Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation  

Science Journals Connector (OSTI)

Abstract On the one hand, huge amount of Flue Gas Desulfurization (FGD) residues, produced during scrubbing flue gas, is discarded as solid waste. Such solid waste would cause serious environmental problems. One the other hand, high quality aggregates, such as limestone and basalt, are running out due to the rapid development of highway construction. Ungraded aggregates such as gneiss are therefore considered in China to replace the high quality aggregates. The application of FGD residues as a filler in gneiss based asphalt mixturehas benefits both in environmental and economic sides. The main objective of this research was to visualize the raw materials characterization and evaluate the effect of FGD residues on the performance of gneiss based asphalt mixture. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope (SEM), Differential Scanning Calorimetric & Thermal gravimetric (DSCTG) were used to investigate the features of raw materials. The performance of gneiss based asphalt mixture including high-temperature deformation resistance, low-temperature crack resistance and moisture-induced damage resistance were evaluated. Dynamic creep test, three-point bending test, Retained Marshall Stability (RMS), Tensile Strength Ratio (TSR), Indirect Tensile (IDT) strength and Resilient Modulus (MR) test were conducted and analyzed. Dissipated Creep Strain Energy to fracture (DCSEf) ratio, fracture energy and model analysis were also used to evaluate moisture resistance, crack resistance and deformation resistance of asphalt mixture respectively. Research results indicate that FGD residues can partly improve the moisture resistance and crack resistance of gneiss asphalt mixture, while it might worse the high-temperature deformation resistance.

Zongwu Chen; Shaopeng Wu; Fuzhou Li; Juyong Chen; Zhehuan Qin; Ling Pang

2014-01-01T23:59:59.000Z

49

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect (OSTI)

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

50

Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate  

Broader source: Energy.gov (indexed) [DOE]

Commercial Energy Efficient Equipment Commercial Energy Efficient Equipment Rebate Program Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate General: 50% of purchase price Custom: $20,000 Program Info Expiration Date 12/15/2013 State Nevada Program Type Utility Rebate Program Rebate Amount Air Curtain: $1,950 Modulating Burner Control: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Clothes Dryer: $30 Custom: $1/therm up to $20,000 Convection Oven: $550 Conveyor Oven: $300-$750 Dishwasher: $1,050-$2,000 Energy Audit: $5,000/facility; $50,000/customer Furnace (Northern Nevada Only): $300-$500

51

E-Print Network 3.0 - advanced hot-gas desulfurization Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 28 Reproducedwith pennissionfrom ElsevierPergamon Biomass and Bioenerg..' Vol: 10, :os 2-3, pp..149-l66, 1996 Summary: at a commercialscale.. But hot-gas...

52

Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

To gain a good understanding of a Federal agency's Scope 1 vehicle and mobile equipment greenhouse gas (GHG) emissions, the agency must first collect the necessary data to profile any emissions sources then analyze the data in a way that will clarify the most viable strategies and alternatives. Emissions cannot be managed until they are measured. Through the use of fleet/vehicle management information systems, as well as reporting to the Federal Energy Management Program and General Services Administration, agencies are increasingly collecting and documenting useful data elements at the headquarters-and sometimes at specific site -levels.

53

Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1994--February 29, 1996  

SciTech Connect (OSTI)

A sol-gel granulation method was developed to prepare spherical {gamma}-alumina granular supports and supported CuO granular sorbents for flue gas desulfurization. The prepared {gamma}-alumina supported CuO sorbents exhibit desirable pore structure and excellent mechanical properties. The sorbents contain higher loading (30-40 wt. %) of CuO dispersed in the monolayer or sub-monolayer form, giving rise to a larger SO{sub 2} sorption capacity ({gt}20 wt.%) and a faster sorption rate as compared to similar sorbents reported in the literature. With these excellent sulfation and mechanical properties, the sol-gel derived {gamma}-alumina supported CuO granular sorbents offer great potential for use in the dry, regenerative flue gas desulfurization process. Research efforts were also made to prepare DAY zeolite supported sorbents with various CuO contents by the microwave and conventional thermal dispersion methods at different conditions. Monolayer or sub-monolayer coating of Cu(NO{sub 3})sub 2 or CuO was achieved on several DAY supported sorbents by the microwave heating method but not by the conventional thermal dispersion method. The DAY zeolite supported CuO sorbents prepared by the microwave heating method can adsorb up to 15 wt.% of SO{sub 2}. The results obtained have demonstrated the feasibility of effective preparation of zeolite supported CuO sorbents by the microwave heating method.

Lin, Y.S.; Deng, S.G.

1996-08-05T23:59:59.000Z

54

Simultaneous removal of H2S and COS using Zn-based solid sorbents in the bench-scale continuous hot gas desulfurization system integrated with a coal gasifier  

Science Journals Connector (OSTI)

A bench-scale continuous hot gas desulfurization system using Zn-based solid sorbents was developed to remove H2S and COS simultaneously in a 110 Nm3.../h of real coal-gasified syngas. The bench-scale unit, which...

Young Cheol Park; Sung-Ho Jo; Ho-Jung Ryu

2012-12-01T23:59:59.000Z

55

Prioritize Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

In order to prioritize the optimal greenhouse gas (GHG) emissions reduction strategies for vehicles and mobile equipment at each local site, Federal agencies should now aggregate the steps previously covered, including: Inventory size Emissions sources/characteristics Available mitigation options Implementation costs Various statutes, mandates and internal agency goals that regulate fleet vehicle acquisition and use. The local agency missions, as well as the local geographic characteristics, will determine the various strategic priorities for site-level decision-makers. Depending on an agency's organizational structure, headquarters level fleet managers and sustainability personnel should ensure that site-level staff have the necessary data collection tools to be able to analyze, strategically prioritize, and finally report their mitigation efforts. It is important for agencies to define the roles and responsibilities of their headquarters and site-level staff to ensure that strategies are continually refined based on performance.

56

Collect Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Data needs for greenhouse gas (GHG) mitigation planning related to Federal agency vehicles and mobile equipment can be described in terms of five key categories.

57

Application of mechanical and electrical equipment in a natural gas processing plant  

SciTech Connect (OSTI)

In 1984 the Northwest Pipeline Corporation purchased and installed equipment for their Ignacio, Colorado, gas processing plant to extract ethane and heavier hydrocarbons from the gas arriving at their pipeline system from various natural gas producing sources. In addition to the basic turbo-expander required to achieve the very low gas temperatures in the process, the equipment includes gas turbine driven compressors, heat recovery steam generators, and a steam turbine driven electric power generator. This paper reviews the process itself, the various mechanical and electrical equipment involved, and some of the control system utilized to tie it all together.

Lang, R.P.; Mc Cullough, B.B.

1987-01-01T23:59:59.000Z

58

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households ... Conventional wisdom holds that large appliances, in particular washers, dryers, refrigerators and freezers, dominate residential energy consumption apart from heat, hot water and light. ... (16) It excludes lighting, all professional equipment, space heating, hot water, garden or car equipment, fire alarms, and air conditioning. ...

Edgar G. Hertwich; Charlotte Roux

2011-08-30T23:59:59.000Z

59

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect (OSTI)

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

60

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package: Volume 2, User's guide to the EFLOW groundwater flow code  

SciTech Connect (OSTI)

This report documents a two-dimensional finite element code, EFLOW, developed to simulate water flow in fully or variably saturated porous media. This code is one component in the FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. For variably saturated flow problems, nonlinearities caused by unsaturated soil properties, atmospheric boundary conditions (e.g., infiltration, evaporation and seepage faces), and water uptake by plant roots are treated using Picard or Newton-Raphson methods. For fully saturated unconfined flow problems, the governing equations are formulated in an areal plane, and nonlinear water-table boundary conditions are treated using the Picard method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. 24 refs., 39 figs., 27 tabs.

Not Available

1988-09-01T23:59:59.000Z

62

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy.

63

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies.

64

Desulfurization behavior of iron-based sorbent with MgO and TiO{sub 2} additive in hot coal gas  

SciTech Connect (OSTI)

The sulfidation behaviors of iron-based sorbent with MgO and MgO-TiO{sub 2} are studied under different isothermal conditions from 623 to 873 K in a fixed bed reactor. The results of sorbents sulfidation experiments indicate that the sorbents with MgO and TiO{sub 2} additives are more attractive than those without additives for desulfurization of hot coal gas. The sulfur capacity (16.17, 18.45, and 19.68 g S/100 g sorbent) of M1F, M3F, and M5F sorbent containing 1, 3, and 5% MgO, respectively, is obviously bigger than that (15.02 g S/100 g sorbent) of M0F without additive. The feasible sulfidation temperature range for M3F sorbent is 773-873 K. The M3F sorbent is optimally regenerated at the temperature of 873 K, under the gas containing 2% oxygen, 15% steam and N{sub 2}, in the space velocity of 2500 h{sup -1}. The sorbent regenerated is also well performed in the second sulfidation (the effective sulfur capacities of 17.98 g S/100 g sorbents and the efficiency of removal sulfur of 99%). The capacity to remove sulfur decreases with steam content increasing in feeding gas from 0 to 10%, but it can restrain the formation of carbon and iron carbide. The addition of TiO{sub 2} in sorbent can shift the optimal sulfidation temperature lower. The iron-based sorbent with 3% MgO and 10% TiO{sub 2} (MFT) is active to the deep removal of H{sub 2}S and COS, especially in the temperature range of 673-723 K. The sulfur removal capacity of MFT sorbent is 21.60 g S/100 g sorbent. 16 refs., 12 figs., 8 tabs.

Weiren Bao; Zong-you Zhang; Xiu-rong Ren; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2009-07-15T23:59:59.000Z

65

Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility: Building 382 Rev. 1, 02/11/00 Facility: Building 382 Rev. 1, 02/11/00 Training: (1) ESH114 Lockout/Tagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707 Accelerator Worker ESH738 GERT (3) ESH196 Hazard Communication ESH376 or 456 Chemical Waste (4) ASDSF6 (5) ESH170 OSHA Lead Standard ESH196 Hazard Communication ESH195 PPE ESH141 Hand and Power Tools (6) ESH195 PPE ESH141 Hand and Power Tools (7) Informal OJT (8) Formal OJT Management Tools: (A) ANL-E ESH Manual SMART (B) APS-SAD APS-CO (C) Waste Handling Procedure Manual Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical

66

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

67

Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

NONE

1996-12-31T23:59:59.000Z

68

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

NONE

1998-03-01T23:59:59.000Z

69

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect (OSTI)

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

Not Available

1994-07-08T23:59:59.000Z

70

Experience gained in a number of countries from using thermal power stations equipped with diesel and gas engines  

Science Journals Connector (OSTI)

Large-capacity thermal power stations and customers cogeneration stations equipped with diesel and gas engines, and their technical-economic and cost...

A. A. Salamov

2007-02-01T23:59:59.000Z

71

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect (OSTI)

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

NONE

1996-08-01T23:59:59.000Z

72

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

SciTech Connect (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

73

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

SciTech Connect (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

74

A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL  

SciTech Connect (OSTI)

Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid ammonia at -33 C, although the yield of biphenyl was only about 20 to 30%. On the other hand, benzothiophene gave a high yield of 2-ethylthiophenol under these conditions. Although our superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N, which is now commercially available, is a more effective desulfurizing agent for a variety of organophosphorus compounds than PPh{sub 3} or its acyclic analogue P(NMe){sub 3}, it does not desulfurize benzothiophene or dibenzothiophene.

John G. Verkade

2001-11-01T23:59:59.000Z

75

The Biocatalytic Desulfurization Project  

SciTech Connect (OSTI)

The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

2006-03-03T23:59:59.000Z

76

Produce synthesis gas by steam reforming natural gas  

SciTech Connect (OSTI)

For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

Marsch, H.D.; Herbort, H.J.

1982-06-01T23:59:59.000Z

77

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network [OSTI]

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

78

THE BIOCATALYTIC DESULFURIZATION PROJECT  

SciTech Connect (OSTI)

The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid that will allow for its easy transfer and manipulation into a variety of hosts. To support this activity and to gain an understanding of additional genes that may potentially affect BDS activity, the nucleotide sequence of the entire complement of plasmids in IGTS8 is being determined. Lastly, we continue to develop genetic screens and selections for the discovery and improvement of the biodesulfurization genes and strains.

Scott Collins; David Nunn

2003-10-01T23:59:59.000Z

79

High-volume, high-value usage of flue gas desulfurization (FGD) by- products in underground mines: Phase 1, Laboratory investigations. Quarterly report, April--June 1995  

SciTech Connect (OSTI)

The kinetics study which is investigating hydration reactions of the ADM by-product (Subtask 2.2) was continued this quarter. This study further aided in gaining information on mineral precipitation and dissolution reactions during hydration of the ADM materials. The information is of importance for a comprehensive understanding of the factors that control strength and long-term stability during aging of FGD materials. The decision was made by Addington, Inc., DOE, and the University of Kentucky that the originally selected mine site for the emplacement demonstration must be changed, mainly for safety reasons. Mine selection will be a priority for the next quarter (Jul--Sep, 1995). Another activity during this reporting period was related to Subtask 4.3, the selection and testing of the transport system for the FGD material. A laboratory-scale pneumatic emplacement test unit (ETU) for dry FGD materials was built at the CAER to generate data so that a final selection of the field demonstration technology can be made. A dry pneumatic system was chosen for laboratory testing because the equipment and expertise available at the CAER matched this sort of technology best. While the design of the laboratory system was based on shotcrete technology, the physical properties of the emplaced FGD material is expected to be similar for other transport techniques, either pneumatic or hydraulic. In other words, the selection of a dry pneumatic transport system for laboratory testing does not necessarily imply that a scaled-up version will be used for the field demonstration. The ETU is a convenient means of producing samples for subsequent chemical and physical testing by a representative emplacement technology. Ultimately, the field demonstration technology will be chosen based on the laboratory data and the suitability of locally available equipment.

NONE

1995-09-01T23:59:59.000Z

80

Desulfurization sorbent regeneration  

DOE Patents [OSTI]

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

Jalan, V.M.; Frost, D.G.

1982-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Domestic equipment for the development of gas-turbine based power engineering  

Science Journals Connector (OSTI)

A brief analysis of characteristics and specific features of foreign gas-turbine installations is presented. Prospects of introduction of combined-cycle and gas-turbine technologies in power engineering of Rus...

G. G. Olkhovskii

2008-06-01T23:59:59.000Z

82

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

After a Federal agency has collected detailed information about its vehicle inventory, fuel consumption, usage, mission, and alternative fuel availability, it can analyze the data to determine the most cost-effective options for petroleum reduction and greenhouse gas (GHG) mitigation.

