National Library of Energy BETA

Sample records for gas concentrations atmospheric

  1. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  2. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  3. CONTENTS Concentrated Gas Hydrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrated Gas Hydrate Deposits in the Kumano Forearc Basin, Nankai Trough, Japan .....1 Recent Advances in NETL's Laboratory Studies of Hydrate- Bearing Sediments .......................5 Initial Interpretation of Results from the Iġnik Sikumi Gas Hydrate Exchange Field Trial .. 10 A Fresh Look at the Mediterranean and Black Sea Basins: Potential for High-Quality Hydrate Reservoirs .....................15 Announcements .......................19 * United Nations Hydrate Report Published

  4. ARM - Measurement - Trace gas concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement...

  5. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  6. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  7. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, Robert E. (Philadelphia, PA)

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  8. Gas concentration cells for utilizing energy

    DOE Patents [OSTI]

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  9. Gas Exploration Software for Reducing Uncertainty in Gas Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimates - Energy Innovation Portal Energy Analysis Energy Analysis Find More Like This Return to Search Gas Exploration Software for Reducing Uncertainty in Gas Concentration Estimates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryEstimating reservoir parameters for gas exploration from geophysical data is subject to a large degree of uncertainty. Seismic imaging techniques, such as seismic amplitude versus angle (AVA) analysis, can

  10. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F. (Los Alamos, NM)

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  11. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    SciTech Connect (OSTI)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.

  12. Atmospheric gas supersaturation: educational and research needs

    SciTech Connect (OSTI)

    Bouck, G.R.; D'Aoust, B.; Ebel, W.J.; Rulifson, R.

    1980-11-01

    There still is need for research on gas supersaturation as it relates to gas bubble disease. Better methods are required for both measurement and treatment of gas-supersaturated water. We must understand more about physiological and ecosystem responses to high gas pressures if existing tolerance data for individual species are to be applied accurately to field or fish-cultural situations. A better training program is needed for scientists, engineers, and facility operators involved in the monitoring and mitigation of gas-supersaturated waters.

  13. Trends in polycyclic aromatic hydrocarbon concentrations in the Great Lakes atmosphere

    SciTech Connect (OSTI)

    Ping Sun; Pierrette Blanchard; Kenneth A. Brice; Ronald A. Hites

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo(a)pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The major sources of PAHs in and around Chicago are vehicle emissions, coal and natural gas combustion, and coke production. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer. 36 refs., 4 figs., 1 tab.

  14. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOE Patents [OSTI]

    Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  15. Wide-range radioactive-gas-concentration detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  16. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  17. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne (Pittsburgh, PA)

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  18. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  19. Atmospheric and soil-gas monitoring for surface leakage at the San Juan

    Office of Scientific and Technical Information (OSTI)

    Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons (Journal Article) | SciTech Connect Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons Citation Details In-Document Search Title: Atmospheric and soil-gas monitoring for surface leakage at the

  20. Ammonia concentration modeling based on retained gas sampler data

    SciTech Connect (OSTI)

    Terrones, G.; Palmer, B.J.; Cuta, J.M.

    1997-09-01

    The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

  1. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  2. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOE Patents [OSTI]

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  3. Determination of atmospheric carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Lewin, E.E.; Taggart, R.L.; Lalevic, M.; Bandy, A.R.

    1987-05-01

    A gas chromatography/mass spectrometry (GB/MS) method for determining atmospheric carbonyl sulfide (OCS) with a precision better than 2% is reported. High precision and insensitivity to sample loss and changes in detector response were achieved by using isotopically labeled OCS as an internal standard. Tenax, Molecular Sieve 5A, Carbosieve B, and Carbosieve S were evaluated for collecting atmospheric OCS. Molecular Sieve 5A provided the best trapping and recovery efficiencies.

  4. Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

    Energy Savers [EERE]

    | Department of Energy Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility

  5. Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations Final Project Report

    SciTech Connect (OSTI)

    Brady D. Lee; William A. Apel; Michelle R. Walton

    2006-03-01

    Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. The ability of the cyanobacteria to create an alkaline growth environment appeared to be the primary factor responsible for CaCO3 precipitation in these experiments. These research results demonstrate the potential of using cyanobacterial catalyzed whitings as a method to sequester CO2 from the atmosphere.

  6. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect (OSTI)

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  7. Atmospheric gas. Annual report, August 1, 1992--July 31, 1993

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1993-12-31

    This proposal requests support for a third year of funding to complete a modelling study of processes controlling the distribution and waters at an ocean location with detailed background measurements of biological physical properties. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989--90 and 1992--93, the latter currently being completed. Chemical tracers have been incorporated into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modeled chemical tracers agrees with estimates based on measurements of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989--90, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. The results suggest that in the euphoric zone the net biological O{sub 2} production and CO{sub 2} consumption is 4.5 moles m{sup {minus}2}yr{sup {minus}1}. We propose to continue this project an additional year to incorporate isotope data into the simulation and to analyze the 1992--93 data.

  8. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Dubey, Manvendra Krishna

    2015-07-10

    Atmospheric models are compared in collaboration with LANL and the University of Michigan to understand emissions and the condition of the atmosphere from a model perspective.

  9. Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow

    SciTech Connect (OSTI)

    Tu, X.; Yu, L.; Yan, J. H.; Cen, K. F.; Cheron, B. G.

    2009-11-15

    In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309 nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.

  10. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOE Patents [OSTI]

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  11. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  12. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOE Patents [OSTI]

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  13. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  14. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  15. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  16. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  17. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  18. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  19. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  20. Rapid response of tree cellulose radiocarbon content to changes in atmospheric /sup 14/CO/sub 2/ concentration

    SciTech Connect (OSTI)

    Grootes, P.M.; Farwell, G.W.; Schmidt, F.H.; Leach, D.D.; Stuiver, M.

    1987-01-01

    A detailed radial profile for the /sup 14/C concentration in tree cellulose, covering growth rings for the years 1962-1964, was obtained for a Sitka spruce of the US Pacific Coast using accelerator mass spectrometry. The tree cellulose /sup 14/C closely follows atmospheric /sup 14/CO/sub 2/ concentrations, responding to changes with a delay of not more than a few weeks. The delay in response is mostly due to the addition of between 13 and 28% of biospheric CO/sub 2/ to the canopy-air CO/sub 2/ used by the tree for stem cellulose. Delayed incorporation and the use of stored photosynthate of the previous fall appear less important. 63 refs., 4 figs., 3 tabs.

  1. Gas hydrates on the Atlantic Continental Margin of the United States - controls on concentration

    SciTech Connect (OSTI)

    Dillon, W.P.; Fehlhaber, K.; Coleman, D.F. ); Lee, M.W. )

    1993-01-01

    Large volumes of gas hydrates exist within ocean-floor deposits at water depths exceeding about 300 to 500 m. They cement a surface layer of sediments as much as about 1,000 m thick, limited at its base by increasing temperature. Gas hydrates are identified by drilled samples and by their characteristic responses in seismic reflection profiles. These seismic responses include, at the base of the hydrate-cemented surface layer, a marked velocity decrease and a sea-floor-paralleling reflection (known as the bottom-simulating reflection, or BSR), and, within the hydrate-cemented layer, a reduction in amplitude of seismic reflections (known as blanking), which is apparently caused by cementation of strata. By using seismic-reflection data we have mapped the volume of hydrate and thickness of the hydrate-cemented layer off the US East Coast. The sources of gas at these concentrations are probably bacterial generation of methane at the locations of rapid deposition, and possibly the migration of deep, thermogenic gap up faults near diapirs. The thickness of the gas-hydrate layer decreases markedly at landslide scars, possibly due to break-down of hydrate resulting from pressure reduction caused by removal of sediment by the slide. Gas traps appear to exist where a seal is formed by the gas-hydrate-cemented layer. Such traps are observed (1) where the sea floor forms a dome, and therefore the bottom-paralleling, hydrate-cemented layer also forms a dome; (2) above diapirs, where the greater thermal conductivity of salt creates a warm spot and salt ions act as antifreeze, both effects resulting in a local shallowing of the base of the hydrate; and (3) at locations where strata dip relative to the sea floor, and the updip regions of porous strata are sealed by the gas-hydrate-cemented layer to form a trap. In such situations the gas in the hydrate-sealed trap, as well as the gas that forms the hydrate, may become a resource. 32 refs., 19 figs.

