Sample records for gas desulfurization advanced

  1. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  2. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31T23:59:59.000Z

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600°C and 800°C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

  3. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-08-31T23:59:59.000Z

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  4. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  5. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)

    NONE

    1996-04-30T23:59:59.000Z

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  6. EPA reports advances in scrubber technology at Flue Gas Desulfurization symposium

    SciTech Connect (OSTI)

    Smock, R.

    1982-07-01T23:59:59.000Z

    The overall message of the recent Symposium on Flue Gas Desulfurization was that the technology for sulfur dioxide scrubbing has matured enough for discussions to focus on future improvements rather than whether scrubbers work at all. The Environmental Protection Agency (EPA) regulations will not change in the near future, however, unless there are changes in the Clean air Act to deal with acid rain, despite the improvements in performance data. The symposium covered reports on dual-alkali scrubbing, organic buffer additives, the probability that scrubber wastes will not be classified as hazardous, simultaneous removal of nitrogen oxides and sulfur dioxide, and continuous monitoring programs. 3 figures, 4 tables. (DCK)

  7. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01T23:59:59.000Z

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  8. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01T23:59:59.000Z

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  9. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  10. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  11. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  12. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  13. Advanced sulfur control concepts for hot-gas desulfurization technology. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The primary objective is to determine the feasibility of an alternate concept for the regeneration of high temperature desulfurization sorbents in which elemental sulfur, instead of SO{sub 2} is produced. Iron and cerium-based sorbents were chosen on the basis of thermodynamic analysis to determine the feasibility of elemental sulfur production. Experimental effort on the regeneration of FeS using the partial oxidation concept was completed during the quarter, and attention returned to the sulfidation of CeO{sub 2} and regeneration of Ce{sub 2}O{sub 2}2S. Progress was made in the process simulation effort involving two-step desulfurization using CeO{sub 2} to remove the bulk of the H{sub 2}S followed by a zinc-titanate polishing step. The simulation effort includes regeneration of Ce{sub 2}O{sub 2}S using two concepts - reaction with SO{sub 2} reaction with H{sub 2}O. Elemental sulfur is formed directly in the reaction with SO{sub 2} while H{sub 2}S is the product of the regeneration reaction with steam. Steam regeneration is followed by a Claus process to convert the H{sub 2}S to elemental sulfur. The last test involving partial oxidation regeneration of FeS was completed in early July. Experimental problems were encountered throughout this phase of the program, primarily associated with erratic readings from the total sulfur analyzer. The problems are attributed to variable flow rates through the capillary restrictor, and, in some cases, to steam concentrations which exceeded the capacity of the membrane dryer. Nevertheless, sufficient data was collected to confirm that large fractions of the sulfur in FeS could be liberated in elemental form. Low regeneration temperature ({approximately}600{degrees}C), large steam-to-oxygen ratios, and low space velocities were found to favor elemental sulfur production.

  14. METC hot gas desulfurization program overview

    SciTech Connect (OSTI)

    Cicero, D.C.

    1994-10-01T23:59:59.000Z

    This overview provides a frame of reference for the Morgantown Energy Technology Center`s (METC`S) on-going hot gas desulfurization research. Although there are several methods to separate contaminant gases from fuel gases, that method receiving primary development is absorption through the use of metal oxides. Research into high-temperature and high-pressure control of sulfur species includes primarily those sorbents made of mixed-metal oxides, which offer the advantages of regenerability. These are predominantly composed of zinc and are made into media that can be utilized in reactors of either fixed-bed, moving-bed, fluidized-bed, or transport configurations. Zinc Ferrite (ZnO-Fe{sub 2}O{sub 3}), Zinc Titanate (ZnO-TiO{sub 2}), Z-SORP{reg_sign}, and METC-2/METC-6 are the current mixed-metal sorbents being investigated. The METC desulfurization program is composed of three major components: bench-scale research, pilot-plant operation, and demonstration that is a portion of the Clean Coal Demonstration projects.

  15. The Gonzaga desulfurization flue gas process

    SciTech Connect (OSTI)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01T23:59:59.000Z

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixed to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.

  16. Selecting the right pumps and valves for flue gas desulfurization

    SciTech Connect (OSTI)

    Ellis, D.; Ahluwalia, H. [ITT Engineered Valves, Lancaster, PA (United States)

    2006-07-15T23:59:59.000Z

    Limestone slurry needs to move efficiently through a complex process, meaning that selecting the right pumps and valves is critical. The article discusses factors to consider in selecting pumps and values for flue gas desulfurization process in coal-fired power plants. 2 photos.

  17. New process for coke-oven gas desulfurization

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-10-01T23:59:59.000Z

    With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

  18. Hot coal gas desulfurization with manganese-based sorbents

    SciTech Connect (OSTI)

    Hepworth, M.T.; Ben-Slimane, R.

    1995-11-01T23:59:59.000Z

    The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

  19. Takahax-Hirohax process for coke oven gas desulfurization

    SciTech Connect (OSTI)

    Gastwirth, H.; Miner, R.; Stengle, W.

    1981-01-01T23:59:59.000Z

    This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

  20. Process for production desulfurized of synthesis gas

    DOE Patents [OSTI]

    Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

    1993-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  1. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16T23:59:59.000Z

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  2. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01T23:59:59.000Z

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  3. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  4. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    SciTech Connect (OSTI)

    K.C. Kwon

    2002-01-01T23:59:59.000Z

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  5. Coke oven gas desulfurization: at Republic Steel's New Coking Facility, Warren, OH

    SciTech Connect (OSTI)

    Boak, S.C.; Prucha, D.G.; Turic, H.L.

    1981-01-01T23:59:59.000Z

    Our performance test indicates that the Sulfiban process is an effective method for removing H/sub 2/S from coke-oven gas. The process is able to handle variations in coke-oven gas flow and composition. Continuing efforts are underway to maintain optimum desulfurization conditions while trying to reduce waste production and MEA consumption. The problems which have prevented us from operating continuously have given us a better understanding of the process. This has contributed to better plant operations and greater equipment reliability for us to obtain continuous coke-oven gas desulfurization. 2 figures, 1 table.

  6. Synthetic aggregates prepared from flue gas desulfurization by-products using various binder materials

    SciTech Connect (OSTI)

    Bellucci, J.; Graham, U.M.; Hower, J.C.; Robl, T.L. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31T23:59:59.000Z

    Flue Gas Desulfurization (FGD) by-products can be converted into environmentally safe and structurally stable aggregates. One type of synthetic aggregate was prepared using an optimum mixture of (FGD) by-products, fly ash, and water. Mineral reactions have been examined using X-ray diffraction and scanning electron microscope.

  7. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect (OSTI)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20T23:59:59.000Z

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  8. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, T.

    1988-04-05T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  9. Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division

    SciTech Connect (OSTI)

    Volkov, E.L.

    1981-01-01T23:59:59.000Z

    Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

  10. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOE Patents [OSTI]

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16T23:59:59.000Z

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  11. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  12. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Doctor, Richard D. (Glen Ellyn, IL); Wingender, Ronald J. (Deerfield, IL)

    1986-01-01T23:59:59.000Z

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  13. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05T23:59:59.000Z

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  14. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  15. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect (OSTI)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01T23:59:59.000Z

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  16. Hot Coal Gas Desulfurization With Manganese-Based Sorbents

    SciTech Connect (OSTI)

    Berns, J.J.; Hepworth, M.T. [Dept. of Civil Engineering, Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31T23:59:59.000Z

    The objective of this project is to develop a pellet formulation which is capable of achieving low sulfur partial pressures and a high capacity for sulfur, loaded from a hot fuel gas and which is readily regenerable. Furthermore the pellet must be strong for potential use in a fluidized and regenerable over many cycles of loading and regeneration. Regeneration should be in air or oxygen-depleted air to produce a high-concentration sulfur dioxide. Fixed-bed tests were conducted with several formulations of manganese sesquioxide and titania, and alumina. They were subject to a simplified fuel gas of the oxygen-blown Shell type spiked with a 30,000 ppmv concentration of H{sub 2}S. Pellet crush strengths for 4 and 2 mm diameter pellets was typically 12 lbs per pellet and 4 lbs per pellet, respectively. For the most favorable of the formulations tested and under the criteria of break-through at less than 100 ppmv H{sub 2}S and loading temperatures of 5000 {degrees}C and an empty-bed space velocity of 4, 000 per hour, breakthrough occurred an effective loading of sulfur of 27 to 29% over 5 loading and regeneration cycles. At 90% of this saturation condition, the observed level of H{sub 2}S was below 10 ppmv. For regeneration, a temperature of 9000 {degrees}C is required to dissociate the sulfide into sulfur dioxide using air at atmospheric pressure. The mean sulfur dioxide concentration which is achieved during regeneration is 8% with empty-bed space velocities of 700/hr. TGA tests on individual pellets indicate that bentonite is not desirable as a bonding material and that Mn/Ti ratios higher than 7:1 produce relatively non-porous pellets. Whereas the reactivity is rapid below 12% conversion, the kinetics of conversion decreased significantly above this level. This observation may be the result of plugging of the pellet pores with sulfided product creating inaccessible pore volumes or alternately an increase in diffusional resistance by formation of MnS.

  17. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

    1994-01-01T23:59:59.000Z

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  18. SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste

    SciTech Connect (OSTI)

    Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

    1994-09-01T23:59:59.000Z

    For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

  19. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect (OSTI)

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R. [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical and Materials Engineering

    2009-08-15T23:59:59.000Z

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  20. Global evaluation of mass transfer effects: In-duct injection flue gas desulfurization

    SciTech Connect (OSTI)

    Cole, J.A.; Newton, G.H.; Kramlich, J.C.; Payne, R.

    1990-09-30T23:59:59.000Z

    Sorbent injection is a low capital cost, low operating cost approach to SO{sub 2} control targeted primarily at older boilers for which conventional fuel gas desulfurization is not economically viable. Duct injection is one variation of this concept in which the sorbent, either a dry powder or a slurry, is injected into the cooler regions of the boiler, generally downstream of the air heaters. The attractiveness of duct injection is tied to the fact that it avoids much of the boiler heat transfer equipment and thus has minimal impact of boiler performance. Both capital and operating cost are low. This program has as its objectives three performance related issues to address: (1) experimentally identify limits on sorbent performance. (2) identify and test sorbent performance enhancement strategies. (3) develop a compute model of the duct injection process. Two major tasks are described: a laboratory-scale global experiment and development of process model. Both are aimed at understanding and quantifying the rate-limiting processes which control SO{sub 2} capture by lime slurry during boiler duct injection. 29 refs., 35 figs., 4 tabs.

  1. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices

    SciTech Connect (OSTI)

    Underkoffler, V.S.

    1986-12-01T23:59:59.000Z

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

  2. Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator

    SciTech Connect (OSTI)

    Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

    1994-10-01T23:59:59.000Z

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

  3. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1

    SciTech Connect (OSTI)

    Underkoffler, V.S.

    1986-12-01T23:59:59.000Z

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

  4. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

  5. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

  6. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating...

  7. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-01-01T23:59:59.000Z

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  8. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31T23:59:59.000Z

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  9. Hot-gas desulfurization. II. Use of gasifier ash in a fluidized-bed process. Final report

    SciTech Connect (OSTI)

    Schrodt, J.T.

    1981-02-01T23:59:59.000Z

    Three gasifier coal ashes were used as reactant/sorbents in batch fluidized-beds to remove hydrogen sulfide from hot, made-up fuel gases. It is predominantly the iron oxide in the ash that reacts with and removes the hydrogen sulfide; the sulfur reappears in ferrous sulfide. Sulfided ashes were regenerated by hot, fluidizing streams of oxygen in air; the sulfur is recovered as sulfur dioxide, exclusively. Ash sorption efficiency and sulfur capacity increase and stabilize after several cycles of use. These two parameters vary directly with the iron oxide content of the ash and process temperature, but are independent of particle size in the range 0.01 - 0.02 cm. A western Kentucky No. 9 ash containing 22 weight percent iron as iron oxide sorbed 4.3 weight percent sulfur at 1200/sup 0/F with an ash sorption efficiency of 0.83 at ten percent breakthrough. A global, fluidized-bed, reaction rate model was fitted to the data and it was concluded that chemical kinetics is the controlling mechanism with a predicted activation energy of 19,600 Btu/lb mol. Iron oxide reduction and the water-gas-shift reaction were two side reactions that occurred during desulfurization. The regeneration reaction occurred very rapidly in the fluid-bed regime, and it is suspected that mass transfer is the controlling phenomenon.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  13. Gas fired Advanced Turbine System

    SciTech Connect (OSTI)

    LeCren, R.T.; White, D.J.