83

Flue gas desulfurization gypsum and fly ash  

SciTech Connect (OSTI)

The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

Not Available

1992-05-01T23:59:59.000Z

84

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

SciTech Connect (OSTI)

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

85

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

86

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network [OSTI]

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

87

Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines  

Science Journals Connector (OSTI)

Abstract This study investigated the impacts of varying natural gas composition on the exhaust emissions from different technology transit buses. For this study, two CNG (compressed natural gas) buses equipped with lean burn combustion and \\{OCs\\} (oxidation catalysts), and one stoichiometric CNG bus equipped with a TWC (three-way catalyst) and EGR (exhaust gas recirculation) were tested on a chassis dynamometer over the CBD (Central Business District) cycle on six different gas blends each. The gases represented a range of compositions from gases with high levels of methane and correspondingly lower energy contents/WN (Wobbe number) to gases with higher levels of heavier hydrocarbons and correspondingly higher energy contents/WN. For the lean burn buses, gases with low methane contents exhibited higher \\{NOx\\} (nitrogen oxides) (19%53%) and NMHC (non-methane hydrocarbon) (39%102%) emissions, but lower emissions of THC (total hydrocarbon) (9%24%), CH4 (methane) (23%33%), and formaldehyde emissions (14%45%). The stoichiometric engine bus with a TWC showed significantly reduced \\{NOx\\} and THC emissions compared to the lean burn buses, but did show higher levels of CO (carbon monoxide) and NH3 (ammonia). PM (particulate matter) mass emissions did not show any fuel effects, while PN (particle number) emissions exhibited some reductions for the higher WN gases.

Maryam Hajbabaei; Georgios Karavalakis; Kent C. Johnson; Linda Lee; Thomas D. Durbin

2013-01-01T23:59:59.000Z

88

Review of automated custody transfer equipment for large-volume gas flow measurement. Final report, August 1, 1987-February 28, 1988  

SciTech Connect (OSTI)

The influence of electronic automation on the accuracy of gas custody transfer measurements was investigated. The term Electronic Flow Measurement (EFM) denotes both electronic flow correctors (for positive displacement meters) and flow computers (for orifice plate measurements). Electronic devices have potential to be slightly more accurate than their mechanical counterparts. Electronic systems have the additional benefits of greater application flexibility, reduced flow corrector inventory, reduced maintenance and calibration requirements, and data storage and communication capability. The primary concerns with EFM equipment are compatibility between units made by different manufacturers and their ability to function under extreme environmental conditions.

Rush, W.F.; Tamosaitis, V.

1989-06-01T23:59:59.000Z

89

Desulfurization of lignite using steam and air  

E-Print Network [OSTI]

OF CONTENTS PAGE INTRODUCTION LITERATURE REVIEW Sulfur Removal Using a Fixed Bed Reactor Sulfur Removal Using a Batch Fluidized Bed Reactor . . 9 Continuous Fluidized Bed Reactor Systems for Desulfurization of Coal Clean Coke Process IGT Process... . This study was aimed primarily at producing better metallurgical coke. The ef+ects of various gases on +he sulfur remova1 wo re measured 0 for coal samples at varying t mperatures up to 1273 K The sample was h ated. at a constant ra+ e until the t. st...

Carter, Glenn Allen

2012-06-07T23:59:59.000Z

90

The forecast of the development of the market for gas turbine equipment in the years 20132021 (review)  

Science Journals Connector (OSTI)

The data are given, according to which, 12521 power-generating gas turbines will be manufactured in 20112021. More than 32% of these turbines will be made by Solar, while products made by General Electric will ....

V. V. Goncharov

2013-09-01T23:59:59.000Z

91

Ultrasound-promoted chemical desulfurization of Illinois coals  

SciTech Connect (OSTI)

The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

Chao, S.S.

1991-01-01T23:59:59.000Z

92

Commercial equipment cost database  

SciTech Connect (OSTI)

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

93

Desulfurization of Texas lignite using steam and air  

E-Print Network [OSTI]

in Coal Sulfur Removal From Coal By Pyrolysis EXPERIMENTAL METHOD Experimental Apparatus Experimental Procedure Analyses of the Products RESULTS AND DISCUSSION Temperature Effect Upon Desulfurization Pressure Effect Upon Desulfurization... . Treatment Composition Effect Pyrolysis Conditions vs. Addition of' Air V1 V111 ix 10 15 20 24 31 31 35 39 43 45 49 52 53 V11 TABLE OF CONTENTS (Continued) PAGE Pyrolysis Conditions vs. Addition of Steam and Air . . 53 Sulfur Removal...

Stone, Robert Reginald

1981-01-01T23:59:59.000Z

94

Equipment Certification | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Equipment Certification Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Canada Commercial Construction Developer

95

Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain  

Science Journals Connector (OSTI)

...released from fossil fuel combustion...acid rain and air pollution (6, 22...5 ml metal solution (16). A...desulfurization of fossil fuels. FIG. 1...enrichments. Water Air Soil Pollut...desulfurization of fossil fuels. Nat. Biotechnol...

Bo Yu; Ping Xu; Quan Shi; Cuiqing Ma

2006-01-01T23:59:59.000Z

96

Cleanroom Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conventional Machining Engis Lapping and Polishing Machine MET One particle Counter Sand Blaster Cabinet Flycutting Machine Lithography Equipment Mann 600 Pattern Generator Oriel...

97

Bulk Hauling Equipment for CHG  

Broader source: Energy.gov (indexed) [DOE]

load of CHG Semitrailer Mass Trailer or ModuleChassis Module Mass Hydrogen Gas Mass CAPITAL EXPENDITURE FOR BULK HAULING EQUIPMENT For large consumption, total CapEx for...

98

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

99

Gas Chromatographic EquipmentIV  

Science Journals Connector (OSTI)

......reduce discrimination, thermal degradation, and adsorptive...dimensions, and location; thermal insulation characteristics be tween...at manufac turers' specifications in this article and...detector (FID), the thermal-conductivity detector......

F.L. Bayer

1986-12-01T23:59:59.000Z

100

Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain  

Science Journals Connector (OSTI)

...two-step resting-cell process combining sequentially P...bottlenecks that limit the commercialization of BDS have been identified...our understanding of the BDS process at a molecular level, the...influence the desulfurization process rate (2). The activity...

Javier Calzada; Mara T. Zamarro; Almudena Alcn; Victoria E. Santos; Eduardo Daz; Jos L. Garca; Felix Garcia-Ochoa

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scientist Equipment and Outline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outline and Equipment Outline and Equipment LIGHT AND COLOR Grade levels: can be adapted for grades 2-8. Length of time: 30-45 minues. Room preference: Double classroom or all-purpose room. Equipment is located in the Lederman Science Center. Talk to Susan Dahl to borrow this set. Spectrum tube power supply, gas tubes and diffraction grating glasses Light box with red, green, and blue translucent film Power chord, extension chord Large set of lenses Small concave and convex lenses Magnetic optics kit, includes a small laser Slinky Flashlight Clear plastic tub, powdered milk Water Radiometer Electromagnetic energy spectrum poster Set of red, green and blue flood lights Where does light come from? Use a boy and a girl to make a human demonstration of molecules and atoms. Have students rub their hands together and notice friction equals heat.

102

Equipment Certification Requirements | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Requirements Equipment Certification Requirements Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Contents 1 Equipment Certification Incentives 2 References Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines

103

ADSORPTIVE DESULFURIZATION OF LIQUID TRANSPORTATION FUELS VIA NICKEL-BASED ADSORBENTS FOR FUEL CELL APPLICATONS.  

E-Print Network [OSTI]

??The objectives of this work are to compare the adsorptive desulfurization capacity of several different types of nickel-based adsorbents and to identify ways for further (more)

Clemons, Jennifer

2009-01-01T23:59:59.000Z

104

Oxidative desulfurization of dibenzothiophene with tert-butyl hydro peroxide in a photochemical micro-reactor.  

E-Print Network [OSTI]

??Sulfur content in fuels is an increasingly critical environmental issue. Hydrodesulfurization removes sulfur from hydrocarbons; however, further desulfurization is necessary in fuels. New methods are (more)

Hebert, Eilleen M.

2007-01-01T23:59:59.000Z

105

Laboratory Equipment Donation Program - Equipment Applications  

Office of Scientific and Technical Information (OSTI)

Specific questions concerning equipment should be directed to the point of Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant award e-mail sent to the applicant. Step 1: Search and Apply for Equipment Note: If you know the Item Control Number of the equipment you need, you may go directly to the on-line application. Please follow these procedures to "Search Equipment" and apply for equipment using the LEDP Online Application: Select the "Search Equipment" menu link. Enter the type of equipment desired into the search box or choose the "Equipment List" link, which will allow you see a complete list of available equipment. Select the "Item Control Number" for the desired equipment. This

106

Alternative Fuels Data Center: Pollution Control Equipment Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Pollution Control Pollution Control Equipment Exemption to someone by E-mail Share Alternative Fuels Data Center: Pollution Control Equipment Exemption on Facebook Tweet about Alternative Fuels Data Center: Pollution Control Equipment Exemption on Twitter Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Google Bookmark Alternative Fuels Data Center: Pollution Control Equipment Exemption on Delicious Rank Alternative Fuels Data Center: Pollution Control Equipment Exemption on Digg Find More places to share Alternative Fuels Data Center: Pollution Control Equipment Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pollution Control Equipment Exemption Dedicated original equipment manufacturer natural gas vehicles and

107

High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides  

SciTech Connect (OSTI)

We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H{sub 2}S, along with H{sub 2}, CO{sub 2}, and water. More complex REO sorbents outperform the simpler CeO{sub 2}/La{sub 2}O{sub 3} mixtures, in some cases significantly. Supporting REOs on Al{sub 2}O{sub 3} (?20 wt % REO) or ZrO{sub 2} actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnO{sub x} or FeO{sub x} is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al{sub 2}O{sub 3}-supported MnO{sub x} or FeO{sub x} alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

2011-01-01T23:59:59.000Z

108

Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect (OSTI)

This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

Jeffrey D Bryan

2009-09-01T23:59:59.000Z

109

LANSCE | Lujan Center | Ancillary Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ancillary Equipment Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10 - LQD 02 - SMARTS Victor Fanelli vfanelli@lanl.gov Or particular instrument scientist Top loading closed-cycle refrigerator T = 10 K to 500 K option of in situ gas adsorption cell 07 - FDS Luke Daemon lld@lanl.gov Monika Hartl hartl@lanl.gov

110

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

111

Bulk Hauling Equipment for CHG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BULK HAULING EQUIPMENT FOR CHG BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg * Purchase Cost (+/- 5%) - $510,000 HEXAGON LINCOLN TITAN(tm) V Magnum Trailer System Compressed Hydrogen Gas * Capacity 250 bar - 800 kg 350 bar - 1050 kg 540 bar - 1500 kg * Gross Vehicle Weight (with prime mover) 250 bar - 31 000 kg 350 bar - 34 200 kg 540 bar - 45 700 kg * Purchase Cost (+/-

112

User Electrical Equipment Inspections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Electronic and Electrical Equipment Inspection Criteria In order to be in compliance with NEC, OSHA, and DOE regulations all electronic and electrical equipment at the APS...

113

Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System  

Science Journals Connector (OSTI)

...oxides released from fossil fuel combustion contribute to acid rain and air pollution (11, 24). With the...the desulfurization of fossil fuels. MATERIALS AND METHODS...with a sodium chloride solution (0.85%), and resuspended...

Fuli Li; Ping Xu; Jinhui Feng; Ling Meng; Yuan Zheng; Lailong Luo; Cuiqing Ma

2005-01-01T23:59:59.000Z

114

THE USE OF FERRIC SULFATE - ACID MEDIA FOR THE DESULFURIZATION OF MODEL COMPOUNDS OF COAL  

E-Print Network [OSTI]

of Cleaning Processes to U.S. Coals . 23 B. Purpose . C.Low Temp. Processes for Coal Desulfurization", M.S. Thesis,R.A. , "Chem. Desulf. of Coal", AIChE Sym:p. Series, Meyers,

Clary, Lloyd R.

2014-01-01T23:59:59.000Z

115

Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)  

SciTech Connect (OSTI)

The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

Armstrong, P.R.; Katipamula, S.

1996-10-01T23:59:59.000Z

116

Property Tax Assessment for Renewable Energy Equipment | Department of  

Broader source: Energy.gov (indexed) [DOE]

Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount Renewable-energy equipment assessed at 20% of its depreciated cost Provider Arizona Department of Revenue Renewable energy equipment owned by utilities and other entities operating in Arizona is assessed at 20% of its depreciated cost for the purpose of determining property tax. "Renewable energy equipment" is defined as "electric generation facilities, electric transmission, electric distribution, gas distribution or combination gas and electric transmission

117

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect (OSTI)

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

118

University of Delaware | CCEI Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCEI Equipment Click column headings to sort Type Equipment Details Institution Type Equipment Details Institution: Lab Lab BACK TO TOP...

119

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

120

Agricultural Equipment | Open Energy Information  

Open Energy Info (EERE)

Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleAgriculturalEquipment&oldid267143...

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Audit Equipment  

E-Print Network [OSTI]

The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

Phillips, J.

2012-01-01T23:59:59.000Z

122

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

123

Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report  

SciTech Connect (OSTI)

Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

NONE

1996-03-04T23:59:59.000Z

124

Definition: Equipment Health Sensor | Open Energy Information  

Open Energy Info (EERE)

Sensor Sensor Jump to: navigation, search Dictionary.png Equipment Health Sensor Monitoring devices that automatically measure and communicate equipment characteristics that are related to the 'health' and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can also automatically generate alarm signals if the equipment characteristics reach critical or dangerous levels.[1] Related Terms sustainability References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Health_Sensor&oldid=502526

125

Definition: Equipment Condition Monitor | Open Energy Information  

Open Energy Info (EERE)

Condition Monitor Condition Monitor Jump to: navigation, search Dictionary.png Equipment Condition Monitor A monitoring device that automatically measures and communicates equipment characteristics that are related to the "health" and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can automatically generate alarm signals if conditions exceed preset thresholds.[1] Related Terms sustainability References ↑ https://www.smartgrid.gov/category/technology/equipment_condition_monitor [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]] Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Condition_Monitor&oldid=502601"

126

Apparatus and method for the desulfurization of petroleum by bacteria  

DOE Patents [OSTI]

A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

Lizama, H.M.; Scott, T.C.; Scott, C.D.

1995-10-17T23:59:59.000Z

127

Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus  

SciTech Connect (OSTI)

Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

Miller, K.W.

1991-01-01T23:59:59.000Z

128

Laboratory Equipment Donation Program - Equipment List  

Office of Scientific and Technical Information (OSTI)

Equipment List Equipment List Already know the item control number? Submit Reset Item Control Number Equipment Name Date Entered Condition Picture 89022833290004 1300594 TLD DETECTOR 12/16/2013 Repairable N/A 89022833290005 1300595 PICOMETER 12/16/2013 Repairable N/A 89022833290008 1300598 READER 12/16/2013 Repairable N/A 89022833290010 1300600 DETECTOR VACUUM PUMP 12/16/2013 Repairable N/A 89022833290016 1300606 TLD READER 12/16/2013 Repairable N/A 89022833290018 1300608 READER 12/16/2013 Repairable N/A 89022833290019 1300609 ANALYZER WITH DETECTOR 12/16/2013 Repairable N/A 89022833180013 1300993 PRESSURE REGULATOR 12/04/2013 Repairable N/A 89022833180022 1301098 VACUUM GAUGE 12/04/2013 Repairable N/A 89022833180023 1301099 OSCILLOSCOPE 12/04/2013 Repairable N/A

129

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

130

Renewable Energy Equipment Exemption  

Broader source: Energy.gov [DOE]

Iowa allow a sales tax exemption for solar, wind, and hydroelectricity equipment. As of May 2013, the Iowa sales tax rate is 6%.