  2. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect (OSTI)

    Huo, W. G. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Jian, S. J.; Yao, J.; Ding, Z. F., E-mail: zfding@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China)

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  3. Using Bayesian Inference Framework towards Identifying Gas Species and Concentration from High Temperature Resistive Sensor Array Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yixin; Zhou, Kai; Lei, Yu

    2015-01-01

    High temperature gas sensors have been highly demanded for combustion process optimization and toxic emissions control, which usually suffer from poor selectivity. In order to solve this selectivity issue and identify unknown reducing gas species (CO, CH 4 , and CH 8 ) and concentrations, a high temperature resistive sensor array data set was built in this study based on 5 reported sensors. As each sensor showed specific responses towards different types of reducing gas with certain concentrations, based on which calibration curves were fitted, providing benchmark sensor array response database, then Bayesian inference framework was utilized to processmore » the sensor array data and build a sample selection program to simultaneously identify gas species and concentration, by formulating proper likelihood between input measured sensor array response pattern of an unknown gas and each sampled sensor array response pattern in benchmark database. This algorithm shows good robustness which can accurately identify gas species and predict gas concentration with a small error of less than 10% based on limited amount of experiment data. These features indicate that Bayesian probabilistic approach is a simple and efficient way to process sensor array data, which can significantly reduce the required computational overhead and training data.« less

  4. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect (OSTI)

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  5. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Controlled Release Study

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Sauer, Jeremy A.; Dubey, Manvendra Krishna

    2015-07-10

    This report discusses the ghgas IC project which when applied, allows for an evaluation of LANL's HIGRAD model which can be used to create atmospheric simulations.

  6. Morphological variations as nonstandard test parameters for the response to pollutant gas concentration: An application to Ruthenium Phthalocyanine sensing films

    SciTech Connect (OSTI)

    Generosi, A.; Paci, B.; Albertini, V. Rossi; Perfetti, P.; Paoletti, A.M.; Pennesi, G.; Rossi, G.; Caminiti, R.

    2006-03-06

    A systematic time-resolved energy dispersive x-ray reflectometry study was performed in situ on Ruthenium Phthalocyanine thin fims to estimate the morphological detection limits of this material as NO{sub 2} transducer and the influence of the gas concentration on the gas-film interaction mechanisms. The work validates the use of this unconventional method--based on the observation of the morphological parameters change--for evaluating the response of novel sensing materials in alternative to more standard procedures. Indeed, the morphological monitoring is shown to be sensitive to the gas concentration in a range comparable to the usual electroresistive measurements. Moreover, while the latter is only able to give the information on whether the gas is interacting with the sensor, the former is also able to discriminate among interaction processes of a different nature (in the present case the interaction limited to the film surface and the one involving the material bulk)

  7. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. Ambient-atmosphere glow discharge for determination of elemental concentration in solutions in a high-throughput or transient fashion

    DOE Patents [OSTI]

    Webb, Michael R. (Somerville, MA); Hieftje, Gary M. (Bloomington, IN); Andrade, Francisco (Leeds, GB)

    2011-04-19

    An ambient atmosphere glow discharge spectrometer is disclosed having a capillary, two electrodes and a means for recording the atomic emissions.

  9. Carbon-13 isotopic abundance and concentration of atmospheric methane for background air in the Southern and Northern Hemispheres from 1978 to 1989

    SciTech Connect (OSTI)

    Stevens, C.M.; Sepanski; Morris, L.J.

    1995-03-01

    Atmospheric methane (CH{sub 4}) may become an increasingly important contributor to global warming in future years. Its atmospheric concentration has risen, doubling over the past several hundred years, and additional methane is thought to have a much greater effect on climate, on a per molecule basis, than additional C0{sub 2} at present day concentrations (Shine et al. 1990). The causes of the increase of atmospheric CH{sub 4} have been difficult to ascertain because of a lack of quantitative knowledge of the fluxes (i.e., net emissions) from the numerous anthropogenic and natural sources. The goal of CH{sub 4} isotopic studies is to provide a constraint (and so reduce the uncertainties) in estimating the relative fluxes from the various isotopically distinct sources, whose combined fluxes must result in the measured atmospheric isotopic composition, after the fractionating effect of the atmospheric removal process is considered. In addition, knowledge of the spatial and temporal changes in the isotopic composition of atmospheric CH{sub 4}, along with estimates of the fluxes from some of the major sources, makes it possible to calculate growth rates for sources whose temporal emissions trends would be difficult to measure directly.

  10. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect (OSTI)

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1?atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1?atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  11. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Korpach, E.; Yi, Jing; Miley, Harry S.; Rishel, Jeremy P.; Ungar, R. Kurt; White, Brian; Woods, Vincent T.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  12. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  13. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOE Patents [OSTI]

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  14. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOE Patents [OSTI]

    Rader, Daniel J. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Wally, Karl (Lafayette, CA); Brockmann, John E. (Albuquerque, NM)

    2002-01-01

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments. Miniaturization also offers the potential of working with smaller particle sizes and lower pressure drops (leading to reduction of power consumption).

  15. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  16. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  17. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  18. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-26

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  19. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-06

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  20. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  1. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2014-04-01

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  2. Characteristics of atmospheric-pressure non-thermal N{sub 2} and N{sub 2}/O{sub 2} gas mixture plasma jet

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang; Cheng, Cheng E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-01-21

    An atmospheric-pressure non-thermal plasma jet driven by high frequency alternating current and operating on N{sub 2} and N{sub 2}/O{sub 2} gas mixture is investigated. The plasma jet can reach 55?mm in length at a gas flow rate of 2500?l/h. The gas temperature at a distance of 4?mm from the nozzle is close to room temperature. Optical emission spectroscopy is employed to investigate the important plasma parameters such as the excited species, rotational temperature, vibrational temperature, and excitation temperature under different discharge conditions. The results show that the plasma source operates under non-equilibrium conditions. The absolute irradiance intensity of the vibrational band N{sub 2}(C-B) in the active region is measured. Taking into account the irradiance intensity of N{sub 2}(C-B,0-0) and N{sub 2}(B-X,0-0) as well as measured current, the electron density, which is determined by considering direct and step-wise electron impact excitation of nitrogen emission, reaches a maximum value of 5.6??10{sup 20}/m{sup 3}.

  3. Gas scrubbing liquids

    DOE Patents [OSTI]

    Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

    1981-01-01

    Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

  4. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

  5. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    SciTech Connect (OSTI)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G.

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  6. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  7. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOE Patents [OSTI]

    Garrett, W. Ray (Oak Ridge, TN)

    1997-01-01

    A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

  8. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOE Patents [OSTI]

    Garrett, W.R.

    1997-11-11

    A method and apparatus are disclosed for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components. 9 figs.

  9. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  10. Calculation of the dose rate emanating from gamma radiation of a gas jet propagating through the surface layer of the atmosphere

    SciTech Connect (OSTI)

    Zakharov, O.V.; Kovalenko, V.V.; Kolobashkin, V.M.

    1982-09-01

    The problem of calculating the dose rate on the Earth's surface which emanates from a gas jet is examined.

  11. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  12. New materials for methane capture from dilute and medium-concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome New materials for methane capture from dilute and medium-concentration sources Previous Next List J. Kim, A. Maiti, L.-C. Lin, J. K. Stolaroff, B. Smit, and R. D. Aines, Nature Communications 4, 1694 (2013) DOI: 10.1038/ncomms2697 thumb Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However,

  13. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    SciTech Connect (OSTI)

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  14. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect (OSTI)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  15. ARM - Measurement - Black carbon concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsBlack carbon concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Black carbon concentration The concentration of carbon in its very absorbing, elemental, non-organic, non-oxide form (e.g. graphite). Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  16. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific ...