    1993-01-01T23:59:59.000Z

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  14. Anion-exchange resin-based desulfurization process

    SciTech Connect (OSTI)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01T23:59:59.000Z

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI's anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  15. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S. [and others

    1995-04-01T23:59:59.000Z

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  16. Scrubber strategy: the how and why of flue gas desulfurization. [Analysis of 20 US scrubbing systems in 1980

    SciTech Connect (OSTI)

    Baviello, M.A.

    1982-01-01T23:59:59.000Z

    In this report, INFORM provides facts that will help the non-technical decisionmakers in the US understand a technology that can significantly reduce the polluting effects of burning coal. Those decisionmakers include legislators, regulators and utility executives, public interest groups, concerned community organizations and environmentalists who have been involved in the debate over the broader use of our most abundant fossil fuel - coal. The use of this resource, especially in large industrial and utility plants, has created widespread and intense public controversy. For the past four years INFORM has turned its research capabilities to defining cleaner and more economical ways of using US coal supplies. We have focused on finding out what cleaning coal and using flue gas desulfurization systems (called scrubbers) can contribute to reducing the polluting effects of burning coal in utility plants. All in all, both scrubbers and coal cleaning offer exciting and important possibilities for putting more coal to work in generating power in this country more economically and still meeting critical air quality standards that have been set to protect public health. The need for accurate and clear information concerning these technologies is evident: 80% of the sulfur dioxide emissions in the US now come from utility power plant operations, and over 140 existing oil-fired power plants are candidates for conversion to coal use. We hope that this documentation of the technologies of scrubber systems along with INFORM's companion study of coal cleaning, may help government and business planners and concerned citizens chart intelligent future courses and set realistic goals for meeting our energy needs in an environmentally sound manner.

  17. NETL Gas Migration Study to Advance Understanding of Responsible...

    Office of Environmental Management (EM)

    Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas Development NETL Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas...

  18. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 10, February 17--May 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-15T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The demonstration is being conducted at Penelec`s Seward Station, Unit No. 15. This boiler is a 147 MWe coal-fired unit, which utilizes Pennsylvania bituminous coal (approximately 1.2 to 2.5% sulfur). One of the two flue gas ducts leading from the boiler has been retrofitted with the CZD technology. The first existing ESP installed in the station is immediately behind the air preheater. The second ESP, installed about 15 years ago, is about 80 feet away from the first ESP. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2}

  19. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect (OSTI)

    None

    2005-07-01T23:59:59.000Z

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  20. Choosing a coke-oven gas desulfurization system: a review of current technology

    SciTech Connect (OSTI)

    Lynch, P.A.

    1982-12-01T23:59:59.000Z

    Installation of coke-oven gas desulphurizing systems is primarily the result of air pollution control regulations. Although not currently profitable, operating costs can be minimized by choosing the technology most suited to the particular application. The Stretford Holmes, Takahax/Hirohax, Koppers Vacuum Carbonate, Sulfiban and Dravo/Still processes are discussed, together with criteria for economic analysis based on technical and by-product market evaluations.

  1. Desulfurization of flue gas by the confined zone dispersion process - Proof-of-concept tests

    SciTech Connect (OSTI)

    Abrams, J.Z.; Blake, J.H.; Pennline, H.W.

    1986-01-01T23:59:59.000Z

    As part of a program to develop more cost-effective approaches to the control of acid rain precursors, the Department of Energy (DOE) is supporting proof-of-concept tests of the Confined Zone Dispersion (CZD) process proposed by Bechtel. This process removes SO/sub 2/ from flue gas by injecting a finely atomized slurry of highly reactive pressure hydrated dolomitic lime into the duct of a utility boiler. A slipstream of flue gas at 300/sup 0/F will be withdrawn from the plant ductwork and will pass through a 130-ft run of 3-ft diameter test duct. A two-fluid atomizer will inject the lime slurry into the upstream end of the test duct. A pilot scale electrostatic precipitator (ESP) will remove reaction products and fly ash before the gas is discharged back into the utility's ESP. An 11-month test program will optimize controllable variables, acquire design data, and demonstrate reliability by a long duration run. Measurements taken will include SO/sub 2/ removal, lime utilization, ESP performance, and characterization of waste solids.

  2. Flue Gas Desulfurization Market Research Report 2018 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy InformationFlue Gas

  3. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26T23:59:59.000Z

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  4. anion-exchange resin-based desulfurization: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flue Gas Desulfurization GT Gas Turbine HHV Higher Heating Values HCN Hydrogen Cyanide HRSG Heat Recovery Steam Generation... ? Nuclear Power Plants ? Solar Power Plants ? Wind...

  5. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  6. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  7. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    ALTERNATIVE. EVERY Advanced Natural Gas Engine Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technology for Heavy Duty Vehicles Dr. Mostafa M Kamel Dr. Mostafa M...

  8. Desulfurization apparatus and method

    DOE Patents [OSTI]

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18T23:59:59.000Z

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  9. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report, July 1992

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1992-09-01T23:59:59.000Z

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. In the seventh quarter, the screening of the promoted sorbents in the packed bed reactor was continued. The results of this work were presented at the 1992 University Coal Research Contractors, Review Conference at Pittsburgh, PA.

  10. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-11-01T23:59:59.000Z

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  11. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-12-31T23:59:59.000Z

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  12. Combustion modeling in advanced gas turbine systems

    SciTech Connect (OSTI)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31T23:59:59.000Z

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  13. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

  14. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01T23:59:59.000Z

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  15. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  16. Mechanistic understanding of microbial desulfurization

    E-Print Network [OSTI]

    Abín-Fuentes, Andrés

    2013-01-01T23:59:59.000Z

    The increasing global levels of sulfur content in crude oil have motivated the development of alternate desulfurization technologies. Microbial desulfurization or biodesulfurization (BDS) has gained interest due to the ...

  17. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect (OSTI)

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16T23:59:59.000Z

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  18. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    RICHARD A. WAGNER

    1998-09-04T23:59:59.000Z

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 °C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

  19. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-27T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

  20. Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Durham, NC (United States)

    1992-09-01T23:59:59.000Z

    There is a primary need to increase the utilization of Illinois coal resources by developing new methods of converting the coal into electricity by highly efficient and environmentally acceptable systems. New coal gasification processes are now being developed that can generate electricity with high thermal efficiency in either an integrated gasification combined cycle (IGCC) system or a molten carbonate fuel cell (MCFC). Both of-these new coal-to-electricity pathways require that the coal-derived fuel gas be at a high temperature and be free of potential pollutants, such as-sulfur compounds. Unfortunately, some high-sulfur Illinois coals also contain significant chlorine which converts into hydrogen chloride (HCI) in the coal gas. This project investigates the effect of HCI, in concentrations typical of a gasifier fed by high-chlorine Illinois coals, on zinc-titanate sorbents that are currently being developed for H{sub 2}S and COS removal from hot coal gas. This study is designed to identify any deleterious changes in the sorbent caused by HCI, both in adsorptive operation and in the regeneration cycle, and will pave the way to modify the sorbent formulation or the process operating procedure to remove HCl along with the H{sub 2}S and COS from hot coal gas. This will negate any harmful consequences Of utilizing high-chlorine Illinois coal in these processes.

  1. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  2. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, Januray 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-07-01T23:59:59.000Z

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  3. Anion-exchange resin-based desulfurization process

    SciTech Connect (OSTI)

    Sheth, A.C.; Strevel, S.D.

    1991-01-01T23:59:59.000Z

    The University of Tennessee Space Institute (UTSI) has been directed to further develop an anion-exchange, resin-based desulfurization concept. It is necessary that the soluble sulfates of alkali metal sorbents be desulfurized (regenerated) and recycled to make regenerative flue gas desulfurization options more attractive. In order to achieve this, a low-temperature, low-cost desulfurization process to reactivate spent alkali metal sorbents is necessary. UTSI's anion-exchange, resin-based concept is believed to satisfy this requirement. Investigators will perform the following investigations: screening of commercially available resins; process variables study and improving resin performance; optimization of resin-regeneration; evaluation of performance enhancers; development of Best-Process Schematic and related economics; and planing for proof-of-concept (POC) scale testing. 2 refs., 3 figs., 3 tabs.

  4. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  5. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  6. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31T23:59:59.000Z

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  7. Sandia National Laboratories: advanced gas-sensor development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas-sensor development Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  8. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect (OSTI)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-04-01T23:59:59.000Z

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are beta-testing the final stages of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version is being reviewed by Gary Covatch.

  9. Two-stage coal gasification and desulfurization apparatus

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  10. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30T23:59:59.000Z

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  11. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, David R. (Lexington, MA)

    1987-01-01T23:59:59.000Z

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  12. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, D.R.

    1987-07-07T23:59:59.000Z

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  13. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    SciTech Connect (OSTI)

    Sublette, K.L.

    1994-03-01T23:59:59.000Z

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  14. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

  15. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect (OSTI)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01T23:59:59.000Z

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

  16. The Biocatalytic Desulfurization Project

    SciTech Connect (OSTI)

    David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

    2006-03-03T23:59:59.000Z

    The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

  17. Cooperative research on the combustion characteristics of cofired desulfurized Illinois coal and char with natural gas. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Buckius, R.O.; Wu, Cheng-Kang; Krier, H.; Peters, J.E. [Illinois Univ., Urbana-Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    The DTFF is extended to larger sample collecting capability and higher temperatures, resulting in the establishment of the Ash Characterization Facility and the High Temperature Drop Tube Furnace. The Ash Characterization Facility enables continuous coal injection and sampling under controlled conditions. Several hundred milligrams of char or ash can be collected in one-half hour. The High Temperature Drop Tube Furnace uses a plasma torch to preheat the gas to over 2000 K and inject it into a ceramic tube which enters a furnace designed for 1700{degrees}C (1973 K) operation, so that temperatures and heating rates encountered by pulverized coal particles in the flames of large boilers or in the advanced slagging cyclone combustors can be simulated. An aerodynamic coal feeder works well in supplying coal continuously to the drop tube. A watercooled, Helium-quench sampling probe collects the solid samples. A scanning electron microscope is used to study the morphology of ash and char particles. A sulfur determinator, a gas chromatograph provide analytical means in the laboratory, and the Illinois State Geological Survey performs other necessary analyses of the samples. Tests on cofiring coal with I to 4% methane show that sulfur retention in ash was related to temperature and residence time. The addition of methane caused changes in gas temperature profile in the tube and also changes in chemical composition of the gases. The overall effect on sulfur retention is seen to be a result of several complex interacting factors. Further detailed studies are necessary to clarify the contribution of each factor and to provide clues to the mechanism of the process.

  18. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31T23:59:59.000Z

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  19. advanced natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Natural Gas-optimized Advanced Heavy-duty...

  20. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01T23:59:59.000Z

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  1. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01T23:59:59.000Z

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  2. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling ofMartin L Willi Gas

  3. advanced-gas-cooled-nuclear-reactor materials evaluation: Topics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced-gas-cooled-nuclear-reactor materials evaluation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index...

  4. Advanced Water-Gas Shift Membrane Reactor

    SciTech Connect (OSTI)

    Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

    2009-01-07T23:59:59.000Z

    The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

  5. Desulfurization sorbent regeneration

    DOE Patents [OSTI]

    Jalan, V.M.; Frost, D.G.

    1982-07-07T23:59:59.000Z

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  6. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative...

    Energy Savers [EERE]

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of...

  7. Inorganic hazardous air pollutants before and after a limestone flue gas desulfurization system as a function of <10 micrometer particle sizes and unit load

    SciTech Connect (OSTI)

    Maxwell, D.P.; Williams, W.A.; Flora, H.B. II [Radian Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    Radian Corporation collected size-fractionated particulate samples from stack gas at a unit burning high sulfur coal with a venturi scrubber FGD system. Independent sample fractions were collected under high-load and low-load operating conditions and subjected to various techniques designed to measure the total composition and surface-extractable concentrations of selected trace elements. The relationships between unit load, particle-size distribution, total composition, and surface-extractable inorganic species are reported and compared to show the availability of trace elements relevant to potential health risks from flue gas particulate emissions.

  8. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01T23:59:59.000Z

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

  9. Hydrocarbon desulfurization process

    SciTech Connect (OSTI)

    Plummer, M.A.; Zimmerman, C.C. Jr.