131

Maersk Line Equipment guide  

National Nuclear Security Administration (NNSA)

a total capacity of 85 cubic metres We offer various types of extra equipment: * Hanger beams which allow transport of garments on hangers without further packing * Lashing bars...

132

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

133

Insulation of Electrical Equipment  

Science Journals Connector (OSTI)

... A VACATION 'school' on the insulation of electrical equipment was held in the Electrical Engineering Department of the Imperial College of ... the universities. The purpose of the course was to consider the factors which are limiting insulation design in the main classes of electrical equipment, and the general principles which should ...

1952-12-13T23:59:59.000Z

134

Ultrasound-promoted chemical desulfurization of Illinois coals. Final technical report, September 1, 1990--August 31, 1991  

SciTech Connect (OSTI)

The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

Chao, S.S.

1991-12-31T23:59:59.000Z

135

Desulfurization of Liquid Fuel via Fractional Evaporation and Subsequent Hydrodesulfurization Upstream a Fuel Cell System  

Science Journals Connector (OSTI)

The polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC) are favored for application in the foreseeable future. ... For fuel cells to be fuelled with liquid fuels as per Figure 1, an upstream desulfurization step is mandatory. ... fuel?recovered ...

Markus Brune; Rainer Reimert

2005-08-17T23:59:59.000Z

136

Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad  

E-Print Network [OSTI]

reforming catalysts for jet fuel", The Ohio Fuel Cell Symposium of the Ohio Fuel Cell Coalition, May 23Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

Azad, Abdul-Majeed

137

Energy Sub-Metering Equipment and Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Sub-Metering Equipment and Applications Energy Sub-Metering Equipment and Applications Speaker(s): Sim Gurewitz Date: July 24, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew This talk will address the following topics:Submetering basics: What is it? How does a submeter work?How to obtain a finer level of energy information within the buildingApplications: Who submeters and why?LEED NC/EB/CS and submetering / Energy & Atmosphere pointsSubmetering equipment: gas, electric, water, steam, CW Btu and HHW BtuHow to install equipment without scheduling an outageLoad Control option for automated load shedding and peak shavingWireless submeters and communication options / integration to EMS-BMCSAutomatic remote meter reading and cost allocation softwarePutting it all together into a metering SYSTEM: read from anywhere, IP

138

Flue-gas sulfur-recovery plant for a multifuel boiler  

SciTech Connect (OSTI)

In October 1991, a Finnish fluting mill brought on stream a flue-gas desulfurization plant with an SO{sub 2} reduction capacity of 99%. The desulfurization plant enabled the mill to discontinue the use of its sulfur burner for SO{sub 2} production. The required makeup sulfur is now obtained in the form of sulfuric acid used by the acetic acid plant, which operates in conjunction with the evaporating plant. The mill`s sulfur consumption has decreased by about 6,000 tons/year (13.2 million lb/year) because of sulfur recycling.

Miettunen, J. [Tampella Power Inc., Tampere (Finland); Aitlahti, S. [Savon Sellu Oy, Kuopio (Finland)

1993-12-01T23:59:59.000Z

139

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

140

Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

Not Available

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Broader source: Energy.gov [DOE]

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

142

2005-3-21 1 Dynamic Equipment and Process Simulation  

E-Print Network [OSTI]

, reduced order) Simulation-based technology, manufacturing and ESH Metrics Current physical and chemical understanding Simulation ToolDynamic behavior through process cycle Verification Guidelines for equipment) · Gas phase transport · Reactant adsorption and byproduct desorption · Surface

Rubloff, Gary W.

143

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

List of Equipment Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleEquipmentInsulation&oldid267163" Category: Articles with outstanding TODO tasks...

144

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial and Industrial Pumps Commercial and Industrial Pumps Sign up for e-mail updates on regulations for this and other products Pumps are used in agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. Currently there are no energy conservation standards for pumps. The Department of Energy (DOE) will conduct an analysis of the energy use, emissions, costs, and benefits associated with this equipment during the commercial and industrial pumps energy conservation standards rulemaking. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document. 78 FR 7304 (Feb. 1, 2013). For more information, please see the rulemaking page.

145

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Warm Air Furnaces Commercial Warm Air Furnaces Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of commercial warm air furnaces since 1994. Commercial warm air furnaces are self-contained oil-fired or gas-fired furnaces that are designed to supply heated air through ducts to spaces that require it. Commercial warm air furnaces are industrial equipment and have a maximum rated input capacity of 225,000 British thermal units (Btu) an hour or more. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates DOE published a request for information regarding energy conservation standards for commercial warm air furnaces. 78 FR 25627 (May 2, 2013). For more information, please see the rulemaking webpage.

146

Appliance and Equipment Standards Program  

Broader source: Energy.gov [DOE]

The Building Technologies Office (BTO) implements minimum energy conservation standards for more than 50 categories of appliances and equipment. As a result of these standards, energy users saved about $55 billion on their utility bills in 2013. Since the beginning of 2009, 25 new or updated standards have been issued, which will help increase annual savings by more than 50 percent over the next decade. By 2030, cumulative operating cost savings from all standards in effect since 1987 will reach over $1.7 trillion, with a cumulative reduction of 6.8 billion tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 1.4 billion automobiles. Products covered by standards represent about 90% of home energy use, 60% of commercial building use, and 29% of industrial energy us

147

NSLS Electrical Equipment Inspection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Equipment Inspection Information Electrical Equipment Inspection Information A note to vendors visiting NSLS A note to users visiting NSLS Proteus Electrical Conformity Remediation Currently Certified Electrical Equipment Inspectors: First Line Contacts Email Extension Poshka, Dennis poshka@bnl.gov 2825 Alternate Contacts Boerner Jr, Albert aboerner@bnl.gov 5990 Buda, Scott buda@bnl.gov 3914 Caruso, Michael caruso@bnl.gov 4100 Chmiel, Robert chmiel@bnl.gov 8141 Church, Randolph church@bnl.gov 2736 Clay, Barret clay@bnl.gov 7284 D'Alsace, Roy dalsace@bnl.gov 3973 Danneil, Christopher cdanneil@bnl.gov 8609 Davila, Peter davila@bnl.gov 7625 De Toll, Peter detoll@bnl.gov 4100 Durfee, Douglas ddurfee@bnl.gov 7625 Fulkerson, Michael fulkerso@bnl.gov 5194 Gallagher, John jgallagher@bnl.gov 5770 Harder, David dharder@bnl.gov 4978

148

Equipment Operational Requirements  

SciTech Connect (OSTI)

The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

2009-06-11T23:59:59.000Z

149

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

150

Equipment for ?-Radiography  

Science Journals Connector (OSTI)

... felt for a well-designed protective carrier and exposure unit for use with radium or radon. The announcement that Johnson Matthey and Co., Ltd., are manufacturing protective equipment ... will assist the industrial radiologist to take advantage of the improved supplies of radium and radon which are now available (Nature, June 4, 1949, p. 867). ...

1949-09-10T23:59:59.000Z

151

E-Print Network 3.0 - ancillary equipment unit Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Purchased Steel (331210); Mining Machinery & Equipment Manufacturing (333131); Oil & Gas Field Source: Boyer, Elizabeth W. - School of Forest Resources, Pennsylvania...

152

Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996  

SciTech Connect (OSTI)

Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

Palmer, S.R.; Hippo, E.J. [Southern Illinois Univ., Carbondale, IL (United States)

1996-12-31T23:59:59.000Z

153

Integrating desulfurization with CO{sub 2}-capture in chemical-looping combustion  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO{sub 2}-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H{sub 2}S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO{sub 2} production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO{sub 2} capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.

Solunke, Rahul; Veser, Goetz

2011-02-01T23:59:59.000Z

154

Sample Environment Equipment Categories - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home › Instruments › Sample Environment Home › Instruments › Sample Environment Sample Environment: Categories of Equipment All Ancillary Equipment Auto Changer Closed Cycle Refrigerators Closed Cycle Refrigerators - Bottom Loading Closed Cycle Refrigerators - Top Loading Furnaces Gas Handling Gas Panel High Pressure Systems Liquid Helium Cryostats Magnet Systems Other Special Environments Sample Cell Sample Stick Ultra Low Temperature Devices Sample Environment: by Beam Line All BL-11A-POWGEN BL-11B-MANDI BL-12-TOPAZ BL-13-Fundamental Neutron Physics Beam Line BL-14A-BL-14A BL-14B-HYSPEC BL-15-Neutron Spin Echo (NSE) BL-16B-VISION BL-17-SEQUOIA BL-18-ARCS BL-1A-TOF-USANS BL-1B-NOMAD BL-2-BASIS BL-3-SNAP BL-4A-Magnetism Reflectometer BL-4B-Liquids Reflectometer BL-5-Cold Neutron Chopper Spectrometer (CNCS) BL-6-EQ-SANS

155

field_equipment.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EQUIPMENT INVENTORY EQUIPMENT INVENTORY Trucks * Five vac/pressure trucks, 60-90 bbl, up to 5 bpm at 5,000 lb. * Water/fi re truck, 110 bbl * Two dump trucks: 5-yard and 12-yard * Belly dump trailer * Chemical injection truck, 20 bbl capacity * Three crane trucks: 6,000 lb., 8,000 lb., and 30 ton * Klaeger swab truck * Rig-up truck with 21-foot poles, 30,000-lb. capacity * Winch truck, 40,000-lb. capacity * Two bucket trucks: 25-foot and 28-foot reach * Two welding trucks with Miller Trailblazer welder * Two Ditch Witches: 8" x 7' and 6" x 3" * International PayStar 5000 transport truck * Western Star transport truck Backhoes & Loaders * John Deere 410G backhoe * Cat 420 backhoe * Case 20W loader with 2-yard bucket * Bobcat skid loader with bucket, forks, post hole digger, and trencher attachments

156

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment By Fuel and Equipment Type, 2010 Total Units by Equipment Type, 1985-2010² Coal Units by Equipment Type, Petroleum and Natural Gas Units 1985-2010² by Equipment Type, 1985-2010² 318 U.S. Energy Information Administration / Annual Energy Review 2011 Coal Units Petroleum and Natural Gas Units Particulate Collectors Thousand Megawatts 329 165 185 26 75 1 Particulate Collectors Cooling Towers Flue Gas Particulate Collectors Cooling Towers Flue Gas 0 50 100 150 200 250 300 350 1985 1990 1995 2000 2005 2010 0 100 200 300 400 Thousand Megawatts Flue Gas Desulfurization¹ Particulate Collectors Cooling Towers Flue Gas Desulfurization¹ Particulate Collectors Desulfurization¹ Desulfurization¹ Cooling Towers

157

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect (OSTI)

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

158

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect (OSTI)

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

159

The utilization of flue gas desulfurization waste by-products in construction brick.  

E-Print Network [OSTI]

??Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate (more)

Berryman, Charles Wayne

2012-01-01T23:59:59.000Z

160

A Regenerable Calcium-Based Core-in-Shell Sorbent for Desulfurizing Hot Coal Gas  

Science Journals Connector (OSTI)

Other materials used in the sorbent formulations included reagent-grade calcium carbonate from the Fisher Co. and calcium sulfate hemihydrate obtained as commercial-grade plaster of Paris. ... Once coated, the pellets were allowed to tumble for 2.0 h to consolidate the coating. ...

T. T. Akiti, Jr.; K. P. Constant; L. K. Doraiswamy; T. D. Wheelock

2002-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Management of dry flue gas desulfurization by-products in underground mines  

SciTech Connect (OSTI)

Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

Sevim, H.

1997-06-01T23:59:59.000Z

162

Desulfurization of a coal model compound by in situ hydrogen generation through water-gas shift  

E-Print Network [OSTI]

TECHNIQUE 94 PAGE APPENDIX 5 TEMPERATURE PROGRAM 101 APPENDIX 6 TEMPERATURE PROFILES 104 NOTATION 112 VITA 113 1x LIST OF FIGURES FIGURE PAGE 1 Reaction Scheme or Benzothiophene (from Guin et al. Ind. Eng. Chem. Process. Dev. , 19 (1980)) 2... and Conversion 62 5 Computer Results or Non-Linear Regression Analysis 98 6 Results of Kinetic Parameters Estimation 7 Statistical Analysis Results for Temperature Profile Tl 108 8 Statistical Analysis Results f or Temperature Prof ile T2 109 9...

Kumar, Meyyappan

1982-01-01T23:59:59.000Z

163

Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991  

SciTech Connect (OSTI)

Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

Miller, K.W.

1991-12-31T23:59:59.000Z

164

Early Equipment Management  

E-Print Network [OSTI]

starting with the ones that could cause the most human harm. This is also an excellent time to discuss all the lockout/tagout points on the machine, determine how much safety training is necessary and if there are enough warning stickers. The idea... needed. One-point lessons should be completed on all inspection, lubrication, and lockout/tagout points. Equipment labels should be created at this time including lockout/tagout and predetermined set-points. The key to a successful EEM program...

Schlie, Michelle

2007-05-18T23:59:59.000Z

165

China production equipment sourcing strategy  

E-Print Network [OSTI]

This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

Chouinard, Natalie, 1979-

2009-01-01T23:59:59.000Z

166

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the countrys industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits

2007-09-01T23:59:59.000Z

167

IAEA safeguards equipment  

Science Journals Connector (OSTI)

The International Atomic Energy Agency (IAEA) operates a large diversity of equipment to verify nuclear materials, contributing to the confirmation of the states' compliance with their respective nonproliferation obligations. The variety of physical and chemical properties of nuclear materials, as well as their storage environment, requires an arsenal of instruments. Additionally, the IAEA applies various containment and surveillance measures to maintain the continuity of knowledge on nuclear materials. The IAEA need ongoing equipment development to provide its inspectorate with the state-of-the-art tools for performing various safeguards activities. These activities include the measurement of declared nuclear material inventories and flows, the application of enhanced containment and surveillance measures and the search for the indicators of undeclared nuclear material and clandestine nuclear activities. The IAEA is facing increasing demands to perform remote verification of nuclear material flows utilising unattended monitoring systems. Additional analytical capabilities and effective non-destructive assay methods will be indispensable in the future for reinforcing the IAEA's ability to detect undeclared nuclear materials and activities.

M. Zendel

2008-01-01T23:59:59.000Z

168

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

169

Development and evaluation of two reactor designs for desulfurization of Texas lignites  

E-Print Network [OSTI]

Studies One of the earliest extensive studies of sulfur removal from coal was performed by R. D. Snow in 1932. The primary goal of this study was to produce a better metallurgical coke. The effects of various gases on sulfur removal were measured... of coke, most of the hydrogen rich parts of the coal are devolatilized. It is the hydrogen, however, that provides a large part of the energy when the product is used as a fuel. Clearly, any desulfurization technique for fuel should take place under...