  17. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  18. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  19. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrating solar power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore »25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  1. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  2. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  3. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  4. Steady State Dense Gas Dispersion

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  5. Temporal trends in and influence of wind on PAH concentrations measured near the Great Lakes

    SciTech Connect (OSTI)

    Cortes, D.R.; Basu, I.; Sweet, C.W.; Hites, R.A.

    2000-02-01

    This paper reports on temporal trends in gas- and particle-phase PAH concentrations measured at three sites in the Great Lakes' Integrated Atmospheric Deposition Network: Eagle Harbor, near Lake Superior, Sleeping Bear Dunes, near Lake Michigan, and Sturgeon Point, near Lake Erie. While gas-phase concentrations have been decreasing since 1991 at all sites, particle-phase concentrations have been decreasing only at Sleeping Bear Dunes. To determine whether these results represent trends in background levels or regional emissions, the average concentrations are compared to those found in urban and rural studies. In addition, the influence of local wind direction on PAH concentrations is investigated, with the assumption that dependence on wind direction implies regional sources. Using these two methods, it is found that PAH concentrations at Eagle Harbor and Sleeping Bear Dunes represent regional background levels but that PAH from the Buffalo Region intrude on the background levels measured at the Sturgeon Point site. At this site, wind from over Lake Erie reduces local PAH concentrations.

  6. Atmospheric Radiation Measurement Radiative Atmospheric Divergence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    campaign is sponsored by the Atmospheric Radiation Measurement (ARM) Program, the largest global change research program within the U.S. Department of Energy's Office of Science. ...

  7. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  8. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  9. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  10. Method for treating a nuclear process off-gas stream

    DOE Patents [OSTI]

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  11. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOE Patents [OSTI]

    Perkins, Richard W. (Richland, WA); Schilk, Alan J. (Richland, WA); Warner, Ray A. (Benton City, WA); Wogman, Ned A. (Richland, WA)

    1995-01-01

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples.

  12. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOE Patents [OSTI]

    Perkins, R.W.; Schilk, A.J.; Warner, R.A.; Wogman, N.A.

    1995-08-15

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples. 14 figs.

  13. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect (OSTI)

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham E-mail: ggonzalezabad@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ?1.2 days (?1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ?10 times the current terrestrial level.

  14. NREL: Concentrating Solar Power Research - Southwest Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Concentrating Solar Power 1000-MW Initiative Photos of various concentrating solar power systems. NREL, working through SunLab, supports the U.S. Department of Energy's...

  15. Role of the oceans in the atmospheric cycle of carbonyl sulfide. Doctoral thesis

    SciTech Connect (OSTI)

    Johnson, J.E.

    1985-01-01

    Carbonyl sulfide (OCS) is both the dominant sulfur gas in the remote troposphere and, along with volcanoes, a major source of sulfur for the stratospheric sulfate layer. Prior to this work the ocean was regarded as a major sink for atmospheric OCS. The purpose of this study has been to assess the magnitude of the global air-sea flux of OCS. The author designed an analytical system which was centered around a Varian-3700 gas chromatograph with a flame-photometric detector. To increase the sensitivity of the detector, the hydrogen gas for the flame was doped with sulfur hexafloride. Air samples were concentrated in a liquid nitrogen cooled freeze-out loop, then injected into the gas chromatograph. Water samples purged with sulfur-free zero-air which was analyzed similarly. The author also built a permeation tube system for chemical standardization. This equipment was taken on two oceanographic cruises on the Pacific Ocean on board the NOAA ship DISCOVERER, one in the spring of 1983 and a second in the spring of 1984. Both of these cruises included measurements of air and sea-water concentrations of OCS.

  16. Role of the oceans in the atmospheric cycle of carbonyl sulfide

    SciTech Connect (OSTI)

    Johnson, J.E.

    1985-01-01

    Carbonyl sulfide (OCS) is both the dominant sulfur gas in the remote troposphere and, along with volcanoes, a major source of sulfur for the stratospheric sulfate layer. Prior to this work the ocean was regarded as a major sink for atmospheric OCS. The purpose of this study has been to assess the magnitude of the global air-sea flux of OCS. The author designed an analytical system which was centered around a Varian-3700 gas chromatograph with a flame-photometric detector. To increase the sensitivity of the detector, the hydrogen gas for the flame was doped with sulfur hexafluoride. Air samples were concentrated in a liquid nitrogen cooled freeze-out loop, then injected into the gas chromatograph. Water samples purged with sulfur-free zero-air which was analyzed similarly. He also built a permeation tube system for chemical standardization. This equipment was taken on two oceanographic cruises on the Pacific Ocean, one in the spring of 1983 and a second in the spring of 1983. Both of these cruises included measurements of air and seawater concentrations of OCS from the equator to the Aleutian Islands. The Henry's law constant of solubility for OCS was measured in the laboratory for filtered and boiled seawater at three temperatures.

  17. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  18. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  19. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Pressure Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Pressure Humans are subjected to the pressure produced by the weight of the gases of the atmosphere above us. The force exerted on a unit area of surface by the weight of the air above the surface is named

  20. Derivation and calibration of semi-empirical gas geothermometers for Mahanagdong Geothermal Project, Philippines

    SciTech Connect (OSTI)

    Sanchez, D.R.

    1996-12-31

    The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2} and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.

  1. High upwind concentrations observed during an upslope tracer event

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  2. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  3. Apparatus and method for monitoring of gas having stable isotopes

    DOE Patents [OSTI]

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  4. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  5. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  6. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  7. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  8. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  9. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect (OSTI)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  10. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  11. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  12. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  13. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect (OSTI)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

  14. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  15. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  16. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following

  17. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  18. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  19. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  20. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology

    Broader source: Energy.gov [DOE]

    As natural gas travels through infrastructure, from well-head to customer meter, small portions are routinely used as fuel, vented, flared, or inadvertently leaked to the atmosphere. This paper describes the analytical and methodological basis for three diagrams that illustrate the natural gas losses and greenhouse gas emissions that result from these processes. The paper examines these emissions in some detail, focusing in particular on the production, processing, transmission and storage, and distribution segments of natural gas infrastructure.

  1. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  2. Combustion-gas recirculation system

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  3. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  4. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  5. Method for mapping a natural gas leak

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  6. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  7. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  8. Design, fabrication, and testing of a getter-based atmosphere purification and waste treatment system for a nitrogen-hydrogen-helium glovebox

    SciTech Connect (OSTI)

    Bibeault, M. L.; Paglieri, S. N.; Tuggle, D. G.; Wermer, J. R.; Nobile Jr, A.

    2008-07-15

    A system containing a combination of getters (Zr-Mn-Fe, SAES St909; and Zr{sub 2}Fe, SAES St198) was used to process the nitrogen-hydrogen-helium atmosphere in a glovebox used for handling metal tritide samples. During routine operations, the glovebox atmosphere is recirculated and hydrogenous impurities (i.e. CQ{sub 4}, Q{sub 2}O, and NQ{sub 3}, where Q =H, D, T) are decomposed (cracked) and removed by Zr-Mn-Fe without absorbing elemental hydrogen isotopes. If the tritium content of the glovebox atmosphere becomes unacceptably high, the getter system can rapidly strip the glovebox atmosphere of all hydrogen isotopes by absorption on the Zr{sub 2}Fe, thus lessening the burden on the facility waste gas treatment system. The getter system was designed for high flowrate ( > 100 1/min), which is achieved by using a honeycomb support for the getter pellets and 1.27-cm diameter tubing throughout the system for reduced pressure drop. The novel getter bed design also includes an integral preheater and copper liner to accommodate swelling of the getter pellets, which occurs during loading with oxygen and carbon impurities. Non-tritium functional tests were conducted to determine the gettering efficiencies at different getter bed temperatures and flowrates by recirculating gas through the system from, a 6-m{sup 3} glovebox containing known concentrations of impurities. (authors)

  9. A review of dissolved gas supersaturation literature

    SciTech Connect (OSTI)

    Weitkamp, D.E.; Katz, M.