    1986-04-08T23:59:59.000Z

    A process is described for converting a sour hydrocarbon feedstock having a relatively high sulfur content to a hydrocarbon product having a relatively low sulfur content comprising the steps of: (a) hydrodesulfurizing the feedstock having a relatively high sulfur contact with hydrogen to produce the hydrocarbon product having a relatively low sulfur content and hydrogen sulfide gas; (b) contacting the hydrogen sulfide gas with an anthraquinone dissolved in a polar organic solvent having a polarity greater than about 3 Debye units to produce sulfur and an anthrahydroquinone in the solvent; (c) regenerating the anthraquinone from the anthrahydroquinone upon contact with air to produce the anthraquinone and hydrogen peroxide; (d) recycling the anthraquinone to step (b); (e) reducing the hydrogen peroxide to oxygen and water; (f) partially oxidizing a hydrocarbon fuel with the oxygen to produce carbon dioxide and hydrogen; and (g) recycling the hydrogen to step (a).

  10. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18T23:59:59.000Z

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  11. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  12. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  13. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20T23:59:59.000Z

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  14. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01T23:59:59.000Z

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  15. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  16. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30T23:59:59.000Z

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  17. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2005-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  18. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01T23:59:59.000Z

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  19. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

    2012-04-17T23:59:59.000Z

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  20. REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3

    E-Print Network [OSTI]

    REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

  1. Supercritical Water desulfurization of crude oil

    E-Print Network [OSTI]

    Kida, Yuko

    2014-01-01T23:59:59.000Z

    Supercritical Water (SCW) desulfurization was investigated for both model sulfur compounds and Arab Heavy crude. In part 1, the reactions of alkyl sulfides in SCW were studied. During hexyl sulfide decomposition in SCW, ...

  2. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  3. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01T23:59:59.000Z

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  4. advanced land-based gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bose gas with attraction. This is a copy of the paper published in 1992 in Proceedings of NATO Advanced Research workshop on Singularities in Fluids, Plasmas and Optics...

  5. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

  6. CEC-500-2010-FS-XXX The Advanced Natural Gas

    E-Print Network [OSTI]

    CEC-500-2010-FS-XXX The Advanced Natural Gas Vehicle Fuel Tank Project TRANSPORTATION ENERGY role in reducing greenhouse gas emissions. Currently, natural gas vehicles are less competitive, and weight of conventional tanks continue to be barriers to increasing the use of natural gas

  7. Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization

    E-Print Network [OSTI]

    Abin-Fuentes, Andres

    Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the ...

  8. Advanced environmental control technology for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) oversees a substantial research and development effort to develop advanced environmental control technology for coal-fired sources. This Flue Gas Cleanup Program is currently divided into five areas: combined SO/sub 2//NO/sub x/ control, SO/sub 2/ control, particulate control, NO/sub x/ control, and small-scale boiler emission control. Projects in these areas range from basic research studies to proof-of-concept-scale evaluations. Projects in the DOE program are conducted by universities, national laboratories, industrial organizations, and in-house research at the Pittsburgh Energy Technology Center. An overview of the program, together with brief descriptions of the status of individual projects are given.

  9. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01T23:59:59.000Z

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  10. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  11. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01T23:59:59.000Z

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  12. Bench-scale development of mild gasification char desulfurization. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01T23:59:59.000Z

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7--15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt% sulfur was converted to chars with less than 1.0 wt% sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. This quarter, 2,500 g of mild gasification char was produced from untreated IBC-105 coal in the bench-scale reactor. Half of this char will be subjected to sulfuric acid treatment to enhance subsequent desulfurization. Char-producing runs were also initiated with acid-pretreated coal, which will produce about 1,250 g of char.

  13. Fracture behavior of advanced ceramic hot gas filters: Final report

    SciTech Connect (OSTI)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-03-01T23:59:59.000Z

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  14. Recombinant DNA encoding a desulfurization biocatalyst

    DOE Patents [OSTI]

    Rambosek, John (Seattle, WA); Piddington, Chris S. (Seattle, WA); Kovacevich, Brian R. (Seattle, WA); Young, Kevin D. (Grand Forks, ND); Denome, Sylvia A. (Thompson, ND)

    1994-01-01T23:59:59.000Z

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  15. Recombinant DNA encoding a desulfurization biocatalyst

    DOE Patents [OSTI]

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18T23:59:59.000Z

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  16. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-04-05T23:59:59.000Z

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  17. The use of gypsum and a coal desulfurization by-product to ameliorate subsoil acidity for alfalfa growth

    E-Print Network [OSTI]

    Chessman, Dennis John

    2004-09-30T23:59:59.000Z

    the effectiveness of surface-applied gypsum and a flue gas desulfurization by-product for reducing the toxic effects of acid subsoils on alfalfa. The materials were applied at rates of 0, 5, 10, and 15 Mg ha-1. In addition, a glasshouse experiment was conducted...

  18. advanced underground gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a stream of gas from a CO2 well in southwestern Colorado with a Vacuum Pressure Swing Adsorption (VPSA) plant. The gas from the well contains argon at a concentration of...

  19. advanced gas turbines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  20. advanced gas turbine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  1. advanced gas reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012-12-07 165 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  2. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Energy Savers [EERE]

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

  3. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01T23:59:59.000Z

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  4. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  5. advanced hot gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent ROSAT observations indicate gas temperatures in excess of the virial stellar temperature, totally unlike standard cooling flow models. However, these new results can be...

  6. advanced gas cooled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution. The WR model provides other observable features: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature Tinner, a...

  7. advanced automotive gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the environment and legislation introduced to reduce greenhouse gas emissions and improve resource efficiency, eco product design and manufacturing strategies have to be developed...

  8. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17T23:59:59.000Z

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  9. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09T23:59:59.000Z

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  10. SoCalGas- New Construction Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    SoCalGas offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new construction projects. A...

  11. SoCalGas- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    SoCalGas offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new construction projects. A...

  12. Advanced Sorbents as a Versatile Platform for Gas Separation

    SciTech Connect (OSTI)

    Neil Stephenson

    2003-09-30T23:59:59.000Z

    The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

  13. Advances in gas avalanche radiation detectors for biomedical applications

    E-Print Network [OSTI]

    , either Wire Chambers [3] or more recent advanced Micro-pattern Detectors [4,5], have been widely employed- getic X-ray or gamma photons, they often age un- der long-term operation at high radiation #ux and su beam, have shown to successfully compete with traditional "lm-screen imagers. These line-scanning

  14. Integration of a high efficiency flue gas cleanup process into advanced power systems

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.; Yeh, J.T.; Ratafia-Brown, J.A.; Gorokhov, V.A.

    1994-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process, a dry, regenerable flue gas cleanup technology, can simultaneously remove sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from the flue gases generated by coal combustion. While this advanced air pollution abatement process technology has only been previously considered for conventional utility system applications, its unique design characteristics make it quite advantageous for use in advanced power systems, such as those pulverized-coal-fired systems defined in the US Department of Energy`s Combustion 2000 Initiative. Integration of this flue gas cleanup process into the advanced power systems is technically and economically assessed and compared with several commercially available flue gas cleanup processes. An update on the status of the Moving-Bed Copper oxide Process development is also presented.

  15. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19T23:59:59.000Z

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  16. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2007-09-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  17. Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report

    SciTech Connect (OSTI)

    Grimes, P.W.; Miknis, F.P.

    1997-09-01T23:59:59.000Z

    Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

  18. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2004-10-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  19. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    Grover, S.B.

    2004-10-06T23:59:59.000Z

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  20. Desulfurization of lignite using steam and air

    E-Print Network [OSTI]

    Carter, Glenn Allen

    1982-01-01T23:59:59.000Z

    with nitrogen to remove oxygen and then the drums were sealed until needed for a run. This procedure was used to prevent weathering and loss of moisture from the coal. Prior to charging, t' he lignite was sized to minus 18 mesh. The larg- er particles...DESULFURIZATION OF LIGNITE USING STEAM AND AIR A Thesis by GLENN ALLEN CARTER, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the degree of MASTER OF SCIENCE August 1982 Major Subject: Chemical...

  1. Desulfurization Fuel Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L DBypassDesulfurization Fuel Filter

  2. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31T23:59:59.000Z

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  3. Gas Technology Institute (Partnership for Advanced Residential Retrofit) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui

  4. Method for the desulfurization of hot product gases from coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas (Morgantown, WV)

    1988-01-01T23:59:59.000Z

    The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

  5. A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

    SciTech Connect (OSTI)

    John G. Verkade

    1998-08-31T23:59:59.000Z

    The nonionic superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N (A) efficiently desulfurizes trisulfides to disulfides and monosulfides, disulfides to monosulfides, and propylene sulfide to propene. S=P(MeNCH{sub 2}CH{sub 2}){sub 3}N (B) was formed as the sulfur acceptor. P(NMe{sub 2}){sub 3} was a much poorer desulfurizing agent than A under the same reaction conditions. Thiocyanates and triphenylphosphine sulfide were also desulfurized with A, but N-(phenylthio)phthalimide formed [A-SP]{sup +} phthalimide in quantitative yield.

  6. bectso-adflug | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desulfurization Project PDF-7.2MB (Jan 1991) Environmental Assessment: Innovative Clean Coal Technology Program Advanced Flue Gas Desulfurization Demonstration Project...

  7. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2008-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  8. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  9. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  10. Recent Advances in Mapping Deep Permafrost and Gas Hydrate Occurrences Using Industry Seismic Data, Richards Island Area, Northwest Territories, Canada

    E-Print Network [OSTI]

    Ramachandran, Kumar

    101 Recent Advances in Mapping Deep Permafrost and Gas Hydrate Occurrences Using Industry Seismic the extent of gas hydrate occurrences beneath it. Seismic amplitude anomalies associated with lakes, primarily related to thermal variations within the permafrost. Keywords: gas hydrates; Mallik; Richards

  11. Advanced V84.3A and V94.3A gas turbines

    SciTech Connect (OSTI)

    Becker, B.; Balling, L.; Termuehlen, H.

    1998-07-01T23:59:59.000Z

    The evolution process of developing advanced gas turbines has led to the introduction of the V84.3A and V94.3A gas turbines for ratings of 170MW/60 Hz and 240MW/50 Hz. The development of these units is based on the experience of Siemens with heavy-duty gas turbines. An agreement between Siemens and Pratt and Whitney was the basis for a complete aero-engine derived compressor and turbine flow path designed into a large heavy-duty gas turbine. In 1994 through 1996, the first V84.3A gas turbine was tested up to an output of 180 MW. A 38% simple-cycle efficiency was achieved during this test period. Despite the increased firing temperatures, dry low NO{sub x} emission was tested to below 25ppm over a wide load range. The .3A Series gas turbine development, design and manufacturing is based on the utilization of highly reliable components proven successful in operating experience over an extended period. Combining the best performance with the highest reliability was the goal of the design team. Prolonged testing at the full-load test facility provided important data to fine-tune the first .3A Series gas turbine before shipment to power plant sites.

  12. Advanced gas turbine systems research. Quarterly report, January--March, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Department of Energy is sponsoring a series of studies related to advanced gas turbine systems. Ten universities participated in the first round studies, and an additional 13 studies have been funded this year. The five areas being covered are heat transfer, aerodynamics, materials, combustion, and dynamics. Summaries are given for the 6-month progress on the 1993 subcontract studies and on the planned research for the new subcontract studies.

  13. Advanced Gas Turbine (AGT) technology development project. Annual report, July 1984-June 1985

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company.

  14. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  15. Completion of the first NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover; John Maki; David Petti

    2010-10-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during irradiation will be discussed and the results of the experiment will be presented. The second experiment (AGR-2) is currently being assembled, and the status as well as the new fuel and irradiation conditions for that experiment will also be discussed.

  16. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01T23:59:59.000Z

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  17. The second and third NGNP advanced gas reactor fuel irradiation experiments

    SciTech Connect (OSTI)

    Grover, S. B.; Petti, D. A. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

    2012-07-01T23:59:59.000Z

    The United States Dept. of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is currently scheduled to irradiate a total of five low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The irradiations are being accomplished to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas cooled reactors. The experiments will each consist of at least six separate capsules, and will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The effluent sweep gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The second experiment (AGR-2) started irradiation in June 2010, and the third and fourth experiments have been combined into a single larger irradiation (AGR-3/4) that is currently being assembled. The design and status of the second through fourth experiments as well as the irradiation results of the second experiment to date are discussed. (authors)

  18. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  19. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31T23:59:59.000Z

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  20. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07T23:59:59.000Z

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  1. Environ. Scl. Technol. 1994, 28, 277-283 Effects of Salts on Preparation and Use of Calcium Silicates for Flue Gas

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Silicates for Flue Gas Desulfurization Kurt K. Klnd, Phlllp D. Wasserman, and Gary 1.Rochelle' Department is a flue gas desulfurization (FGD) technology developed for existingcoal to remove sulfur dioxide. High surface area calcium silicate hydrates are made by slurrying Ca(0H

  2. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  3. Engine technology advances show potential in labs: Part 1. [Retrofitting engine systems on gas distribution networks

    SciTech Connect (OSTI)

    McCoy, J.J. (Tenneco Gas Co., Houston, TX (United States)); Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

    1994-06-01T23:59:59.000Z

    Cutting fuel consumption and reducing emissions are dominant goals of stationary gas engine operators. Recent technology advances show promise and could result in money-saving retrofit options. Selected new technologies include sensors, actuators--defined as anything controlling the engine: fuel and ignition--and control techniques. An attractive feature of most of these technologies is that they can be retrofitted onto existing engines, allowing the potential for improved performance at a fraction of engine replacement cost. This paper reviews these new technologies and how they perform.