Merritt, Stanley Duane

2012-06-07T23:59:59.000Z

170

Documentation Requirements for Pressurized Experiment Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation Requirements for Pressurized Experiment Apparatus Documentation Requirements for Pressurized Experiment Apparatus PSSC NOTE01 15-Jan-2013 When bringing a piece of apparatus to the APS for an experiment that will involve pressure, whether it is to be used on a beamline during a measurement or in a laboratory to prepare the sample prior to the experiment, the hazards associated with the equipment must be reviewed. To review the equipment and make any recommendations, a certain level of documentation must be provided by the experimenter. The length and depth of the documentation should be commensurate with the complexity of the system. 1. Description of apparatus a. Description of the assembly and operation of the system. b. State the maximum working pressure, working fluid (liquid or gas) used to

171

Measured Peak Equipment Loads in Laboratories  

E-Print Network [OSTI]

of measured equipment load data for laboratories, designersmeasured peak equipment load data from 39 laboratory spacesmeasured equipment load data from various laboratory spaces

Mathew, Paul A.

2008-01-01T23:59:59.000Z

172

Electrical Equipment Inventory and Inspection Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Equipment Inventory and Inspection Information APS Non-NRTL Electrical Equipment Inventory Spreadsheet ANL Recognized Reputable Electrical Equipment Manufacturer List as...

173

Desulfurization of saturated C3S molecules on Mo(110): the effect of ring strain  

SciTech Connect (OSTI)

The reactions of trimethylene sulfide (c-C3H6S) and 1-propanethiol (C3H7SH) have been investigated on Mo(110) under ultrahigh vacuum using temperature-programmed reaction spectroscopy and Auger electron spectroscopy. Deuterium preadsorption experiments were conducted in conjunction with temperature-programmed reaction spectroscopy to deduce some mechanistic details of the reactions. Desulfurization reactions of both molecules to produce propane and propene were observed in the temperature range of 300-350 K, with propane production preceding propene production. In addition, trimethylene sulfide decomposed to form cyclopropane at 190 K. Both trimethylene sulfide and 1-propanethiol reacted on Mo(110) to produce gaseous dihydrogen in two peaks at approximately 350 and 540 K, as well as surface carbon and sulfur. Small amounts of reversibly adsorbed 1-propanethiol desorbed from Mo(110) between 175 and 200 K. Auger electron spectroscopy measurements suggest that approximately 50% of chemisorbed trimethylene sulfide decomposed to form hydrocarbons, while 70% of irreversibly chemisorbed 1-propanethiol decomposed to form hydrocarbons. The decomposition of trimethylene sulfide to cyclopropane is postulated to occur by one of three pathways. One of these pathways is entirely intramolecular, and the other two involve metallacycle transition states or intermediates. Trimethylene sulfide and 1-propanethiol are proposed to form propane and propene by way of a surface propyl thiolate intermediate, in a fashion similar to the reactions of tetrahydrothiophene and 1-butanethiol on Mo(110). The possible contributions of ring strain to the energetics and selectivity of the desulfurization reactions are discussed.

Roberts, J.T.; Friend, C.M.

1987-06-24T23:59:59.000Z

174

Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report  

SciTech Connect (OSTI)

The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

John J. Kilbane II

2000-12-15T23:59:59.000Z

175

Information technology equipment cooling system  

SciTech Connect (OSTI)

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

176

INL '@work' heavy equipment mechanic  

ScienceCinema (OSTI)

INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

Christensen, Cad

2013-05-28T23:59:59.000Z

177

Commercial Kitchen & Food Service Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

178

Commercial Cooking Equipment | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleCommercialCookingEquipment&oldid38063...

179

Food Service Equipment | Open Energy Information  

Open Energy Info (EERE)

Service Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleFoodServiceEquipment&oldid380620...

180

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vermont Gas- Commercial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

182

Control of scale in flue gas scrubbers  

SciTech Connect (OSTI)

This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.

Thomas, P.A.; Dewitt-Dick, D.B.

1987-06-02T23:59:59.000Z

183

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

184

Operating Experience Level 3, Industrial Equipment Impacts Infrastructure  

Broader source: Energy.gov [DOE]

This Operating Experience Level 3 (OE-3) document provides information on a safety concern related to heavy industrial equipment that contacts and damages structures and electrical, gas, and water lines. Although these contacts did not cause injuries, the events did impact mission and schedule, divert resources, and change momentum.

185

Corrosion protection by means of rubber linings in a flue gas scrubber made of concrete  

SciTech Connect (OSTI)

Rubber linings have been applied as a corrosion protection measure for steel surfaces, particularly in the absorbers, in the flue gas desulfurization plants of a large number of power stations in Europe and have decidedly proven their effectiveness. The rubber linings applied consist of either precured and/or cold-curing rubber sheets. In the course of the past five to seven years, the eastern European states have also begun retro-fitting their existing power stations with flue gas desulfurization plants. As the first of its kind, a scrubber in the flue gas desulfurization plant of the Konin Power Station in Poland, which operates on the basis of the limestone-gypsum process, was constructed of concrete. In this case also, the corrosion protection measures implemented consisted in the application of a precured rubber lining on the basis of butyl rubber. A surface area measuring 1,500 m{sup 2} of the concrete absorber was protected by means of this corrosion protection system.

Fenner, J.; Matos, A.; Seiffert, W. [Keramchemie GmbH, Siershahn (Germany)

1998-12-31T23:59:59.000Z

186

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

187

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

188

Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions  

Science Journals Connector (OSTI)

Abstract Today there are serious regulations to reduce sulfur content of fuels because the \\{SOx\\} produced during the combustion of fuels containing sulfur compounds make the air polluted and have dangerous environmental impacts. With the aim of replacement of the present volatile, flammable and toxic organic solvents or inefficient, corrosive and expensive ionic liquids (ILs), the polyethylene glycol (PEG) was introduced as a green, effective, non-toxic, non-corrosive and also recyclable molecular solvent for extractive desulfurization (EDS) of benzothiophenic compounds from liquid fuel in this work for the first time. PEG shows excellent EDS and it has the higher extraction efficiency for dibenzothiophene (DBT) (76% within 90s) than those of ILs. Using this extractant, the BDT content was reduced from 512 to 10ppmw (98%) only within three extraction stages, the minimum number of cycles within shortest time reported up to now, and the deep desulfurization was achieved. Effect of some important parameters including initial concentration of sulfur compound, PEG dosage, time and temperature of extraction on the EDS process was investigated. It was fond that extraction performance of PEG is independent to temperature and initial sulfur content, which is an excellent finding for industrialization. The feasibility of PEG for extraction of different thiophenic compounds was observed in the order of dibenzothiophene>benzothiophene>4,6-dimethyldibenzothiopene. Finally, the PEG was reused in several cycles and then it was regenerated by adsorption method. The results of the present work hopefully provide useful information for future industrial application of PEG as an efficient green solvent for the EDS of liquid fuels.

Effat Kianpour; Saeid Azizian

2014-01-01T23:59:59.000Z

189

TRANSPORT AND EMPLACEMENT EQUIPMENT DESCRIPTIONS  

SciTech Connect (OSTI)

The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) Transport and Emplacement in the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. The Transport and Emplacement equipment described in this document consists of the following: (1) WP Transporter; (2) Reusable Rail Car; (3) Emplacement Gantry; (4) Gantry Carrier; and (5) Transport Locomotive.

NA

1997-09-29T23:59:59.000Z

190

Promising technology for recovery and use of liquefied natural gas  

Science Journals Connector (OSTI)

Use of liquefied natural gas is proposed as an alternative to motor fuel. Technology for recovering liquid natural gas based on the principle of internal gas cooling in a turbo-expander, and the equipment require...

E. B. Fedorova; V. V. Fedorov; A. D. Shakhov

2009-03-01T23:59:59.000Z

191

Laboratory Equipment Donation Program - Guidelines  

Office of Scientific and Technical Information (OSTI)

The United States Department of Energy, in accordance with its The United States Department of Energy, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment. Universities, colleges and other non-profit educational institutions of higher learning in the United States are eligible to apply for equipment to use in energy-oriented educational programs in the life, physical, and environmental sciences, and in engineering. The equipment listed in this database is available for grant; however, specific items may be recalled for DOE use and become unavailable through the program. Frequently Asked Questions Who is eligible to apply for equipment? Any non-profit, educational institution of higher learning, such as a middle school, high school, university, college, junior college, technical

192

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Package Vertical Air Conditioners and Heat Pumps Single Package Vertical Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's energy conservation standards for single package vertical air conditioners and heat pumps as a separate equipment class since 2008. Before 2010, this equipment was regulated under the broader scope of commercial air conditioning and heating equipment. Single package vertical air conditioners and heat pumps are commercial air conditioning and heating equipment with its main components arranged in a vertical fashion. They are mainly used in modular classrooms, modular office buildings, telecom shelters, and hotels, and are typically installed on the outside of an exterior wall or in a closet against an exterior wall but inside the building.

193

Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate Mortar & Pestle Sets Agilent 8453...

194

Earth-Fault Relay Equipment  

Science Journals Connector (OSTI)

... proving the reliability of the equipment. By Observing the operation of the relays at each substation with faults at selected points, the complete scheme can be put into operation with ...

1944-04-15T23:59:59.000Z

195

Certified APS Electrical Equipment Inspectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS Designated Electrical Equipment Inspectors : Division Phone Page e-mail Jonathan Baldwin XSD 2-6977 4-6977 jbaldwin@aps.anl.gov Adam Brill ASD 2-9968 4-4559 abrill@aps.anl.gov...

196

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Direct Heating Equipment and Pool Heaters Active Mode Test Procedures Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to amend the active mode test procedures for direct heating equipment and pool heaters. This rulemaking is mandated by the Energy Policy and Conservation Act (EPCA). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of proposed rulemaking regarding active mode test procedures for direct heating equipment and pool heaters. 78 FR 63410 (October 24, 2013). The comment deadline is January 7, 2014. Public Meeting Information

197

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

198

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

199

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

200

Energy saving at gas compressor stations through the use of parametric diagnostics.  

E-Print Network [OSTI]

?? Increasingly growing consumption of natural gas all around the world requires development of new transporting equipment and optimization of existing pipelines and gas pumping (more)

Angalev, Mikhail

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

202

CRAD, Nuclear Facility Construction - Mechanical Equipment -...  

Office of Environmental Management (EM)

Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 June 26, 2012 Nuclear Facility...

203

Request an Inspection of User Electrical Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Request for an Electrical Equipment Inspection All APS User electronic and electrical equipment must be inspected before use in an experiment. Please ask your beamline to make...

204

Summary of Construction Equipment Tests and Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment Tests A series of tests were conducted by the APS Construction Vibration Measurement Task Force using various pieces of construction equipment at the APCF...

205

Best Management Practice #11: Commercial Kitchen Equipment  

Broader source: Energy.gov [DOE]

Commercial kitchen equipment represents a large set of water users in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high volume...

206

Emissions characteristics of modern oil heating equipment  

SciTech Connect (OSTI)

Over the last 10 years there have been some very interesting developments in oil heating. These include higher static pressure burners, air atomizing nozzles, low firing rate nozzles, low heat loss combustion chambers and condensing boilers and furnaces. The current data base on the emissions characteristics of oil-fired residential heating equipment is based primarily on data taken in the 1970's. The objective of the work described in this report is to evaluate the effects of recent developments in oil-fired equipment on emissions. Detailed emissions measurements have been made on a number of currently available residential oil burners and whole systems selected to represent recent development trends. Some additional data was taken with equipment which is in the prototype stage. These units are a prevaporizing burner and a retention head burner modified with an air atomizing nozzle. Measurements include No{sub x}, smoke numbers, CO, gas phase hydrocarbon emissions and particulate mass emission rates. Emissions of smoke, CO and hydrocarbons were found to be significantly greater under cyclic operation for all burners tested. Generally, particulate emission rates were found to be 3 to 4 times greater in cyclic operation than in steady state. Air atomized burners were found to be capable of operation at much lower excess air levels than pressure atomized burners without producing significant amounts of smoke. As burner performance is improved, either through air atomization or prevaporization of the fuel, there appears to be a general trend towards producing CO at lower smoke levels as excess air is decreased. The criteria of adjusting burners for trace smoke may need to be abandoned for advanced burners and replaced with an adjustment for specific excess air levels. 17 refs., 15 figs., 6 tabs.

Krajewski, R.; Celebi, Y.; Coughlan, R.; Butcher, T.; McDonald, R.J.

1990-07-01T23:59:59.000Z

207

PNNL: EDO - Facilities & Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

208

MPC Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

With capabilities from simple arc casting techniques, single crystal preparation, VIM casting, to plasma spraying and high-pressure gas atomization the MPC can assist...

209

Equipment  

Science Journals Connector (OSTI)

...circuit can be included which will return the system to its previous state when power has been restored after a power failure. (Panellit, Inc., Dept. 197) * AUXILIARY RECORKFR may be used with the manufacturer's infrared spectropho-tometers to provide...

JOSHUA STERN

1958-08-01T23:59:59.000Z

210

Equipment  

Science Journals Connector (OSTI)

...polarized d-c or a-c voltage, or insulation resistance. Range of voltage measurement...Milli-microsecond Time Interval measuring device. SPECIFICATIONS INPUT PULSE RANGE: 5 105v COUNT STORAGE...its use in any convenient location. (Thermal Dynamic Products Inc., Dept. 247...

JOSHUA STERN

1958-08-08T23:59:59.000Z

211

Covered Product Category: Imaging Equipment  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

212

Commercial Equipment Testing Enforcement Policies  

Broader source: Energy.gov [DOE]

In an exercise of its enforcement discretion, under specific conditions, DOE will not perform assessment testing, verification testing, or enforcement testing on units of certain types of commercial equipment if the manufacturer distributes in commerce an otherwise identical unit that does not have that feature.

213

Heating and Cooling System Support Equipment Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

214

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment |  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reduction Strategies for Vehicles and Mobile Petroleum Reduction Strategies for Vehicles and Mobile Equipment Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:50am Addthis YOU ARE HERE: Step 3 As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels. These strategies provide a framework for an agency to use when developing a strategic plan that can be specifically tailored to match the agency's fleet profile and meet its mission. Agency fleet managers should evaluate petroleum reduction strategies and tactics for each fleet location, based on an evaluation of site-specific

215

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

216

New recommended heat gains for commercial cooking equipment  

SciTech Connect (OSTI)

Radiant heat gain from cooking equipment can significantly impact the air-conditioning load and/or human comfort in a commercial kitchen. This paper presents and discusses updated heat gain data for several types of commercial cooking equipment based on recent testing by gas and electric utility research organizations. The cooking equipment was tested under exhaust-only, wall-canopy hoods. The fundamentals of appliance heat gain are reviewed and the new data are compared with data published in the 1993 ASHRAE Handbook--Fundamentals, chapter 26, nonresidential cooling and heating load calculations. These updated data are now incorporated in the 1997 ASHRAE Handbook--Fundamentals, chapter 28, nonresidential cooling and heating load calculations. The paper also discusses appliance heat gain with respect to sizing air-conditioning systems for commercial kitchens and presents representative radiant factors that may be used to estimate heat gain from other sizes or types of gas and electric cooking equipment when appliance specific heat gain data are not avoidable.