    1980-11-01

    Gas bubble disease in a condition that affects aquatic animals residing in fresh or marine waters that are supersaturated with atmospheric gases. The majority of research concerning dissolved gas supersaturation has been stimulated by a serious supersaturation problem that was first observed in the Columbia and Snake river systems in 1970. Available literature dealing with dissolved gas supersaturation and recorded cases of gas bubble disease are reviewed. The causes of supersaturation, the organisms affected by supersaturation, factors influencing susceptibility of aquatic organisms to gas bubble disease, and various other related topics are explored.

  10. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  11. ARM - Lesson Plans: Measuring Quantities of Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Quantities of Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Measuring Quantities of Gas Objective The objective is to enable students to become familiar with the measuring units of small amounts of gas in the atmosphere which may otherwise be confusing Materials

  12. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  13. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  14. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect (OSTI)

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

  15. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  3. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  4. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect (OSTI)

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  10. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  11. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  12. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  13. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  14. Nonlinear symmetric stability of planetary atmospheres

    SciTech Connect (OSTI)

    Bowman, J.C.; Shepherd, T.G.

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  15. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect (OSTI)

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  16. ARM - Evolution of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListEvolution of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Evolution of the Atmosphere The earth's atmosphere plays a crucial role in shaping the weather, climate, and life-supporting systems. However, the ocean and atmosphere are the earth's fluid outer layers and are

  17. ARM - Composition of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListComposition of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Composition of the Atmosphere The atmosphere is 1000 kilometers above mean sea level. In fact, only about 1 percent of the total mass of the atmosphere is above an altitude of approximately 30 kilometers above

  18. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  19. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  20. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  1. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  2. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  3. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... Sandia Pilot Program to Assist Small Clean-Energy Companies Concentrating Solar ...

  4. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  5. Indirect measurement of diluents in a multi-component natural gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Owen, Thomas E.

    2006-03-07

    A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.

  6. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  7. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  8. Spark gap switch with spiral gas flow

    DOE Patents [OSTI]

    Brucker, John P. (Espanola, NM)

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  9. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  10. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect (OSTI)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  11. Atmosphere to Electrons program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Electrons program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. EIAs Proposed Definitions for Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field

  13. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  14. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (OSTI)

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore »main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  15. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    SciTech Connect (OSTI)

    Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

    1993-12-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  16. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  17. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  18. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  19. Apparatus for focusing flowing gas streams

    DOE Patents [OSTI]

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  20. Joined concentric tubes

    DOE Patents [OSTI]

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  1. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  2. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  3. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  4. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  5. New Materials for Methane Capture from Dilute and Medium-concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Materials for Methane Capture from Dilute and Medium-concentration Sources

  6. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  7. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Systems ATMOSPHERIC PRESSURE SYSTEMS (INDUSTRY TEAMS)-This key technology focuses on the design, scaleup, and integration of the SOFC technology, ultimately resulting in atmospheric-pressure modules suitable to serve as the building blocks for distributed-generation, commercial, and utility-scale power systems. Activities include fabrication, testing, post-test analysis of cells; integrating cells into stacks; and the development and validation testing of progressively

  8. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destination of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Destination of Atmospheric Carbon Oceans: 92 gigatonnes [(Gt) 1 gigatonne = 1x1012 kilograms] are recycled annually from the atmosphere to the oceans. This carbon is used for biosynthesis or remains dissolved

  9. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    Concentration Averaging Concentration Averaging Summary Notes from 3 October 2007 Generic Technical Issue Discussion on Concentration Averaging PDF icon Summary Notes from 3...

  13. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOE Patents [OSTI]

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

  14. Airborne agent concentration analysis

    DOE Patents [OSTI]

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  15. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  16. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. The relation of seismic activity and radon concentration

    SciTech Connect (OSTI)

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, ?skender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  18. Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics Siberian Branch of the Russian Academy of Sciences Tomsk, Russia Systematic observations of the earth's ozone layer over the last ten years indicate a steady decrease of ozone content in the stratospheric maximum and, on the contrary, a increase of ozone concentrations in the troposphere. This trend is illustrated clearly by the results of 20 years' observations of high-altitude ozone concentration distribution in the troposphere

  19. System and method for detecting gas

    DOE Patents [OSTI]

    Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  20. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  1. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  2. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  3. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  4. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

  5. Natural gas and efficient technologies: A response to global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-02-01

    It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

  6. Gas Flux Sampling (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    in the near surface: Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at...

  7. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  8. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  9. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect (OSTI)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  10. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  11. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  12. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOE Patents [OSTI]

    Postma, Arlin K. (Halfway, OR)

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  13. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  14. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  15. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 ArcelorMittal USA, Inc.'s Indiana Harbor steel mill in East Chicago, Indiana, installed an energy recovery boiler system that produces steam from previously wasted blast furnace gas that was flared into the atmosphere during iron making operations. The steam drives existing turbo-generators at the facility to generate 333,000 megawatt hours

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  17. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil...

  18. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  19. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  20. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  1. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  2. Evaluation of alkali concentration in conditions relevant to oxygen/natural

    Office of Scientific and Technical Information (OSTI)

    gas glass furnaces by laser-induced breakdown spectroscopy. (Conference) | SciTech Connect Conference: Evaluation of alkali concentration in conditions relevant to oxygen/natural gas glass furnaces by laser-induced breakdown spectroscopy. Citation Details In-Document Search Title: Evaluation of alkali concentration in conditions relevant to oxygen/natural gas glass furnaces by laser-induced breakdown spectroscopy. A number of industrial combustion systems are adopting oxygen-enhanced firing

  3. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  4. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  5. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Concentric micro-nebulizer for direct sample insertion

    DOE Patents [OSTI]

    Fassel, Velmer A.; Rice, Gary W.; Lawrence, Kimberly E.

    1986-03-11

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.

  7. Concentric micro-nebulizer for direct sample insertion

    DOE Patents [OSTI]

    Fassel, V.A.; Rice, G.W.; Lawrence, K.E.

    1984-03-06

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.

  8. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  9. Concentrator Optics | Open Energy Information

    Open Energy Info (EERE)

    Concentrator Optics Jump to: navigation, search Name: Concentrator Optics Place: Marburg, Germany Zip: 35037 Product: A Germany-based company engaged in the design and production...

  10. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  11. Working with SRNL - Our Facilities - Atmospheric Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. ...

  12. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  13. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Correcting radar range measurements for atmospheric propagation effects. Citation Details In-Document Search Title: Correcting radar range measurements for atmospheric propagation...

  14. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  15. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  16. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-008 Atmospheric Radiation Measurement Program Climate Research Facility ...

  18. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-10-029 Atmospheric Radiation Measurement Program Climate Research Facility ...

  19. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  20. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. ... Fiscal Year 2004 Budget Summary and User Statistics Atmospheric Radiation Measurement ...

  1. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-002 Atmospheric Radiation Measurement Program Climate Research Facility ...

  2. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-11-022 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-019 Atmospheric Radiation Measurement Program Climate Research Facility ...