  4. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  5. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2009-09-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

  6. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    none

    1998-09-30T23:59:59.000Z

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  7. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect (OSTI)

    C. A. Wemple

    2005-09-01T23:59:59.000Z

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  8. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, J.A.

    1997-12-02T23:59:59.000Z

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  9. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, James A. (Star City, WV)

    1997-01-01T23:59:59.000Z

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  10. KVB coal desulfurization process development. Quarterly technical progress report for May-September 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This is the initial technical progress report for the KVB Coal Desulfurization Process Development. The project is a joint effort between Research-Cottrell, Inc. and the College of Engineering of Rutgers University. The process involves oxidation of the sulfur in coal (both organic and pyritic) to soluble forms using nitrogen oxide gas mixtures and subsequent extractive removal. Key features of the process are mild reaction conditions and the use of regenerable reagents. A description of the process chemistry is given, as well as a brief summary of previous experimental studies. The experimental and analytical procedures being used in the current investigation, which is just getting underway, are described in detail. A brief outline of process modelling and commercial evaluation studies which will be a part of the project is also given.

  11. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect (OSTI)

    Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  12. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  13. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  14. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01T23:59:59.000Z

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  15. Desulfurization of Texas lignite using steam and air

    E-Print Network [OSTI]

    Stone, Robert Reginald

    1981-01-01T23:59:59.000Z

    OESULFURIZATION OF TEXAS LIGNITE USI, IG STEA 1 ANO AIR A Thesis by ROSERT REGINALD STONE Submitted to the Graduate College of Texas AIIN University in partial fulfillment of the requirement for the degree of , 'RASTER OF SCIENCE August 1981... Major Subject: Chemical Engineering DESULFURIZATION OF TEXAS LIGNITE USING STEAM AND AIR A Thesis by ROBERT REGINALD STONE Approved as to style and content by: Dr. . A . Bulli n ( Chai rman of Committee) R. G. Anthony (Member) J. W. J ni ngs ( ber...

  16. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  17. advanced gas-cooled reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced coal-fueled gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. advanced gas-cooled reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  20. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  1. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30T23:59:59.000Z

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

  2. E-Print Network 3.0 - advanced flue gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flue gas losses and minimized in... generated from flue gas condensation for district heating. Twence is another example, where a high degree... into a reusable ash and that...

  3. First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research

    SciTech Connect (OSTI)

    Yu Yaowei [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Hong, Suk-Ho; Yoon, Si-Woo [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Zhuang Huidong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen Zhongyong [Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-12-15T23:59:59.000Z

    Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is {approx}3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D{sub 2} MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

  4. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  5. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

    2010-09-13T23:59:59.000Z

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  6. Process Modeling Phase I Summary Report for the Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; Boyalakuntla, Dhanunjay S [ORNL; FINNEY, Charles E A [ORNL

    2006-09-01T23:59:59.000Z

    This report summarizes the results of preliminary work at Oak Ridge National Laboratory (ORNL) to demonstrate application of computational fluid dynamics modeling to the scale-up of a Fluidized Bed Chemical Vapor Deposition (FBCVD) process for nuclear fuels coating. Specifically, this work, referred to as Modeling Scale-Up Phase I, was conducted between January 1, 2006 and March 31, 2006 in support of the Advanced Gas Reactor (AGR) Program. The objective was to develop, demonstrate and "freeze" a version of ORNL's computational model of the TRI ISOtropic (TRISO) fuel-particle coating process that can be specifically used to assist coater scale-up activities as part of the production of AGR-2 fuel. The results in this report are intended to serve as input for making decisions about initiating additional FBCVD modeling work (referred to as Modeling Scale-Up Phase II) in support of AGR-2. The main computational tool used to implement the model is the general-purpose multiphase fluid-dynamics computer code known as MFIX (Multiphase Flow with Interphase eXchanges), which is documented in detail on the DOE-sponsored website http://www.mfix.org. Additional computational tools are also being developed by ORNL for post-processing MFIX output to efficiently summarize the important information generated by the coater simulations. The summarized information includes quantitative spatial and temporal measures (referred to as discriminating characteristics, or DCs) by which different coater designs and operating conditions can be compared and correlated with trends in product quality. The ORNL FBCVD modeling work is being conducted in conjunction with experimental coater studies at ORNL with natural uranium CO (NUCO) and surrogate fuel kernels. Data are also being obtained from ambient-temperature, spouted-bed characterization experiments at the University of Tennessee and theoretical studies of carbon and silicon carbide chemical vapor deposition kinetics at Iowa State University. Prior to the current scale-up activity, considerable effort has gone in to adapting the MFIX code to incorporate the unique features of fuel coating reactors and also in validating the resulting simulation features with experimental observations. Much of this work is documented in previous AGR reports and publications (Pannala et al., 2004, Pannala et al., 2005, Boyalakuntla et al., 2005a, Boyalakuntla et al., 2005b and Finney et al., 2005). As a result of the previous work described above, the ORNL coater model now has the capability for simulating full spatio-temporal details of the gas-particle hydrodynamics and gas-particle heat and mass transfer in the TRISO coater. This capability provides a great deal of information about many of the processes believed to control quality, but the model is not yet sufficiently developed to fully predict coating quality for any given coater design and/or set of operating conditions because the detailed chemical reaction kinetics needed to make the model fully predictive are not yet available. Nevertheless, the model at its current stage of development already provides the most comprehensive and detailed quantitative information available about gas flows, solid flows, temperatures, and species inside the coater during operation. This level of information ought to be highly useful in expediting the scale-up process (e.g., in correlating observations and minimizing the number of pilot-scale tests required). However, previous work had not yet demonstrated that the typical design and/or operating changes known to affect product quality at the lab scale could be clearly discriminated by the existing model. The Modeling Scale-Up Phase I work was initiated to produce such a demonstration, and two detailed examples are discussed in this report.

  7. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Lu Sun; Chunshan Song

    2001-09-01T23:59:59.000Z

    Due to the increasingly stricter regulations for deep reduction of fuel sulfur content, development of new deep desulfurization processes for liquid transport fuels has become one of the major challenges to the refining industry and to the production of hydrocarbon fuels for fuel cell applications. The sulfur compounds in the current transport fuels corresponding to the S level of 350-500 ppm account for only about 0.12-0.25 wt % of the fuel. The conventional hydrotreating approaches will need to increase catalyst bed volume at high-temperature and high-pressure conditions for treating 100 % of the whole fuel in order to convert the fuel mass of less than 0.25 wt %. In the present study, we are exploring a novel adsorption process for desulfurization at low temperatures, which can effectively reduce the sulfur content in gasoline, jet fuel and diesel fuel at low investment and operating cost to meet the needs for ultra-clean transportation fuels and for fuel cell applications. Some adsorbents were prepared in this study for selective adsorption of sulfur compounds in the fuels. The adsorption experiments were conducted by using a model fuel and real fuels. The results show that the adsorbent (A-1) with a transition metal compound has a significant selectivity for sulfur compounds with a saturated adsorption capacity of {approx}0.12 mol of sulfur compounds per mol of the metal compound. Most sulfur compounds existing in the current commercial gasoline, jet fuel and diesel fuel can be removed by the adsorption using adsorbent A-1. On the basis of the preliminary results, a novel concept for integrated process for deep desulfurization of liquid hydrocarbons was proposed.

  8. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30T23:59:59.000Z

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  9. Anion-exchange resin-based desulfurization process

    SciTech Connect (OSTI)

    Sheth, A.C.; Strevel, S.D.

    1991-01-01T23:59:59.000Z

    Under the current grant (FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will carry out the necessary bench scale experiments to further develop it anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. In particular, it is planned to screen commercially available resins and then carry out process optimization work with three selected resins. Further optimization of the resin regeneration step as well as evaluation of the effect of various performance enhancers will then be carried out with one selected resin. A process schematic, to be developed based on the bench scale results, will be used to estimate the related economics. Some limited scope testing will also be carried out using the spent-seed and sorbent materials obtained from both the coal-fired magnetohydrodynamics (MHD) and the in-duct sorbent injection pilot scale facilities. During this reporting period, 90% of the planned batch mode screening experiments for the eleven samples of candidate resins were completed. Preliminary evaluation of the resulting data is continuing in order to select a smaller number (3--4) of samples for screening in the fixed-bed setup. The installation of the semi-automated fixed-bed setup is about 70% complete and shakedown experiments will be started in 3--4 weeks. Progress made in relation to these activities is presented below. 2 figs., 3 tabs.

  10. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01T23:59:59.000Z

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  11. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  12. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31T23:59:59.000Z

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.

  13. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  14. advanced natural gas-fired: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drum Dryer for Food Processing Applications is the final report 8 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Environmental Sciences...

  15. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. B. Grover

    2007-05-01T23:59:59.000Z

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation were completed in 2006. The experiment was inserted in the ATR in December 2006, and will serve as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed.

  16. Coke oven gas desulphurization by the Carl Still process

    SciTech Connect (OSTI)

    Knight, R.E.

    1981-01-01T23:59:59.000Z

    The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

  17. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect (OSTI)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01T23:59:59.000Z

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  18. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect (OSTI)

    James Reeves

    2005-01-31T23:59:59.000Z

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  19. KVB coal desulfurization process development. Quarterly technical progress report, October-December 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This is the second technical progress report for the KVB Coal Desulfurization Process Development. The project is a joint venture between Research-Cottrell, Inc. and the College of Engineering of Rutgers University. The process involves oxidation of the sulfur in coal (both organic and pyritic) to soluble forms using nitrogen oxide gas mixtures and subsequent extractive removal. Key features of the process are mild reaction conditions and the use of a regenerable oxidant. Construction of a bench scale oxidation reactor system was completed and a short experimental program was carried out using Illinois No. 6 coal. An investigation of extraction reagents was also conducted. The emphasis to date has been on development and demonstration of procedures rather than on data generation. However preliminary data do indicate reaction of both organic and pyritic sulfur. Preliminary coal characterization work using x-ray fluorescence is also reported. A brief discussion of project plans in the areas of process modelling and commercial evaluation is also given.

  20. Method for processing coke oven gas

    SciTech Connect (OSTI)

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1980-11-25T23:59:59.000Z

    Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

  1. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Pickrell, Gary; Scott, Brian

    2014-06-30T23:59:59.000Z

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70?m) with a hollow core was successfully constructed with lead-in and lead-out 50?m diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.

  2. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30T23:59:59.000Z

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

  3. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01T23:59:59.000Z

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  4. Application of advanced Stirling engine technology to a commercial size gas-fired heat pump

    SciTech Connect (OSTI)

    Johansson, L.; Agno, J.; Wurm, J.

    1985-08-01T23:59:59.000Z

    The Gas Research Institute sponsored work on the kinematic Stirling engine-driven heat pump, which offers practical improvements in the use of natural gas. Results from the first phase of the program led to the selection of a method of introducing low pressure natural gas into the V160 engine's combustor and testing of the ejector system. Further engine modifications will be needed as well as demonstrations of the performance and reliability of the units. The first phase found all developmental needs to be achievable, making the concept technically feasible. Computer projections based on the system performance of components indicate the gas-fired pump will work better than electric models and be economically feasible as well. 5 figures, 1 table.

  5. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  6. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07T23:59:59.000Z

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  7. Advanced Gas Turbine (AGT) technology development. Eighth semiannual progress report, July-December 1983

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. It is intended that technology resulting from this program reach the marketplace by the early 1990s. This report reviews the power section (metal and ceramic engine) effort conducted to date, followed by a review of the component/ceramic technology development. Appendices include reports of progress from Ford, AiResearch Casting Company, and the Carborundum Company.

  8. Advanced gas turbine systems research. Technical quarterly progress report, January 1--March 31, 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  9. Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  10. Advanced gas turbine systems research. Technical quarterly progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

  11. advanced natural-gas reciprocating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural-gas reciprocating First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Conservation Potential...

  12. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect (OSTI)

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01T23:59:59.000Z

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  13. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01T23:59:59.000Z

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  14. Automotive teamwork to develop an advanced automotive gas-turbine engine

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A $56.6 million cost-sharing contract has been signed by the U.S. Department of Energy and an industrial group headed by AiResearch Manufacturing Co. and including Ford Motor Co., AiResearch Casting Co., and Carborundum Co. A second contractual arrangement for an advanced turbine engine is being negotiated with an industry team headed by General Motors Corp.