Fisher, D.R. [Fisher Consultants, Danville, CA (United States)

1998-12-31T23:59:59.000Z

217

About Genco Energy Services Genco Energy Services has been servicing the rental equipment needs  

E-Print Network [OSTI]

and insurance costs; increased employee safety and productivity Industry Focus Rental equipment for oil and gas and natural gas production. Approximately 150 employees service hundreds of jobs at any given time by moving in more errors and lost productivity. The company needed to automate its asset management processes

Fisher, Kathleen

218

Oil and Gas Lease Equipment and Operating Costs 1994 Through...  

Gasoline and Diesel Fuel Update (EIA)

10 producing wells, 11 injection wells and 1 water supply well. Costs for water storage tanks, injection plant, filtering systems, injection lines and drilling water supply wells...

219

BASIS Equipment | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment Equipment BASIS Schematic Schematic of the SNS Backscattering Spectrometer. Helium dewer cooling a sample Helium dewer cooling a sample (bird's eye view). The heart of the work in a typical experiment is setting up the sample in the desired environment. A typical neutron sample ranging from a millimeter to a few centimeters is placed in a specialized cylindrical can and sealed. For liquids, the backscattering instrument often uses an annular can, created by placing a smaller can within a larger can and inserting the liquid sample between the two cans. This picture shows a helium dewer cooling the environment encompassing the sample can, which has been lowered into the beam from the top of the scattering tank. Crystals Crystals. The backscattering spectrometer is defined by the reflection of specific

220

Football facility and equipment management  

Science Journals Connector (OSTI)

The paper investigates the subject of football facility and equipment management to present the key success factors and planning elements for consideration. The work is based on secondary data analysis and literature review, and the findings include both descriptive and prescriptive elements. The findings construct a theoretical basis for further development and provide football managers with explicit and practical advice on the subject. They further indicate that topics pertaining to football facility and equipment management are not and should not be viewed as independent tasks under a common umbrella. They are all part of a larger system with all aspects interrelated both at the planning and the operation stages. Moreover, they are found to be inextricably linked with the wider strategic and marketing processes and constitute a significant part of the value proposition of the club to its immediate customers, implicit customers, industry associates and wider society.

Nicos L. Kartakoullis; Alkis Thrassou; Demetris Vrontis; Thanos Kriemadis

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog  

SciTech Connect (OSTI)

This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

Not Available

1994-07-01T23:59:59.000Z

222

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect (OSTI)

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

223

Columbia Gas of Virginia- Business Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers and controls, laundromat clothes...

224

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

225

Sales and Use Tax Exemption for Gas Processing Facilities  

Broader source: Energy.gov [DOE]

In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

226

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

227

Chapter 10 - Natural Gas Sweetening  

Science Journals Connector (OSTI)

Abstract Acid gas constituents present in most natural gas streams are mainly hydrogen sulfide (H2S) and carbon dioxide (CO2). Many gas streams, however, particularly those in a refinery or manufactured gases, may contain mercaptans, carbon sulfide, or carbonyl sulfide. The level of acid gas concentration in the sour gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas, and other processes have the capacity for removing acid gas constituents to ppm range. This chapter covers the minimum process requirements, criteria, and features for accomplishment of process design of gas sweetening units. The basic principles for process design of main equipment, piping, and instrumentation together with guidelines on present developments and process selection in the gas sweetening process are the main objectives throughout this chapter.

Alireza Bahadori

2014-01-01T23:59:59.000Z

228

Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

229

Management of dry flue gas desulfurization by-products in underground mines. Topical report, October 1, 1993--March 31, 1998  

SciTech Connect (OSTI)

The DESEVAL-TRANS program is developed for the purpose of helping the engineer to design and economically evaluate coal combustion byproduct transportation systems that will operate between the power plant and the disposal site. The objective of the research project was to explore the technical, environmental and economic feasibility of disposing coal combustion byproducts in underground mines in Illinois. The DESEVAL-TRANS (short for Design and Evaluation of Transportation Systems) was developed in the Materials Handling and Systems Economics branch of the overall project. Four types of coal combustion byproducts were targeted for transportation and handling: Conventional fly ash; Scrubber sludge; Fluidized Bed Combustion (FBC) fly ash; and Spent-bed ash. Several transportation and handling systems that could handle these byproducts were examined. These technologies were classified under three general categories: Truck; Rail; and Container. The purpose of design models is to determine the proper number of transport units, silo capacity, loading and unloading rates, underground placement capacity, number of shifts, etc., for a given case, defined by a distance-tonnage combination. The cost computation models were developed for the determination of the operating and capital costs. An economic evaluation model, which is common to all categories, was also developed to establish the cost-per-ton of byproduct transported.

NONE

1998-09-01T23:59:59.000Z

230

Management of dry flue gas desulfurization by-products in underground mines. Technical progress report, 1 January--31 March 1994  

SciTech Connect (OSTI)

Southern Illinois University at Carbondale will develop and demonstrate several technologies for the handling and transport of dry coal combustion residues and for the underground placement in abandoned coal mines and assess associated environmental impacts. Although parts of the Residue Characterization portion of the program were delayed because residue samples were not obtained, other parts of the program are proceeding on schedule. The delays in obtaining residue samples were primarily caused by adverse weather conditions, the shut-down of one unit at the City Water, Light, and Power Company Plant for routing maintenance and problems due to conflicting schedules of utility and program personnel. However, by the end of the quarter most residue samples had been obtained, and the residue characterization studies were under way. Progress is described for five studies: environmental assessment and geotechnical stability and subsidence impacts; residue characterization; physico-chemical characterization of residues; identification and assessment of handling/transportation systems for FGD residues; and residue handling and transport.

Chugh, Y.P.; Esling, S.; Ghafoori, N.; Honaker, R.; Paul, B.; Sevim, H.; Thomasson, E.

1994-04-01T23:59:59.000Z

231

Fire suppression and detection equipment  

SciTech Connect (OSTI)

Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

2006-01-15T23:59:59.000Z

232

Laboratory Equipment Donation Program - Application Process  

Office of Scientific and Technical Information (OSTI)

Equipment listings on the LEDP web site are obtained from the U.S. General Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows 30 days for grantees from eligible institutions to apply for it on the LEDP site. Equipment Condition Codes are found near the top of the "LEDP Equipment Information" page for each item. The condition of equipment is graded as follows: 1: Unused Good Condition 4: Used Good Condition 7: Repairable Requires Repairs X: Salvage Salvage S: Scrap Scrap Specific questions concerning equipment should be directed to the point of contact responsible for the item(s) under consideration. This information is listed on the "Equipment Information" page, as well as on the grant

233

INL Equipment to Aid Regional Response Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL Equipment to Aid Regional Response Team DOE-ID is transferring equipment to the Idaho Falls Police Department's Hazardous Materials Response Team for their use in responding to...

234

Operations and Maintenance for Major Equipment Types  

Broader source: Energy.gov [DOE]

Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

235

Dental CBCT equipment and performance issues  

Science Journals Connector (OSTI)

......time due to insufficient dose audit data. For dental CBCT equipment...there are no large-scale audits of equipment in clinical use...http://ec.europa.eu/energy/nuclear/radiation_protection...http://ec.europa.eu/energy/nuclear/radioprotection......

K. Horner; R. Jacobs; R. Schulze

2013-02-01T23:59:59.000Z

236

Robotic equipment for pipeline repair  

SciTech Connect (OSTI)

Hyperbaric welding provides the most reliable method for connection or repair of subsea oil and gas pipelines. Research on hyperbaric arc welding processes indicates that it should be possible to achieve stable welding conditions with Gas Tungsten Arc (GTA) to approximately 600m, and with Gas Metal Arc (GMA) and Plasma Arc to at least 1,000m. These depths are well beyond the limits of manned saturation diving. At the present time the limitation on the maximum depth to which these processes can be applied, in practice, is the requirement for completely diverless operation deeper than approximately 350m. Fully diverless hyperbaric welding is not presently available to the industry but several diverless pipeline repair systems which utilize mechanical connectors have been developed. This paper reviews the present status of mechanized hyperbaric welding systems currently being used in the North Sea and discusses some of the work being done to achieve fully diverless robotic pipeline repair with both welding and connectors.

Gibson, D.E.; Barratt, K.; Paterson, J. [National Hyperbaric Centre, Aberdeen (United Kingdom)

1995-12-31T23:59:59.000Z

237

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

238

Missouri Gas Energy (MGE)- Residential and Small Business Efficiency Rebates  

Broader source: Energy.gov [DOE]

Missouri Gas Energy (MGE) offers its residential and small business customers rebates for the purchase and installation of efficient natural gas water heating and space heating equipment within its...

239

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support  

Science Journals Connector (OSTI)

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support ... Lignite reserves are relatively abundant in China; however, its utilization is significantly limited because of its high water content and low calorific value. ...

Xiurong Ren; Qiang He; Yurong Dong; Meijun Wang; Liping Chang; Weiren Bao

2014-06-10T23:59:59.000Z

240

Proceedings: Tenth EPRI Substation Equipment Diagnostics Conference  

SciTech Connect (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The tenth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Proceedings: Substation Equipment Diagnostics Conference IX  

SciTech Connect (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The ninth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2001-09-01T23:59:59.000Z

242

Proceedings: Substation Equipment Diagnostics Conference VIII  

SciTech Connect (OSTI)

Advanced monitoring and diagnostic sensors and systems are needed to provide reliable and accurate information for determining the condition of major transmission substation equipment. The eighth EPRI Substation Equipment Diagnostics Conference highlighted the work of researchers, universities, manufacturers, and utilities in producing advanced monitoring and diagnostic equipment for substations.

None

2000-06-01T23:59:59.000Z

243

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process) and KS-1 absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000MW Power Station and confirmed successful, long term demonstration following ?5000hours of operation in 200607 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

244

Solar Equipment Certification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Construction General Public/Consumer Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Equipment Certification Provider Florida Solar Energy Center Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar equipment certified first contacts FSEC for an application and requests that FSEC test samples of the product at random. Equipment is then subjected to a series of tests in order to be approved or denied certification. Standards and applications procedures for specific technologies are available on the FSEC web site.

245

Laboratory Equipment Donation Program - Contact Us  

Office of Scientific and Technical Information (OSTI)

End of Year Reports End of Year Reports At the end of the first year of using LEDP grant equipment, the grantee must provide DOE with a report on the use of the equipment. If a grantee does not submit a report, the DOE OPMO who approved the grant application can pull the equipment back, or not allow that institution to apply for more equipment. The report should describe: Any new courses instituted as a result of the grant of the equipment; Existing courses which have been expanded as a result of the grant of the equipment; Research activities, e.g., thesis titles, journals articles, sponsored research, etc.; and Other ways the equipment has been used to enhance courses, e.g., experiments, demonstrations, etc. If your item control Number starts with Send your report to 890565

246

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial and Industrial Compressors Determination Commercial and Industrial Compressors Determination Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) proposes to determine that commercial and industrial compressors meet the criteria for covered equipment under Part A-1 of Title III of the Energy Policy and Conservation Act (EPCA), as amended. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a Proposed Coverage Determination concerning commercial and industrial compressors. 77 FR 76972 (Dec. 31, 2012). Public Meeting Information No public meeting is scheduled at this time. Submitting Public Comments The comment period is closed.

247

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Efficiency Determination Methods and Alternate Rating Methods Alternative Efficiency Determination Methods and Alternate Rating Methods Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to revise and expand its existing regulations governing the use of alternative efficiency determination methods (AEDM) and alternate rating methods (ARM) for covered products as alternatives to testing for the purpose of certifying compliance. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule revising its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air conditioning, water heating, and refrigeration equipment. 78 FR 79579 (December 31, 2013).

248

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Illuminated Exit Signs Illuminated Exit Signs Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of illuminated exit signs since 2005. Illuminated exit signs are used to indicate exit doors in schools, hospitals, libraries, government buildings, and commercial buildings of all kinds, including offices, restaurants, stores, auditoriums, stadiums, and movie theatres. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information Recent Updates There are no recent updates for this equipment. Standards for Illuminated Exit Signs The following content summarizes the energy conservation standards for illuminated exit signs. The text is not an official reproduction of the Code of Federal Regulations and should not be used for legal research or citation.

249

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Water Heaters Residential Water Heaters Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy (DOE) energy conservation standards for residential water heaters since 1990. Residential water heaters are products that utilize oil, gas, or electricity to heat potable water for use upon demand for activities such as washing dishes or clothes, or bathing. Residential water heaters include storage type units that store heated water in an insulated tank and instantaneous type units that heat water on demand. The standard mandatory in 1990 will save approximately 3.2 quads of energy and result in approximately $34.8 billion in energy bill savings for products shipped from 1990-2019. The standard will avoid about 180 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 35.3 million automobiles.

250

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

251

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

252

Avista Utilities (Gas)- Prescriptive Commercial Incentive Program  

Broader source: Energy.gov [DOE]

Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking...

253

Natural Gas Rules (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) < Back Eligibility Utility Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines These rules apply to all gas utilities operating in the state of Alabama under the jurisdiction of the Alabama Public Service Commission. The rules state standards for the measurement of gas at higher than standard service pressure. Every utility shall provide and install at its own expense, and shall continue to own, maintain and operate all equipment necessary for the regulation and measurement of gas. Each utility furnishing metered gas service shall own and maintain the equipment and facilities necessary for accurately testing the various types and sizes of meters used for the measurement of gas. Each utility shall

254

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

2006-09-30T23:59:59.000Z

255

Early Markets: Fuel Cells for Material Handling Equipment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to power material handling equipment...

256

Step 5b: Help Program Contractors Obtain the Necessary Equipment...  

Broader source: Energy.gov (indexed) [DOE]

b: Help Program Contractors Obtain the Necessary Equipment Step 5b: Help Program Contractors Obtain the Necessary Equipment In addition to equipment for installing energy...

257

Operations and Maintenance for Major Equipment Types | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Types Operations and Maintenance for Major Equipment Types Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly...

258

Four-port gas separation membrane module assembly  

DOE Patents [OSTI]

A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

Wynn, Nicholas P. (Redwood City, CA); Fulton, Donald A. (Fairfield, CA); Lokhandwala, Kaaeid A. (Fremont, CA); Kaschemekat, Jurgen (Campbell, CA)

2010-07-20T23:59:59.000Z

259

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

260

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Guide to Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a commercial work truck. Powering commercial lawn service equipment with alternative fuels is an effective way to reduce petroleum use. Alternative fuels can also reduce pollutant emissions compared with conventional fuels. Nu- merous biodiesel, compressed natural gas, electric, and propane

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Better Buildings Alliance Equipment Performance Specifications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

262

Better Buildings Alliance Equipment Performance Specifications  

Broader source: Energy.gov (indexed) [DOE]

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

263

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Small, Large, and Very Large Commercial Package Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) regulates the energy efficiency of small, large, and very large commercial package air conditioners and heat pumps. Commercial air conditioners and heat pumps are air-cooled, water-cooled, evaporatively-cooled, or water source unitary air conditioners or heat pumps that are used for space conditioning of commercial and industrial buildings. The standards implemented in 2010 for small and large, air-cooled commercial package air conditioners and heat pumps, and SPVUs, will save approximately 1.7 quads of energy and result in approximately $28.9 billion in energy bill savings for products shipped from 2010-2034. These standards will avoid about 90.3 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 31.1 million automobiles. The standard implemented in 2010 for very large, air-cooled commercial package air conditioners and heat pumps will save approximately 0.43 quads of energy and result in approximately $4.3 billion in energy bill savings for products shipped from 2010-2034. The standard will avoid about 22.6 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 4.4 million automobiles.