  5. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. Investigation on coal pyrolysis in CO{sub 2} atmosphere

    SciTech Connect (OSTI)

    Lunbo Duan; Changsui Zhao; Wu Zhou; Chengrui Qu; Xiaoping Chen [Institute for Thermal Power Engineering of Southeast University, Nanjing (China)

    2009-07-15

    Considerable studies have been reported on the coal pyrolysis process and the formation of SO{sub 2} and NOx processors such as H{sub 2}S, COS, SO{sub 2}, HCN, and NH{sub 3} in inert atmospheres. Similar studies in CO{sub 2} atmosphere also need to be accomplished for better understanding of the combustion characteristics and the SO{sub 2}/NOx formation mechanism of oxy-fuel combustion, which is one of the most important technologies for CO{sub 2} capture. In this study, thermogravimetry coupled with Fourier Transform Infrared (TG-FTIR) analysis was employed to measure the volatile yield and gas evolution features during coal pyrolysis process in CO{sub 2} atmosphere. Results show that replacing N{sub 2} with CO{sub 2} does not influence the starting temperature of volatile release but seems to enhance the volatile releasing rate even at 480{sup o}C. At about 760{sup o}C, CO{sub 2} prevents the calcite from decomposing. In CO{sub 2} atmosphere, the volatile yield increases as the temperature increases and decreases as the heating rate increases. COS is monitored during coal pyrolysis in CO{sub 2} atmosphere while there are only H{sub 2}S and SO{sub 2} formed in N{sub 2} atmosphere. The COS is most likely formed by the reaction between CO{sub 2} and H{sub 2}S. No NH{sub 3} was monitored in this study. In CO{sub 2} atmosphere, the gasification of char elevates the conversion of char-N to HCN. The HCN yield increases as the temperature increases and decreases as the heating rate increases. 20 refs., 13 figs., 3 tabs.

  7. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  8. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  9. A Path to High-Concentration Luminescent Solar Concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path to High-Concentration Luminescent Solar Concentrators with Nanorod Lumophores and Micro-Silicon Solar Cells Scientific Achievement We fabricated and modeled luminescent solar concentrators (LSCs) incorporating micro-silicon solar cells and tunable CdSe/CdS nanorod lumophores, demonstrating a practical path to operation in the high-concentration regime. Significance and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells,

  10. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  11. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    SciTech Connect (OSTI)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during the study period.

  12. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  13. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect (OSTI)

    Howard S. Meyer

    2004-10-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued and a pre-engineering study on a subsea application of the technology was performed cofunded contracts with Research Partnership for Secure Energy for America and Gas Research Institute. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  14. Heavy Gas Dispersion Incompressible Flow

    Energy Science and Technology Software Center (OSTI)

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore »main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  15. Concentric tube support assembly

    DOE Patents [OSTI]

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  16. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  17. Development of a Future Representative Concentration Pathway for Use in the IPCC 5th Assessment Earth System Model Simulations

    SciTech Connect (OSTI)

    None

    2010-12-29

    The representative concentration pathway to be delivered is a scenario of atmospheric concentrations of greenhouse gases and other radiatively important atmospheric species, along with land-use changes, derived from the Global Change Assessment Model (GCAM). The particular representative concentration pathway (RCP) that the Joint Global Change Research Institute (JGCRI) has been responsible for is a not-to-exceed pathway that stabilizes at a radiative forcing of 4.5Wm-2 in the year 2100.

  18. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  19. Atmosphere contamination following repainting of a human hyperbaric chamber complex

    SciTech Connect (OSTI)

    Lillo, R.S.; Morris, J.W.; Caldwell, J.M.; Balk, D.M.; Flynn, E.T. )

    1990-09-01

    The Naval Medical Research Institute currently conducts hyperbaric research in a Man-Rated Chamber Complex (MRCC) originally installed in 1977. Significant engineering alterations to the MRCC and rusting of some of its interior sections necessitated repainting, which was completed in 1988. Great care was taken in selecting an appropriate paint (polyamide epoxy) and in ensuring correct application and curing procedures. Only very low levels of hydrocarbons were found in the MRCC atmosphere before initial pressurization after painting and curing. After pressurization, however, significant chemical contamination was found. The primary contaminants were aromatic hydrocarbons: xylenes (which were a major component of both the primer and topcoat paint) and ethyl benzene. The role that pressure played in stimulating off-gassing from the paint is not clear; the off-gassing rate was observed to be similar over a large range in chamber pressures from 1.6 to 31.0 atm abs. Scrubbing the chamber atmosphere with the chemical absorbent Purafil was effective in removing the contaminants. Contamination has been observed to slowly decline with chamber use and is expected to continue to improve with time. However, this contamination experience emphasizes the need for a high precision gas analysis program at any diving facility to ensure the safety of the breathing gas and chamber atmosphere.

  20. Linear Concentrator System Basics for Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic

  1. Cracking in liquid petroleum gas Horton spheres

    SciTech Connect (OSTI)

    Trivedi, D.K. Gupta, S.C.

    1997-07-01

    A gas processing plant on the western coast of India produces sweet gas after processing sour natural gas. Liquid petroleum gas (LPG) is recovered from the sweet gas. The LPG, containing a H{sub 2}S concentration of 10 ppm to 20 ppm, is stored in Horton spheres, each 17 m in diameter with a capacity of {minus}27 C to 55 C. Horton spheres for containing liquid petroleum gas (LPG) were fabricated on-site using prestressed plates of high-strength carbon steel (CS) SA 537 Class-1 with post-weld heat treatment. High-residual tensile stresses and hydrogen absorption from H{sub 2}S present in LPG could be the cause of cracking at weld and heat-affected zone interfaces at high hardness locations. Recommendations are given for inspection and use of lower-strength CS and improved welding procedures.

  2. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  3. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  4. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect (OSTI)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  5. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  6. Luminescent Concentration of Diffuse Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Luminescent Concentration of Diffuse Light Achieving 30X Concentration Work w as p erformed a t L BL a nd U IUC Bronstein, N .D.; Y ao, Y .; X u, L .; O 'Brien, E .; P owers, A...

  7. RGA-5 process gas analyzer test report

    SciTech Connect (OSTI)

    Weamer, J.L.

    1994-11-09

    The gas monitoring system, GMS-2, includes two gas monitors. GC-2 measures high hydrogen concentrations (0.2--10%) and GC-3 measures the lower concentration levels (10--100 ppm). Although redundant instruments are in place for accurately measuring the higher hydrogen concentrations, there are no redundant instruments to accurately measure the relatively low baseline hydrogen concentrations. The RGA-5 process gas analyzer is a two-column GC that will replace GC-2 and provide redundancy for GC-3. This upgrade will provide faster response time and reduce tank farm entries for routine operations because the RGA-5 is remotely operable. Tests were conducted according to WHC-SD-WM-TP-262, RGA-5 Process Gas Analyzer Test Plan. The first objective was to verify that the vendor-supplied RGA host data acquisition software allowed communication between the RGA-5 and an ISA bus personal computer. The second objective was to determine the capabilities of the RGA-5 process gas analyzer. The tests did the following: with a constant flow rate and pressure, determined the concentration range that each column can accurately and precisely measure; identified any uncorrected interferences from other tank gases such as ammonia, nitrous oxide, or methane; and determined the response and decay time.

  8. Natural Gas Regulation - Other Gas-Related Information Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information...

  9. Femtosecond pure-rotational coherent anti-stokes raman scattering gas phase diagnostics.

    SciTech Connect (OSTI)

    Kearney, Sean Patrick; Serrano, Justin Raymond

    2010-12-01

    We discuss recent experiments for the characterization of our femtosecond pure rotational CARS facility for observation of Raman transients in N{sub 2} and atmospheric air. The construction of a simplified femtosecond four-wave mixing system with only a single laser source is presented. Pure-rotational Raman transients reveal well-ordered time-domain recurrence peaks associated with the near-uniform spacing of rotational Raman peaks in the spectral domain. Long-time, 100-ps duration observations of the transient Raman polarization are presented, and the observed transients are compared to simulated results. Fourier transformation of the transients reveals two distinct sets of beat frequencies. Simulation results for temperatures from 300-700 K are used to illustrate the temperature sensitivity of the time-domain transients and their Fourier-transform counterparts. And strategies for diagnostics are briefly discussed. These results are being utilized to develop gas-phase measurement strategies for temperature and species concentration.