  15. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    SciTech Connect (OSTI)

    Mukul M. Sharma

    2005-03-01T23:59:59.000Z

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

  16. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994

    SciTech Connect (OSTI)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

    1994-03-01T23:59:59.000Z

    During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

  17. ADVANCED THERMAL BARRIER COATINGS FOR OPERATION IN HIGH HYDROGEN CONTENT FUELED GAS TURBINES

    SciTech Connect (OSTI)

    Sampath, Sanjay

    2014-12-31T23:59:59.000Z

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of 6 DE-FE0004771, Final Report, April 2015: Stony Brook University coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property senso

  18. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17T23:59:59.000Z

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  19. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, Hector M. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  20. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  1. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    SciTech Connect (OSTI)

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01T23:59:59.000Z

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT, helium data covered the mixed convection laminar, acceleration driven DTHT and the laminar to turbulent transition regimes and carbon dioxide data covered the returbulizing buoyancy driven DTHT and non-returbulizing buoyancy induced DTHT. The validity of the data was established using the heat balance and the uncertainty analysis. Based on experimental data, the traditional threshold for the DTHT regime was updated to account for phenomena observed in the facility and a new heat transfer regime map was proposed. Overall, it can be stated that substantial reduction of heat transfer coefficient was observed in DTHT regime, which will have significant impact on the core and DHR design of passive GFR. The data were compared to the large number of existing correlations. None of the mixed convection laminar correlation agreed with the data. The forced turbulent and the DTHT regime, Celeta et al. correlation showed the best fit with the data. However, due to larger ratio of the MIT facility compared to the Celeta et al. facility and the returbuliziation due to the gas characteristics, the correlation sometimes under-predicts the heat transfer coefficient. Also, since Celeta et al. correlation requires the information of the wall temperature to evaluate the heat transfer coefficient, it is difficult to apply this correlation directly for predicting the wall temperature. Three new sets of correlation that cover all heat transfer regimes were developed. The bas

  2. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  3. Advanced hot-gas filter development. Topical report, September 30, 1994--May 31, 1996

    SciTech Connect (OSTI)

    Lane, J.E.; LeCostaouec, J.F.; Painter, C.J.; Sue, W.A.; Radford, K.C.

    1996-12-31T23:59:59.000Z

    The application of high-performance, high-temperature particulate control devices is considered to be beneficial to advanced fossil fuel processing technology, to selected high-temperature industrial processes, and to waste incineration concepts. Ceramic rigid filters represent the most attractive technology for these applications due to their capability to withstand high-temperature corrosive environments. However, current generation monolithic filters have demonstrated poor resistance to crack propagation and can experience catastrophic failure during use. To address this problem, ceramic fiber-reinforced ceramic matrix composite (CMC) filter materials are needed for reliable damage tolerant candle filters. This program is focused on the development of an oxide-fiber reinforced oxide material composite filter material that is cost competitive with prototype next generation filters. This goal would be achieved through the development of a low cost sol-gel fabrication process and a three-dimensional fiber architecture optimized for high volume filter manufacturing. The 3D continuous fiber reinforcement provides a damage tolerant structure which is not subject to delamination-type failures. This report documents the Phase 1, Filter Material Development and Evaluation, results. Section 2 provides a program summary. Technical results, including experimental procedures, are presented and discussed in Section 3. Section 4 and 5 provide the Phase 1 conclusions and recommendations, respectively. The remaining sections cover acknowledgements and references.

  4. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect (OSTI)

    G.E. Fuchs

    2007-12-31T23:59:59.000Z

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

  5. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29T23:59:59.000Z

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  6. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31T23:59:59.000Z

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  7. Modeling prismatic HTGRs with U.S. N.R.C advanced gas reactor evaluator (AGREE)

    SciTech Connect (OSTI)

    Seker, V.; Drzewiecki, T.; Downar, T. [Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    A core fluids and heat transfer model has been developed for the prismatic high temperature gas reactor in support of the US NRC Next Generation Nuclear Plant (NGNP) evaluation model. The core fluids modeling relies on a subchannel approach in which the primary coolant flow path through the core region and vertical in-core and ex-core gaps can be modeled as individual subchannels. These subchannels are connected together to represent a three dimensional reactor. An initial validation calculation for the core fluids model has been performed using data available in literature for bypass flow. The predicted bypass flow was within 2.6% of the value reported in the literature. The core level heat transfer model is based on a triangular finite volume method, where the base triangle is one sixth of the prismatic block. In order to improve the spatial accuracy at this level, a triangular refinement method was also implemented. The fuel compact temperature is calculated by a cylindrical conduction model which is implicitly coupled to the triangular core level model. The preliminary verification of the model was performed by comparing AGREE to a finite element code COMSOL by analyzing the MHTGR core heat transfer. Further verification and validation is currently an ongoing effort. (authors)

  8. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    technology is assumed. Wet scrubber or combination flue-gasFlue Gas Scrubbing Costs Scrubber Lime- Limestone Reduction-Same as lime-limestone scrubber cost. Cap. Cost*4 Since 6236

  9. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    SciTech Connect (OSTI)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01T23:59:59.000Z

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top size cut has traditionally been 45 {mu}m, and in some instances a bottom cut at +5 {mu}m is made to remove ultra-fine particles and reduce oxygen content. Predictably, use of irregular shaped or larger particle feedstock powder can reduce part quality as sintering shrinkage and part detail suffer. Thus, widespread production and technological use of Ti-MIM is limited due in large part to Ti alloy feedstock cost and availability, not MIM processing capability. Lower cost feedstock of fine, spherical Ti alloy powder with sufficient purity must be available in order to fully utilize the advantages of the Ti-MIM processing route allowing expansion of the market to small complex Ti parts in many high volume applications.

  10. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-12-01T23:59:59.000Z

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  11. Frontiers + Innovation 2009 CSPG CSEG CWLS Convention 603 Recent Advances in Mapping Deep Permafrost and Gas Hydrate

    E-Print Network [OSTI]

    Ramachandran, Kumar

    Permafrost and Gas Hydrate Occurrences using Industry Seismic Data, Richards Island Area, Northwest in permafrost and to determine the extent of gas hydrate occurrences. Seismic amplitude anomalies associated that sediments with high gas hydrate saturation near the Mallik well site extend over an area of 0.25 km2

  12. Industry and the APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important applications, including advances in manufacturing, information technology, nanotechnology, pharmaceuticals, biomedicine, oil and gas, transportation, agriculture,...

  13. Development and evaluation of two reactor designs for desulfurization of Texas lignites

    E-Print Network [OSTI]

    Merritt, Stanley Duane

    1991-01-01T23:59:59.000Z

    exhibited can be given at this time, but this behavior may be indicative of transformations of inorganic matter, changes in the forms of sulfur present in the lignite, and the overall composition. The results of this test series show a need for further...DEVELOPMENT AND EVALUATION OF TWO REACTOR DESIGNS FOR DESULFURIZATION OF TEXAS LIGNITES A Thesis by STANLEY DUANE MERRITT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  14. Integrating desulfurization with CO{sub 2}-capture in chemical-looping combustion

    SciTech Connect (OSTI)

    Solunke, Rahul; Veser, Goetz

    2011-02-01T23:59:59.000Z

    Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO{sub 2}-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H{sub 2}S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO{sub 2} production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO{sub 2} capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.

  15. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-29T23:59:59.000Z

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  16. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect (OSTI)

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01T23:59:59.000Z

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  17. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect (OSTI)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01T23:59:59.000Z

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

  18. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  19. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01T23:59:59.000Z

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  20. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter

    2006-10-01T23:59:59.000Z

    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  1. Desulfurization of Texas lignite using steam and air 

    E-Print Network [OSTI]

    Stone, Robert Reginald

    1981-01-01T23:59:59.000Z

    research attention. With the projected U. S. energy needs in the year ZOOO at more than 2. 6 times the 197Z level, an abundant energy source must be developed (Kaiser, 1974). Coal is the most often mentioned, immediate source of energy. The present... the problems associated with solids handling, maintenance, and disposal of the spent adsorbent. Other methods of chemical desulfuriz ation include solution leaching, bacterial catalyzed removal, gasification followed hy scrubbi ng, thermal treating, and gas...

  2. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  3. Performance history over 10 years of super duplex stainless steel in flue gas desulfurization

    SciTech Connect (OSTI)

    Bendall, K.C. [Langley Alloys Ltd., Maidenhead (United Kingdom)

    1996-08-01T23:59:59.000Z

    25 Cr duplex (austenitic/ferritic) stainless steel containing copper and nitrogen offers a cost effective solution to material selection for pollution control equipment. The properties of duplex stainless steel which make it suitable for this type of application are discussed and long term performance histories presented. It is concluded that high alloy duplex steel has an important role to play in the production of low maintenance reliable equipment for FGD and other pollution control systems.

  4. The utilization of flue gas desulfurization waste by-products in construction brick 

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    Unconfined Compressive Strength and Density Comparisons of Gypsum Hemihydrate with Various Inductions of Fly Ash 16 Unconfined Compressive Strength and Density Comparisons Using Various Types of Bottom Ashes 18 Optimum Temperature to Calcine Dihydrate... Gypsum to Hemihydrate Gypsum 21 Optimum Time to Calcine Dihydrate to Hemihydrate 22 Unconfined Compressive Strength and Density Comparisons for Hemihydrate Subjected to Various Size Sieves 25 Temperature of Hemihydrate during Hydration versus Time...

  5. The utilization of flue gas desulfurization waste by-products in construction brick

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    APPENDIX D. TEST PROCEDURES APPENDIX E. CONVERSION TABLES VITA 85 90 93 96 99 LIST OF FIGURES Figure Page Model for FGD Waste By-Product Research Unconfined Compressive Strength for Fly Ash Mixed with Various Inductions of Portland Cement 15... properties such as weight, durability, strength, density, etc. Varying mixes of bottom ash, fly ash, portland cement, and sand will be tested for possible enhancement of the hemihydrate. Also, a mix design that best utilizes all the waste by...

  6. Desulfurization of a coal model compound by in situ hydrogen generation through water-gas shift

    E-Print Network [OSTI]

    Kumar, Meyyappan

    1982-01-01T23:59:59.000Z

    Statistiacl Analysis Results for Temperature Profile T3 110 10 Statistical Analysis Results for Temperature Profile T4 CHAPTER I INTRODIJCTION The ever developing problem of an energy crisis has led to the search for alternative energy sources. Some... in industry to produce clean burning low sulfur fuel. As there is a growing need for alternative energy sources, coal liquefaction is likely to be commercialized within the next decade. Since coal contains a high percentage of sulfur compounds, there is a...

  7. Natural Gas Reforming | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production Natural Gas Reforming Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon...

  8. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01T23:59:59.000Z

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  9. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    SciTech Connect (OSTI)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01T23:59:59.000Z

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  10. Problem of improving coke oven gas purification systems

    SciTech Connect (OSTI)

    Goldin, I.A.

    1982-01-01T23:59:59.000Z

    A discussion of the problems of improving desulfurization processes of coke oven gas was presented. Of particular interest were control systems and increasing capacity of the coke ovens. Included in the discussion were the vacuum-carbonate and arsenic-soda sulfur removal systems. Problems involved with these systems were the number of treatment operations, the volume of the reagents used, and the operation of equipment for naphthalene and cyanide removal.