264

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dehumidifiers Dehumidifiers Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of residential dehumidifiers since 2007. Residential dehumidifiers reduce the level of humidity-the amount of water vapor-in the air. The standard mandatory in 2007 will save approximately 0.27 quads of energy and result in approximately $3.14 billion in energy bill savings for products shipped from 2007-2031. The standard will avoid about 14.1 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 2.8 million automobiles. The standard mandatory in 2012 will save approximately 0.3 quads of energy and result in approximately $4.7 billion in energy bill savings for products shipped from 2012-2036. The standard will avoid about 15.6 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 3.1 million automobiles.

265

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Furnaces and Boilers Residential Furnaces and Boilers Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of residential furnaces and boilers since 1987. Residential furnaces and boilers include gas, electric, and oil-fired furnaces and boilers that are used to provide central heating to residential dwellings. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, providing either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can either be distributed via baseboard radiators, radiant floor systems, or can heat air via a coil. The standards for residential furnaces and boilers implemented in 1992 will save approximately 3.9 quads of energy and result in approximately $46.2 billion in energy bill savings for products shipped from 1992-2021. The standard will avoid about 206 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 40.4 million automobiles.

266

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Dishwashers Residential Dishwashers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential dishwashers since 1988. Residential dishwashers use water and detergent to wash and rinse dishware, glassware, eating utensils, and most cooking utensils. Some dishwashers also dry dishes. Standards implemented in 1994 will save approximately 1.6 quads of energy and result in approximately $19.8 billion in energy bill savings for products shipped from 1994-2023. The standard will avoid about 50.3 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 9.7 million automobiles. Standards implemented in 2010 will save approximately 0.6 quads of energy and result in approximately $10.3 billion in energy bill savings for products shipped from 2010-2034. The standard will avoid about 32.5 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 6.4 million automobiles.

267

Task 4.7 - diesel fuel desulfurization. Semi-annual report, July 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

Reductions in the maximum permissible sulfur content of diesel fuel to less than 0.05 wt% will require deep desulfurization to meet these standards. In some refineries, a new hydrogenation catalyst may be required for diesel fuel production. The work very briefly described in this document is on the use of hydrotalcite-supported molybdenum sulfide in the catalysis of ethanol. The catalyst reaction was highly selective for 1-butanol, providing a very clean reaction. Since the catalysis contains the MoS{sub 2} needed for the dehydrogenation and hydrogenation steps, the reaction can be performed at lower temperatures and higher selectivity. The catalyst was very stable and not destroyed by the water produced in the reaction.

Olson, E.S.

1998-12-31T23:59:59.000Z

268

Solar Equipment Certification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Program Info State Minnesota Program Type Equipment Certification Provider Minnesota Department of Commerce Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and Certification Corporation (SRCC) standards. Specifically, the rule references SRCC's "Operating Guidelines" pertaining to collector certification and system certification: OG-100 and OG-300, respectively. Local building officials

269

G129 S129 Equipment List Windbreaker  

E-Print Network [OSTI]

(optional) Water shoes (tevas or old tennis shoes) Gaitors (optional) COURSE EQUIPMENT*: Pocket or wrist operated) Bug Spray Deck of cards, musical instrument, Frisbee, etc (optional) * Textbooks should

Polly, David

270

PPP Equipment Corporation | Open Energy Information  

Open Energy Info (EERE)

Name: PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

271

Healthcare Energy: Spotlight on Medical Equipment  

Broader source: Energy.gov [DOE]

The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

272

Best Management Practice #11: Commercial Kitchen Equipment |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

savings. Water-using commercial kitchen equipment include pre-rinse spray valves, wash tanks and sinks, commercial dishwashers, food steamers, steam kettles, commercial ice...

273

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

SA Place: Madrid, Spain Zip: 28006 Sector: Services Product: ENSA is a Spanish nuclear components and nuclear services supply company. References: Equips Nucleares, SA1...

274

MOV surge arresters: improved substation equipment protection  

SciTech Connect (OSTI)

The introduction of metal-oxide-varistor (MOV) surge arresters has added a new dimension to substation equipment protection. Through the optimal use of these arresters, it is possible to lower surge arrester ratings and thereby improve protective margins, resulting in a possible reduction of the insulation levels (BIL) of substation equipment. This reduction in BIL can lead to a significant reduction in the cost of substation equipment. General methods are delineated for selecting MOV surge arresters for substation protection and the resulting effect on substation equipment insulation levels.

Niebuhr, W.D.

1985-07-01T23:59:59.000Z

275

Reduce Radiation Losses from Heating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

276

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network [OSTI]

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

277

Computers, Electronics and Electrical Equipment (2010 MECS) ...  

Energy Savers [EERE]

Electronics and Electrical Equipment More Documents & Publications MECS 2006 - Computer, Electronics and Appliances Cement (2010 MECS) Glass and Glass Products (2010 MECS)...

278

UVM Outing Club Winter Group Equipment List  

E-Print Network [OSTI]

: _____ have gas tank full _____ add dry gas in extreme cold weather _____ disconnect battery NOTES: #12; _____ chains/cables _____ oil _____ extra antifreeze _____ brake and transmission fluids _____ scraper

Hayden, Nancy J.

279

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clothes Washers Clothes Washers Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of residential clothes washers since 1988. Residential clothes washers use a water solution of soap and/or detergent and mechanical agitation or other movement to clean clothes. These include automatic, semi-automatic, and "other" clothes washers (known collectively as "clothes washer products"). This category does not include commercial clothes washers used in commercial settings, multifamily housing, or coin laundries. Standards put in place in 1994, 2004, and 2007 will save approximately 16.4 quads of energy and result in approximately $346.2 billion in energy bill savings for products shipped from 1994-2036. The standards will avoid about 870.2 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 170.6 million automobiles.

280

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ceiling Fan Light Kits Ceiling Fan Light Kits Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of ceiling fan light kits since 2007. Ceiling fan light kits are used to provide light from a ceiling fan. The kit can be attached to the ceiling fan prior to or after the time of retail sale. The current standard will save approximately 4.6 quads of energy and result in approximately $53.2 billion in energy bill savings for products shipped from 2007-2031. The standard will avoid about 240 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 47 million automobiles. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Room Air Conditioners Room Air Conditioners Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of residential room air conditioners since 1987. Residential room air conditioners are mounted in windows or through walls and deliver conditioned air to enclosed spaces. Room air conditioners typically extract heat from the room and vent it outdoors. These products are offered in a broad range of sizes and configurations. They are used in homes, apartments, and commercial settings. The standard implemented in 1990 will save approximately 0.7 quads of energy and result in approximately $8 billion in energy bill savings for products shipped from 1990-2019. The standard will avoid about 41.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 8.1 million automobiles.

282

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Clothes Dryers Residential Clothes Dryers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential clothes dryers since 1988. Residential clothes dryers use a tumble-type drum with forced air circulation to dry clothes. They are commonly used in homes, but are also used in some dormitory, apartment, or small business settings. The current standard will save approximately 0.9 quads of energy and result in approximately $9.6 billion in energy bill savings for products shipped from 1994-2023. The standard will avoid about 50.3 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 9.9 million automobiles.

283

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Showerheads Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the water consumption level of showerheads since 1992. A showerhead is a perforated nozzle that distributes water over a large solid angle at point of use, generally overhead of the bather. They are used widely in residential and commercial settings. The current standard will save approximately 6 quads of energy and result in approximately $120 billion in energy bill savings for products shipped from 1994-2013. The standard will avoid about 329.2 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 64.5 million automobiles. The Standards and Test Procedures for this product are related to Rulemaking for Plumbing Products Test Procedure.

284

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial and Industrial Pumps Energy Conservation Standards Commercial and Industrial Pumps Energy Conservation Standards Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering developing test procedures, labels, and energy conservation standards for commercial and industrial pumps. Pumps exist in numerous applications, including agriculture, oil and gas production, water and wastewater, manufacturing, mining, and commercial building systems. There are currently no federal standards or test procedures for commercial and industrial pumps. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document regarding commercial and industrial pumps. 78 FR 7304 (February 1, 2013).

285

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unit Heaters Unit Heaters Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of unit heaters since 2008. Unit heaters are self-contained fan-type heaters designed to be installed within the heated space, such as rooms, garages, or factory floors. Unit heaters do not include warm air furnaces. The current standard will save approximately 1.3 quads of energy and result in approximately $13.4 billion in energy bill savings for products shipped from 2008-2032. The standard will avoid about 66.8 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 13.1 million automobiles. Recent Updates | Standards | Test Procedures | Waiver, Exception, and Exemption Information | Statutory Authority | Historical Information | Contact Information

286

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Packaged Terminal Air Conditioners and Heat Pumps Packaged Terminal Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the energy efficiency level of packaged terminal air conditioners and heat pumps since 1994. Packaged terminal air conditioners (PTACs) and packaged terminal heat pumps (PTHPs) are through-the-wall space conditioning units commonly used in lodging, townhouse office complexes, and extended care facilities. The current standard will save approximately 0.04 quads of energy and result in approximately $32 million in energy bill savings for products shipped from 2012-2042. The standard will avoid about 2 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 392,000 automobiles.

287

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kitchen Ranges and Ovens Kitchen Ranges and Ovens Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential kitchen ranges and ovens since 1990. Residential kitchen ranges and ovens include conventional ranges, conventional cooking tops, conventional ovens, microwave ovens, and microwave/conventional ranges, known collectively as cooking products. Cooking products cook or heat food by means of gas, electricity, or microwave energy. These products are used primarily in homes and apartments. Kitchen ranges and ovens do not include portable or countertop ovens that use electric resistance heating or are designed to use an electrical supply of approximately 120 volts. For information about microwave ovens, go to microwave ovens.

288

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Faucets Faucets Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) has regulated the water consumption level of faucets since 1992. This standard covers kitchen faucets and kitchen replacement aerators, lavatory faucets and lavatory replacement aerators, and metering faucets. These faucets are used widely in residential and commercial settings. The current standard will save approximately 0.9 quads of energy and result in approximately $25.2 billion in energy bill savings for products shipped from 1994-2013. The standard will avoid about 49.1 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 9.6 million automobiles. The Standards and Test Procedures for this product are related to Rulemaking for Plumbing Products Test Procedure.

289

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Refrigerators and Freezers Residential Refrigerators and Freezers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential refrigerators and freezers since 1990. Residential refrigerators and freezers include refrigerators, refrigerator-freezers, and freezers, such as standard-size residential units as well as compact units used in offices and dormitory rooms. Known collectively as "refrigeration products," these appliances chill and preserve food and beverages, provide ice and chilled water, and freeze food. The standard implemented in 1990 will save approximately 5.6 quads of energy and result in approximately $61.7 billion in energy bill savings for products shipped from 1990-2019. The standard will avoid about 312.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 61.3 million automobiles.

290

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Clothes Washers Commercial Clothes Washers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for commercial clothes washers since 2007. Commercial clothes washers use a water solution of soap, detergent, or both and mechanical movement to clean clothes. Commercial clothes washers are used in commercial settings, multi-family housing, or laundromats. There are two classes of commercial clothes washers: front-loading and top-loading clothes washers. The current standard will save approximately 0.12 quads of energy and result in approximately $1.1 billion in energy bill savings for products shipped from 2007-2036. The standard will avoid about 6.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of 1.3 million automobiles.

291

Topsides equipment, operating flexibility key floating LNG design  

SciTech Connect (OSTI)

Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

Yost, K.; Lopez, R.; Mok, J. [Mobil E and P Technology Co., Dallas, TX (United States)

1998-03-09T23:59:59.000Z

292

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

293

Motorola's Exhaust Optimization Program: Tracer Gas Application for Gas Panel Enclosures  

E-Print Network [OSTI]

of as high as 70% of manufacturer's specifications per gas enclosure. This approach leads to energy conservation and infrastructure cost avoidance for new exhaust fans, ductwork, abatement equipment, and make-up air systems....

Myart, H. R.; Camacho, R.

294

Safeguarding Equipment and Protecting Employees from  

E-Print Network [OSTI]

Safeguarding Equipment and Protecting Employees from Amputations www.osha.gov Small Business Safety of Labor for Occupational Safety and Health #12;Safeguarding Equipment and Protecting Employees from Activities 9 Hazard Analysis 9 Controlling Amputation Hazards 9 Safeguarding Machinery 9 Primary Safeguarding

Colton, Jonathan S.

295

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network [OSTI]

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

296

Office equipment energy use and trends  

SciTech Connect (OSTI)

Office information technologies are using an increasing amount of energy in commercial buildings. During recent forecasting hearings in California, the office equipment end use has been a major source of differences among forecasts of commercial sector energy use. Not only are there major differences in forecasted load growth resulting from the energy use of office equipment, but there are also differences in interpretations of historical and base-year estimates. Understanding office equipment energy use is particularly important because office equipment is widely believed to be the fastest growing electrical end use in the fastest growing sector. This report describes the development and application of a spreadsheet to estimate current and future energy use by office equipment. We define the term ``office equipment`` to mean information processing technologies used in buildings. The seven categories of office equipment relate to categories found in our analysis of utility surveys and industry sales reports. These seven categories of equipment are examined for eleven types of commercial buildings.

Piette, M.A.; Eto, J.H.; Harris, J.P.

1991-09-01T23:59:59.000Z

297

Office equipment energy use and trends  

SciTech Connect (OSTI)

Office information technologies are using an increasing amount of energy in commercial buildings. During recent forecasting hearings in California, the office equipment end use has been a major source of differences among forecasts of commercial sector energy use. Not only are there major differences in forecasted load growth resulting from the energy use of office equipment, but there are also differences in interpretations of historical and base-year estimates. Understanding office equipment energy use is particularly important because office equipment is widely believed to be the fastest growing electrical end use in the fastest growing sector. This report describes the development and application of a spreadsheet to estimate current and future energy use by office equipment. We define the term office equipment'' to mean information processing technologies used in buildings. The seven categories of office equipment relate to categories found in our analysis of utility surveys and industry sales reports. These seven categories of equipment are examined for eleven types of commercial buildings.

Piette, M.A.; Eto, J.H.; Harris, J.P.