  10. ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2006-07-10

    Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

  11. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  12. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  13. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  15. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  16. Gas amplified ionization detector for gas chromatography

    DOE Patents [OSTI]

    Huston, Gregg C. (LaBelle, PA)

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  17. Shale gas is natural gas trapped inside

    Energy Savers [EERE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of this resource was considered uneconomical to produce. But Office of Fossil Energy (FE) research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where

  18. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons (A2e) Initiative Overview DOE Wind and Water Power Technologies Office January 2014 2 * Motivation for a new R&D framework * A2e initiative overview - Strategic planning framework - Management construct - Executive Management Committee (EMC) - National Laboratory Leadership * Strategic thrust area planning introduction * Program objectives * Open discussion of approach Overview Agenda 3 Wind energy today ..... * Multi-Billion dollar industry with involvement of

  19. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and ... In the future, troughs may be integrated with existing or new ...

  20. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  1. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    SciTech Connect (OSTI)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  2. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  3. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  5. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices...

  6. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  7. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  8. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    cooling demand for natural gas. Meanwhile, it became increasingly clear that Hurricane Frances likely would not pose a significant threat to natural gas production in the Gulf of...

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    more from the system than they nominate. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    that had been in place since February 1. Other pipeline companies, such as CenterPoint Energy Gas Transmission Company and Southern Star Central Gas Pipeline Corporation, both...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    strong price contango during the report week, mitigated withdrawals of natural gas from storage. Other Market Trends: EIA Releases New Report on U.S. Greenhouse Gas Emissions:...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas vehicles. The Department of Energys Office of Energy Efficiency and Renewable Energy reports that there were 841 compressed natural gas (CNG) fuel stations and 41...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    ability to process gas. The company's Main Pass 260 line to Pascagoula Gas Plant in Jackson, Mississippi, will not be available for transportation services. While the plant is...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Market Trends: MMS Announces New Incentives for Gulf Gas Production: The Minerals Management Service (MMS) unveiled proposed new incentives to increase deep gas production...

  17. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices...

  19. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Underground Natural Gas Storage Report. The sample change occurred over a transition period that began with the release of the Weekly Natural Gas Storage Report (WNGSR)...

  1. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded...

  2. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  3. New materials for methane capture from dilute and medium-concentration sources

    SciTech Connect (OSTI)

    Kim, J; Maiti, A; Lin, LC; Stolaroff, JK; Smit, B; Aines, RD

    2013-04-16

    Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However, unlike CO2, which has a quadrupole moment and can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly with most materials. Thus, methane capture poses a challenge that can only be addressed through extensive material screening and ingenious molecular-level designs. Here we report systematic in silico studies on the methane capture effectiveness of two different materials systems, that is, liquid solvents (including ionic liquids) and nanoporous zeolites. Although none of the liquid solvents appears effective as methane sorbents, systematic screening of over 87,000 zeolite structures led to the discovery of a handful of candidates that have sufficient methane sorption capacity as well as appropriate CH4/CO2 and/or CH4/N-2 selectivity to be technologically promising.

  4. Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

    1995-12-01

    Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

  5. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  6. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  7. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  8. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the

  9. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  11. Quantitative determination of atmospheric hydroperoxyl radical

    DOE Patents [OSTI]

    Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  12. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational

  13. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring more of bed outlet gas CO concentrations. Hot spots are ...

  14. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  15. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, Antonio J. (Albuquerque, NM); Hughes, Robert C. (Cedar Crest, NM); Smith, James H. (Albuquerque, NM); Moreno, Daniel J. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA); Huber, Robert J. (Bountiful, UT)

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  16. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  17. Continuous flow dielectrophoretic particle concentrator

    DOE Patents [OSTI]

    Cummings, Eric B. (Livermore, CA)

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  18. FASTGAS: Fast Gas Sampling for palladium exchange tests

    SciTech Connect (OSTI)

    Malinowski, M.E.; Stewart, K.D.; VerBerkmoes, A.A.

    1991-06-01

    A mass spectrometric technique for measuring the composition of gas flows in rapid H/D exchange reactions in palladium compacts has been developed. This method, called FASTGAS (Fast Gas Sampling)'' has been used at atmospheric pressures and above with a time response of better than 100 ms. The current implementation of the FASTGAS technique is described in detail and examples of its application to palladium hydride exchange tests are given. 12 refs., 10 figs.

  19. Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0) Liu, Xiaohong Pacific Northwest National Laboratory Ghan, Steven Pacific Northwest National Laboratory Wang, M University of Michigan Penner, Joyce University of Michigan Category: Modeling A prognostic equation of ice crystal number concentrations is implemented in the Community Atmospheric Model (CAM3.0) with the aim to study the aerosol effects on climate through changing the ice cloud properties. The microphysical

  20. Rotary gas expander for energy recovery from natural gas expansion. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-15

    The specific purpose of this project was to develop a positive-displacement rotary expansion device (based on the Wankel Engine principle) and demonstrate that it could be used as an economical alternative to sophisticated turboexpanders for low gas flow and small pressure differential stations. The positive-displacement rotary expander would operate at much lower speeds than conventional turboexpanders. It would therefore be more efficient at lower pressure differentials and gas flows, and could cost significantly less because inefficient and costly gear-reduction equipment would not be required. Another purpose of this project was to develop a fail safe control system for operation in hazardous atmospheres. Design considerations for the rotary gas expander and the control system are discussed. A projection is made of the electrical generation potential and the economics of recovering the energy present in the high temperature gas. (MCW)

  1. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  2. System and method to determine thermophysical properties of a multi-component gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2003-08-05

    A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.

  3. Analytical instrument with apparatus for sample concentrating

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL)

    1989-01-01

    A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  4. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  5. Monolithic microfluidic concentrators and mixers

    DOE Patents [OSTI]

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  6. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  7. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  8. Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

    2009-12-11

    Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to adversely affect human health (Lighty et al., 2000; Pope and Dockery, 2006). Gan et al. (Gan et al., accepted) examined the indoor air quality aboard submarines and found that the diesel particulate matter concentrations exceeded the EPA 24 hour standard. Claeys et al. (Claeys et al., accepted) studied the importance and sources of secondary organic aerosol (SOA) in remote marine environment during a period of high biological activity. Methanesulphonate was the major SOA compound detected and there was no evidence for SOA from isoprene. The optical properties of gasoline and diesel vehicle particulate emissions and their relative contribution to radiative forcing was studied by Strawa et al. (Strawa et al., accepted).

  9. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect (OSTI)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully gettered by both getter systems. Hydrogen concentrations remained below 5 vol% (in air) for the duration of the tests. However, catalytic reaction of hydrogen with carbon triple or double bonds in the getter materials did not take place. Instead, catalytic recombination was the predominant gettering mechanism in both getter materials as evidenced by (1) consumption of oxygen in the belljars, (2) production of free water in the belljars, and (3) absence of chemical changes in both getter materials as shown by nuclear magnetic resonance spectra.

  10. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Radar range measurements in the atmosphere. Citation Details In-Document Search Title: Radar range measurements in the atmosphere. The earth's atmosphere affects the velocity of...

  11. Concentrating Solar Power Facilities | Department of Energy

    Office of Environmental Management (EM)

    Concentrating Solar Power Facilities Concentrating Solar Power Facilities Florida Hawaii Southwest U.S.

  12. Experimental studies on atmospheric Stirling engine NAS-2

    SciTech Connect (OSTI)

    Watanabe, Hiroichi; Isshiki, Naotsugu; Ohtomo, Michihiro

    1996-12-31

    Atmospheric hot air Stirling engine NAS-1 and 2 have a simple flat rubber sheet diaphragm as their power piston, and they have been experimentally studied at Nihon University for several years continuously, with the target of to get more than 100 watts shaft power by atmospheric air with simple construction and cheap material. The first NAS-1 was intended to be a solar heated engine using television glass and wood for cheap cost, but it failed by thermal break of glass, so the improved NAS-2 is changed to be heated by gas burner, using metallic materials in all parts except rubber power piston. Other than this rubber sheet diaphragm, NAS-2 has many features as using James Watt crank mechanism, high finny copper tube for conventional commercial heat exchanger, and two kinds of hot gas heaters, etc. About the rubber sheet for the power piston, the thickness of the sheet was changed from 2 mm to 6 mm gradually to known what thickness is best, and it is found that about 5 mm is best for this engine. After trying many improvements on this engine, NAS-2 has produced about 130 watt shaft power with indicated power of 350 watt at 1994. In this paper detail of many features, history, results and experiments of these NAS engines are reported.

  13. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  14. Future of Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts * Supply vs. Capacity * Sources * Consumption * Pipeline system * Gas Interruptions - Operational Flow Orders * Pricing Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL Sources of Natural Gas * Mine * Import * Remove from storage Federal Utility Partnership Working Group November 5-6,

  15. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    SciTech Connect (OSTI)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.

  16. Photo of the Week: A Driving Force for Natural Gas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by...

  17. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect (OSTI)

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  18. Atmospheric process evaluation of mobile source emissions

    SciTech Connect (OSTI)

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  19. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

  20. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. New York Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  8. West Virginia Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  9. South Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  10. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Modeling of plasma chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge described using the one-dimensional fluid model

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    The keynote of our research is to study the gas phase chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge, which is very important to produce the iron-nitride magnetic fluid. For this purpose, a home-made one dimensional fluid model with the Scharfetter-Gummel method has been developed. The equations solved are the particle balances, assuming a drift-diffusion approximation for the fluxes, and the electron energy equation. The self-consistent electric field is obtained by the simultaneous solution of Poisson's equation. The simulations were carried out for the different ammonia concentrations (2%, 3.5%, and 7%), at a voltage of 1 kV, and a driving frequency of 20 kHz. It concluded that the major ion products of Ar are Ar{sup +} and Ar{sub 2}{sup +}. Ar{sup +} is the most important positive ions, followed by Ar{sub 2}{sup +}. It is shown that the NH{sup +} density is smaller than that of the other ammonia ions. The density of NH{sub 4}{sup +} is more than that of the other ammonia ions when the ammonia concentration increased. The diffuse mode can be established after the discharge was ignited, and the mode changes to filamentary mode with an increase in ammonia concentration.

  15. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  16. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  17. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  18. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  19. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    Gasoline and Diesel Fuel Update (EIA)

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  20. Portable tester for determining gas content within a core sample

    DOE Patents [OSTI]

    Garcia, Jr., Fred; Schatzel, Steven J.

    1998-01-01

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

  1. Portable tester for determining gas content within a core sample

    DOE Patents [OSTI]

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  2. Broadband Outdoor Radiometer Callibration Process for the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ... Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ...

  3. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  4. Gas characterization system 241-AN-105 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  5. Gas characterization system 241-AW-101 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  6. A molecular dynamics investigation of the unusual concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dependencies of Fick diffusivities in silica mesopores | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome unusual concentration dependencies of Fick diffusivities in silica mesopores Previous Next List Rajamani Krishna, Jasper M. van Baten, Microporous Mesoporous Mater., 138, 228-234 (2011) DOI: 10.1016/j.micromeso.2010.09.032 Full-size image (19 K) Abstract: Molecular Dynamics (MD) simulations were carried out to determine the self-diffusivitiy, Di,self, the

  7. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Estimated Natural Gas Pipeline Mileage in the...

  8. EIA - Natural Gas Pipeline Network - Natural Gas Transmission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

  9. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  10. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  11. Arontis Solar Concentrator AB | Open Energy Information

    Open Energy Info (EERE)

    Arontis Solar Concentrator AB Jump to: navigation, search Name: Arontis Solar Concentrator AB Place: Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating,...

  12. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    new report published by the Colorado State University (CSU) Department of Atmospheric Science predicts a significantly more active hurricane season for 2008 than the average...

  14. Constant volume gas cell optical phase-shifter

    DOE Patents [OSTI]

    Phillion, Donald W. (Dublin, CA)

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  15. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    SciTech Connect (OSTI)

    Hashemi, M. M.; Parvin, P. Moosakhani, A.; Mortazavi, S. Z.; Reyhani, A.; Majdabadi, A.; Abachi, S.

    2014-06-15

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  16. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  17. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration...

  18. Atmospheric Dispersion Modeling in Safety Analyses; GENII

    Office of Environmental Management (EM)

    part of GENII) 5 GENII Acute Atmospheric Transport Straight-line (centerline) Gaussian plume for individuals For short duration releases (2 hours) Single source...

  19. Atmosphere to Electrons Program Overview Presentation

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to the Atmosphere to Electrons (A2e) initiative, including objectives, program areas, and a general timeline of activities.

  20. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately...

  1. An Instrumentation Complex for Atmospheric Radiation Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. ...

  2. Session Papers Atmospheric Radiation Measurement Program- Unmanned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories ...

  3. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  4. Atmospheric Radiation Measurement Convective and Orographically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM ...

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 2,414 Bcf as of Friday, January 9,...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage was 821 Bcf as of May 2, according to...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Natural gas stocks stood at 2,155 Bcf as of Friday, July 9,...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage as of September 2 totaled 2,669 Bcf,...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the Northeast were expected to be in the single digits. Prices off Transcontinental Gas Pipe Line in New York and Algonquin Gas Transmission in the New England region yesterday...

  10. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 14.4 percent. During this period, U.S. manufacturers used less petroleum and coal in manufacturing processes. This expansion of gas use occurred although natural gas prices to...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    withdrawal from working gas storage reported last Thursday. A contributing factor to the run-up in natural gas prices could be climbing crude oil prices, which rallied late last...

  13. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  14. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    week's gas markets. As of Friday, May 11, 2001, the spot price of natural gas at the Henry Hub dropped 0.24 from the previous Friday to 4.25 per MMBtu. The NYMEX price of...

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.217 per MMBtu on Wednesday. The natural gas rotary rig...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.315 per MMBtu on Wednesday. The natural gas rotary rig...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of natural gas into storage. However, shut-in natural gas production in the Gulf of Mexico reduced available current supplies, and so limited net injections during the report...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    while the OFO was in effect. Pacific Gas and Electric Company extended a systemwide high-inventory OFO on its California Gas Transmission system through Saturday, July 5. It was...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    the OFO customers who delivered more than 110 percent of their actual gas usage into the system would be assessed for charges. Pacific Gas and Electric Company issued a...

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A4 of the Annual Energy Review 2002. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in storage...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas in...

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu per cubic foot as published in Table A2 of the Annual Energy Review 2001. Source: Energy Information Administration, Office of Oil and Gas. Storage: Working gas inventories...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in combination with water. Gas hydrate is thought to exist in great abundance in nature and has the potential to be a significant new energy source to meet future energy...

  10. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating-related demand for natural gas that limited the size of the net addition to storage. The economic incentives for storing natural gas for next winter are considerably...

  11. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on Thursday, May 9, 2002. A sample of EIA's report can be seen at: Weekly Gas Storage Test Page. The Natural Gas Weekly Market Update report will convert to the new data series...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    The report provides an overview of U.S. international trade in 2008 as well as historical data on natural gas imports and exports. Net natural gas imports accounted for only 13...

  14. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

  15. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  16. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10 (next release 2:00 p.m. on March 17) Natural gas spot prices increased this week (Wednesday to Wednesday, March 2-9) as a late season cold front moved into major gas-consuming...

  18. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next heating season. Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 2,163 Bcf as of Friday, June 1,...

  19. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    delivery volumes. Northern Natural Gas Company issued a system overrun limitation (SOL) for all market-area zones for gas day February 21, 2008. The SOL was the result of...

  1. Extraction of contaminants from a gas

    DOE Patents [OSTI]

    Babko-Malyi, Sergei (Butte, MT)

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  2. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  3. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  4. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  5. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  6. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

  7. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Independence Avenue, SW Washington, DC 20585 . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  8. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  9. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  10. Inferential determination of various properties of a gas mixture

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  11. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  12. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  13. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  14. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  15. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  16. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOE Patents [OSTI]

    Aldstadt, J.H. III

    1997-06-24

    A method is described for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere. 2 figs.

  17. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOE Patents [OSTI]

    Aldstadt, III, Joseph H. (Orland Park, IL)

    1997-01-01

    A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.

  18. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE...

  19. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  20. Effect of temperature and CO2 concentration on laser-induced breakdown

    Office of Scientific and Technical Information (OSTI)

    spectroscopy measurements of alkali fume. (Journal Article) | SciTech Connect temperature and CO2 concentration on laser-induced breakdown spectroscopy measurements of alkali fume. Citation Details In-Document Search Title: Effect of temperature and CO2 concentration on laser-induced breakdown spectroscopy measurements of alkali fume. Laser-induced breakdown spectroscopy (LIBS) was used in the evaluation of aerosol concentration in the exhaust of an oxygen/natural-gas glass furnace.

  1. A Renewable Boost for Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Boost for Natural Gas A Renewable Boost for Natural Gas April 24, 2013 - 3:45pm Addthis The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

  2. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry- Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  3. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry-Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  4. Gas separation using ultrasound and light absorption

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  5. SULI Intern: Atmospheric Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science Share Hear how Argonne intern Jane Pan helped scientists accurately represent atmospheric conditions in computer models and forecasts. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  6. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of substrates and then further process into optoelectronic materials using rapid

  7. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  8. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  9. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    SciTech Connect (OSTI)

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.

  10. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasingmore » the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  11. Gas revenue increasingly significant

    SciTech Connect (OSTI)

    Megill, R.E.

    1991-09-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities.

  12. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

    1985-01-01

    A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

  13. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  14. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  15. Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma

    SciTech Connect (OSTI)

    Tani, Atsushi; Fukui, Satoshi; Ono, Yusuke; Kitano, Katsuhisa; Ikawa, Satoshi

    2012-06-18

    To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

  16. The purification of inert glove box atmospheres using hot reactive metals

    SciTech Connect (OSTI)

    Johnson, R.E.; Gravelle, F.B.; Shultz, C.M.

    1988-09-01

    Current practice for the handling of pure tritium gas involves the use of inert atmosphere glove boxes. The purity of the inert gas is maintained by recirculation through a purification system. Due to the high toxicity of tritium in the form of water it is desirable to avoid oxidation of the elemental tritium and to remove tritium by forming stable metal tritides. This paper describes the use of SAES ST707 Alloy for the removal of hydrogen from a glove box atmosphere and briefly relates largely unsuccessful attempts at hydrogen removal using a variety of metals and alloys. The details of a proposed purification system for the control of chronic tritium releases and for the collection and recovery of a large tritium release are presented.

  17. Characterization of extreme precipitation within atmospheric river events over California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  18. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  19. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  20. Gas-Alloy Interactions at Elevated Temperatures

    SciTech Connect (OSTI)

    Arroyave, Raymundo; Gao, Michael

    2012-12-01

    The understanding of the stability of metals and alloys against oxidation and other detrimental reactions, to the catalysis of important chemical reactions and the minimization of defects associated with processing and synthesis have one thing in common: At the most fundamental level, all these scientific/engineering problems involve interactions between metals and alloys (in the solid or liquid state) and gaseous atmospheres at elevated temperatures. In this special issue, we have collected a series of articles that illustrate the application of different theoretical, computational, and experimental techniques to investigate gas-alloy interactions.

  1. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  2. Compressed natural gas (CNG) measurement

    SciTech Connect (OSTI)

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  3. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  5. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K. (Berkeley, CA); Neyer, David W. (Castro Valley, CA); Schoeniger, Joseph S. (Oakland, CA); Garguilo, Michael G. (Livermore, CA)

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  6. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at both sites are then presented in both text and graphics. The findings and recommendations for further research are discussed, followed by a listing of the references cited in the report.

  7. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

  8. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

  9. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    SciTech Connect (OSTI)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes a decrease in free-carrier concentration and plasmon frequency with increasing temperature. Increased scattering of electrons with increasing temperatures results in an increased damping frequency for free carriers. The thermo-optic coefficient of TiO{sub 2} is assumed to be constant or decreasing with increasing temperature. A Custom Designed System Can Be Used to Monitor Optical Transmission and Reflection of Films at Elevated Temperatures and Upon Exposure to Changing Ambient Gas Atmospheres. The calculated extinction peak broadens and reduces peak height with increasing temperature. Extinction spectra measured using the elevated temperature system deviate from measurements performed with an integrating sphere. Modifications to measured transmittance and reflectance spectra are observed with increasing temperatures. Optical constants of Au nanoparticles were measured for elevated temperature. The thermo-optic coefficient of TiO{sub 2} strongly affects the shift in LSPR absorption peak. Peak broadening is dictated by the increased damping frequency of Au. In all cases of the theoretical modeling, we are assuming a particle of Au embedded in a TiO{sub 2} matrix without any interparticle interaction. Localized surface plasmon resonance in noble metal nanoparticles is associated with the free electrons. Surface charges create an internal field that acts as a restoring force on displaced charge carriers resulting in an oscillation with an associated resonance. An estimate of the sensitivity as a function of wavelength for sensing done using a single wavelength transmission measurement can be derived by focusing on the partial derivative of Q{sub abs} with respect to the material parameter that we assume is changing during the experiment. We focus on the free carrier density. However, other material parameters may also change in some cases. Peak sensitivity for transmission or absorption based sensing occurs on either side of the LSPR absorption peak maximum. Theoretically predicted wavelength dependence is consistent with the literature. The wavelength of LSPR ab

  10. Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2002-03-01

    The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

  11. Photovoltaic concentrator module improvements study

    SciTech Connect (OSTI)

    Levy, S.L.; Kerschen, K.A. ); Hutchison, G. ); Nowlan, M.J. )

    1991-08-01

    This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

  12. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  13. A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

    SciTech Connect (OSTI)

    Arent, Doug; Logan, Jeff; Macknick, Jordan; Boyd, William; Medlock , Kenneth; O'Sullivan, Francis; Edmonds, James A.; Clarke, Leon E.; Huntington, Hill; Heath, Garvin; Statwick, Patricia M.; Bazilian, Morgan

    2015-01-01

    This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections.

  14. SWiFT site atmospheric characterization

    SciTech Connect (OSTI)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  15. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOE Patents [OSTI]

    Herrmann, Hans W. (Los Alamos, NM); Selwyn, Gary S. (Los Alamos, NM)

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  16. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect (OSTI)

    Domagal-Goldman, Shawn D.; Segura, Antgona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric contextparticularly redox state and O atom inventoryof the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  17. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Environmental Management (EM)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  18. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  19. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, Daniel (Los Alamos, NM)

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  20. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  1. External combustor for gas turbine engine

    DOE Patents [OSTI]

    Santanam, Chandran B. (Indianapolis, IN); Thomas, William H. (Indianapolis, IN); DeJulio, Emil R. (Columbus, IN)

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  2. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  3. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  4. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  5. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  6. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  7. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    over the next few days. To avoid penalties, Northwest requested that customers stay within their scheduled volumes, and asked customers who owe gas to Northwest north of...

  8. Breathable gas distribution apparatus

    DOE Patents [OSTI]

    Garcia, Elmer D. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to an apparatus for safely supplying breathable gas or air through individual respirators to personnel working in a contaminated area.

  9. Unconventional Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 4.2.1.1 Shale Gas Drilling and Fracturing Fluids ......86 4.2.1.2 Coalbed Methane Drilling and Fracturing ...

  10. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    kept up significant downward pressure on both cash and futures prices. Lower prices may eventually lead to fewer rigs exploring for gas, thereby stemming the growth in production....

  11. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2009 Next Release: August 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 5, 2009) Natural...

  12. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, July 1, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 23, 2010)...

  13. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Release: Thursday, September 9, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 1,...

  14. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, January 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 6,...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11,...

  16. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, June 17, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 9, 2010)...

  17. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, August 12, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 4, 2010)...

  18. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Release: Thursday, September 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 25,...

  19. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, August 5, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 28, 2010)...

  20. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.M. Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010)...