  11. A Study of Advanced Materials for Gas Turbine Coatings at Elevated Temperatures Using Selected Microstructures and Characteristic Environments for Syngas Combustion

    SciTech Connect (OSTI)

    Ravinder Diwan; Patrick Mensah; Guoqiang Li; Nalini Uppu; Strphen Akwaboa; Monica Silva; Ebubekir Beyazoglu; Ogad Agu; Naresh Polasa; Lawrence Bazille; Douglas Wolfe; Purush Sahoo

    2011-02-10T23:59:59.000Z

    Thermal barrier coatings (TBCs) that can be suitable for use in industrial gas turbine engines have been processed and compared with electron beam physical vapor deposition (EBPVD) microstructures for applications in advanced gas turbines that use coal-derived synthesis gas. Thermo-physical properties have been evaluated of the processed air plasma sprayed TBCs with standard APS-STD and vertically cracked APS-VC coatings samples up to 1300 C. Porosity of these selected coatings with related microstructural effects have been analyzed in this study. Wet and dry thermal cycling studies at 1125 C and spalling resistance thermal cycling studies to 1200 C have also been carried out. Type I and Type II hot corrosion tests were carried out to investigate the effects of microstructure variations and additions of alumina in YSZ top coats in multi-layered TBC structures. The thermal modeling of turbine blade has also been carried out that gives the capability to predict in-service performance temperature gradients. In addition to isothermal high temperature oxidation kinetics analysis in YSZ thermal barrier coatings of NiCoCrAlY bond coats with 0.25% Hf. This can affect the failure behavior depending on the control of the thermally grown oxide (TGO) growth at the interface. The TGO growth kinetics is seen to be parabolic and the activation energies correspond to interfacial growth kinetics that is controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. The difference between oxidation behavior of the VC and STD structures are attributed to the effects of microstructure morphology and porosity on oxygen ingression into the zirconia and TGO layers. The isothermal oxidation resistance of the STD and VC microstructures is similar at temperatures up to 1200 C. However, the generally thicker TGO layer thicknesses and the slightly faster oxidation rates in the VC microstructures are attributed to the increased ingression of oxygen through the grain boundaries of the vertically cracked microstructures. The plasma sprayed TBC microstructure (VC and STD) with NiCoCrAlY-Hf bond coat are stable up to 1100 C. However, as with other TBC structures, a considerable amount of interdiffusion was observed in the different layers, although the TBC growth was self-limiting and parabolic. The addition of Hf to the VC microstructure appears to have some potential for the future development of robust TBCs with improved isothermal and service temperatures in advanced gas turbines.

  12. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report

    SciTech Connect (OSTI)

    John J. Kilbane II

    2000-12-15T23:59:59.000Z

    The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

  13. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  14. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  15. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-04-18T23:59:59.000Z

    This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

  16. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  17. DOE Announces Webinars on Compressed Natural Gas Infrastructure...

    Energy Savers [EERE]

    Compressed Natural Gas Infrastructure, an Advanced Rooftop Unit Campaign, and More DOE Announces Webinars on Compressed Natural Gas Infrastructure, an Advanced Rooftop Unit...

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  19. Revamping AK-Ashland gas cleaning system

    SciTech Connect (OSTI)

    Brandes, H.; Koerbel, R. [Mannesmann Demag Corp., Coraopolis, PA (United States); Haberkamp, K. [Mannesmann Demag Huttentechnik, Duisburg (Germany); Keeton, S. [AK Steel Corp., Ashland, KY (United States)

    1995-07-01T23:59:59.000Z

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

  20. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15T23:59:59.000Z

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  1. Desulfurization of coal: Enhanced selectivity using phase transfer catalysts. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Palmer, S.R.; Hippo, E.J.

    1997-05-01T23:59:59.000Z

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development of viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application of phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst was expected to function as a selectivity moderator by permitting the use of milder reaction conditions than otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidations for selective sulfur oxidation were also studied. If successful this project would have lead to the rapid development of a commercially viable desulfurization process. This would have significantly improved the marketability of Illinois coal. However, the phase transfer catalysts, the cerium and the scrubber sledge did not catalize the sulfur removal significantly.

  2. 6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article

    E-Print Network [OSTI]

    Sóbester, András

    process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

  3. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  4. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect (OSTI)

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01T23:59:59.000Z

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high-temperature reactivity of CaO. Therefore, a sorbent prepared from dolomite withstands the effects of repeated sulfidation and regeneration better than one prepared from limestone. It was also determined that both the compressive strength and attrition resistance of core-in-shell pellets depend on shell thickness and that the compressive strength can be improved by reducing both the particle size and amount of limestone in the shell preparation mixture. A semiempirical model was also found which seems to adequately represent the absorption process. This model can be used for analyzing and predicting sorbent performance, and, therefore, it can provide guidance for any additional development which may be required. In conclusion, the overall objective of developing an economical, reusable, and practical material was largely achieved. The material appears suitable for removing CO{sub 2} from fuel combustion products as well as for desulfurizing hot coal gas.

  5. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    SciTech Connect (OSTI)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01T23:59:59.000Z

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

  6. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    1999-10-01T23:59:59.000Z

    The activities of the AGTSR Program during this reporting period are described in this quarterly report. The report text is divided into discussions on Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are highlighted below with additional detail following in the text of the report.

  7. Westinghouse advanced particle filter system

    SciTech Connect (OSTI)

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01T23:59:59.000Z

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  8. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01T23:59:59.000Z

    W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Finaltion of Super alloys for Gas Turbine Engines, 11 J, Metals,

  9. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

    SciTech Connect (OSTI)

    B.S. Turk; R.P. Gupta; S.K. Gangwal

    2003-06-30T23:59:59.000Z

    Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry slowed progress of the demonstration unit, negotiations with potential partners are proceeding for commercialization of this process.

  10. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    the same 2015 advanced gas turbine and RTI warm gas cleanupis used as fuel in a gas turbine which produces electricalcycle, flue gas from the gas turbine exhaust is used in a

  11. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  12. advanced heavy water: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How does the use of advanced waterHow does the use of advanced water treatment affect energy Keller, Arturo A. 3 Natural Gas-optimized Advanced Heavy-duty Engine Energy Storage,...

  13. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  14. Reducing Safety Flaring through Advanced Control 

    E-Print Network [OSTI]

    Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

    2010-01-01T23:59:59.000Z

    An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

  15. Reducing Safety Flaring through Advanced Control

    E-Print Network [OSTI]

    Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

    2010-01-01T23:59:59.000Z

    An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

  16. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

  17. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1994-10-01T23:59:59.000Z

    Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

  18. Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA

    E-Print Network [OSTI]

    Peddi, Phani 1987-

    2011-12-06T23:59:59.000Z

    materials. These solids are flushed using high pressure jet stream which will fluidise the carbon bed dislodging the particles fixed in the carbon bed. The backwash water should be treated prior to discharge as the concentrations of the pollutants...). This slurry containing gypsum is recycled using recycle pumps and pumped to different levels and sprayed down. This slurry is continuously re-circulated until the percentage of solids and chlorides concentration raises up to certain level. Then a blowdown...

  19. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31T23:59:59.000Z

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  20. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 5, November 1, 1991--January 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO{sub 2} and NO{sub x} Reduction - Preliminary confirmation of 50% SO{sub 2} reduction has been achieved, but the NO{sub x} reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO{sub 2} reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO{sub 2} Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel`s original cost estimates (capital and operating) were prepared. Therefore, SO{sub 2} removal costs are still expected to be in the range of $300/ton or less.

  1. Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA 

    E-Print Network [OSTI]

    Peddi, Phani 1987-

    2011-12-06T23:59:59.000Z

    -MS Inductively Coupled Plasma Mass Spectroscopy Mg2+ Magnesium Ion ml millilitre mM millimole Na Sodium Na2CO3 Sodium Carbonate NaHCO3 Sodium Bicarbonate NH4 + Ammonium Ion NO3 - Nitrate Ion NaOH Sodium Hydroxide NPDES National Pollutant Discharge....3.1 Performance of hZVI System and Pollutants .............. 54 5.3.2 Corrosion and Removal Mechanism ........................... 74 5.4 Oxidation-Reduction Potential (ORP) ..................................... 77...

  2. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R. [Wheelabrator Clean Air Systems, Inc., Schaumburg, IL (United States)

    1996-05-01T23:59:59.000Z

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  3. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    SciTech Connect (OSTI)

    Jalan, V.

    1983-10-01T23:59:59.000Z

    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  4. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

    Office of Environmental Management (EM)

    Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through...

  5. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  6. Experimental Characterization and Molecular Study of Natural Gas Mixtures

    E-Print Network [OSTI]

    Cristancho Blanco, Diego Edison

    2011-08-08T23:59:59.000Z

    ) 5, advanced gas turbine 5 and coal-based zero emissions power plant 6 are some of the technological advances recently reported. It is important to note that these technologies are adaptable to natural gas feedstock. However, until clean coal...

  7. Recent Advances in Chamber Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    with RAFS Advanced: He gas cooling system with SiC/SiC Research on several advanced concepts: FLiBe, Li, Li cooled blanket system for higher thermal efficiency - High temperature gas cooled blanket system with Si Programs on Chamber/Blanket · Recent Progress on Liquid Walls - IFE & MFE - Basic Principles - Plasma

  8. AN ADVANCED E-PERM SYSTEM FOR SIMULTANEOUS MEASUREMENT OF CONCENTRATIONS OF RADON GAS, RADON PROGENY, EQUILIBRIUM RATIO AND UNATTACHED RADON PROGENY

    E-Print Network [OSTI]

    Paul Ph. D. Stieff; Rick Stieff; Lorin Stieff

    2003-01-01T23:59:59.000Z

    The detrimental effects of prolonged exposure to the decay products of radon, is well known and documented in the literature. The USEPA has set a primary standard for radon progeny exposure for the general public at 0.02 WL with a corresponding derived limit of 4 pCi/L for radon gas, assuming an equilibrium ratio of 50%. Because radon gas measurement is simpler and less expensive, more than 90 % of all the currently performed radon measurements in the US, measure radon gas and estimate the actual health risk via the assumed equilibrium factor for a residential structure. However, with increased concerns of radon related exposures in building with high air circulation rates (schools and commercial buildings) the 50 % equilibrium ratio assumption may not allow for proper characterization of the true exposure from radon measurements. In these cases a more rigorous characterization by direct measurements of radon decay products may be useful follow-up measurement after initial radon measurements have identified a potential concern. This paper describes a configuration radon and radon decay product measurement devices that can simultaneously measure radon and its decay products as well as provide an indication of the relative ratio of attached to unattached decay products. This unique combination of devices has numerous applications for designers of complex remediation systems and environmental consultants who have the responsibility of providing cost effective

  9. Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor

    E-Print Network [OSTI]

    Hook, Bruce David

    1984-01-01T23:59:59.000Z

    ; Lands and Mrnkova, 1966). Singhal et al. (1981a, b) studied DBT desulfurization at 558-623K, 3. 1 MPa, in the gas phase over a standard CoO-MoO, /7-AlsO, catalyst. Both of these mechanisms are consistent with the generalized mechanism for HDS...HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis BRUCE DAVID HOOK Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  10. Comparison of Kinetic and Equilibrium Reaction Models in Simulating the Behavior of Gas Hydrates in Porous Media

    E-Print Network [OSTI]

    Kowalsky, Michael B.; Moridis, George J.

    2006-01-01T23:59:59.000Z

    rate constant of methane gas hydrate decomposition, CanadianAdvances in the Study of Gas Hydrates, C. Taylor , J. Qwan,International Conference on Gas Hydrates, Trondheim, Norway,

  11. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume B. Developmental cyclone evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    This report summarizes the results of cold flow model testing of a conventional reverse-flow cyclone containing several developmental features designed to improve its separative performance. The four advanced features evaluated were: Outlet Scroll Skimming - to remove particles from the high dust concentration region at the periphery of the outlet dust; Base Purge - to reduce reentrainment of dust from the disengagement hopper; Increased Outlet Duct Engagement - to reduce short-circuiting of the inlet dust into the outlet; and Vortex Shield - to stabilize the point of vortex attachment at the cyclone base and thus reduce base pickup. A schematic of the advanced cyclone, showing the various developmental features, is provided. The results of the cold flow experiments showed that substantial improvement (approximately 30% reduction in exhaust emission) could be obtained from outlet skimming or from increased engagement of the exhaust dust. Furthermore, the effects of these features are additive so that about 60% overall reduction in emissions could be achieved by incorporating both of these elements. On the other hand, the vortex shield and the base purge had little effect on the separative performance. Almost all of the experimental results exhibited strong electrostatic influence. At high flowrates, the separative performance of the cyclone decreased as the flowrate was reduced, as expected from cyclone theory. Although the improvements obtained with the developmental cyclone are significant, further improvements appear possible with the Air Shield cyclone and the Electrocyclone. Consequently, subsequent efforts under the CFCC program were focused on these concepts.

  12. Russia’s Natural Gas Export Potential up to 2050

    E-Print Network [OSTI]

    Paltsev, Sergey

    Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds ...

  13. Advanced NTR options. [Ta

    SciTech Connect (OSTI)

    Davis, J.W.; Mills, J.C.; Glass, J.F.; Tu, W. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, MS HB23 Canoga Park, California 81303 (US))

    1991-01-05T23:59:59.000Z

    Advanced NTR concepts which offer performance improvements over the ROVER/NERVA designs have been investigated. In addition, the deliverable performance of low pressure operation and materials issues have been investigated. Based on current experience, a maximum exit gas temperature of 3200 K is likely achievable with a ZrC based PBR design. At 3200 K a low pressure NTR would have marginal performance advantage (Isp) over a high pressure system. If tantalum or other high melting point carbides are used then an exit gas temperature of 3500 K may be feasible. At 3500 K low pressure operation offers more significant performance improvements which could outweigh associated size and mass penalties.