1991-09-01T23:59:59.000Z

298

Registration, Force Protection Equipment Demonstration - May 2009 |  

Broader source: Energy.gov (indexed) [DOE]

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

299

RMOTC - Field Information - Equipment and Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment & Facilities Equipment & Facilities Motor Grader at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's test facility has its own line of workover, support, and heavy equipment available for partner use on site. RMOTC can also offer its partners workspace on site in its Customer Operations Center which has

300

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Equipment End-Use Equipment The types of space heating equipment used in office buildings were similar to those of the commercial buildings sector as a whole (Table 8 and Figure 5). Furnaces were most used followed by packaged heating systems. Individual space heaters were third-most used but were primarily used to supplement the building's main heating system. Boilers and district heat systems were more often used in larger buildings. Table 8. Types of Heating Equipment Used in Office Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Buildings* All Office Buildings All Buildings* All Office Buildings All Buildings 4,645 824 64,783 12,208 All Buildings with Space Heating 3,982 802 60,028 11,929 Heating Equipment (more than one may apply)

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CVD Equipment Corp | Open Energy Information  

Open Energy Info (EERE)

CVD Equipment Corp CVD Equipment Corp Jump to: navigation, search Name CVD Equipment Corp Place Ronkonkoma, New York Zip 11779 Sector Solar Product New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of solar and semiconductor fabrication. Coordinates 40.81122°, -73.098744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.81122,"lon":-73.098744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Definition: Disturbance Monitoring Equipment | Open Energy Information  

Open Energy Info (EERE)

Disturbance Monitoring Equipment Disturbance Monitoring Equipment Jump to: navigation, search Dictionary.png Disturbance Monitoring Equipment Devices capable of monitoring and recording system data pertaining to a Disturbance. Such devices include the following categories of recorders: Sequence of event recorders which record equipment response to the event., Fault recorders, which record actual waveform data replicating the system primary voltages and currents. This may include protective relays., Dynamic Disturbance Recorders (DDRs), which record incidents that portray power system behavior during dynamic events such as low-frequency (0.1 Hz - 3 Hz) oscillations and abnormal frequency or voltage excursions. Phasor Measurement Units and any other equipment that meets the functional requirements of DMEs may qualify as DMEs.[1]

303

Laboratory Equipment Donation Program - About Us  

Office of Scientific and Technical Information (OSTI)

About LEDP About LEDP The Laboratory Equipment Donation Program (LEDP), formerly the Energy-Related Laboratory Equipment (ERLE) Grant Program, was established by the United States Department of Energy (DOE) to grant surplus and available used energy-related laboratory equipment to universities and colleges in the United States for use in energy oriented educational programs. This grant program is sponsored by the Office of Workforce Development for Teachers and Scientists (WDTS). The listing of equipment available through LEDP is updated as new equipment is identified. It is available at no cost for a limited time and is granted on a first-received qualified application basis. Specific items may be recalled for DOE use and become unavailable through the program after the

304

Experimental Equipment | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Equipment Equipment SSRL plans the distribution of its limited equipment on the basis of the information supplied on the Beam Time Request Form and the User Support Requirements Form. Please make sure to state all of your needs. Standard X-Ray Station Equipment Standard equipment to be found on an x-ray station includes: (1 ea.) Small and large ionization chambers (1) Exit slits (1) X-Y sample positioner (3) Keithly 427 current-to-voltage amplifier TEK 2215 60 MHZ 2 channel scope Voltage-to-frequency converter (3 channels) (1) Fluke high voltage power supply (1) Kinetic Systems hex scaler (1) Kinetic Systems up-down presettable counter (1) Ortec real-time clock (2) Joerger stepping motor controller DSP Micro VAX or Kinetic Systems G.I./CAMAC crate controller (1) Standard Engineering Corporation CAMAC power supply

305

Automatic monitoring of vibration welding equipment  

DOE Patents [OSTI]

A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

2014-10-14T23:59:59.000Z

306

Universal null DTE (data terminal equipment)  

DOE Patents [OSTI]

A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

George, M.; Pierson, L.G.; Wilkins, M.E.

1987-11-09T23:59:59.000Z

307

Plasma atomic layer etching using conventional plasma equipment  

SciTech Connect (OSTI)

The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps.

Agarwal, Ankur; Kushner, Mark J. [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

2009-01-15T23:59:59.000Z

308

Appliances and Commercial Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Central Air Conditioners and Heat Pumps Residential Central Air Conditioners and Heat Pumps Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential central air conditioners and heat pumps since 1992. Residential central air conditioners and heat pumps are installed as part of a home's central heating and cooling system. They use ducts to distribute cooled or dehumidified air to more than one room. Residential central air conditioners and heat pumps include split system central air conditioners and heat pumps; single package central air conditioners, small-duct high-velocity products, and space constrained products. The standards mandatory in 1992 and 1993 will save approximately 2.9 quads of energy and result in approximately $29 billion in energy bill savings from 1993-2023. The standard will avoid about 160 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 31.4 million automobiles.

309

High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test  

SciTech Connect (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

2004-02-01T23:59:59.000Z

310

Safety equipment list for the light duty utility arm system  

SciTech Connect (OSTI)

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

311

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

312

Appliances and Commercial Equipment Standards: Guidance  

Broader source: Energy.gov (indexed) [DOE]

Office Office HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Appliances & Equipment Standards About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Guidance and Frequently Asked Questions This webpage is designed to provide guidance and answer Frequently Asked Questions (FAQs) on the U.S. Department of Energy's appliance standards program. Guidance types span all covered products and covered equipment and cover such topics as: definitions, scope of coverage, conservation standards, test procedures, certification, Compliance and Certification Management System (CCMS), and enforcement. This website offers users an

313

Long Length Contaminated Equipment Maintenance Plan  

SciTech Connect (OSTI)

The purpose of this document is to provide the maintenance requirements of the Long Length Contaminated Equipment (LLCE) trailers and provide a basis for the maintenance frequencies selected. This document is applicable to the LLCE Receiver trailer and Transport trailer assembled by Mobilized Systems Inc. (MSI). Equipment used in conjunction with, or in support of, these trailers is not included. This document does not provide the maintenance requirements for checkout and startup of the equipment following the extended lay-up status which began in the mid 1990s. These requirements will be specified in other documentation.

ESVELT, C.A.

2000-02-01T23:59:59.000Z

314

Incidents of chemical reactions in cell equipment  

SciTech Connect (OSTI)

Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

315

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

316

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

317

Definition: Equipment Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search Dictionary.png Equipment Rating The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.[1] Also Known As Standard current ratings Related Terms reactive power, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Rating&oldid=502535" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

318

Laboratory Equipment Donation Program - Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy U.S. Department of Energy Laboratory Equipment Donation Program Home About LEDP FAQ Application Site Index Contact Us Administrative Login SEARCH: Go! view equipment list LEDP News Latest Equipment Added as of January 08, 2014: 1. DATA HANDLING SYSTEM 89514133530195 2. METER, VOLT 89514133530179 3. RECORDER, STRIP 89514133530184 4. RECORDER, STRIP 89514133530185 5. SCINTILLATOR STRIPS, 1.9 CM X 1.5 CM X 96 CM 89514133530188 Quick Links What type of equipment is available? Who is eligible to apply? How long will it take to find out if my application has been approved? Who is responsible for arranging and paying for shipping? RSS Get Widgets Bookmark and Share Get the tools you need to inspire innovation and creativity The United States Department of Energy (DOE), in accordance with its

319

HVAC Equipment Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HVAC Equipment Rebate Program HVAC Equipment Rebate Program HVAC Equipment Rebate Program < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Institutional Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Maximum Rebate Rebates of greater than $5,000 require pre-approval Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies depending on technology and efficiency Provider Efficiency Vermont NOTE: Rebate reservations are required for all boiler and furnace projects. Efficiency Vermont offers rebates for commercial installations of high-efficiency HVAC equipment and controls. For businesses and purchases

320

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BCM 2 Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination AgAgCl electrode and ATC probe. Corning 430 pH...

322

UNIVERSITY OF WASHINGTON ANNUAL EQUIPMENT TESTING AND  

E-Print Network [OSTI]

UNIVERSITY OF WASHINGTON ANNUAL EQUIPMENT TESTING AND MAINTENANCE SUMMARY DIVING SAFETY PROGRAM Date Tested Condition when received Intermediate Pressure Inhalation Resistance Exhalation Resistance Tested Make Serial Number Date Tested Results DEPTH GAUGE BUOYANCY COMPENSATOR Make Serial Number Date

Wilcock, William

323

Safety Topic: Rota/ng Equipment  

E-Print Network [OSTI]

Safety Topic: Rota/ng Equipment Jus/n Kleingartner #12;Safety protocols 2 #12;Safety protocols for opera/ng a lathe · Don'ts: ­ Do not wear gloves

Cohen, Robert E.

324

An Approach to Evaluating Equipment Efficiency Policies  

E-Print Network [OSTI]

AN APPROACH TO EVALUATING EQUIPMENT EFFICIENCY POLICIES Donald E. Newsom, Ph.D. and Allan R. Evans, Ph.D., P.E. Argonne National Laboratory, Argonne, Illinois ABSTRACT The National Energy Conservation Policy Act of 1978 authorized studies...

Newsom, D. E.; Evans, A. R.

1980-01-01T23:59:59.000Z

325

Cruising Equipment Company CECO | Open Energy Information  

Open Energy Info (EERE)

Cruising Equipment Company CECO Cruising Equipment Company CECO Jump to: navigation, search Name Cruising Equipment Company (CECO) Place Seattle, Washington Zip 98107 Product Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Computer optimization of earthmoving equipment arrays  

E-Print Network [OSTI]

higher degree of equipment specialization. Thus, the con- tractor attempts now to insure that individual segments of jobs are performed by the most economical means available to him. The choice of equipment to be used is difficult indeed... drawn carts. Next came use of the drag scraper followed by a wheel-mounted scraper which could dig, transport and dump its load. A major contribution to the earthmoving industry was the track-type tractor, which was developed in 1904. The potential...

Pate, Jep Earl

2012-06-07T23:59:59.000Z

327

List of Agricultural Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Agricultural Equipment Incentives Agricultural Equipment Incentives Jump to: navigation, search The following contains the list of 90 Agricultural Equipment Incentives. CSV (rows 1 - 90) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Vermont Agricultural Agricultural Equipment Custom/Others pending approval Lighting

328

CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Construction - Mechanical Equipment - June Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 June 26, 2012 Nuclear Facility Construction - Mechanical Equipment Installation, (HSS CRAD 45-53, Rev. 0) The purpose of this criteria review and approach, this CRAD includes mechanical equipment installation, including connections of the equipment to installed piping systems, and attachments of the equipment to structures (concrete, structural steel, or embed plates). Mechanical equipment includes items such as pumps and motors, valves, tanks, glove boxes, heat exchangers, ion exchangers, service air system, fire pumps and tanks, and heating, ventilation, and air condition (HVAC) equipment such as fans, scrubbers and filters.

329

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

330

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...re-quired for compressed natural gas (26), and these vehicles...the lower energy price of natural gas would be sufficient to attract...added equipment, such as high-pressure tanks, needed to store natural gas on board automobiles with...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

331

Project Sponsor: An Original Equipment Manufacturer (confidential)  

E-Print Network [OSTI]

. The main consumers are the air separation, the CO2 purification and the CO2 compression units. Flue gas high concentration of CO2 in the gas flowing through the boiler, the difference in physical properties of processes involves contacting the flue gas with an aqueous amine solution to absorb the CO2 and thermally

Mease, Kenneth D.

332

Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices  

E-Print Network [OSTI]

LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

333

Response of Different Types of Sulfur Compounds to Oxidative Desulfurization of Jet Fuel  

Science Journals Connector (OSTI)

Michael T. Timko *, Ezequiel Schmois , Pushkaraj Patwardhan , Yuko Kida , Caleb A. Class , William H. Green , Robert K. Nelson , and Christopher M. Reddy ... Refer to ref 3 for a summary of our previous efforts to identify specific BT isomers in jet fuel using one-dimensional gas chromatography and mass spectrometry (GCMS), and ref 44 provides even greater detail. ... We then analyzed the JP-8 samples using GCGCSCD to resolve the UCM and identify specific compound classes within it. ...

Michael T. Timko; Ezequiel Schmois; Pushkaraj Patwardhan; Yuko Kida; Caleb A. Class; William H. Green; Robert K. Nelson; Christopher M. Reddy

2014-04-24T23:59:59.000Z

334

1982 analyses and reports: equipment availability report; component cause code report; and equipment availability report  

SciTech Connect (OSTI)

This equipment availability report (1973 to 1982, 1982) presents statistical information on the performance of the major types of generating units and their major component groups. (DLC)

Not Available

1982-01-01T23:59:59.000Z

335

Investigation of the effects of various water mediums on desulfurization and deashing of a coal sample by flotation  

SciTech Connect (OSTI)

The aim of this study was to investigate the effects of various water mediums on desulfurization and deashing of a coal sample using flotation. For this purpose, experimental studies were conducted on a coal sample containing high ash and sulfur contents. The effects of pH, solid concentration, collector amount and frother amount on the flotation were investigated separately in Mediterranean Sea water, Cermik thermal spring water, snow water and tap water. Flotation, results indicated that, when comparing the various water mediums, the following order for the ash content was obtained: snow water < Cermik thermal spring water < tap water < the Mediterranean Sea water. For the reduction of total sulfur, the following order was obtained: snow water > Cermik thermal spring water > Mediterranean Sea water > tap water. When snow water was used as a flotation medium, it was found that a concentrate containing 3.01% total sulfur and 27.64% ash with a total sulfur reduction of 57.06% was obtained from a feed containing 7.01% total sulfur and 4.1.17% ash.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey)

2009-08-15T23:59:59.000Z

336

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect (OSTI)

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

337

Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in-situ approach  

Science Journals Connector (OSTI)

Abstract In this work, a novel in-situ synthesis route was applied for preparation of an adsorbent, i.e. palladium containing MCM-41. At first, a hydrophobic palladium precursor was added to the ethanolic micellar solution followed by vacuum distillation of ethanol which decreases the hydrophobic characteristic of the solution. Distillation caused diffusion of hydrophobic palladium precursor into the hydrophobic core of the micelles. Then, tetraethyl orthosilicate was added to the above solution and the silicate spices arranged around the palladium containing micelles. The XRD, N2 physisorption and TEM studies revealed that 4wt.% palladium loading was achieved without considerable loss of pore ordering. H2-TPR showed that the palladium nanoparticles were accessible for hydrogen molecules. Adsorptive desulfurization of low sulfur diesel fuel was then investigated using synthesized samples. The effect of three valuable parameters, i.e., temperature (25, 75, 150 and 200C), concentration of palladium (2, 4 and 5wt.%) and feed flow rate (0.3 and 1mL/min) were tested using a fixed-bed flowing device. The highest sulfur break through adsorption capacity and total sulfur adsorption capacity obtained at 200C, 0.3mL/min of feed flow rate and 4wt.% of palladium concentration were 1.67 and 2.35mg sulfur/g adsorbent, respectively.

Mohammad Teymouri; Abdolraouf Samadi-Maybodi; Amir Vahid; Aliakbar Miranbeigi

2013-01-01T23:59:59.000Z

338

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -  

Broader source: Energy.gov (indexed) [DOE]

Air Air Key Points: * Air quality risks from shale oil and gas development are generally the result of: (1) dust and engine exhaust from increased truck traffic; (2) emissions from diesel-powered pumps used to power equipment; (3) intentional flaring or venting of gas for operational reasons; and, (4) unintentional emissions of pollutants from faulty equipment or impoundments. 1 * Natural gas is efficient and clean compared to other fossil fuels, emitting less nitrogen oxide and sulfur dioxide than coal and oil, no mercury and very few particulates. However, the drilling

339

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

340

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - CX_McNaryEquipmentAcquisition.doc  

Broader source: Energy.gov (indexed) [DOE]

to purchase equipment owned by Umatilla Electric Cooperative (UEC) within BPA's McNary Substation. BPA already maintains all of UEC's equipment in the substation under an...