  14. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggests that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.

  15. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this finding offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)

  16. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  17. Advanced Worker Protection System

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  18. Production of Depleted UO2Kernels for the Advanced Gas-Cooled Reactor Program for Use in TRISO Coating Development

    SciTech Connect (OSTI)

    Collins, J.L.

    2004-12-02T23:59:59.000Z

    The main objective of the Depleted UO{sub 2} Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO{sub 2} kernels with diameters of 500 {+-} 20 {micro}m and 3.5 kg of UO{sub 2} kernels with diameters of 350 {+-} 10 {micro}m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO{sub 2} kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO{sub 3} {center_dot} 2H{sub 2}O microspheres to form dense UO{sub 2} kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 {+-} 10-{micro}m-diameter kernels, and to obtain very high yields.

  19. Vacuum carbonate desulfurization and claus sulfur recovery system at No. 11 battery

    SciTech Connect (OSTI)

    Ellis, A.

    1981-01-01T23:59:59.000Z

    The vacuum carbonate process functions above 90% efficiency and satisfactorily removes the HCN and sulfur compounds from the coke oven gas generated at No. 11 Battery. It has been noted that a large quantity of energy is required for the operation of the vacuum carbonate system. Normally 544,617 kg (1.2 million lbs of steam) and 5.4 thousand kWh of electricity are used per day to maintain the system's temperatures and pressures. The processed coke oven gases from the system satisfy industrial and environmental standards as a combustible fuel. The HCN destruction unit reduces the corrosive HCN to concentrations below .07% of the acid gas stream and offers the necessary protection to the downstream modified Claus unit. The Claus unit at No. 11 Battery operates at 98% efficiency and produces 5896 kg (6.5 tons) of sulfur per day. The liquid sulfur generated in the Claus unit is a high quality product of 99% purity. 7 figures, 3 tables.

  20. Energy Department Releases Draft Advanced Fossil Energy Solicitation...

    Broader source: Energy.gov (indexed) [DOE]

    fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

  1. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Broader source: Energy.gov (indexed) [DOE]

    restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications More Documents & Publications...

  2. advanced accelerator experimental: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 1.2 Sources of Residual Gas Kemner, Ken 8 A EUROPEAN ADVANCED TECHNOLOGY PROGRAMME FOR ADS ACCELERATOR DEVELOPMENT* Physics Websites Summary: A EUROPEAN...

  3. Natural Gas Multi-Year Program Plan

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  4. Advanced Coupled THM Analysis in Geomechanics 

    E-Print Network [OSTI]

    Shastri, Ajay

    2014-08-11T23:59:59.000Z

    This dissertation is aimed at advancing current understating and modeling of problems involving the complex soils systems. A wide range of problems are tackled here including those in: frozen soils; gas hydrate bearing ...

  5. Development and introduction of methods for extracting hydrogen sulfide and hydrogen cyanide from coke-oven gas

    SciTech Connect (OSTI)

    Litvinenko, M.S.; Zaichenko, V.M.

    1980-01-01T23:59:59.000Z

    The progress between 1933 and the present in desulfurizing coal gas from coke ovens and making use of the by-products to produce sulfuric acid, thioyanates, etc. is described. The vacuum carbonate process and the monoethanolamine method are apparently now preferred, but some plants are still using modified arsenic-soda processes. More recently additional by-products have been thiocyanates (for producing acrylonitrile fiber) and hydrogen xanthanates. The production of other organic sulfur and cyanide compounds has been investigated for use as herbicides, corrosion inhibitors, etc. (LTN)

  6. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  7. Advanced Workshop in Regulation and

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Workshop in Regulation and Competition 2011-2012 Conflicting Technological and Competitive Forces in Regulated Industries January 13, 2012 Smart Grid and Rates Location: Rutgers Business School 1:40pm "Smart Grid in Maryland" Kurt Strunk, NERA Economic Consulting, 1:40pm-2:05pm "Gas Pipeline Rates

  8. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    None

    2005-09-29T23:59:59.000Z

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  9. High Temperature Gas Reactors The Next Generation ?

    E-Print Network [OSTI]

    -Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

  10. High Temperature Gas Reactors Briefing to

    E-Print Network [OSTI]

    Meltdown-Proof Advanced Reactor and Gas Turbine #12;TRISO Fuel Particle -- "Microsphere" · 0.9mm diameter · Utilizes gas turbine technology · Lower Power Density · Less Complicated Design (No ECCS) #12;AdvantagesHigh Temperature Gas Reactors Briefing to by Andrew C. Kadak, Ph.D. Professor of the Practice

  11. Advanced Natural Gas Reciprocating Engines (ARES)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in the Spotlight Novelis JoinsEdward

  12. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling of

  13. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling ofMartin L Willi

  14. Gas stream cleanup

    SciTech Connect (OSTI)

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01T23:59:59.000Z

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  15. anaerobic digester gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  16. Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...

    Broader source: Energy.gov (indexed) [DOE]

    Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

  17. Gas-phase electron diffraction studies of unstable molecules 

    E-Print Network [OSTI]

    Noble-Eddy, Robert

    2009-01-01T23:59:59.000Z

    Gas-phase electron diffraction (GED) is the only viable technique for the accurate structural study of gas-phase molecules that contain more than ~10 atoms. Recent advances in Edinburgh have made it possible to study ...

  18. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    E-Print Network [OSTI]

    Boswell, R.D.

    2010-01-01T23:59:59.000Z

    Advances in the Study of Gas Hydrates. Kluwer, New York, pp.and quantification of gas hydrates using rock physics andand Salt Inhibition of Gas Hydrate Formation in the Northern

  19. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    E-Print Network [OSTI]

    Boswell, R.D.

    2010-01-01T23:59:59.000Z

    and quantification of gas hydrates using rock physics andAdvances in the Study of Gas Hydrates. Kluwer, New York, pp.and Salt Inhibition of Gas Hydrate Formation in the Northern

  20. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  1. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  2. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    SciTech Connect (OSTI)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01T23:59:59.000Z

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  3. Advanced control documentation for operators

    SciTech Connect (OSTI)

    Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

    1988-09-01T23:59:59.000Z

    Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal in conventional and/ or advanced clean coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology clean coal technology combustors. Over 60% of the CCBs are generated as fly ash. An estimate

  5. High volume - high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The amount of dry FGD materials produced in the U.S. has not been increasing at the high rate originally anticipated. This has been due to a number of economic factors affecting the utility industry. Technologies for the disposal of large amounts of materials are not going to be implemented in the near term. In light of this development the target application for this project is being changed from highwall adit filling to the filling of auger holes to allow for highwall mining. This application focuses on using the dry FGD material to recover coal isolated by excessive augering. It produces 10 or more times the amount of coal per ton of dry FGD utilized than the originally proposed methodology. It also does not require extensive equipment development and, if applied to abandoned mine lands, may have substantially more significant environmental benefit. We also propose to use a spray dryer material for the demonstration instead of the fluidized bed material originally proposed. The spray dryer material is already slacked eliminating problems associated with heat generation at the mine site. Auger hole grouting with FGD material is also best performed by hydraulic emplacement methods.

  6. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Escola, George

    2007-01-17T23:59:59.000Z

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  7. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  8. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  9. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  10. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    Gas Turbine Power (MWe) Steam Turbine Power (MWe) Total (for the 2015 advanced steam turbine configuration for powerthe LP section of the steam turbine set. Finally, the fuel

  11. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  12. Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant

    SciTech Connect (OSTI)

    Not Available

    1990-04-24T23:59:59.000Z

    Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

  13. A novel coal feeder for production of low sulfur fuel

    SciTech Connect (OSTI)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01T23:59:59.000Z

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  14. A novel coal feeder for production of low sulfur fuel. Annual technical progress report, October 1, 1990--October 1, 1991

    SciTech Connect (OSTI)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-12-31T23:59:59.000Z

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  15. Ultrafast gas switching experiments

    SciTech Connect (OSTI)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1996-11-01T23:59:59.000Z

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

  16. Natural Gas Supply SBIR Program

    SciTech Connect (OSTI)

    Shoemaker, H.D.; Gwilliam, W.J.

    1995-07-01T23:59:59.000Z

    The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 and reauthorized in 1992 until the year 2000 by Public Law 102-564. The purposes of the new law are to (1) expand and improve the SBIR program, 2) emphasize the program`s goal of increasing private sector commercialization of technology developed through Federal R&D, (3) increase small business participation in Federal R&D, and (4) improve the Federal Government`s dissemination of information concerning the SBIR program. DOE`s SBIR pro-ram has two features that are unique. In the 1995 DOE SBIR solicitation, the DOE Fossil Energy topics were: environmental technology for natural gas, oil, and coal; advanced recovery of oil; natural gas supply; natural gas utilization; advanced coal-based power systems; and advanced fossil fuels research. The subtopics for this solicitation`s Natural Gas Supply topic are (1) drilling, completion, and stimulation; (2) low-permeability Formations; (3) delivery and storage; and (4) natural gas upgrading.

  17. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  18. advanced logging workshop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Smart Grid in Virginia" Lunch 12:15pm-1:15pm Sheldon Switzer, Baltimore Gas & Electric Company, 1:15pm-1 Lin, Xiaodong 54 Advanced Workshop in Regulation and Mathematics...

  19. Alternative formulations of regenerable flue gas cleanup catalysts

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-01-01T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  20. COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS

    E-Print Network [OSTI]

    Mukasyan, Alexander

    COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

  1. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  2. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29T23:59:59.000Z

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  3. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01T23:59:59.000Z

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  4. Separation of CO2 from flue gas using electrochemical cells

    SciTech Connect (OSTI)

    Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

    2010-06-01T23:59:59.000Z

    ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

  5. Advanced Petrochemical Process Heating with the Pyrocore Burner

    E-Print Network [OSTI]

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    natural gas or refinery process gas and designed to take full advantage of the Pyrocore burner's radiant heat transfer characteristics. This will result in a process heater with design and performance attributes that will be attractive to users...ADVANCED PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research...

  6. ADVANCED OXIDATION PROCESS

    SciTech Connect (OSTI)

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04T23:59:59.000Z

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  7. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01T23:59:59.000Z

    M W of geothermal, and 3 M W of landfill gas. The wind powerwind, geothermal, and landfill gas generators, provide theRISK: SUMMARY advance. Landfill gas and geothermal resources

  8. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-01-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  9. Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide

    SciTech Connect (OSTI)

    Clary, L.R.; Vermeulen, T.; Lynn, S.

    1980-12-01T23:59:59.000Z

    The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

  10. Advanced Turbine Systems Program. Topical report

    SciTech Connect (OSTI)

    NONE

    1993-03-01T23:59:59.000Z

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  11. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31T23:59:59.000Z

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  12. Plant maintenance and advanced reactors, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-09-15T23:59:59.000Z

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  13. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01T23:59:59.000Z

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  14. TESEC 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    TESEC 2001, Genova, Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE for safety analysis of complex computer based systems. Such approaches are applied to the gas turbine control and electrical power supply of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has

  15. Shale Gas and Climate Targets: Can They Be Reconciled?

    E-Print Network [OSTI]

    Pedersen, Tom

    deposits flows poorly and requires new advances in hori- zontal drilling and rock fracturing to improve gas extraction rates. Hydraulic fracturing uses a water, sand, and chemical mixture pumped under high pressure

  16. Infrared Optical Imaging Techniques for Gas Visualization and Measurement

    E-Print Network [OSTI]

    Safitri, Anisa

    2012-07-16T23:59:59.000Z

    Advancement in infrared imaging technology has allowed the thermal imaging to detect and visualize several gases, mostly hydrocarbon gases. In addition, infrared cameras could potentially be used as a non-contact temperature measurement for gas...

  17. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 · REPORT OF THE INSTITUTE LIBRARIES 93 · INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  18. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19T23:59:59.000Z

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  19. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  20. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  1. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-08-31T23:59:59.000Z

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  2. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  3. Advanced Turbine Systems scoping and feasibility studies

    SciTech Connect (OSTI)

    Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

    1993-01-01T23:59:59.000Z

    The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

  4. Task 8.9 - Advanced ceramic materials

    SciTech Connect (OSTI)

    NONE

    1997-06-30T23:59:59.000Z

    Advanced ceramic materials such as Continuous Fiber Reinforced Ceramic Matrix Composites (CFCCs) have had promising results on the companion program entitled ``Ceramic Stationary Gas Turbine`` (CSGT). In particular, CFCCs have outperformed monolithic tiles in structural integrity as a combustor liner. Also, CFCCs have provided the higher temperature operation and improved emissions performance that is required for the ATS combustor. The demonstrated advantages on CSGT justified work to explore the use of advanced ceramic composite materials in other gas turbine components. Sub-tasks include development of a practical, cost effective component fabrication process, development of finite element stress analysis to assure 30,000 hours of component life, and fabrication of a demonstration article.

  5. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01T23:59:59.000Z

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  6. Impact of Advanced Turbine Systems on coal-based power plants

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1993-12-31T23:59:59.000Z

    The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

  7. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  8. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  9. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  10. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  11. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25T23:59:59.000Z

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  12. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-04-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  13. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  14. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  15. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  16. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  17. Corrosion in gas conditioning plants - An overview

    SciTech Connect (OSTI)

    Pearce, B.; Dupart, M.

    1987-01-01T23:59:59.000Z

    Since the early 1800's, fuel gases of various sorts (acetylene, blast furnace gas, flue water gas, carbureted water gas, coal gas, coke oven gas and producer gas) were transmitted at low pressures in pipelines and were conditioned for contaminate removal. The removal of such contaminates as H/sub 2/S was usually accomplished by solid absorbents such as iron oxide, a process that is still in use today. The discovery in the late 20's of a regenerative process employing alkanolamines was instrumental in rapid increase in the use of natural gas in large volumes. Also at this time, the development of wide diameter pipelines that could handle 500-700 psi gas pressure provided the means of handling these large volumes of gas. The protection of the pipeline from corrosion depended upon contaminate removal of water, carbon dioxide and hydrogen sulfide. In the process of contaminant removal, the process equipment suffered severe corrosion damage. Corrosion test methods and inhibitors were applied to those early processes and have advanced from weep holes and coupons to the present way of electronic and physical test methods. The trend is away from the primary amine at either low strength or inhibited at high concentration to less corrosive, ''tailor-made'' solvents that can be designed or formulated to perform a given task at acceptable corrosion rates and at much lower energy levels.

  18. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  19. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  20. Innovative technology summary report: advanced worker protection system

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  1. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  2. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  3. Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-12-31T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  4. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  5. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  6. Operational, technological and economic drivers for convergence of the electric power and gas industries

    SciTech Connect (OSTI)

    Linden, H.R.

    1997-05-01T23:59:59.000Z

    The economically recoverable natural gas resource base continues to grow as a result of exploration and production technology advances, and improvements in gas storage and delivery. As a result, the convergence of the electric power and gas industries and the parallel development of distributed generation will benefit consumers and minimize environmental impacts cost-effectively.

  7. CEC-500-2010-FS-XXX Natural Gas Engine and

    E-Print Network [OSTI]

    CEC-500-2010-FS-XXX Natural Gas Engine and Vehicle Integration Research TRANSPORTATION ENERGY ­ including natural gas ­ that can substantially reduce GHG emissions while reducing petroleum dependence. This research would increase the use of natural gas as a transportation fuel by developing advanced natural

  8. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  9. Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

  10. Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of

    E-Print Network [OSTI]

    Flandro, Gary A.

    INSTABILITY CHARACTERISTICS IN GAS TURBINES ...................- 5 - 1.5. COMBUSTION INSTABILITYIndustry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume to thank Dr. Flandro. His eternal knowledge of Combustion Instability has resonated in this work and his

  11. Licensing and Deployment of Advanced Reactors Andrew C. Kadak, Ph.D.

    E-Print Network [OSTI]

    of advanced reactors of the type proposed for Generation IV will require a new strategy for licensing since many of the proposed Generation IV technologies include concepts such as high temperature gas

  12. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...

    Energy Savers [EERE]

    Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis...

  13. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17T23:59:59.000Z

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  14. Process for desulfurizing petroleum feedstocks

    SciTech Connect (OSTI)

    Gordon, John Howard; Alvare, Javier

    2014-06-10T23:59:59.000Z

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  15. Technically recoverable Devonian shale gas in Ohio

    SciTech Connect (OSTI)

    Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

    1983-07-01T23:59:59.000Z

    The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

  16. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect (OSTI)

    Alvin, M.A.

    2002-09-19T23:59:59.000Z

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  17. advanced reactors advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  20. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30T23:59:59.000Z

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  1. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  2. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01T23:59:59.000Z

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  3. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  4. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  5. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  6. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  7. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  8. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  9. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  10. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  11. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  12. Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology

    E-Print Network [OSTI]

    Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology Patricia by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas. Advanced membrane technology is being used to remove CO and CO2 from the reformate. The fuel processor

  13. Institute /or ADVANCED STUDY

    E-Print Network [OSTI]

    OF THE INSTITUTE LIBRARIES 63 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS INSTITUTE 66 · MENTORING PROGRAM sustained and has yielded an unsurpassed record of definitive scholarship. Although small in scale

  14. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    · PROGRAM IN THEORETICAL BIOLOGY 103 · REPORT OF THE INSTITUTE LIBRARIES 107 INSTITUTE FOR ADVANCED STUDY Study has sustained its founding principle for seventy years. This com- mitment his yielded

  15. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  16. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  17. Advanced Energy Design Guides

    Energy Savers [EERE]

    hotels up to 80 rooms and 4 stories Advanced Energy Design Guide for Small Hospitals and Health- care Facilities ASHE, ASHRAE, AIA, IES, USGBC, DOE Small healthcare facilities up...

  18. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Dr. Paul D. Ronney

    2003-09-12T23:59:59.000Z

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  19. Methane storage in advanced porous materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in the Presence of Water |

  20. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy EfficiencyFossil EnergyofJulyCaterpillar,

  1. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy EfficiencyFossil

  2. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy EfficiencyFossilWaukesha, June 2011 |

  3. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling of Direct-Injectionof

  4. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of EnergyModeling ofMartin L

  5. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  6. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  7. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  8. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  9. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  10. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  11. ADVANCED VISUALIZATION OF ENGINE SIMULATION DATA USING TEXTURE SYNTHESIS AND TOPOLOGICAL ANALYSIS

    E-Print Network [OSTI]

    Chen, Guoning

    Figure 1: Idealized in-cylinder flow through a diesel engine (left) and a gas engine (right). ADVANCED motion found inside diesel and gas engines, respectively. Texture-based flow visualization techniques use at the simulation of in-cylinder flow, namely, the visualization of swirl and tumble motion found inside diesel

  12. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01T23:59:59.000Z

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  13. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect (OSTI)

    T.D. Wheelock; L.K. Doraiswamy; K. Constant

    2001-06-30T23:59:59.000Z

    The overall objective of this project is the engineering development of a reusable calcium-based sorbent for desulfurizing hot coal gas. A two-step pelletization method has been employed to produce relatively strong, ''core-in-shell,'' spherical pellets. Each pellet consists of a highly reactive core surrounded by a strong, inert, porous shell. A suitable core is composed largely of CaO which reacts with H{sub 2}S to form CaS. Pellet cores have been prepared by pelletizing either pulverized limestone or plaster of Paris, and shells have been made of various materials. The most suitable shell material has been formed from a mixture of alumina and limestone particles. The core-in-shell pellets require treatment at high temperature to convert the core material to CaO and to partially sinter the shell material. Pellet cores derived from plaster of Paris have proved superior to those derived from limestone because they react more rapidly with H{sub 2}S and their reactivity does not seem to decline with repeated loading and regeneration. The rate of reaction of H{sub 2}S with CaO derived from either material is directly proportional to H{sub 2}S concentration. The rate of reaction does not appear to be affected significantly by temperature in the range of 1113 K (840 C) to 1193 K (920 C) but decreases markedly at 1233 K (960 C). The rate is not affected by shell thickness within the range tested, which also provides adequate compressive strength.

  14. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01T23:59:59.000Z

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  15. Challenges in the Development of Advanced Reactors

    SciTech Connect (OSTI)

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01T23:59:59.000Z

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  16. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect (OSTI)

    Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

    2006-05-01T23:59:59.000Z

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  17. ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR

    SciTech Connect (OSTI)

    Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

    2006-05-01T23:59:59.000Z

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  18. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect (OSTI)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05T23:59:59.000Z

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

  19. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect (OSTI)

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01T23:59:59.000Z

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  20. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  1. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  2. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15T23:59:59.000Z

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  3. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  4. NDE (nondestructive examination) development for ceramics for advanced heat engines

    SciTech Connect (OSTI)

    McClung, R.W. (McClung (R.W.), Powell, TN (USA)); Johnson, D.R. (Oak Ridge National Lab., TN (USA))

    1991-01-01T23:59:59.000Z

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  5. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  6. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  7. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  8. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01T23:59:59.000Z

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  9. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  10. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31T23:59:59.000Z

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01T23:59:59.000Z

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  12. Dash for Gas: The Sequel Christopher R. Knittel Konstantinos Metaxoglou Andre Trindade

    E-Print Network [OSTI]

    Rothman, Daniel

    in relative prices of the two fuels. Recent advances in the ability to use hydraulic fracturing methods to hydraulic fracturing for extracting shale gas. We focus on fuel switching decisions by electric power plants

  13. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  14. Advanced turbine systems: Studies and conceptual design

    SciTech Connect (OSTI)

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01T23:59:59.000Z

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  15. Gills Onions Advanced Energy

    E-Print Network [OSTI]

    !!! One-third incoming onions discarded as tail, top, and peel! #12;The Solution... Advanced Energy honor from the American CouncilThe highest honor from the American Council of Engineering Companies Residential & Food Service Anaerobic Digestion Fats, Oil, and Grease (FOG) from Food Service Anaerobic Methane

  16. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  17. Search Asia Advanced Search

    E-Print Network [OSTI]

    on state-run forestry companies. Illegal logging activities have cost the Indonesian government some US$600Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling to discuss the issue of log smuggling, Forestry Minister M Prakosa said. "We will hold bilateral dialogues

  18. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  19. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  20. Advances in Lung Volume

    E-Print Network [OSTI]

    Jones, Michelle

    Advances in Lung Volume Reduction Surgery The Ohio University Medical Center Lung Volume Reduction LungVolumeReductionSurgery Spring 2010 © 2010 The Ohio State University Medical Center ­ 04 Consult Ohio State's #12;The Ohio State University Medical Center Lung Volume Reduction Surgery Patient

  1. Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new

    E-Print Network [OSTI]

    Anderson, Jim

    Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new fields to answer our energy needs. Oil companies are keen to use novel techniques) techniques represent arguably the most significant technological advance in the field of oil exploration

  2. Cost of Gas Adjustment for Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

  3. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect (OSTI)

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30T23:59:59.000Z

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program through cold flow and high-temperature testing. The Blasch, mullite-bonded alumina sheet filter element is the only candidate currently approaching qualification for demonstration, although this oxide-based, monolithic sheet filter element may be restricted to operating temperatures of 538 C (1000 F) or less. Many other types of ceramic and intermetallic sheet filter elements could be fabricated. The estimated capital cost of the sheet filter system is comparable to the capital cost of the standard candle filter system, although this cost estimate is very uncertain because the commercial price of sheet filter element manufacturing has not been established. The development of the sheet filter system could result in a higher reliability and availability than the standard candle filter system, but not as high as that of the inverted candle filter system. The sheet filter system has not reached the same level of development as the inverted candle filter system, and it will require more design development, filter element fabrication development, small-scale testing and evaluation before larger-scale testing could be recommended.

  4. Autothermal Reforming of Natural Gas to Synthesis Gas

    SciTech Connect (OSTI)

    Steven F. Rice; David P. Mann

    2007-04-13T23:59:59.000Z

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct participation of CO2 in the oxidation chemistry.

  5. Proceedings of: X Convegno Tecnologie e Sistemi Energetici Complessi, (TESEC), June 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    , Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE CONTROL SYSTEM OF ICARO CO of complex computer based systems. Such approaches are applied to the gas turbine control system of ICARO co of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has been specifically designed

  6. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  7. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  8. Herty Advanced Materials Development Center

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

  9. ADVANCE! Leadership Experience Project Guidelines

    E-Print Network [OSTI]

    Hone, James

    ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active

  10. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  11. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-12-31T23:59:59.000Z

    The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

  12. COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...

    E-Print Network [OSTI]

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

  13. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  14. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  15. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems: Greenfield assessment

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Both the KRW fluidized-bed gasifier and the transport gasifier case studies were used for this assessment. The transport technology is a high-velocity circulating fluidized-bed reactor currently under development by The M.W. Kellogg Company. In the earlier assessment, seven design concepts or cases were identified; a process design was developed; major equipment items were identified; estimates of capital cost, operation and maintenance cost, and cost of electricity were developed; reliability was predicted; and development issues were identified for six studies. Three of the most probable cases were further evaluated for a Greenfield assessment in this report to adequately determine all costs independent of facilities at Plant Wansley.

  16. Natural gas annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  17. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  18. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01T23:59:59.000Z

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  19. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  20. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01T23:59:59.000Z

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.