342

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...  

Energy Savers [EERE]

Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

343

Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps  

SciTech Connect (OSTI)

In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

2014-01-01T23:59:59.000Z

344

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

345

NSLS Services | Repair & Equipment Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repair & Equipment Services Repair & Equipment Services Cleaning Facility (BNL Central Shops) Solvent cleaning of vacuum parts and leak checking service is also available. Work is billed to each user via a BNL ILR. Contact the NSLS Building Manager to arrange for any of these services. Electronics Repair Limited repairs for electronic equipment are available from an outside contractor through the Control Room. Contact Control Room Supervisor Randy Church (x2550 or x2736, pager 5310). Shipping memos are filled out on the web, and pick ups are on Fridays. Come to the Control Room for assistance. The user should call the contractor on the day before scheduled pickups to alert the contractor of the pickup. Items to be repaired should be left in the Control Room with the completed shipping memo. Costs are charged to the

346

dieSel/heAvy equipMent College of Rural and Community Development  

E-Print Network [OSTI]

and equipment overhauls. Students work on large truck fuel, electrical and air systems, diesel engines 907-455-2809 www.ctc.uaf.edu/programs/diesel/ certificate Minimum Requirements for Certificate: 36 credits The diesel and heavy equipment mechanics program offers the student training in the maintenance

Hartman, Chris

347

After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-Load Equipment  

E-Print Network [OSTI]

LBNL-53729 After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-Load To download this paper and related data go to: http://enduse.lbl.gov/Projects/OffEqpt.html The work described.................................................................................................................................................5 Office Equipment Data Collection

348

Conceptual design report, CEBAF basic experimental equipment  

SciTech Connect (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

NONE

1990-04-13T23:59:59.000Z

349

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

350

Barriers to the increased utilization of coal combustion/desulfurization by-products by government & commercial sectors - update 1998,7/99,3268845  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BARRIERS TO THE INCREASED UTILIZATION BARRIERS TO THE INCREASED UTILIZATION OF COAL COMBUSTION/DESULFURIZATION BY-PRODUCTS BY GOVERNMENT AND COMMERCIAL SECTORS - UPDATE 1998 EERC Topical Report DE-FC21-93MC-30097--79 Submitted by: Debra F. Pflughoeft-Hassett Everett A. Sondreal Edward N. Steadman Kurt E. Eylands Bruce A. Dockter Energy & Environmental Research Center PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-07-08 July 1999 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii TERMINOLOGY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

351

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

352

WAMPANOAG WELLNESS EQUIPMENT LENDING BANK POLICIES & PROCEDURES  

E-Print Network [OSTI]

vacuums and steam cleaners, can be used to address immediate concerns, such as intense cleaning to remove to enable the Health Service to measure the environmental impact of the use of the equipment in the homes moisture levels or improve air quality. STEP TWO: RECOMMENDATIONS As noted, recommendations in the Home

353

Research equipment: Surface Acoustic Wave (SAW) devices  

E-Print Network [OSTI]

of the acoustic wave. More specifically, the equipment consists of: i. HP 4195A (10Hz-500MHz) ii. HP 8753ES (30kHz measurements on many SAW devices iii. Agilent E5061A (300kHz-1.5GHz) http Scientific Corp.): Atmospheric plasma etching, for surface cleaning, surface treatment and activation

Gizeli, Electra

354

Research equipment: Surface Acoustic Wave (SAW) devices  

E-Print Network [OSTI]

, the equipment consists of: i. HP 4195A (10Hz-500MHz) ii. HP 8753ES (30kHz-3GHz) with time-gating option. Agilent E5061A (300kHz-1.5GHz) Switch control Network Analyzer Quartz Crystal Microbalance-coating of various polymeric films. Expanded Plasma Cleaner & PlasmaFloTM (Harrick Scientific Corp.): Atmospheric

Gizeli, Electra

355

Processing Equipment 2" Davis-Standard Extruder  

E-Print Network [OSTI]

Processing Equipment 2" Davis-Standard Extruder Improved Melting Grooved Feeding Capabilities Multiple Pressure Ports Along the Barrel Screw Cooling Kit Rod Die With Valved Adapter Higher Throughputs L Ring 1'' General Purpose Screw 3 Air-Cooled Barrel Zones Gala Industries Underwater Micropelletizer

Bone, Gary

356

Standardized equipment labeling program for electrical utilities  

SciTech Connect (OSTI)

The purpose of this supporting document is to provide specific guidelines required for Electrical Utilities to implement and maintain a standard equipment and piping labeling program in accordance with WHC-SP-0708, Chapter 18, {open_quotes}Westinghouse Hanford Company Conduct of Operations Manual{close_quotes}. Specific guidelines include definition of program responsibilities.

Not Available

1994-07-19T23:59:59.000Z

357

Original article Enzymatic equipment of Ascosphaera apis  

E-Print Network [OSTI]

Original article Enzymatic equipment of Ascosphaera apis and the development of infection The process of infection of honey bee brood by the fungus Ascosphaera apis was ini- tiated the fungus pierces the cuticle. Ascosphaera apis / Apis mellifera / larval cuticle / penetration / infection

Paris-Sud XI, Université de

358

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

359

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect (OSTI)

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

360

Using high temperature baghouses to enhance desulfurization following economizer sorbent injection  

SciTech Connect (OSTI)

In order to explore the potential of using high temperature baghouses to enhance SO{sub 2} removal following upstream sorbent injection, an integrated two-stage reactor system has been built. It consists of an injection stage and a filtration stage. Distinct from one-stage fixed-bed reactors, sorbent particles in this system are initially converted under controlled injection conditions before entering the filtration reactor chamber. By the aid of the system, several unique features regarding the gas-solid reactions in the baghouse after economizer zone sorbent injection have been revealed. Results have shown that the appropriate usage of a high temperature baghouse may substantially enhance the performance of the process. The further SO{sub 2} removal in the baghouse is comprehensively affected by both the conditions in the injection zone and those in the baghouse.

Li, G.; Keener, T.C. [Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Unidata Community Equipment Awards Cover Sheet Proposal Title  

E-Print Network [OSTI]

RAID array with 4 TB storage · Support equipment including a rack, rack console, uninterruptable power

362

STATE OF CALIFORNIA VERIFICATION OF HIGH EER EQUIPMENT  

E-Print Network [OSTI]

STATE OF CALIFORNIA VERIFICATION OF HIGH EER EQUIPMENT CEC-CF-4R-MECH-23 (Revised 08/09) CALIFORNIA of High EER Equipment (Page 1 of 2) Site Address: Enforcement Agency: Permit Number: Registration Number 2009 Verification of High EER Equipment Procedures for verification of High EER Equipment are described

363

STATE OF CALIFORNIA VERIFICATION OF HIGH EER EQUIPMENT  

E-Print Network [OSTI]

STATE OF CALIFORNIA VERIFICATION OF HIGH EER EQUIPMENT CEC-CF-6R-MECH-23-HERS (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-23-HERS Verification of High EER Equipment 2009 Verification of High EER Equipment Procedures for verification of High EER Equipment are described

364

New designs in reconstructing the mechanical equipment of hydroelectric stations  

Science Journals Connector (OSTI)

1. Reliable operation of mechanical equipment can be assured, provided timely conduction of repairs and reconstr...

S. V. Leeson

1996-03-01T23:59:59.000Z

365

Page 1 of 3 Policy: Fire Protection Equipment Policy  

E-Print Network [OSTI]

Page 1 of 3 Policy: Fire Protection Equipment Policy Responsible Party: Director, Safety and Risk The Office of Safety and Risk Management (SRM) has developed, and implemented the Fire Protection Equipment of Fire Protection Equipment throughout MSU to maintain its working order. Fire Protection Equipment

Dyer, Bill

366

Electrical Equipment Replacement: Energy Efficiency versus System Compatibility  

E-Print Network [OSTI]

upgrading electrical equipment to energy efficient models, including conductor sizing, overcurrent protective devices, grounding, and harmonics. The pages that follow provide guidance in the decision-making process when replacing electrical equipment... equipment. Several areas of compatibility must be addressed for equipment to work properly. Critical areas of concern are conductor sizing, overcurrent protection devices, grounding, and harmonics. Conductor Sizing Conductors are sized...

Massey, G. W.

2005-01-01T23:59:59.000Z

367

Gas Source Localisation by Constructing Concentration Gridmaps with a Mobile Robot  

E-Print Network [OSTI]

Gas Source Localisation by Constructing Concentration Gridmaps with a Mobile Robot Achim Lilienthal of a gas distribution by creating concentration gridmaps with a mobile robot equipped with a gas-sensitive system ("mobile nose"). By contrast to metric gridmaps extracted from sonar or laser range scans, a gas

Duckett, Tom

368

Building Technologies Office: About the Appliance and Equipment Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Appliance and About the Appliance and Equipment Standards Program to someone by E-mail Share Building Technologies Office: About the Appliance and Equipment Standards Program on Facebook Tweet about Building Technologies Office: About the Appliance and Equipment Standards Program on Twitter Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Google Bookmark Building Technologies Office: About the Appliance and Equipment Standards Program on Delicious Rank Building Technologies Office: About the Appliance and Equipment Standards Program on Digg Find More places to share Building Technologies Office: About the Appliance and Equipment Standards Program on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes

369

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

370

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

371

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

372

Training program requirements for remote equipment operators in nuclear facilities  

SciTech Connect (OSTI)

One of the most neglected areas in the engineering development of remotely operated equipment applications in nuclear environments is the planning of adequate training programs for the equipment operators. Remote equipment accidents cannot be prevented solely by engineered safety features on the equipment. As a result of the experiences in using remote equipment in the recovery effort at Three Mile Island Unit 2 (TMI-2), guidelines for the development of remote equipment operator training programs have been generated. The result is that a successful education and training program can create an environment favorable to the safe and effective implementation of a remote equipment program in a nuclear facility.

Palau, G.L.; Auclair, K.D.

1986-01-01T23:59:59.000Z

373

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

374

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

375

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

376

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

377

CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM. Chapter from the Energy and Environment Division Annual Report 1980  

E-Print Network [OSTI]

removal is flue- gas desulfurization, Under investigation are fundamental chemistry and transport mechanisms underlying reagent additive

Authors, Various

2014-01-01T23:59:59.000Z

378

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

379

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

380

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrical Metering Equipment and Sensors Appendix D -Electrical Metering Equipment and Sensors  

E-Print Network [OSTI]

Appendix D ­ Electrical Metering Equipment and Sensors #12;D.1 Appendix D - Electrical Metering schedules, and view system status from the convenience of a standard web-browser. D.2 Metering Data Logger

382

Risk-based decision making method for maintenance policy selection of thermal power plant equipment  

Science Journals Connector (OSTI)

This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement.

F.G. Carazas; G.F.M. Souza

2010-01-01T23:59:59.000Z

383

Laboratory Equipment Donation Program - Guidelines/FAQ  

Office of Scientific and Technical Information (OSTI)

Frequently Asked Questions Frequently Asked Questions Who is eligible to apply for equipment? Due to budget constraints, the free shipping program for "high need schools" has been discontinued; and middle and high schools are no longer eligible to participate in the Laboratory Equipment Donation Program (LEDP) program. Participation in the LEDP is limited to accredited, post graduate, degree granting institutions including universities, colleges, junior colleges, technical institutes, museums, or hospitals, located in the U.S. and interested in establishing or upgrading energy-oriented educational programs in the life, physical, and environmental sciences and in engineering is eligible to apply. An energy-oriented program is defined as an academic research activity dealing primarily or entirely in

384

Process Equipment Cost Estimation, Final Report  

Office of Scientific and Technical Information (OSTI)

Process Equipment Cost Estimation Process Equipment Cost Estimation Final Report January 2002 H.P. Loh U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 and P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and Jennifer Lyons and Charles W. White, III EG&G Technical Services, Inc. 3604 Collins Ferry Road, Suite 200 Morgantown, WV 26505 DOE/NETL-2002/1169 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

385

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

387

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

388

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

390

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

391

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

392

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

393

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

394

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

395

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

396

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

397

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

398

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

399

BCM 1 Equipment Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Equipment Inventory 1 Equipment Inventory « Biology Chemistry & Material Science Laboratory 1 Title Equipment Type Description Agilent 8453 UV-Vis Spectrophotometer Analytical Agilent 8453 UV-VIS diode-array spectrophotometer. Wavelength range 190-1100 nm with a 1 nm optical slit width. Disposable plastic cuvettes are available in the lab, and quartz cuvettes and microcuvettes are available on a check-out basis. Beckman GPKR Centrifuge Centrifuge Beckman GPKR refrigerated centrifuge with fixed angle rotor, 8000 rpm max speed, temperature range -10°C to 40°C, fits 50mL tubes. Corning 430 pH Meter pH Meter The Corning 430 pH meter is designed to handle laboratory applications from the most routine to the highly complex. Encased in spill-resistant housings and feature chemical-resistant, sealed keypad. Model 430 (pH range 0.00 to 14.00) is a basic, yet reliable meter providing accurate, efficient digital measurements. Offers simplified, four-button operation, automatic calibration and temperature compensation, % slope readout, self-diagnostics test on powerup and analog recorder output. Unique LCD shows pH, mV

400

Plant design: Integrating Plant and Equipment Models  

SciTech Connect (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas desulfurization equipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Equipment Biodiesel Equipment and Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Equipment and Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Equipment and Fuel Tax Exemption

402

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

403

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

404

Questar Gas - Residential Energy Efficiency Rebate Programs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Maximum Rebate Maximum Rebate Limit of two rebates per appliance type Program Info Start Date 3/1/2011 State Utah Program Type Utility Rebate Program Rebate Amount Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Clothes Washer: $50 Windows: $0.95/sq. ft. Insulation (Wall): $0.30/sq. ft. Insulation (Floor): $0.20/sq. ft. Insulation (Attic): $0.07 - $0.25/sq. ft. Duct Sealing/Insulation: $100 + $5.25/ln. ft. Air Sealing: $100 + $.20/sq. ft. Programmable Thermostat: $30 In-Home Energy Audit: Discounted to $25 Provider Questar Gas Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers, water heaters, furnaces,

405

Direct Liquid Cooling for Electronic Equipment  

SciTech Connect (OSTI)

This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

Coles, Henry; Greenberg, Steve

2014-03-01T23:59:59.000Z

406

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

407

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

408

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

409

Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions  

SciTech Connect (OSTI)

This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.

Rodriguez J. A.; Illas, F.

2012-01-01T23:59:59.000Z

410

Clean Cities: Natural Gas Vehicle Technology Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

411

Laboratory Equipment Donation Program - LEDP Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Copy the code below and paste it to your website or blog: