Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Measurement - Trace gas concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsTrace gas concentration govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Trace gas concentration The amount per unit volume of trace gases other than carbon dioxide, ozone and water vapor, typically measured in conjunction with in situ aerosol measurements, e.g. carbon monoxide, nitrogen oxides, sulfur dioxide. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO : Carbon Monoxide Mixing Ratio System

2

Ground-to-Air Gas Emission Rate Inferred from Measured Concentration Rise within a Disturbed Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

In reference to previously observed concentrations of methane released from a source enclosed by a windbreak, this paper examines a refined “inverse dispersion” approach for estimating the rate of emission Q from a small ground-level source, when ...

J. D. Wilson; T. K. Flesch; P. Bourdin

2010-09-01T23:59:59.000Z

3

What Does Stabilizing Greenhouse Gas Concentrations Mean? Henry D. Jacoby, Richard Schmalensee and David M. Reiner  

E-Print Network (OSTI)

What Does Stabilizing Greenhouse Gas Concentrations Mean? Henry D. Jacoby, Richard Schmalensee ... is to achieve ... stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent anthropogenic emissions of carbon dioxide (CO2) that would stabilize atmospheric concentrations of that gas

4

Trend in Atmospheric Angular Momentum in a Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing  

Science Conference Proceedings (OSTI)

The authors investigate the change of atmospheric angular momentum (AAM) in long, transient, coupled atmosphere–ocean model simulations with increasing atmospheric greenhouse gas concentration and sulfate aerosol loading. A significant increase ...

Huei-Ping Huang; Klaus M. Weickmann; C. Juno Hsu

2001-04-01T23:59:59.000Z

5

Gas and Particulate Concentration Measurements and ...  

Science Conference Proceedings (OSTI)

... to the species of interest as gas concentration standards ... for low concentrations and toxic and reactive gases. ... data set correlating liquid-phase fuels ...

2012-10-01T23:59:59.000Z

6

What does stabilizing greenhouse gas concentrations mean?  

E-Print Network (OSTI)

The MIT Emissions Prediction and Policy Analysis (EPPA) model is applied to an exploration of the national emissions obligations that would be required to stabilize atmospheric CO2 concentrations at levels now under active ...

Jacoby, Henry D.; Schmalensee, Richard.; Reiner, David M.

7

Gas concentration cells for utilizing energy  

DOE Patents (OSTI)

An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

Salomon, Robert E. (Philadelphia, PA)

1987-01-01T23:59:59.000Z

8

Gas concentration cells for utilizing energy  

DOE Patents (OSTI)

An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

Salomon, R.E.

1987-06-30T23:59:59.000Z

9

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii The graphs on this page are generated from data taken from "Trends in Carbon Dioxide" page on the Department of Commerce/National Oceanic and Atmospheric Administration (NOAA) website. The NOAA website presents monthly and weekly atmospheric CO2 concentrations measured at the Mauna Loa Observatory in Hawaii. It offers weekly and monthly data, additional graphs, analysis, descriptions of how the data are collected, and an animation of historical changes in atmospheric CO2. Mauna Loa constitutes the longest record of direct measurements of CO2 in the atmosphere. The measurents were started by C. David Keeling of the Scripps Institution of Oceanography in March of 1958. Recent Monthly Average CO2

10

Atmospheric Concentrations of Submicron Contact-freezing Nuclei  

Science Conference Proceedings (OSTI)

Atmospheric concentrations of contact-freezing nuclei were measured using a technique primarily sensitive to submicron aerosol particles. Diffusion and phoretic forces were relied on for the capture of nuclei by supercooled drops of distilled ...

Terry Deshler; Gabor Vali

1992-05-01T23:59:59.000Z

11

Atmospheric CO2 Concentrations from Aircraft for 1972-1981, CSIRO  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » CO2 » Concentrations from Aircraft for Atmospheric Trace Gases » CO2 » Concentrations from Aircraft for 1972-1981 Atmospheric CO2 Concentrations from Aircraft for 1972-1981, CSIRO Monitoring Program DOI: 10.3334/CDIAC/atg.ndp007 data Data (NDP-007) PDF PDF Investigators D. J. Beardsmore and G. I. Pearman Methods From 1972 through 1981, air samples were collected in glass flasks from aircraft at a variety of latitudes and altitudes over Australia, New Zealand, and Antarctica. The samples were analyzed for CO2 concentrations with nondispersive infrared gas analysis. The resulting data contain the sampling dates, type of aircraft, flight number, flask identification number, sampling time, geographic sector, distance in kilometers from the listed distance measuring equipment (DME) station, station number of the

12

Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorofluorocarbons » Chlorofluorocarbons » Atmospheric CFC-11 Concentrations Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual Data for the Period 1975-1992 DOI: 10.3334/CDIAC/atg.db1010 data Data (DB1010) Investigator M. A. K. Khalil and R. A. Rasmussen Description This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the

13

Estimating Gas Concentration of Coal Mines Based on ISGNN  

Science Conference Proceedings (OSTI)

Online detecting failure of gas sensors in mine wells is an important problem. A key step for solution of the problem is estimating sample values of detected gas sensor, according to sample values of other gas sensors. We propose a scheme based on ISGNN ... Keywords: Estimating gas concentration, Gas concentration modeling, Generating Neural Networks, ISGNN

Aiguo Li; Lina Song

2009-11-01T23:59:59.000Z

14

On the possible noble gas deficiency of Pluto's atmosphere  

E-Print Network (OSTI)

We use a statistical-thermodynamic model to investigate the formation and composition of noble-gas-rich clathrates on Pluto's surface. By considering an atmospheric composition close to that of today's Pluto and a broad range of surface pressures, we find that Ar, Kr and Xe can be efficiently trapped in clathrates if they formed at the surface, in a way similar to what has been proposed for Titan. The formation on Pluto of clathrates rich in noble gases could then induce a strong decrease in their atmospheric abundances relative to their initial values. A clathrate thickness of order of a few centimeters globally averaged on the planet is enough to trap all Ar, Kr and Xe if these noble gases were in protosolar proportions in Pluto's early atmosphere. Because atmospheric escape over an extended period of time (millions of years) should lead to a noble gas abundance that either remains constant or increases with time, we find that a potential depletion of Ar, Kr and Xe in the atmosphere would best be explained ...

Mousis, Olivier; Mandt, Kathleen E; Schindhelm, Eric; Weaver, Harold A; Stern, S Alan; Waite, J Hunter; Gladstone, Randy; Moudens, Audrey

2013-01-01T23:59:59.000Z

15

Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere  

DOE Patents (OSTI)

An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O' Brien, Martin J. (Pine, CO)

2003-01-01T23:59:59.000Z

16

Concentrations and Source Areas of Ice Nuclei in the Alaskan Atmosphere  

Science Conference Proceedings (OSTI)

Atmospheric ice nucleus concentrations were measured by the filter method daily for ten months at three ground sites in Alaska to determine the influence of long-range nucleus sources on the concentrations. The results indicate a seasonal ...

Andrew G. Fountain; Takeshi Ohtake

1985-04-01T23:59:59.000Z

17

Energetics Responses to Increases in Greenhouse Gas Concentration  

Science Conference Proceedings (OSTI)

Increasing greenhouse gas concentrations warm the troposphere. However, it is not clear whether this implies changes in the energetics. To study the energetics responses to CO2 increases, changes in the Lorenz energy cycle (LEC) are evaluated ...

Daniel Hernández-Deckers; Jin-Song von Storch

2010-07-01T23:59:59.000Z

18

Atmospheric CH4 Concentrations from the CSIRO GASLAB Flask Sampling...  

NLE Websites -- All DOE Office Websites (Extended Search)

CH4 Concentrations from the CSIRO GASLAB Flask Sampling Network image Alert, NWT, Canada Cape Ferguson, Australia Cape Grim, Australia Estevan Point, BC, Canada Macquarie...

19

Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric Plumes  

Science Conference Proceedings (OSTI)

A series of nearly instantaneous vertical cross sections of power-plant plume concentrations obtained by both airborne and ground-based lidar systems for the Electric Power Research Institute (EPRI) Plume Model Validation and Development Project ...

W. S. Lewellen; R. I. Sykes

1986-08-01T23:59:59.000Z

20

If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase?  

Science Conference Proceedings (OSTI)

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that overall ...

Andrew H. MacDougall; Michael Eby; Andrew J. Weaver

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Recuperated atmosphere SOFC/gas turbine hybrid cycle  

Science Conference Proceedings (OSTI)

A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

Lundberg, Wayne (Pittsburgh, PA)

2010-08-24T23:59:59.000Z

22

Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector  

Science Conference Proceedings (OSTI)

High-frequency fluctuations of concentration in a plume dispersing in the atmospheric surface layer have been measured with high-resolution concentration detectors (approximately 270 Hz at the ?6-dB point) to extract various concentration ...

Eugene Yee; R. Chan; P. R. Kosteniuk; G. M. Chandler; C. A. Biltoft; J. F. Bowers

1994-08-01T23:59:59.000Z

23

Wide-range radioactive-gas-concentration detector  

DOE Patents (OSTI)

A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, D.F.

1981-11-16T23:59:59.000Z

24

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas | Open  

Open Energy Info (EERE)

Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Jump to: navigation, search Tool Summary Name: Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Industry, Forestry Topics: GHG inventory, Co-benefits assessment, - Environmental and Biodiversity Resource Type: Publications Website: www.fao.org/docrep/012/i1580e/i1580e00.pdf Impact of the Global Forest Industry on Atmospheric Greenhouse Gas Screenshot References: Forestry Industry Impacts[1] "This book examines the influence of the forest products (roundwood, processed wood products and pulp and paper) value chain on atmospheric greenhouse gases. Forests managed for natural conservation, for protection

25

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Conference Proceedings (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

26

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network (OSTI)

establish criteria for engine design, operation, after-treatment, and fuel and lubri- cating oil and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust

Yu, Fangqun

27

1. The Challenge Concentrations of atmospheric CO2 have increased by more than 35% since industrialisation  

E-Print Network (OSTI)

Efficiency and Renewable Energy can go some way to reducing CO2 emissions but the technology gap and time lag concentration of CO2 in the atmosphere traps more reflected heat, leading to enhanced climate changes. Energy is significant. Burning fossil fuels for energy is still the primary method of producing energy. It is therefore

28

A Relationship Between Skin Thermal Conductivity and Gas Polytropic Index in an Open Atmospheric Balloon  

Science Conference Proceedings (OSTI)

With the assumption of a polytropic evolution for the lifting gas, the response of an ascending open atmospheric balloon to a monochromatic gravity wave is specified among other parameters by the heat balance with the surrounding air. If one ...

A. de la Torre; P. Alexander; J. Cornejo

2003-02-01T23:59:59.000Z

29

The Response of the Southern Hemisphere Atmospheric Circulation to an Enhanced Greenhouse Gas Forcing  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing is investigated. It has been proposed that the response of the climate system to an enhanced forcing projects directly onto the preexisting natural modes ...

Jenny Brandefelt; Erland Källén

2004-11-01T23:59:59.000Z

30

Formation of Jets by Baroclinic Instability on Gas Planet Atmospheres  

Science Conference Proceedings (OSTI)

In this paper it is proposed that baroclinic instability of even a weak shear may play an important role in the generation and stability of the strong zonal jets observed in the atmospheres of the giant planets. The atmosphere is modeled as a two-...

Yohai Kaspi; Glenn R. Flierl

2007-09-01T23:59:59.000Z

31

ARM - Measurement - CO2 concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is...

32

Ammonia concentration modeling based on retained gas sampler data  

Science Conference Proceedings (OSTI)

The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

Terrones, G.; Palmer, B.J.; Cuta, J.M.

1997-09-01T23:59:59.000Z

33

Development of an Atmospheric Carbon Dioxide Standard Gas Saving System and Its Application to a Measurement at a Site in the West Siberian Forest  

Science Conference Proceedings (OSTI)

Observations of the atmospheric CO2 concentration from a 90-m tower in Berezorechka, western Siberia, that have taken place since October 2001 were used to characterize CO2 variations over a vast boreal forest area. A new CO2 standard gas saving ...

T. Watai; T. Machida; K. Shimoyama; O. Krasnov; M. Yamamoto; G. Inoue

2010-05-01T23:59:59.000Z

34

Impact of Greenhouse Gas Concentration Changes on Surface Energetics in IPSL-CM4: Regional Warming Patterns, Land–Sea Warming Ratios, and Glacial–Interglacial Differences  

Science Conference Proceedings (OSTI)

The temperature response to a greenhouse gas (GHG) concentration change is studied in an ocean–atmosphere coupled model—L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4)—for both a glacial and an interglacial context. The ...

Alexandre Laîné; Masa Kageyama; Pascale Braconnot; Ramdane Alkama

2009-09-01T23:59:59.000Z

35

Small hydrocarbon molecules in cloud-forming Brown Dwarf and giant gas planet atmospheres  

E-Print Network (OSTI)

We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation...

Bilger, Camille; Helling, Christiane

2013-01-01T23:59:59.000Z

36

Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations – Final Project Report  

SciTech Connect

Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. The ability of the cyanobacteria to create an alkaline growth environment appeared to be the primary factor responsible for CaCO3 precipitation in these experiments. These research results demonstrate the potential of using cyanobacterial catalyzed “whitings” as a method to sequester CO2 from the atmosphere.

Brady D. Lee; William A. Apel; Michelle R. Walton

2006-03-01T23:59:59.000Z

37

On the coupled evolution of inflation, wealth and atmospheric concentrations of carbon dioxide  

E-Print Network (OSTI)

In a prior study (Garrett, 2009), a thermodynamically-based economic growth model was introduced that was based on the finding that the rate of consumption of energy by civilization has been related to its historical accumulation of inflation-adjusted Gross World Product (GWP), or its ``wealth'', through a constant value {\\lambda} of 9.7 {\\pm} 0.3 milliwatts per 1990 US dollar. Here, this simple model is extended to describe, first, a thermodynamically-based theory for economic inflation and, second, a prognostic model for the coupled multi-decadal evolution of CO2 concentrations and GWP. Multi-decadal hindcasts of GWP and CO2 concentrations made with this model are shown to be accurate. Applied to coming decades, the model implies that, like a long-term natural disaster, future greenhouse warming will accelerate economic inflation. Such inflation will slow growth of not just inflation-adjusted economic wealth, but also CO2 emission rates because the two are coupled through {\\lambda}. Maintaining atmospheric ...

Garrett, Timothy J

2010-01-01T23:59:59.000Z

38

Analysis of the carbon dioxide concentration in the lowest atmospheric layers and the factors affecting China based on satellite observations  

Science Conference Proceedings (OSTI)

Carbon dioxide CO2 is the most important anthropogenic greenhouse gas contributing to global climate change. SCIAMACHY on board ENVISAT launched in 2002 is the first satellite instrument to monitor the changes in CO2 concentration ...

Yanfang Hou; Shixin Wang; Yi Zhou; Fuli Yan; Jinfeng Zhu

2013-03-01T23:59:59.000Z

39

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

40

Atmospheric boundary layer parameters necessary for calculation of gas and particle deposition velocities were directly measured from  

E-Print Network (OSTI)

Results Atmospheric boundary layer parameters necessary for calculation of gas and particle hourly gas and particle deposition velocities. Acknowledgements · Staffs at the Lost Dutchman State Park, Desert Botanical Garden, and White Tank Mountain Regional Park. · Fred Peña, Department of Chemical

Hall, Sharon J.

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Lightweight Observation System for Atmospheric Carbon Dioxide Concentration Using a Small Unmanned Aerial Vehicle  

Science Conference Proceedings (OSTI)

To make the investigation of the temporal and spatial variations of atmospheric CO2 in and above the planetary boundary layer more flexible and economical, a lightweight observation system using a small unmanned aerial vehicle has been developed ...

T. Watai; T. Machida; N. Ishizaki; G. Inoue

2006-05-01T23:59:59.000Z

42

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network (OSTI)

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

43

An Algorithm for Lidar Mapping of Aerosol Concentrations in a Varying Atmospheric Background Density  

Science Conference Proceedings (OSTI)

An algorithm for the determination of the number density profiles of a specific aerosol as a function of time and space is developed and discussed. The algorithm is applicable to atmospheric conditions in which a varying density particulate ...

Moshe Kleiman; Smadar Egert; Ariel Cohen

1986-12-01T23:59:59.000Z

44

Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture  

DOE Patents (OSTI)

A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.

Lucas, Henry (P.O. Box 1454, Sedona, AZ 86336)

1990-01-01T23:59:59.000Z

45

Differential atmospheric tritium sampler  

DOE Patents (OSTI)

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

1990-01-01T23:59:59.000Z

46

Bayesian Modelling Volatility of Growth Rate in Atmospheric Carbon Dioxide Concentrations  

Science Conference Proceedings (OSTI)

Atmospheric gases, such as carbon dioxide, ozone, methane, nitrous oxide, and etc., create a natural greenhouse effect and cause climate change. Therefore, modelling behavior of these gases could help policy makers to control greenhouse effects. In a ... Keywords: Stochastic volatility, Smooth transition autoregressive, Markov chain Monte Carlo, methods, Bayesian, ARCH, GARCH

Esmail Amiri

2009-12-01T23:59:59.000Z

47

Process for hydrogen isotope concentration between liquid water and hydrogen gas  

DOE Patents (OSTI)

A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

Stevens, William H. (Deep River, CA)

1976-09-21T23:59:59.000Z

48

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network (OSTI)

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated… (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

49

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance  

Science Conference Proceedings (OSTI)

Inverse-dispersion techniques allow inference of a gas emission rate Q from measured air concentration. In “ideal surface layer problems,” where Monin–Obukhov similarity theory (MOST) describes the winds transporting the gas, the application of ...

T. K. Flesch; J. D. Wilson; L. A. Harper

2005-04-01T23:59:59.000Z

50

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial  

Science Conference Proceedings (OSTI)

The gas emission rate Q from an artificial 36-m2 surface area source was inferred from line-average concentration CL measured by an open-path laser situated up to 100 m downwind. Using a backward Lagrangian stochastic (bLS) model, a theoretical C...

T. K. Flesch; J. D. Wilson; L. A. Harper; B. P. Crenna; R. R. Sharpe

2004-04-01T23:59:59.000Z

51

A Three-Parameter PDF for the Concentration of an Atmospheric Pollutant  

Science Conference Proceedings (OSTI)

This paper follows on from the work of two previous papers that presented a new model [exponential and a generalized Pareto distribution (EGPD)] for the probability density function of the concentration of a contaminant dispersing in the ...

D. M. Lewis; P. C. Chatwin

1997-08-01T23:59:59.000Z

52

Comparison of Results from a Meandering-Plume Model with Measured Atmospheric Tracer Concentration Fluctuations  

Science Conference Proceedings (OSTI)

Measured wind-azimuth data are used in a simple meandering-plume model to predict observed SF6 concentration fluctuations measured downwind of a point source during a range of stability conditions. The meander component of plume diffusion is ...

Holly Peterson; Brian Lamb

1992-06-01T23:59:59.000Z

53

Palladium-catalyzed combustion of methane: Simulated gas turbine combustion at atmospheric pressure  

Science Conference Proceedings (OSTI)

Atmospheric pressure tests were performed in which a palladium catalyst ignites and stabilizes the homogeneous combustion of methane. Palladium exhibited a reversible deactivation at temperatures above 750 C, which acted to ``self-regulate`` its operating temperature. A properly treated palladium catalyst could be employed to preheat a methane/air mixture to temperatures required for ignition of gaseous combustion (ca. 800 C) without itself being exposed to the mixture adiabatic flame temperature. The operating temperature of the palladium was found to be relatively insensitive to the methane fuel concentration or catalyst inlet temperature over a wide range of conditions. Thus, palladium is well suited for application in the ignition and stabilization of methane combustion.

Griffin, T.; Weisenstein, W. [ABB Corporate Research Center, Daettwill (Switzerland); Scherer, V. [ABB Kraftwerke, Mannheim (Germany); Fowles, M. [ICI Katalco, Cleveland (United Kingdom)

1995-04-01T23:59:59.000Z

54

Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia  

Science Conference Proceedings (OSTI)

Measurements of land-cover changes suggest that such shifts may alter atmospheric concentrations of greenhouse gases GHGs. However, owing to the lack of large-scale GHG data, a quantitative description of the relationships between land-cover changes ...

Meng Guo; Xiufeng Wang; Jing Li; Hongmei Wang; Hiroshi Tani

2013-06-01T23:59:59.000Z

55

Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations  

SciTech Connect

Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore, comparability to the true ambient concentrations of tritium.

Eberhart, C.F.

1999-06-01T23:59:59.000Z

56

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents (OSTI)

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

57

Predicting Peak Hydrogen Concentrations from Spontaneous Gas Releases in Hanford Waste Tanks  

DOE Green Energy (OSTI)

Buoyant displacement gas release events (BDGRE) are spontaneous gas releases that occur in a few of the Hanford radioactive waste storage tanks when gas accumulation makes the sediment layer buoyant with respect to the liquid. BDGREs are assumed to be likely if the ratio of the predicted sediment gas fraction and neutral buoyancy gas fraction, or buoyancy ratio, exceeds unity. Based on the observation that the buoyancy ratio is also an empirical indicator of BDGRE size, a new methodology is derived that formally correlates the buoyancy ratio and the peak headspace hydrogen concentration resulting from BDGREs. The available data on the six historic BDGRE tanks, AN-103, AN-104, AN-105, AW-101, SY-103, and SY-101, are studied in detail to describe both the waste state and the corresponding distribution of BDGREs. The range of applicability of the buoyancy ratio-based models is assessed based on the modeling assumptions and availability of tank data. Recommendations are given for extending the range of the models applicability.

Stewart, Charles W.; Hartley, Stacey A.; Meyer, Perry A.; Wells, Beric E.

2005-07-15T23:59:59.000Z

58

Program on Technology Innovation: Literature Review of Issues Related to the Atmospheric Impacts of Natural Gas Power Plants  

Science Conference Proceedings (OSTI)

Natural gas is set to become an increasingly larger portion of the power generation fuel mix in the United States in upcoming years. The EIA estimates that 96.65 gigawatts (GW) of new electricity capacity will be added in the United States between 2009 and 2015. With the renewed interest in the use of this fuel in a variety of power plant designs, a review of recent research investigating the environmental impacts of natural gas power plantsin particular those from atmospheric emissionswas warranted. Thi...

2012-05-31T23:59:59.000Z

59

Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century  

SciTech Connect

The rate of CO2 assimilation by plants is directly influenced by the concentration of CO2 in the atmosphere, ca. In response to a short-term change in ca, plants adjust stomatal conductance to CO2 and water vapour to maximise carbon gain in terms of the amount of water lost. This is one of several fundamental feedback processes between plants and their environment that govern the exchange of water for carbon. As an environmental variable, ca further has a unique global and historic significance. Although relatively stable and uniform in the short term, global ca has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive data sets and numerous models to develop an integrated, multi-scale assessment of the impact of changing ca on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling atmospheric CO2 concentration is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that moves towards maximising the rate of return, in the form of carbon, for the water and nitrogen resources invested in the process of carbon assimilation. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing ca can be described by simple equations rooted in the formulation of more commonly studied short-term responses.

Franks, Peter J [University of Sydney, Australia; Adams, Mark A [University of Sydney, Australia; Amthor, Jeffrey S. [U.S. Department of Energy; Barbour, Margaret M [University of Sydney, Australia; Berry, Joseph A [Carnegie Institution of Washington; Ellsworth, David [ORNL; Farquhar, Graham D [Australian National University, Canberra, Australia; Ghannoum, Oula [University of Western Sydney, Australia; Lloyd, Jon [James Cook University; McDowell, Nathan [ORNL; Norby, Richard J [ORNL; Tissue, David Thomas [ORNL; Von Caemmerer, Susanne [Australian National University, Canberra, Australia

2013-01-01T23:59:59.000Z

60

The RCP Greenhouse Gas Concentrations and their Extensions from 1765 to 2300  

SciTech Connect

We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We first compiled a suite of observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005). For the 21st century, we start from emissions projected by four different Integrated Assessment Models for 2005-2100. We harmonize these emissions to allow inter-comparability of scenarios and to achieve a smooth transition from historical data. These harmonized emissions are then used to derive future GHG concentrations. We also present the GHG concentrations for one supplementary extension, which illustrates the emissions implications of attempting to go back to ECP4.5 concentration levels after emissions in the 21st century followed RCP6. Corresponding radiative forcing values are also presented for the RCP and ECPs.

Meinshausen, Malte; Smith, Steven J.; Calvin, Katherine V.; Daniel, John S.; Kainuma, M.; Lamarque, J.-F.; Matsumoto, Ken ichi; Montzka, S.; Raper, S.; Riahi, Keywan; Thomson, Allison M.; Velders, G.J.M; Van Vuuren, Detlef

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds  

SciTech Connect

The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

1995-01-23T23:59:59.000Z

62

A New Portable Instrument for In Situ Measurement of Atmospheric Methane Mole Fraction by Applying an Improved Tin Dioxide–Based Gas Sensor  

Science Conference Proceedings (OSTI)

A new portable instrument based on a tin dioxide natural gas leak detector was developed to monitor the atmospheric methane mixing ratio in areas lacking sufficient infrastructure to sustain a conventional measurement system, such as a large ...

Hiroshi Suto; Gen Inoue

2010-07-01T23:59:59.000Z

63

Validation of the Greenhouse Gas Balance of the Netherlands. Observational constraints on CO2, CH4 and N2O from atmospheric monitoring station Lutjewad.  

E-Print Network (OSTI)

??In this PhD thesis a method is described to determine the atmospheric greenhouse gas emissions for a large area using in-situ measurements. The method was… (more)

Laan, Sander van der

2010-01-01T23:59:59.000Z

64

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-Print Network (OSTI)

greenhouse gas and plays an important role in regulating the climate. Changes in water vapor from human in the atmosphere, water vapor is not counted in the United States or international greenhouse gas inventories3 . Why do greenhouse gas levels matter? Atmospheric concentrations of several important greenhouse gases

65

Rapid measurements and mapping of tracer gas concentrations in a large indoor space  

E-Print Network (OSTI)

Measurements of tracer gas dispersion are useful as a meansvisualization measurements of gas dispersion in large indoorcharacteristics of the gas dispersion. Figure 4 shows the

Fischer, M.L.

2008-01-01T23:59:59.000Z

66

Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere  

SciTech Connect

Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwind of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.

Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan; Easter, Richard C.; Beranek, Josef; Zaveri, Rahul A.; Fast, Jerome D.

2013-04-27T23:59:59.000Z

67

Worldwide Measurements of Atmospheric CO2 and Other Trace Gas Species Using Commercial Airlines  

Science Conference Proceedings (OSTI)

New automated observation systems for use in passenger aircraft to measure atmospheric carbon dioxide (CO2) and other trace species have been developed and are described in this paper. The Continuous CO2 Measuring Equipment (CME) is composed ...

T. Machida; H. Matsueda; Y. Sawa; Y. Nakagawa; K. Hirotani; N. Kondo; K. Goto; T. Nakazawa; K. Ishikawa; T. Ogawa

2008-10-01T23:59:59.000Z

68

Simulating Random Natural Variability in Time-Varying Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg....

69

Final Report - Gas Retention and Release Tests Supporting the Concentrate Receipt Vessel (CRV-VSL-00002A/2B) Configuration  

DOE Green Energy (OSTI)

Gas Retention and Release (GR and R) tests were performed in the scaled Concentrate Receipt Vessel (CRV) Test Stand at the Savannah River National Laboratory to validate the capability of candidate Hybrid-Mixing systems for the CRV to safely release hydrogen during normal and upset conditions. Hydrogen is generated in the radioactive waste as a result of natural and plant processes and must not be allowed to accumulate above flammability limits. Two types of tests were conducted. Gas holdup tests determined the steady state amount of gas accumulated in the simulant under normal PJM only or PJM plus sparging conditions. Gas release tests determined what operating conditions are necessary to fully release gas after a steady state gas fraction of 4 per cent tank volume or more was reached in the simulant.

GUERRERO, HECTOR

2004-09-01T23:59:59.000Z

70

Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling  

Science Conference Proceedings (OSTI)

The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial ...

Donald E. Aylor; Matthew T. Boehm; Elson J. Shields

2006-07-01T23:59:59.000Z

71

Net primary production of terrestrial ecosystems in China and its equilibrium response to changes in climate and atmospheric CO? concentration  

E-Print Network (OSTI)

The Terrestrial Ecosystem Model (TEM, version 4.0) was used to estimate net primary production (NPP) in China for contemporary climate and NPP responses to elevated CO? and climate changes projected by three atmospheric ...

Xiao, Xiangming.; Melillo, Jerry M.; Kicklighter, David W.; Pan, Yude.; McGuire, A. David.; Helfrich III, J.V.K.

72

Engineering task plan for flammable gas atmosphere mobile color video camera systems  

DOE Green Energy (OSTI)

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser.

Kohlman, E.H.

1995-01-25T23:59:59.000Z

73

On the Influence of Pacific Ocean Temperatures on Atmospheric Carbon Dioxide Concentration at Ocean Weather Station P  

Science Conference Proceedings (OSTI)

The study presents an analysis of atmospheric CO2 measurements at Ocean Weather Station P (50°N, 145°W) and sea surface temperatures over the North Pacific for the period 1974–78. The results show that during 1976 and 1977 sea surface ...

Kirby J. Hanson; James T. Peterson; Jerome Namias; Robert Born; C. S. Wong

1981-07-01T23:59:59.000Z

74

Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma  

Science Conference Proceedings (OSTI)

A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

Zener Sukra Lie; Koo Hendrik Kurniawan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); May On Tjia [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Rinda, Hedwig [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Suliyanti, Maria Margaretha [Research Center for Physics, Indonesia Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Banten (Indonesia); Syahrun Nur Abdulmadjid; Nasrullah Idris [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Alion Mangasi Marpaung [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Marincan Pardede [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Jobiliong, Eric [Department of Industrial Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Muliadi Ramli [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Heri Suyanto [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Fukumoto, Kenichi; Kagawa, Kiichiro [Research Institute of Nuclear Engineering, University of Fukui, Fukui 910-8507 (Japan)

2013-02-07T23:59:59.000Z

75

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network (OSTI)

Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide guidance for land and water resources management. Atmospheric pressure and water table fluctuations are two important natural processes at the upper and lower boundaries of the unsaturated zone, respectively. However, their significance has been neglected in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi-analytical and numerical solutions are developed to calculate the subsurface gas flow field and the gas phase transport of VOCs in active soil vapor extraction (SVE), barometric pumping (BP) and natural attenuation taking into account the atmospheric pressure and the water table fluctuations. The accuracy of the developed solutions are checked by comparing with published analytical solutions under extreme conditions, newly developed numerical solutions in COMSOL Multiphysics and field measured data. Results indicate that both the atmospheric pressure and the tidal-induced water table fluctuations significantly change the gas flow field in active SVE, especially when the vertical gas permeability is small (less than 0.4 Darcy). The tidal-induced downward moving water table increases the depth-averaged radius of influence (ROI) for the gas pumping well. However, this downward moving water table leads to a greater vertical pore gas velocity away from the gas pumping well, which is unfavorable for removing VOCs. The gas flow rate to/from the barometric pumping well can be accurately calculated by our newly developed solutions in both homogeneous and multi-layered unsaturated zones. Under natural unsaturated zone conditions, the time-averaged advective flux of the gas phase VOCs induced by the atmospheric pressure and water table fluctuations is one to three orders of magnitude less than the diffusive flux. The time-averaged advective flux is comparable with the diffusive flux only when the gas-filled porosity is very small (less than 0.05). The density-driven flux is negligible.

You, Kehua

2013-05-01T23:59:59.000Z

76

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

Science Conference Proceedings (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

2010-03-15T23:59:59.000Z

77

Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets  

SciTech Connect

Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

2013-11-01T23:59:59.000Z

78

Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model  

Science Conference Proceedings (OSTI)

Climate models differ in their responses to imposed forcings, such as increased greenhouse gas concentrations, due to different climate feedback strengths. Feedbacks in NCAR’s Community Atmospheric Model (CAM) are separated into two components: ...

Karen M. Shell; Jeffrey T. Kiehl; Christine A. Shields

2008-05-01T23:59:59.000Z

79

Concentrations and Origins of Atmospheric Lead and Other Trace Species at a Rural Site in Northern China  

E-Print Network (OSTI)

grade HNO3 (6 mL) and HCl (2 mL) for 40 min, using a microwave sample digestion system (PerkinElmer Life factor of 2 is applied to the Al concentration. An inductively coupled plasma mass spectrometer (ICP), The fate of trace elements during coal combustion and gasification: an overview, Fuel, 72, 731-736. Díaz

Dickerson, Russell R.

80

Use of a cryogenic sampler to measure radioactive gas concentrations in the main off-gas system at a high-flux isotope reactor  

Science Conference Proceedings (OSTI)

A method for measuring gamma-emitting radioactive gases in air has been developed at Oak Ridge National Laboratory (ORNL). This method combines a cryogenic air-sample collector with a high-purity germanium (HPGe) gamma spectroscopy system. This methodology was developed to overcome the inherently difficult collection and detection of radioactive noble gases. The cryogenic air-sampling system and associated HPGe detector has been used to measure the concentration of radioactive gases in the primary coolant main off-gas system at ONRL's High-Flux Isotope Reactor (HFIR). This paper provides: (1) a description of the cryogenic sampler, the radionuclide detection technique, and a discussion of the effectiveness of sampling and detection of gamma-emitting noble gases; (2) a brief description of HFIR and its associated closed high off-gas system; and (3) quantification of gamma-emitting gases present in the off-gas of the HFIR primary core coolant (e.g. radioisotopes of argon, xenon, and krypton).

Berven, B.A.; Perdue, P.T.; Kark, J.B.; Gibson, M.O.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Multifractal Analysis of Line-Source Plume Concentration Fluctuations in Surface-Layer Flows  

Science Conference Proceedings (OSTI)

A codimension multifractal methodology was used to analyze and to model scalar concentration fluctuations within sulfur hexafluoride tracer gas plumes from a line source in atmospheric surface-layer flows. Correspondence was exhibited between the ...

D. Finn; B. Lamb; M. Y. Leclerc; S. Lovejoy; S. Pecknold; D. Schertzer

2001-02-01T23:59:59.000Z

82

Glossary Term - Composition of the Earth's Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

the Earth's Atmosphere Source: Definition of the U.S. Standard Atmosphere (1976) CRC Handbook of Chemistry and Physics, 77th Edition Gas Formula Abundance percent by volume...

83

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

DOE Green Energy (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

84

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

DOE Green Energy (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

85

A Concept for a Gas-Filter Correlation Radiometer to Remotely Sense the Atmospheric Carbon Dioxide Column from Space  

Science Conference Proceedings (OSTI)

Concern about the climatic effects of anthropogenic emissions of CO2 has resulted in a growing need, both scientifically and politically, to monitor atmospheric CO2. The development of a satellite instrument that could measure the global ...

Boyd T. Tolton

2004-05-01T23:59:59.000Z

86

Apparatus to collect, classify, concentrate, and characterize gas-borne particles  

DOE Patents (OSTI)

An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments. Miniaturization also offers the potential of working with smaller particle sizes and lower pressure drops (leading to reduction of power consumption).

Rader, Daniel J. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Wally, Karl (Lafayette, CA); Brockmann, John E. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

87

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

88

Global increase of SF{sub 6} observed in the atmosphere  

SciTech Connect

Here the authors present high precision measurements of sulfur hexafluoride (SF{sub 6}) concentrations from atmospheric gas samples in Antarctic and Tenerife. These results show an increase of two orders of magnitude in this greenhouse gas, which is believed to be solely of anthropogenic origin, and is thought to have an atmospheric lifetime of 3200 years. This gas is of concern because of its high greenhouse effect on a per molecule basis. These studies show a north/south asymmetry in the density, an increase rate of 8.3%/yr, and an atmospheric exchange rate between hemispheres of 1.4 yr.

Maiss, M.; Levin, I. [Univ. of Heidelberg (Germany)

1994-04-01T23:59:59.000Z

89

A review of monitoring, sampling and analysis of reactor coolant, reactor containment atmosphere and airborne reactor effluents in post accident concentrations  

Science Conference Proceedings (OSTI)

A post-implementation review has been made in NRC Region I of the post-accident sampling systems (PASS), the gaseous effluent monitors, and the provisions for sampling effluent particulates and radioiodines which were required by the NRC subsequent to the TMI-2 accident (NUREG-0737). Prefabricated PASS systems were predominant. Problems included insufficient purge times, inadequate separation of dissolved gases, excessive dilution and the accuracy of analytical techniques in the presence of interferences. Microprocessor-controlled high-range gas monitors with integral provisions for sampling particulates and radioiodines in high concentrations were widely used. Calibration information was generally insufficient for the unambiguous conversion of monitor readings to release rates for a varying postaccident mixture of radiogases. The referenced sampling guidance (ANSI-N 13.1-1969) was inappropriate for the long sampling lines customarily used. Generic research is needed to establish the behavior of particulates and radioiodines in these lines.

Hull, A.P.; White, J.R.; Knox, W.H.

1986-01-01T23:59:59.000Z

90

Atmospheric Methyl Chloride  

NLE Websites -- All DOE Office Websites (Extended Search)

steel flasks and methyl chloride concentrations were measured using an Electron Capture Gas Chromatograph. Concentrations are reported as mixing ratios in dry air. The...

91

Demonstration of a nitrogen based carburizing atmosphere. Third quarterly report, 1 April-30 June 1979  

SciTech Connect

Energy consumption tests have been completed on a Radiant Tube Box (RTB) furnace which has a fibrous insulation. On this furnace an average of 9.7% of the energy used in processing parts with the conventional endothermic atmosphere practice was saved using nitrogen based atmosphere systems. Furthermore, the natural gas required at the heat treating facility to process the parts was reduced an average of 28.7%. Energy consumption of the furnace while idling under a methanol atmosphere was determined. When combined with the earlier reported data on endothermic and pure nitrogen atmospheres, a linear relationship between energy consumption and hydrogen concentration of the furnace atmosphere was found.

Peartree, R.J.

1979-09-01T23:59:59.000Z

92

Current Greenhouse Gas Concentrations  

NLE Websites -- All DOE Office Websites (Extended Search)

effort on their part. We ask as a basic professional courtesy that you acknowledge the primary sources when you refer to data from any of these sites. Guidelines for proper...

93

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

94

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

95

Gas scrubbing liquids  

DOE Patents (OSTI)

Fully chlorinated and/or fluorinated hydrocarbons are used as gas scrubbing liquids for preventing noxious gas emissions to the atmosphere.

Lackey, Walter J. (Oak Ridge, TN); Lowrie, Robert S. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1981-01-01T23:59:59.000Z

96

Airship Measurements of Aerosol Size Distributions, Cloud Droplet Spectra, and Trace Gas Concentrations in the Marine Boundary Layer  

Science Conference Proceedings (OSTI)

The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it ...

G. M. Frick; W. A. Hoppel

1993-11-01T23:59:59.000Z

97

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

98

A Ruggedized Ultrasensitive Field Air Sampler for Differentially Determining Tritium Oxide and Gas in Ambient Air Atmosphere  

SciTech Connect

The instrument described is an operational, practical, ruggedized, ultrasensitive, tritium field air sampler assembled for the simultaneous, differential sampling of the environmental air for tritium oxide and elemental tritium. The system uses hardware assembled and packaged in such manner as to facilitate use in the field as well as in the laboratory. The sampling system occupies relatively small space and is simple to operate. The detection sensitivity approaches tritium background levels and is achieved by high volume sampling, efficient removal of tritium oxide and elemental tritium ("tritium gas"), and counting the recovered fractions by liquid scintillation spectrometry.

Brown, R.; Meyer, H. E.; Robinson, B.; Sheehan, W. E.

1971-12-21T23:59:59.000Z

99

Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas  

SciTech Connect

Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai (China)

2012-03-01T23:59:59.000Z

100

Methodology for flammable gas evaluations  

DOE Green Energy (OSTI)

There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

Hopkins, J.D., Westinghouse Hanford

1996-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of improved detection instruments for toxic gas contaminants in mining atmospheres. Open-file report, July 1979-January 1981  

SciTech Connect

Work has been carried out under a Bureau of Mines contract to develop and fabricate gas sensors for mining applications. Promising new instruments have been designed, developed, tested, and supplied to meet Bureau requirements. These instruments include prototype (1) remote-sensing, diffusion-type CO monitors for mine operation that can be operated in conjunction with a surface computer, (2) control modules for alternate in-mine readout of the remote diffusion type CO monitors, (3) personal CO diffusion-type dosimeters, and (4) personal NO diffusion-type dosimeters. In addition, retrofit modifications were made to update and optimize operation of CO and NO/sub 2/ direct-reading type detectors provided under a previous contract. Studies were conducted to evaluate and demonstrate the availability of stable, portable NO/sub 2/ calibration sources for NO/sub 2/ instrumentation. The use of selected, commercially available cylinder sources for NO/sub 2/ instrument calibration were recommended. Additional studies were also conducted to investigate the feasibility of instrumentation for rapidly monitoring CO, NO, and NO/sub 2/ in diesel exhaust.

Kosek, J.A.; Gruber, A.H.

1981-02-01T23:59:59.000Z

102

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

103

Retrieval of volcanic ash and ice cloud physical properties together with gas concentration from IASI measurements using the AVL model  

Science Conference Proceedings (OSTI)

Observation and tracking of volcanic aerosols are important for preventing possible aviation hazards and determining the influence of aerosols on climate. The useful information primary includes the concentration

2013-01-01T23:59:59.000Z

104

Combustion Gas Sensing of CO and NO  

Science Conference Proceedings (OSTI)

Modern laser absorption sensing schemes have successfully monitored important trace gases in atmospheric research and hold promise for gas monitoring in the power industry. Commercial sensors using near-infrared telecommunications lasers are emerging; however, these near-infrared devices are not sensitive enough to detect small concentrations of carbon monoxide (CO) and nitric oxide (NO) in the large background of flue gas moisture (H2O) and carbon dioxide. In working toward continuous spatially resolved...

2009-03-03T23:59:59.000Z

105

Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas  

Science Conference Proceedings (OSTI)

The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

106

Generation of negative ions in the gas phase from a 12CaO{center_dot}7Al{sub 2}O{sub 3} membrane-coated ceramic heater under atmospheric pressure  

Science Conference Proceedings (OSTI)

12CaO{center_dot}7Al{sub 2}O{sub 3} (C12A7) crystal is able to generate strong and high purity oxygen anion (O{sup -}) beam under reduced pressure. However, the emission of O{sup -} or related species under atmospheric pressure has not been evaluated. In this study, the characteristics of negative ion species emissions from the C12A7 membrane-coated ceramic heater under atmospheric pressure were investigated by quadrupole mass spectrometer. Negative ion species were confirmed to be emitted even under atmospheric pressure. It was supposed that the detected negative ion clusters, such as O{sup -}(H{sub 2}O){sub n}, O{sub 2}{sup -}(H{sub 2}O){sub n}, and CO{sub 4}{sup -}(H{sub 2}O){sub n}, were generated by the reaction of negative ions emitted from the heater with impurities in He gas.

Yamamoto, Mitsuo [College of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Shima, Akio [Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Nishioka, Masateru [Research Center for Compact Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 983-8551 (Japan); Sadakata, Masayoshi [Department of Environmental Chemical Engineering, Kogakuin University, Tokyo 192-0015 (Japan)

2008-12-15T23:59:59.000Z

107

Atmospheric greenhouse effect and climates on various planets  

SciTech Connect

The greenhouse effect of the planetary atmospheres is considered and its evolution as a result of variations in the chemical composition and in gas abundances of the atmospheres as well as in the chemical composition, size distribution and concentration of aerosol components. A computer modelling gave the values of the greenhouse effect of the atmospheres of the Earth, Mars, Venus, Jupiter, and Titan. It is shown that the atmospheric greenhouse effect plays a decisive role in the formation of the planetary climates and that it has substantially changed in the process of the planetary evolution. The greenhouse effect mechanism has always been and still is a major factor of the mean global planetary climate.

Kondratev, K.Y.; Moskalenko, N.I.

1985-01-01T23:59:59.000Z

108

Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes  

SciTech Connect

There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

2009-07-15T23:59:59.000Z

109

Southeastern Aerosol and Visibility Study (SEAVS): Concentration and Composition of Atmospheric Aerosols at Look Rock, Tennessee, Ju ly-August 1995  

Science Conference Proceedings (OSTI)

Fine airborne particles with diameters below about 2.5 mm (PM-2.5), contribute to inhalation exposure, deposit on lakes and vegetation, form hazes, and influence the earth's radiative balance. This report describes the results of the Southeastern Aerosol and Visibility Study (SEAVS), which characterizes the concentration and chemical composition of fine particulate matter measured in the Great Smoky Mountains National Park during July-August, 1995. These results provide new insights into the influence of...

1998-12-16T23:59:59.000Z

110

Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions  

SciTech Connect

A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

Garrett, W. Ray (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

111

Atmospheric Measurements of Climate-Relevant Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Measurements of Climate-Relevant Species Atmospheric Measurements of Climate-Relevant Species CDIAC's data collection includes measurements of the following climate-relevant chemical species. A summary of recent greenhouse gas concentrations is also available. To determine how compounds are named, see the CDIAC "Name that compound" page. Butane (C4H10) Carbon Dioxide (CO2) Carbon Isotopes Carbon Monoxide (CO) Carbon Tetrachloride (CCl4) Chlorofluorocarbons Chloroform (CHCl3) Deuterium (2H) Ethane (C2H6) Ethyl Nitrate (C2H5ONO2) Ethyne (C2H2) Fluoroform (CHF3) Halogenated Compounds (modern records) Halons (fluorocarbons) Hydrogen (H2) Hydrochlorofluorocarbons (HCFCs) Hydrofluorocarbons (HFCs) i-Propyl Nitrate (C3H7ONO2) Methane (CH4) Methyl Bromide (CH3Br) Methyl Chloride (CH3Cl) Methyl Chloroform (CH3CCl3)

112

Greenhouse Gas Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Greenhouse Gas Basics Program Areas » Greenhouse Gases » Greenhouse Gas Basics Greenhouse Gas Basics October 7, 2013 - 10:01am Addthis Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction.

113

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Atmospheric Carbon Dioxide Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most datasets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to atmospheric carbon dioxide data includes: Atmospheric Carbon Dioxide and Carbon Isotopes • Atmospheric carbon dioxide records from Mauna Loa, Hawaii • Monthly atmospheric CO2 mixing ratios and other data from the NOAA/CMDL continuous monitoring network • Data from the CSIRO GASLAB Flask Sampling Network • Atmospheric CO2 records from continuous measurements at Jubany Station, Antarctica and from 10 sites in the SIO air sampling network • Historical data from the extended Vostok ice core (2003) and the Siple Station ice core (1997) • Historical records from the Law Dome DE08, DE08-2, and DSS ice cores (1998) • AmeriFlux Carbon Dioxide, Water Vapor, and Energy Balance Measurements • Data from the Canadian Background Air Pollution Monitoring Network • Flask Samples from at U.S.S.R.-Operated Sites (1991) • The CISIRO (Australia) Monitoring Program from Aircraft for 1972-1981 • CO2 Concentrations in Surface Water and the Atmosphere during 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Surface Water and Atmospheric CO2 and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 (1992) • IPCC Working Group 1, 1994: Modeling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995). New datasets are added when available to the category of atmospheric carbon dioxide.

114

Images reveal that atmospheric particles can undergo liquid-liquid phase separations  

Science Conference Proceedings (OSTI)

A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles will be affected, with important implications for climate predictions. The actual occurrence of these types of phase transitions within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we observe the coexistence of two non-crystalline phases in particles generated from real-world samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. Using a box model, we show that liquid-liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 in the Atlanta region, due to decreased particle uptake of N2O5.

You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

2012-07-30T23:59:59.000Z

115

The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols  

Science Conference Proceedings (OSTI)

Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active photochemical environments such as Mexico City, a substantially shorter timescale during daytime for the conversion of hydrophobic POA and BC to hydrophilic particles than the 1-2 days used in some global models. The conversion time scale is substantially longer during night. Most POA and BC particles emitted during evening hours likely remain non-hygroscopic until efficiently internally mixed with secondary species in the next morning. The results also suggest that the assumed mixing state strongly impacts calculated N{sub CCN} only when POA and BC represent a large fraction of the total aerosol volume. One of the implications is that while physically unrealistic, external mixtures, which are used in many global models, may also sufficiently predict N{sub CCN} for aged aerosol, as the contribution of non-hygroscopic POA and BC to overall aerosol volume is often substantially reduced due to the condensation of secondary species.

Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

2010-05-01T23:59:59.000Z

116

Lightning, atmospheric electricity and climate change  

SciTech Connect

Temperature records indicate that a global warming of 0.5{minus}0.7{degrees}C has occurred over the past century (Hansen and Lebedeff, 1987). Whether this trend is a result of increased trace gas concentrations in the atmosphere, or simply a result of natural variability; is still not known. These temperature trends are derived from thousands of observations worldwide. However, these observations are concentrated largely over continental areas, and then mainly in the northern hemisphere`s populated regions. This northern hemisphere continental bias results in large uncertainties in estimates of global temperature trends. Due to the increasing evidence that the present buildup of greenhouse gases in the atmosphere may result in an additional global warming of 1-5{degrees}C by the year 2050 (IPCC, 1990), it is increasingly important to find afternative methods to monitor fluctuations in global surface temperatures. As shown by two recent studies (Williams, 1992; Price, 1993), the global atmospheric electric circuit may provide a promising afternative for monitoring future climate change.

Price, C.

1993-10-01T23:59:59.000Z

117

Short-range atmospheric dispersion of carbon dioxide  

E-Print Network (OSTI)

important. We model dense gas dispersion using the steady-eld data to analyze dense gas dispersion mod- eling issues.element modeling of gas dispersion in the atmosphere. In:

Cortis, A.

2010-01-01T23:59:59.000Z

118

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

119

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

120

Atmospheric Carbon Dioxide Record from Mauna Loa  

NLE Websites -- All DOE Office Websites (Extended Search)

SIO Air Sampling Network » Mauna Loa SIO Air Sampling Network » Mauna Loa Atmospheric Carbon Dioxide Record from Mauna Loa DOI: 10.3334/CDIAC/atg.035 graphics Graphics data Data Investigators R.F. Keeling, S.C. Piper, A.F. Bollenbacher and J.S. Walker Carbon Dioxide Research Group Scripps Institution of Oceanography University of California La Jolla, California 92093-0444, U.S.A. Period of Record 1958-2008 Methods Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulating Random Natural Variability in Time-Varying Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating Random Natural Variability in Time-Varying Atmospheric Simulating Random Natural Variability in Time-Varying Atmospheric Concentrations of Toxic Gas from Pipeline Ruptures Speaker(s): David J. Wilson Date: February 4, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jeiwon Deputy Random time series are found everywhere in nature. The Brownian motion of small particles; the price of assets (stocks) in financial markets; the diffusion of individual molecules through a membrane; the ballistic deposition of nano-particles onto a lattice substrate; and the time-varying concentration fluctuations at a point downwind from a pollution source all have a common dynamic description. All are stochastic processes where the local rate of change of the variable has a natural drift back to some equilibrium state, combined with a random fluctuating component. We will

122

Transient Response of a Global Ocean-Atmosphere Model to a Doubling of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The transient response of climate to an instantaneous increase in the atmospheric concentration of carbon dioxide has been investigated by a general circulation model of the coupled ocean-atmosphere-land system with global geography and annual ...

Syukuro Manabe; Kirk Bryan; Michael J. Spelman

1990-05-01T23:59:59.000Z

123

ATMOSPHERIC ~ ~ RESEARCH  

E-Print Network (OSTI)

cloud para- meterization schemes (cumulus parameterization and ice parameterization) were used parameterization used in chemical transport model appreciably affects gas phase and aqueous chemistry calculations on the influence of different cloud treatment in a chemical transport model on gas phase distribution Nicole M61

Moelders, Nicole

124

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

125

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S R

2006-09-27T23:59:59.000Z

126

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S

2004-06-30T23:59:59.000Z

127

On the Nature of the Chromosphere-Corona Transition Region of the Solar Atmosphere  

E-Print Network (OSTI)

The distribution of temperature and emission measure in the stationary heated solar atmosphere was obtained for the limiting cases of slow and fast heating, when either the gas pressure or the concentration are constant throughout the layer depth. Under these conditions the temperature distribution with depth is determined by radiation loss and thermal conductivity. It is shown that both in the case of slow heating and of impulsive heating, temperatures are distributed in such a way that classical collisional heat conduction is valid in the chromosphere-corona transition region of the solar atmosphere.

Ptitsyna, O

2010-01-01T23:59:59.000Z

128

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

1982). Evidence based on measurements of S and Cl in erupted rocks, glass inclusions, gas samples, and atmospheric samples collected for both Mount St. Helens and Fuego...

129

An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low–Wind Speed (Diffusion) Conditions  

Science Conference Proceedings (OSTI)

A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is ...

Veronica E. Wannberg; Gustavious Williams; Patrick Sawyer; Richard Venedam

2010-09-01T23:59:59.000Z

130

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

Matthew R. June; John L. Hurley; Mark W. Johnson

1999-04-01T23:59:59.000Z

131

Overwater Atmospheric Diffusion: Measurements and Parameterization  

Science Conference Proceedings (OSTI)

A series of ten atmospheric tracer experiments provided 62 hours of overwater atmospheric dispersion data. Sulfur hexafluoride (SF6) was released as the tracer gas at a height of 13 m from a ship positioned about 7 km off the central California ...

Walter F. Dabberdt

1986-08-01T23:59:59.000Z

132

A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations  

Science Conference Proceedings (OSTI)

The microphysics module of the version of the Regional Atmospheric Modeling System (RAMS) maintained at Colorado State University has undergone a series of improvements, including the addition of a large-cloud-droplet mode from 40 to 80 ?m in ...

Stephen M. Saleeby; William R. Cotton

2004-01-01T23:59:59.000Z

133

Infrared Optical Imaging Techniques for Gas Visualization and Measurement  

E-Print Network (OSTI)

Advancement in infrared imaging technology has allowed the thermal imaging to detect and visualize several gases, mostly hydrocarbon gases. In addition, infrared cameras could potentially be used as a non-contact temperature measurement for gas and vapor. However, current application of infrared imaging techniques for gas measurements are still limited due to several uncertainties in their performance parameters. The aim of this research work was to determine the key factors in the application of infrared imaging technology for gas visualization and a non-contact temperature measurement. Furthermore, the concentration profile and emission rate of the gas are predicted by combining the application of the infrared imaging method with gas dispersion modeling. In this research, infrared cameras have been used to visualize liquefied natural gas (LNG) plumes from LNG spills on water. The analyses of the thermograms showed that the apparent temperatures were different from the thermocouple measurement which occurred due to the assumption of that the object emissivity was always equal to unity. The emissivity for pure methane gas and a mixture of methane and atmospheric gases were then evaluated in order to obtain the actual temperature distribution of the gas cloud. The results showed that by including the emissivity value of the gas, the temperature profile of the dispersed gas obtained from a thermal imaging measurement was in good agreement with the measurement using the thermocouples. Furthermore, the temperature distribution of the gas was compared to the concentration of a dispersed LNG vapor cloud to obtain a correlation between the temperature and the concentration of the cloud. Other application of infrared imaging technique was also conducted for leak detection of natural gas from a pipeline. The capability of an infrared camera to detect a fugitive gas leak was combined with the simulation of vapor discharge and dispersion in order to obtain a correlation between the emission rates and the sizes of the gas plume to the minimum detectable concentration. The relationship of the methane gas cloud size to the gas emission rate was highly dependent to the prevailing atmospheric condition. The results showed that the correlation were best to predict the emission rate less than 0.2 kg/s. At higher emission rate, the increase in gas release rate did not change the size of the cloud significantly.

Safitri, Anisa

2011-05-01T23:59:59.000Z

134

Containment atmosphere response (CAR) program. Second status report. [HTGR  

Science Conference Proceedings (OSTI)

This report contains a summary of the work performed under the Containment Atmosphere Response (CAR) Program of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Task since the publication of the previous status report (February 1978). The work concentrated on development of models describing containment phenomena during core heatup in support of probabilistic risk assessment studies. Models were completed for fission product iodine sorption on coated surfaces, diffusivity and retentivity of untreated concrete, iodine interaction with condensing steam on the containment atmosphere boundaries, and the cleanup filter system. These models were incorporated into a new computer program called CARCAS, a substantial extension of the CNTB computer program, and applied to Accident Initiation and Progression Analysis for Phase II core heatup sequences. Development was begun on models describing the postulated behavior of particulate fission products or aerosols within and leaking out of the containment.

Landoni, J.A.

1980-03-01T23:59:59.000Z

135

Atmospheric Radiation Measurement Program facilities newsletter, July 2001.  

Science Conference Proceedings (OSTI)

Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing terrestrial infrared radiation, increasing the near-surface temperature.

Holdridge, D. J.

2001-07-23T23:59:59.000Z

136

A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado Winter Snowfall Event  

Science Conference Proceedings (OSTI)

This paper is the second in a two-part series describing recent additions to the microphysics module of the Regional Atmospheric Modeling System (RAMS) at Colorado State University. These changes include the addition of a large-cloud-droplet mode ...

Stephen M. Saleeby; William R. Cotton

2005-12-01T23:59:59.000Z

137

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

DOE Green Energy (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

138

Response of a Coupled Ocean–Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase  

Science Conference Proceedings (OSTI)

The influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response is investigated using a coupled ocean–atmosphere model. Five transient integrations are performed each using a different constant ...

Ronald J. Stouffer; Syukuro Manabe

1999-08-01T23:59:59.000Z

139

Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

To speculate on the future change of climate over several centuries, three 500-year integrations of a coupled ocean-atmosphere model were performed. In addition to the standard integration in which the atmospheric concentration of carbon dioxide ...

Syukuro Manabe; Ronald J. Stouffer

1994-01-01T23:59:59.000Z

140

Climate Change and the Middle Atmosphere. Part I: The Doubled CO2 Climate  

Science Conference Proceedings (OSTI)

The impact of doubled atmospheric CO2 on the climate of the middle atmosphere is investigated using the GISS global climate/middle atmosphere model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and ...

D. Rind; R. Suozzo; N. K. Balachandran; M. J. Prather

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Demonstration Test of Iron Addition to a Flue Gas Desulfurization (FGD) Absorber to Enhance Mercury Removal  

Science Conference Proceedings (OSTI)

This report documents the findings from a full-scale demonstration test of the effects on trace elements of adding iron to a forced oxidation flue gas desulfurization (FGD) scrubber. Three specific effects were evaluated: lowering mercury emissions to the atmosphere; lowering the concentration of soluble or sub-micron-sized mercury particles in FGD purge water, which could improve removal of mercury in FGD purge water treatment; and lowering the concentration of selenate in FGD purge water, which could i...

2009-12-31T23:59:59.000Z

142

Estimating retained gas volumes in the Hanford tanks using waste level measurements  

SciTech Connect

The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

1997-09-01T23:59:59.000Z

143

Measurements of Atmospheric Nanoparticles (1875–1980)  

Science Conference Proceedings (OSTI)

The atmosphere contains a large variety of particles, ranging in size from near molecular (~1 nm) to larger than 10,000 nm. The total number concentration N of particles is dominated by nanoparticles ? 100 nm in diameter. Discovery of atmospheric ...

Volker Mohnen; George M. Hidy

2010-11-01T23:59:59.000Z

144

METHOD OF ISOTOPE CONCENTRATION  

DOE Patents (OSTI)

A method of concentrating N/sup 15/ in a liquid is described. Gaseous nitric oxide and at least one liquid selected from the group consisting of the aqueous oxyacids and oxides of nitrogen, wherein the atomic ratio of oxygen to nitrogen is greater than unity, are brought into intimate contact to cause an enrichment of the liquid and a depletion of the gas in N/sup 15/. The liquid is, thereafter, reacted with sulfur dioxide to produce a gas contuining nitric oxide. The gas contuining nitric oxide is then continuously passed in countercurrent contact with the liquid to cause further enrichment of the liquid.

Taylor, T.I.; Spindel, W.

1960-02-01T23:59:59.000Z

145

Adsorption of Atmospheric Gases on Pu Surfaces  

Science Conference Proceedings (OSTI)

Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

2012-03-29T23:59:59.000Z

146

Modeling Gas Transport in the Shallow Subsurface During the ZERT CO2 Release Test  

E-Print Network (OSTI)

Research Forum (PERF) Dense Gas Dispersion Modeling Project,Atmospheric dispersion of dense gases, Ann. Rev. Fluidgas (LNG) terminals and transport, and emphasize atmospheric dispersion

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

147

CONTINUOUS GAS ANALYZER  

DOE Patents (OSTI)

A reagent gas and a sample gas are chemically combined on a continuous basis in a reaction zone maintained at a selected temperature. The reagent gas and the sample gas are introduced to the reaction zone at preselected. constant molar rates of flow. The reagent gas and the selected gas in the sample mixture combine in the reaction zone to form a product gas having a different number of moles from the sum of the moles of the reactants. The difference in the total molar rates of flow into and out of the reaction zone is measured and indicated to determine the concentration of the selected gas.

Katz, S.; Weber, C.W.

1960-02-16T23:59:59.000Z

148

Basic criticality relations for gas core design  

DOE Green Energy (OSTI)

Minimum critical fissile concentrations are calculated for U-233, U-235, Pu-239, and Am-242m mixed homogeneously with hydrogen at temperatures to 15,000K. Minimum critical masses of the same mixtures in a 1000 liter sphere are also calculated. It is shown that propellent efficiencies of a gas core fizzler engine using Am-242m as fuel would exceed those in a solid core engine as small as 1000L operating at 100 atmospheres pressure. The same would be true for Pu-239 and possibly U-233 at pressures of 1000 atm. or at larger volumes.

Tanner, J.E.

1992-05-22T23:59:59.000Z

149

REVIEW PAPER Evaluating the effect of modified atmosphere  

E-Print Network (OSTI)

the natural gas surrounding the product in the package in order to delay deteriorative changes. In this paper. ,, , , Keywords Modified atmosphere packaging (MAP) . Cheese . Headspace gas composition evolution the optimal gas composition, which could be especially important for products with relatively short shelf life

Recanati, Catherine

150

International Journal of Computers and Applications, Vol. 31, No. 2, 2009 PASSIVE ATMOSPHERIC DIFFUSION  

E-Print Network (OSTI)

such as atmospheric gas dispersion by industrial accidents or processes are generally predicted with Gaussian plumes simplicity, the Gaussian dispersion model is often used for predicting the progression of atmospheric gas of passive dispersion, initial conditions of gas emissions are often addressed differently, as various gases

Beauchemin, Steven S.

151

Field measurement of the fate of atmospheric H? in a forest environment : from canopy to soil  

E-Print Network (OSTI)

Atmospheric hydrogen (H? ), an indirect greenhouse gas, plays a notable role in the chemistry of the atmosphere and ozone layer. Current anthropogenic emissions of H? are substantial and may increase with its widespread ...

Meredith, Laura Kelsey, 1982-

2013-01-01T23:59:59.000Z

152

The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation  

E-Print Network (OSTI)

The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

Kessler, Sean Herbert

2013-01-01T23:59:59.000Z

153

Mechanistic, sensitivity, and uncertainty studies of the atmospheric oxidation of dimethylsulfide  

E-Print Network (OSTI)

The global-scale emissions and reactivity of dimethylsulfide (CH3SCH3, DMS) make it an integral component in the atmospheric sulfur cycle. DMS is rapidly oxidized in the atmosphere by a complex gas-phase mechanism involving ...

Lucas, Donald David, 1969-

2003-01-01T23:59:59.000Z

154

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Federal agencies must understand key terms and management basics to successfully manage greenhouse gas (GHG) emissions. Graphic of the top half of earth depicting current arctic sea ice. A red outline depicts arctic sea ice boundaries in 1979. Current arctic sea ice is shown roughly 50% smaller than the 1979 depiction. Greenhouse gases correlate directly to global warming, which impacts arctic sea ice. This image shows current arctic sea ice formation. The red outline depicts arctic sea ice boundaries in 1979. Greenhouse gases are trace gases in the lower atmosphere that trap heat through a natural process called the "greenhouse effect." This process keeps the planet habitable. International research has linked human activities to a rapid increase in GHG concentrations in the atmosphere, contributing to major shifts in the global climate.

155

Natural gas leak mapper  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

156

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

157

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

158

Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine  

SciTech Connect

Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

2013-07-11T23:59:59.000Z

159

Atmospheric Modes of Variability in a Changing Climate  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing in a transient integration with a coupled global climate model is investigated. The spatial patterns of the leading modes of Northern Hemisphere ...

Jenny Brandefelt

2006-11-01T23:59:59.000Z

160

Earth's early atmosphere  

SciTech Connect

Ideas about atmospheric composition and climate on the early Earth have evolved considerably over the last 30 years, but many uncertainties still remain. It is generally agreed that the atmosphere contained little or no free oxygen initially and that oxygen concentrations increased markely near 2.0 billion years ago, but the precise timing of and reasons for its rise remain unexplained. Likewise, it is usually conceded that the atmospheric greenhouse effect must have been higher in the past to offset reduced solar luminosity, but the levels of atmospheric carbon cioxide and other greenhouse gases required remain speculative. A better understanding of past atmospheric evolution is important to understanding the evolution of life and to predicting whether Earth-like planets might exist elsewhere in the galaxy.

Kasting, J.F. (Pennsylvania State Univ., University Park (United States))

1993-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part II: The Uptake and Redistribution Of (NH4)2SO4 Particles and SO2 Gas Simultaneously Scavenged by Growing Cloud Drops  

Science Conference Proceedings (OSTI)

A theoretical model has been formulated which allows the processes which control the wet deposition of atmospheric aerosol particles and pollutant gases to be included in cloud dynamic models. The cloud considered in the model was allowed to grow ...

A. I. Flossmann; H. R. Pruppacher; J. H. Topalian

1987-10-01T23:59:59.000Z

162

The Boulder Atmospheric Observatory  

Science Conference Proceedings (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

163

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Observatory (UAO) Pilot Experiment at NYC" - Michael Reynolds, BNL 17:30 "EML Pilot Studies for the Urban Atmospheric Observatory" - Hsi-Na (Sam) Lee, EML 17:40 "A...

164

Supplementary Materials1 Atmospheric API-CIMS:2  

E-Print Network (OSTI)

1 Supplementary Materials1 Atmospheric API-CIMS:2 The atmospheric API-CIMS is a downsized version and discriminator/preamplifier. The primary9 difference between this instrument and the earlier CIMS instrument circuit board.22 23 Figure S1: mesoCIMS instrument schematic24 #12;2 DMS gas standards:25 Isotopically

Meskhidze, Nicholas

165

A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure  

SciTech Connect

This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang [Research Center of Analytical Instrumentation, Analytical Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Tang Jie [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China)

2013-07-15T23:59:59.000Z

166

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty...

167

Recent Improvements to an Advanced Atmospheric Transport Modeling System  

SciTech Connect

The Atmospheric Technologies Group (ATG) has developed an advanced atmospheric modeling capability using the Regional Atmospheric Modeling System (RAMS) and a stochastic Lagrangian particle dispersion model (LPDM) for operational use at the Savannah River Site (SRS). For local simulations concerning releases from the Central Savannah River Area (CSRA), RAMS is run in a nested grid configuration with horizontal grid spacing of 8 and 2 km for each grid, with 6-hr forecasts updated every 3 hours. An interface to allow for easy user access to LPDM had been generated, complete with post-processing results depicting surface concentration, deposition, and a variety of dose quantities. A prior weakness in this approach was that observations from the SRS tower network were only incorporated into the three-dimensional modeling effort during the initialization process. Thus, if the forecasted wind fields were in error, the resulting plume predictions would also be erroneous. To overcome this shortcoming, the procedure for generating RAMS wind fields and reading them into LPDM has been modified such that SRS wind measurements are blended with the predicted three-dimensional wind fields from RAMS using the Barnes technique. In particular, the horizontal components in RAMS are replaced with the observed values at a series of 8 towers that exist within the SRS boundary (covering {approx}300 km{sup 2}). Even though LPDM is currently configured to account only for radioactive releases, it was used in a recent chlorine gas release to generate plume concentrations based on unit releases from the site of a train accident in Graniteville, South Carolina. This information was useful to local responders as an indication of potential protective actions downwind of the release.

Buckley, R. L.; Hunter, C. H.

2005-10-24T23:59:59.000Z

168

The Upper Atmosphere of HD17156b  

E-Print Network (OSTI)

HD17156b is a newly-found transiting extrasolar giant planet (EGP) that orbits its G-type host star in a highly eccentric orbit (e~0.67) with an orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest among the known transiting planets. The atmosphere of the planet undergoes a 27-fold variation in stellar irradiation during each orbit, making it an interesting subject for atmospheric modelling. We have used a three-dimensional model of the upper atmosphere and ionosphere for extrasolar gas giants in order to simulate the progress of HD17156b along its eccentric orbit. Here we present the results of these simulations and discuss the stability, circulation, and composition in its upper atmosphere. Contrary to the well-known transiting planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape hydrodynamically at any point along the orbit, even if the upper atmosphere is almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+ ions is negligible. The nature of the upper atmosphere is sensitive to to the composition of the thermosphere, and in particular to the mixing ratio of H2, as the availability of H2 regulates radiative cooling. In light of different simulations we make specific predictions about the thermosphere-ionosphere system of HD17156b that can potentially be verified by observations.

T. T. Koskinen; A. D. Aylward; S. Miller

2008-11-28T23:59:59.000Z

169

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

170

Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery  

DOE Green Energy (OSTI)

Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

Bogner, J.E.

1986-01-01T23:59:59.000Z

171

The role of trace gas flux networks in biogeosciences  

SciTech Connect

Vast networks of meteorological sensors ring the globe, providing continuous measurements of an array of atmospheric state variables such as temperature, humidity, rainfall, and the concentration of carbon dioxide [New etal., 1999; Tans etal., 1996]. These measurements provide input to weather and climate models and are key to detecting trends in climate, greenhouse gases, and air pollution. Yet to understand how and why these atmospheric state variables vary in time and space, biogeoscientists need to know where, when, and at what rates important gases are flowing between the land and the atmosphere. Tracking trace gas fluxes provides information on plant or microbial metabolism and climate-ecosystem interactions. The existence of trace gas flux networks is a relatively new phenomenon, dating back to research in 1984. The first gas flux measurement networks were regional in scope and were designed to track pollutant gases such as sulfur dioxide, ozone, nitric acid, and nitrogen dioxide. Atmospheric observations and model simulations were used to infer the depositional rates of these hazardous chemicals [Fowler etal., 2009; Meyers etal., 1991]. In the late 1990s, two additional trace gas flux measurement networks emerged. One, the United States Trace Gas Network (TRAGNET), was a short-lived effort that measured trace gas emissions from the soil and plants with chambers distributed throughout the country [Ojima etal., 2000]. The other, FLUXNET, was an international endeavor that brought many regional networks together to measure the fluxes of carbon dioxide, water vapor, and sensible heat exchange with the eddy covariance technique [Baldocchi etal., 2001]. FLUXNET, which remains active today, currently includes more than 400 tower sites, dispersed across most of the world's climatic zones and biomes, with sites in North and South America, Europe, Asia, Africa, and Australia. More recently, several specialized networks have emerged, including networks dedicated to urban areas (Urban Fluxnet), nitrogen compounds in Europe (NitroEurope), and methane (MethaneNet). Technical Aspects of Flux Networks Eddy covariance flux measurements are the preferred method by which biogeoscientists measure trace gas exchange between ecosystems and the atmosphere [Baldocchi, 2003].

Baldocch, Dennis [Department of Environmental Science, Policy and Management, University of California, Berkeley,; Reichstein, Markus [Max Planck Institute for Biogeochemistry; Papale, D. [University of Tuscia; KOTEEN, LAURIE [University of California, Berkeley; VARGAS, RODRIGO [Ensenada Center for Scientific Research and Higher Education (CICESE); Agarwal, D.A [Lawrence Berkeley National Laboratory (LBNL); Cook, Robert B [ORNL

2012-01-01T23:59:59.000Z

172

ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Precision Gas Sampling (PGS) Validation Field Campaign 2003.04.02 - 2003.09.02 Lead Scientist : Marc Fischer For data sets, see below. Description Ecosystem-atmosphere exchange of carbon, water, and energy varies with climate, soil, and land management, in ways 1) that influence the CO2 flux and planetary boundary layer CO2 concentration in ARM CART and 2) that we can model and predict. This activity repeated portable flux system measurements that we performed in spring 2002, by continuing measurements of the spatial heterogeneity of carbon, water, and energy fluxes in fields surrounding the ARM SGP Central Facility (CF).

173

Environmental Evaluation on Atmosphere Radioactive Pollution of Uranium Mine Shaft Ventilation Exhausts  

Science Conference Proceedings (OSTI)

A study on calculation and evaluation on atmosphere radioactive pollution of uranium mine well ventilation exhaust gas is presented in this paper. Neutral atmosphere conditions were taken into consideration. Nuclear industry standards on safety protection ... Keywords: atmosphere pollution, radiation protection, environmental evaluation, control methods

Dong Xie; Zehua Liu; Jun Xiong; Jianxiang Liu

2012-03-01T23:59:59.000Z

174

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

175

Method and apparatus for reliable gas supply  

SciTech Connect

A method is described for supplying gas to a receiving point at a flowrate at least equal to a design gas usage rate comprising: (A) passing liquid from a liquid reservoir into an atmospheric vaporizer having a rated capacity at least equal to the design gas usage rate; (B) passing the liquid through the atmospheric vaporizer while heating the liquid by indirect heat exchange with ambient air to produce heated fluid; (C) passing substantially all of the heated fluid from the atmospheric vaporizer into a powered heat exchanger having a rated capacity at least equal to the design gas usage rate; (D) passing the heated fluid through the powered heat exchanger while heating the heated fluid by indirect heat exchange with hot fluid to produce product gas; and (E) passing product gas to the receiving point at a flowrate at least equal to the design gas usage rate.

Borcuch, J.P.; Thompson, D.R.

1989-04-18T23:59:59.000Z

176

Gas turbine combustion modeling for a Parametric Emissions Monitoring System.  

E-Print Network (OSTI)

??Oxides of nitrogen (NOx), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment… (more)

Honegger, Ueli

2007-01-01T23:59:59.000Z

177

The Cosmological Context of Extraplanar Gas  

E-Print Network (OSTI)

I review evidence that galaxies form from gas that falls into potential wells cold, rather than from virialized gas, and that formation stops once an atmosphere of trapped virialized gas has accumulated. Disk galaxies do not have such atmospheres, so their formation is ongoing. During galaxy formation feedback is an efficient process, and the nuclear regions of disk galaxies blow winds. The cold infalling gas that drives continued star formation has a significant component of angular momentum perpendicular to that of the disk. Extraplanar gas has to be understood in the context set by nuclear outflows and cold skew-rotating cosmic infall.

James Binney

2004-09-27T23:59:59.000Z

178

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO2 Doubling  

Science Conference Proceedings (OSTI)

The separate climate effects of middle-atmospheric and tropospheric CO2 doubling have been simulated and analyzed with the ECHAM middle-atmosphere climate model. To this end, the CO2 concentration has been separately doubled in the middle-...

M. Sigmond; P. C. Siegmund; E. Manzini; H. Kelder

2004-06-01T23:59:59.000Z

179

Large-Scale Changes of Soil Wetness Induced by an Increase in Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The change in soil wetness in response to an increase of atmospheric concentration of carbon dioxide is investigated by two versions of a climate model which consists of a general circulation model of the atmosphere and a static mixed layer ...

S. Manabe; R. T. Wetherald

1987-04-01T23:59:59.000Z

180

The Winter Atmospheric Response to Sea Ice Anomalies in the Barents Sea  

Science Conference Proceedings (OSTI)

The atmospheric response to sea ice anomalies over the Barents Sea during winter was determined by boundary forcing the Community Atmosphere Model (CAM) with daily varying high and low sea ice concentration (SIC) anomalies that decreased ...

Jessica Liptak; Courtenay Strong

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pathways for the Oxidation of Sarin in Urban Atmospheres  

Science Conference Proceedings (OSTI)

Terrorists have threatened and carried out chemicalhiological agent attacks on targets in major cities. The nerve agent sarin figured prominently in one well-publicized incident. Vapors disseminating from open containers in a Tokyo subway caused thousands of casualties. High-resolution tracer transport modeling of agent dispersion is at hand and will be enhanced by data on reactions with components of the urban atmosphere. As a sample of the level of complexity currently attainable, we elaborate the mechanisms by which sarin can decompose in polluted air. A release scenario is outlined involving the passage of a gas-phase agent through a city locale in the daytime. The atmospheric chemistry database on related organophosphorus pesticides is mined for rate and product information. The hydroxyl,radical and fine-mode particles are identified as major reactants. A review of urban air chernistry/rnicrophysics generates concentration tables for major oxidant and aerosol types in both clean and dirty environments. Organic structure-reactivity relationships yield an upper limit of 10-1' cm3 molecule-' S-* for hydrogen abstraction by hydroxyl. The associated midday loss time scale could be as little as one hour. Product distributions are difficult to define but may include nontoxic organic oxygenates, inorganic phosphorus acids, sarin-like aldehydes, and nitrates preserving cholinergic capabilities. Agent molecules will contact aerosol surfaces in on the order of minutes, with hydrolysis and side-chain oxidation as likely reaction channels.

Gerald E. Streit; James E. Bossert; Jeffrey S. Gaffney; Jon Reisner; Laurie A. McNair; Michael Brown; Scott Elliott

1998-11-01T23:59:59.000Z

182

Concentrating Photovoltaics  

Science Conference Proceedings (OSTI)

Concentrating photovoltaics (CPV) are a promising alternative to flat-plate photovoltaics in high direct normal irradiance (DNI) environments. The technology’s basic operating characteristics offer significant upside compared with other solar technologies: higher system efficiencies of upwards of 30%+; higher capacity factors, generated through two-axis tracking, exceeding 30% in ideal locations; lower cellular degradation from heat compared to flat-plate PV; lower water requirements; and reduced footpri...

2010-11-19T23:59:59.000Z

183

HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer  

E-Print Network (OSTI)

A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

2011-01-28T23:59:59.000Z

184

Integrated vacuum absorption steam cycle gas separation  

Science Conference Proceedings (OSTI)

Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

2011-11-22T23:59:59.000Z

185

CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS  

SciTech Connect

We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

Schaefer, Laura; Fegley, Bruce, E-mail: laura_s@levee.wustl.ed, E-mail: bfegley@levee.wustl.ed [Planetary Chemistry Laboratory, McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, MO 63130-4899 (United States)

2009-10-01T23:59:59.000Z

186

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

187

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

188

Method for treating a nuclear process off-gas stream  

DOE Patents (OSTI)

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01T23:59:59.000Z

189

International Journal of Greenhouse Gas Control 5 (2011) 10551064 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

International Journal of Greenhouse Gas Control 5 (2011) 1055­1064 Contents lists available at ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www option in the portfolio of mitigation actions for stabilization of atmospheric greenhouse gas

Prevost, Jean-Herve

190

Apparatus for the field determination of concentration of radioactive constituents in a medium  

DOE Patents (OSTI)

The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples. 14 figs.

Perkins, R.W.; Schilk, A.J.; Warner, R.A.; Wogman, N.A.

1995-08-15T23:59:59.000Z

191

Hydrogen mitigation Gas Characterization System: System design description  

DOE Green Energy (OSTI)

The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

Schneider, T.C.

1998-07-17T23:59:59.000Z

192

Removing hydrogen sulfide from a gas  

SciTech Connect

The hydrogen sulfide concentration of a gas of relatively higher hydrogen sulfide concentration is reduced by introducing the gas to a fragmented permeable mass of oil shale for contacting the oil shale in the substantial absence of free oxygen. This yields a gas with relatively lower hydrogen sulfide concentration which is withdrawn from the fragmented permeable mass of oil shale.

Compton, L.E.

1978-10-24T23:59:59.000Z

193

Carbon-13 Isotopic Abundance and Concentration of Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

and 35 from the Southern Hemisphere. The air samples were collected mostly in rural or marine locations remote from large sources of CH4 and are considered representative...

194

Atmospheric CO2 Concentrations from the CSIRO GASLAB Flask Sampling...  

NLE Websites -- All DOE Office Websites (Extended Search)

from the CSIRO GASLAB Flask Sampling Network CSIRO GASLAB sites Alert, NWT, Canada Cape Ferguson, Australia Cape Grim, Australia Casey, Antarctica Estevan Point, BC,...

195

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

196

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

197

A Cable-Borne Tram for Atmospheric Measurements along Transects  

Science Conference Proceedings (OSTI)

A system to make atmospheric measurements from a moving trolley suspended by a stretched cable has been developed. At present, these measurements consist of wind velocity, temperature, humidity, and carbon dioxide concentration, though other ...

S. P. Oncley; K. Schwenz; S. P. Burns; J. Sun; R. K. Monson

2009-03-01T23:59:59.000Z

198

The Measurement of OH and HO2 in the Atmosphere  

Science Conference Proceedings (OSTI)

Measurements of the OH and HO2 radicals form stringent tests of our knowledge of atmospheric photochemistry. Owing to the extremely low concentrations of these species, their determination has posed a considerable experimental challenge; but now, ...

David R. Crosley

1995-10-01T23:59:59.000Z

199

Sea Level Changes under Increasing Atmospheric CO2 in a Transient Coupled Ocean-Atmosphere GCM Experiment  

Science Conference Proceedings (OSTI)

Climate change resulting from the enhanced greenhouse effect of increasing atmospheric CO2 concentrations is expected to bring about global and local changes in sea level. A global rise in sea level would result from thermal expansion of seawater ...

J. M. Gregory

1993-12-01T23:59:59.000Z

200

Simulation of Atmospheric Variability  

Science Conference Proceedings (OSTI)

A spectral atmospheric circulation model is time-integrated for approximately 18 years. The model has a global computational domain and realistic geography and topography. The model undergoes an annual cycle as daily values of seasonally varying ...

Syukuro Manabe; Douglas G. Hahn

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Atmospheric Laser Communication  

Science Conference Proceedings (OSTI)

Atmospheric laser communication, often referred to as free-space optics (FSO) or free-space laser (FSL) communication, is similar to fiber optic cable in terms of carrier wavelength and bandwidth capability, but data are transmitted directly ...

Kenneth W. Fischer*Michael R. Witiw; Jeffrey A. Baars+; T. R. Oke

2004-05-01T23:59:59.000Z

202

Atmospheric Available Energy  

Science Conference Proceedings (OSTI)

The total potential energy of the atmosphere is the sum of its internal and gravitational energies. The portion of this total energy available to be converted into kinetic energy is determined relative to an isothermal, hydrostatic, equilibrium ...

Peter R. Bannon

2012-12-01T23:59:59.000Z

203

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

1988-01-01T23:59:59.000Z

204

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

205

Apparatus and method for monitoring of gas having stable isotopes  

DOE Patents (OSTI)

Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

Clegg, Samuel M; Fessenden-Rahn, Julianna E

2013-03-05T23:59:59.000Z

206

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

207

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

208

ON THE STABILITY OF SUPER-EARTH ATMOSPHERES  

SciTech Connect

We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars.

Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093, Zuerich (Switzerland); Kopparla, Pushkar [ETH Zuerich, Institute for Atmospheric and Climate Science, Universitaetstrasse 16, CH-8092, Zuerich (Switzerland)

2012-07-20T23:59:59.000Z

209

Diurnal temperature range for a doubled carbon dioxide concentration experiment: Analysis of possible physical mechanisms  

SciTech Connect

An analysis of the results of a climate simulation for a doubling of atmospheric carbon dioxide concentration over the European region is reported. Physical mechanisms are sought which could explain possible changes in the diurnal temperature range (DTR) under conditions of increased atmospheric greenhouse gas content. We show that an important contribution to changes in DTR is given by soil mositure. In areas where soil moisture increases due to an increase in precipitation there is a positive change in latent heat flux and a decrease in sensible heat flux. As a result, in areas with increasing soil moisture, the increase in maximum daytime temperature will be smaller than that in minimum temperature, thereby causing a decrease in the DTR. The opposite occurs for areas which undergo soil drying. This process amplifies the effect of cloud changes on surface solar and infrared radiation and dominates the direct effect of downward infrared radiation associated with increasing greenhouse gas concentration. Because the soil water content is largely controlled by precipitation, our results are consistent with early observational findings of negative correlation between changes in precipitation and in diurnal temperature range.

Verdecchia, M.; Visconti, G.; Giorgi, F.; Marinucci, M.R. [Universita`degli Studi, L`Aquila (Italy)]|[National Center for Atmospheric Research, Boulder, CO (United States)

1994-07-01T23:59:59.000Z

210

Coal Beneficiation by Gas Agglomeration  

DOE Patents (OSTI)

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

211

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

212

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

213

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network (OSTI)

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas Pennsylvania, ex- amining natural gas concentrations and isotopic signatures with proximity to shale gas wells this transformation, with shale gas and other unconventional sources now yielding more than one- half of all US

Jackson, Robert B.

214

BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS  

SciTech Connect

Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

Michael W. Grutzeck; Maria DiCola; Paul Brenner

2006-03-30T23:59:59.000Z

215

Drill string gas data  

DOE Green Energy (OSTI)

Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

Siciliano, E.R.

1998-05-12T23:59:59.000Z

216

ARM - Measurement - Atmospheric pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

217

ARM - Measurement - Atmospheric temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

218

Article Atmospheric Science  

NLE Websites -- All DOE Office Websites (Extended Search)

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp *Corresponding author (email: luchunsong110@gmail.com) Article Atmospheric Science February 2013 Vol.58 No.4-5: 545  551 doi: 10.1007/s11434-012-5556-6 A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds LU ChunSong 1,2* , LIU YanGang 2 & NIU ShengJie 1 1 Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Atmospheric Sciences Division, Brookhaven National Laboratory, New York 11973, USA

219

ARM - Measurement - Atmospheric moisture  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

220

BNL | Atmospheric Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exhaust gas provides alternative gas source for cyclic EOR  

SciTech Connect

Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

Stoeppelwerth, G.P.

1993-04-26T23:59:59.000Z

222

Standard model atmospheres for A-type stars and non-LTE effects  

E-Print Network (OSTI)

Abstract. The current status of NLTE model atmosphere calculations of A type stars is reviewed. During the last decade the research has concentrated on solving the restricted NLTE line formation problem for trace elements assuming LTE model atmospheres. There is a general lack of calculated NLTE line blanketed model atmospheres for A type stars, despite the availability of powerful methods and computer codes that are able to solve this task. Some directions for future model atmosphere research are suggested.

Daniela Kor?áková

2004-01-01T23:59:59.000Z

223

Transient Climate Change Simulations with a Coupled Atmosphere–Ocean GCM Including the Tropospheric Sulfur Cycle  

Science Conference Proceedings (OSTI)

The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed ...

E. Roeckner; L. Bengtsson; J. Feichter; J. Lelieveld; H. Rodhe

1999-10-01T23:59:59.000Z

224

Seven Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams Data Sets Released from LBA Carbon Dynamics and Trace Gas Teams The ORNL DAAC and the LBA DIS announce the release of four data sets from the Carbon Dynamics teams and three data sets from the Trace Gas and Aerosol Fluxes science teams, components of the LBA-ECO Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil . Data set prepared by A.C. de Araujo, J.P.H.B. Ometto, A.J. Dolman, B. Kruijt, M.J. Waterloo and J.R. Ehleringer. This data set reports delta 13C/12C results for leaf tissues and atmospheric carbon dioxide (CO2), delta 15N/14N ratios for leaf tissue, and leaf carbon and nitrogen concentrations along a topographical gradient in old-growth forests near Manaus, Amazonas, Brazil. Also included are coincident

225

Modeling acid-gas generation from boiling chloride brines  

Science Conference Proceedings (OSTI)

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

226

Precomputed atmospheric scattering  

Science Conference Proceedings (OSTI)

We present a new and accurate method to render the atmosphere in real time from any viewpoint from ground level to outer space, while taking Rayleigh and Mie multiple scattering into account. Our method reproduces many effects of the scattering of light, ...

Eric Bruneton; Fabrice Neyret

2008-06-01T23:59:59.000Z

227

Mathematical modeling of solar concentrators  

DOE Green Energy (OSTI)

A computational capability that models the operation of any solar energy collector that uses flux concentrators is a valuable aid in the planning, design, construction, calibration, safety analysis, and operation of the system. In addition to the usual optical considerations, the model should treat such imperfections as reflecting-surface slope errors, suntracking and alignment errors, and mirror-focusing errors. It should properly account for the angular distribution of incoming sun rays and the effects of atmospheric transmission on this distribution. A model with these capabilities is described, and two computer programs for implementing it are illustrated.

Biggs, F.; Vittitoe, C.N.

1976-01-01T23:59:59.000Z

228

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

229

A Lagrangian Long-Range Transport Model with Atmospheric Boundary Layer Chemistry  

Science Conference Proceedings (OSTI)

The present paper reports on the combination of a chemical model for the gas phase chemistry of the atmospheric boundary layer, with a Lagrangian model for the long-range transport of air pollutants. The resulting combined chemistry/transport ...

Anton Eliassen; Jørgen Saltbones; Frode Stordal; Øystein Hov; Ivar S. A. Isaksen; Frode Stordal

1982-11-01T23:59:59.000Z

230

Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations  

Science Conference Proceedings (OSTI)

Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al ...

Thomas T. Warner; Rong-Shyang Sheu; James F. Bowers; R. Ian Sykes; Gregory C. Dodd; Douglas S. Henn

2002-05-01T23:59:59.000Z

231

Fast Time Response Tunable Diode Laser Measurements of Atmospheric Trace Gases for Eddy Correlation  

Science Conference Proceedings (OSTI)

A fast-response, atmospheric trace gas monitor, based on the principle of tunable diode laser absorption spectroscopy, has been developed for making eddy correlation measurements of dry deposition fluxes. This system, which is capable of ...

G. L. Ogram; F. J. Northrup; G. C. Edwards

1988-08-01T23:59:59.000Z

232

Estonian greenhouse gas emissions inventory report  

SciTech Connect

It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V. [Inst. of Ecology, Tallinn (Estonia); Martins, A.; Pesur, A. [Inst. of Energy Research, Tallinn (Estonia); Roostalu, H.; Tullus, H. [Estonian Agricultural Univ., Tartu (Estonia)

1996-07-01T23:59:59.000Z

233

Gas-sensitive holographic sensors  

E-Print Network (OSTI)

substances in the environment play a key role in the chemostasis of many biological processes, from respiration in animals to photosynthesis in plants. Our atmosphere is, in fact, conformed by a mixture of highly concentrated gases like oxygen, nitrogen... agent is related to its unpaired electrons associated with free radical reactions [7, 27]. Oxygen in the atmosphere, nevertheless, is essential to life on Earth and plays an essential role in processes such as respi- ration, photosynthesis, fermentations...

Martínez Hurtado, Juan Leonardo

2013-04-16T23:59:59.000Z

234

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

gas hydrate concentrations previously unseen in shale-gas hydrate, generally found encased in fine-grained muds and shales.

Moridis, George J.

2008-01-01T23:59:59.000Z

235

Cloud-Level Penetrative Compressible Convection in the Venus Atmosphere  

Science Conference Proceedings (OSTI)

A two-dimensional, nonlinear, fully compressible model of a perfect gas is used to simulate cloud-level penetrative convection in the Venus atmosphere from 40 to 60 km altitude. Three cases with different amounts of solar heating are considered: ...

R. David Baker; Gerald Schubert; Philip W. Jones

1998-01-01T23:59:59.000Z

236

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

237

Modeling the effects of atmospheric emissions on groundwater composition  

SciTech Connect

A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

Brown, T.J.

1994-12-31T23:59:59.000Z

238

Definition: Liquid natural gas | Open Energy Information  

Open Energy Info (EERE)

Liquid natural gas Liquid natural gas Jump to: navigation, search Dictionary.png Liquid natural gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure.[1] View on Wikipedia Wikipedia Definition Liquefied natural gas or LNG is natural gas that has been converted to liquid form for ease of storage or transport. Liquefied natural gas takes up about 1/600th the volume of natural gas in the gaseous state. It is odorless, colorless, non-toxic and non-corrosive. Hazards include flammability after vaporization into a gaseous state, freezing and asphyxia. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a

239

Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)  

Science Conference Proceedings (OSTI)

A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

Ian MacDonald

2011-05-31T23:59:59.000Z

240

Exothermic-Based Atmospheres  

Science Conference Proceedings (OSTI)

...Requirement Value Natural gas, m 3 (ft 3 ) 4.4 (155) Electric energy consumption, MJ (kW · h) 1.4 (0.4) Cooling water, L (gal) 1135 (300) Electric energy consumption for refrigerant dryer,

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets  

Science Conference Proceedings (OSTI)

Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

Davis, K.J.; Richardson, S.J.; Miles, N.L.

2007-03-07T23:59:59.000Z

242

Hydrostatic Adjustment in Nonisothermal Atmospheres  

Science Conference Proceedings (OSTI)

The author examines hydrostatic adjustment due to heating in two nonisothermal atmospheres. In the first case both the temperature and lapse rate decrease with height; in the second case the atmosphere consists of a troposphere with constant ...

Dean G. Duffy

2003-01-01T23:59:59.000Z

243

Efficient rendering of atmospheric phenomena  

Science Conference Proceedings (OSTI)

Rendering of atmospheric bodies involves modeling the complex interaction of light throughout the highly scattering medium of water and air particles. Scattering by these particles creates many well-known atmospheric optical phenomena including rainbows, ...

Kirk Riley; David S. Ebert; Martin Kraus; Jerry Tessendorf; Charles Hansen

2004-06-01T23:59:59.000Z

244

Atmospheric pressure scanning transmission electron microscopy  

SciTech Connect

Scanning transmission electron microscope (STEM) images of gold nanoparticles (2.1 nm average diameter) at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2 and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes mounted on a specially designed specimen rod. Gas flow occurred through plastic tubing from the outside of the microscope to the specimen region and back. Gold nanoparticles of a full width half maximum diameter of 1.0 nm were visible above the background noise and the achieved resolution was 0.5 nm in accordance with calculations of the beam broadening.

De Jonge, Niels [ORNL; Veith, Gabriel M [ORNL; Bigelow, Wilbur C [ORNL

2010-01-01T23:59:59.000Z

245

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Atmospheric dispersion of dense gases, Ann. Rev. Fluidtransport and dispersion capability for dilute gases basedmake a dilute gas assumption. 4.2.4 Dispersion Model For the

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

246

INERT GAS SHIELD FOR WELDING  

DOE Patents (OSTI)

S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

Jones, S.O.; Daly, F.V.

1958-10-14T23:59:59.000Z

247

ARM - Measurement - Atmospheric turbulence  

NLE Websites -- All DOE Office Websites (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

248

Atmospheric Release Advisory Capability  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

1983-02-01T23:59:59.000Z

249

Photonics-based Multi-gas Sensor.  

E-Print Network (OSTI)

??The design of a photonics-based multi-gas sensor is presented. Absorption spectroscopy theory has been analyzed to derive key requirements for effective gas concentration measurements. HITRAN… (more)

Matharoo, Inderdeep

2011-01-01T23:59:59.000Z

250

ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Site Atmospheric State Best Estimates for AIRS Forward Model and ARM Site Atmospheric State Best Estimates for AIRS Forward Model and Retrieval Validation Tobin, David University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Moy, Leslie University of Wisconsin-Madison Lesht, Barry Argonne National Laboratory Cress, Ted Pacific Northwest National Laboratory Strow, Larrabee Hannon, Scott Fetzer, Eric Jet Propulsion Laboratory The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua platform is the first of a new generation of advanced hyperspectral atmospheric sounders with the capability of retrieving temperature and trace gas profiles with high vertical resolution and absolute accuracy. In the past few years ARM has played a major role in the validation of AIRS, including the launch of

251

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

252

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

253

Production of fullerenes using concentrated solar flux  

SciTech Connect

A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

2000-01-01T23:59:59.000Z

254

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

255

Kinetic Model of Gas Bubble Dissolution in Groundwater and Its  

E-Print Network (OSTI)

appear to be more important for the composition of the gas excess than the differences between molecular in both natural and technical gas exchange processes. In chemical engineering systems, the dissolution that the composition of the excess gas does not correspond to atmospheric air (8). Excess air and its fractionation

Aeschbach-Hertig, Werner

256

Air and steam coal partial gasification in an atmospheric fluidized bed  

Science Conference Proceedings (OSTI)

Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao [Nanjing University of Information Science & Technology, Nanjing (China). Department of Environmental Science & Engineering

2005-08-01T23:59:59.000Z

257

Atmospheric Methane at Cape Meares, Oregon, U.S.A.: A High-Resolution Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Methane » Atmospheric Trace Gases » Methane » Atmospheric Methane, Cape Meares Atmospheric Methane at Cape Meares, Oregon, U.S.A.: A High-Resolution Data Base for the Period 1979-1992 DOI: 10.3334/CDIAC/atg.db1007 data Data (DB1007) Investigators M. A. K. Khalil and R. A. Rasmussen Description This data base presents continuous automated atmospheric methane (CH4) measurements taken at the atmospheric monitoring facility in Cape Meares, Oregon, by the Oregon Graduate Institute of Science and Technology. The Cape Meares data represent some 119,000 individual atmospheric methane measurements carried out during 1979-1992. Analysis of ambient air (collected 12 to 72 times daily) was carried out by means of an automated sampling and measurement system, using the method of gas chromatography and

258

Old-field Community, Climate and Atmospheric Manipulation  

SciTech Connect

We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

Aimee Classen

2009-11-01T23:59:59.000Z

259

ORISE: Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

260

Atmospheric attenuation of solar radiation  

DOE Green Energy (OSTI)

The attenuation of solar radiation by the atmosphere between the heliostat and receiver of a Central Receiver solar energy system has been computed for a number of atmospheric conditions and tower-heliostat distances. The most important atmospheric variable is found to be the atmospheric aerosol content. No dependence of atmospheric water vapor is found and only a weak dependence on solar zenith angle. For a 500 m heliostat-tower distance two to four percent reductions are expected under typical desert conditions (50 to 120 km visibility). The reduction is approximately linear with heliostat-tower distance. A representative value of the attenuation coefficient is 0.051 km/sup -1/.

Randall, C.M.

1977-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas storage and separation by electric field swing adsorption  

SciTech Connect

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

262

Energy Basics: Linear Concentrator Systems for Concentrating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

263

Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)  

DOE Green Energy (OSTI)

This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

Kurtz, S.

2008-05-06T23:59:59.000Z

264

PNNL: FCSD: Atmospheric Sciences & Global Change: Programs &...  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs & Facilities Atmospheric Measurements Laboratory Atmospheric Radiation Measurement (ARM) Program and ARM Climate Research Facility ARM Aerial Facility Environmental...

265

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

266

Trace Gas Measurements from Tethered Balloon Platforms  

Science Conference Proceedings (OSTI)

Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1–1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition ...

Alan R. Bandy; Terese L. Bandy; Otto Youngbluth; Thomas L. Owens

1987-03-01T23:59:59.000Z

267

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

2008-03-05T23:59:59.000Z

268

Evolution of Organic Aerosols in the Atmosphere.  

SciTech Connect

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework that describes the atmospheric evolution of OA and is constrained and motivated by new, high time resolution, experimental characterizations of their composition, volatility, and oxidation state. OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of large amounts of oxygenated organic aerosol (OOA) mass that has comparable concentrations to sulfate aerosol over the Northern Hemisphere. Our new model framework captures the dynamic aging behavior observed in the atmosphere and the laboratory and can serve as a basis for improving parameterizations in regional and global models.

Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J. T.; Herndon, Scott C.; Trimborn, Achim; Williams, L. R.; Wood, Ezra C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, Urs; Worsnop, Douglas R.

2009-12-11T23:59:59.000Z

269

An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions  

Science Conference Proceedings (OSTI)

Ammonia emitted into the atmosphere from agricultural sources can have an impact on nearby sensitive ecosystems, either through elevated ambient concentrations or dry/wet deposition to vegetation and soil surfaces. Short-range atmospheric dispersion ... Keywords: Agriculture, Ammonia, Atmospheric dispersion model, Evaluation, Validation

Mark R. Theobald; Per LøFstrøM; John Walker; Helle V. Andersen; Poul Pedersen; Antonio Vallejo; Mark A. Sutton

2012-11-01T23:59:59.000Z

270

The short and long term role of the ocean in Greenhouse Gas mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

JY01ax.doc 19 May 2001 JY01ax.doc 19 May 2001 The short and long term role of the ocean in Greenhouse Gas mitigation Ian S F Jones, Lamont Doherty Earth Observatory, Columbia University, New York i.jones@ldeo.columbia.edu Helen E Young Earth Ocean and Space, Australian Technology Park, Sydney, HelenYoung@ozemail.com.au Introduction The carbon dioxide concentration in the atmosphere is rising rapidly, mostly as a result of fossil fuel burning. This is leading to more trapping of solar radiation in the atmosphere with the expectation that the world's climate will change. Rapid climate change has a downside risk of endangering the food security of the poor and raising the spectra of large scale transmigration. The UNFCCC was an agreement amongst most of the sovereign nations of the world

271

Method for mapping a natural gas leak  

DOE Patents (OSTI)

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2009-02-03T23:59:59.000Z

272

Measurements of coefficients of discharge for concentric flange-tapped square-edged orifice meters in natural gas over the Reynolds Number range 25,000 to 16,000,000. Technical note (Final)  

Science Conference Proceedings (OSTI)

The report describes the data acquisition systems and procedures used in the American Petroleum Institute (API)-sponsored orifice discharge coefficient project performed in natural gas flows and conducted at the test loop of the Natural Gas Pipeline Company of America (NGPL) in Joliet, Illinois. Measurements of orifice discharge coefficients for 6- and 10-inch diameter orifice meter runs were made using critical venturis for mass flowrate measurement with associated measurement of pressures and temperatures. Eleven venturis were calibrated at the Colorado Engineering Experiment Station, Inc. (CEESI). Measurements of absolute and differential pressure and temperature for venturi and orifice meter conditions were made using an automated data acquisition system. Temperature and pressure measurements were directly related to U.S. national measurement standards. Daily calibration of absolute and differential pressure transducers using pressure working standards was designed into the measurement procedures. Collected over a 2-year period, the database contains tests on 44 orifice plates in 8 beta ratios for two meter sizes (6- and 10-inches). The database contains 1,345 valid test points.

Whetstone, J.R.; Cleveland, W.G.; Bateman, B.R.; Sindt, C.F.

1989-09-01T23:59:59.000Z

273

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

274

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

275

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

276

Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics  

NLE Websites -- All DOE Office Websites (Extended Search)

the time dependencies of the 03 and CO2 concentrations measured with the use of the gas analyzer "Tral," Positive correlation is evident in the behavior of these greenhouse...

277

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

278

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

279

Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)  

SciTech Connect

This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

Kurtz, S.

2008-05-06T23:59:59.000Z

280

Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector  

SciTech Connect

Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC  

E-Print Network (OSTI)

ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

Moelders, Nicole

282

Atmospheric Corrosion Test Sites  

Science Conference Proceedings (OSTI)

Table 27   Some marine-atmospheric corrosion test sites around the world...Zealand Phia Marine 0.2 0.12 15.8 2.4 � � � � Greece Rafina Marine 0.2 0.12 13.6 1.0 � � � � Rhodes Marine 0.2 0.12 14.3 1.5 � � � � Netherlands Schagen Marine 2.4 1.5 17.0 2.0 � � � � Spain Almeria � 0.035 0.022 22.4 1.6 � � � � Cartagena � 0.050 0.031 5.2 1.9 � � � � La Coruña � 0.160 0.1 26.2 1.4...

283

Concentrating Photovoltaics (Presentation)  

SciTech Connect

Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

Kurtz, S.

2009-01-20T23:59:59.000Z

284

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

285

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

286

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

287

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

288

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

289

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

290

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

291

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

292

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

293

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

294

Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico  

SciTech Connect

The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

Bureau of Economic Geology

2009-04-30T23:59:59.000Z

295

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

296

Comparison of Peroxy Radical Concentrations at Several Contrasting Sites  

Science Conference Proceedings (OSTI)

The importance of the peroxy radicals in gas phase atmospheric chemistry has prompted the development of a number of methods for their measurement. These have resulted in several reports of H02 and R02 levels around the globe. The chemical ...

Chris A. Cantrell; Richard E. Shetter; Jack G. Calvert

1995-10-01T23:59:59.000Z

297

The Potential for Low-Cost Concentrating Solar Power Systems  

DOE Green Energy (OSTI)

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

298

Impact of biomass burning on the atmosphere  

DOE Green Energy (OSTI)

Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

Dignon, J.

1993-03-01T23:59:59.000Z

299

MCO combustible gas management leak test acceptance criteria  

DOE Green Energy (OSTI)

Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

SHERRELL, D.L.

1999-05-11T23:59:59.000Z

300

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Study of Atmospheric Deposition of Air Toxics to the Waters of Puget Sound  

E-Print Network (OSTI)

Air pollutants can be deposited in many forms such as rain, snow, and gases. Urban centers are major sources of combustion-derived particulate matter, black carbon, and volatile organic carbon to the atmosphere. Expansion of urban centers in the 20th Century, especially in coastal areas, and their concomitant influence on land use, vehicular traffic, and industrial growth have been responsible for major outputs of combustion-derived hydrocarbon to the atmosphere and fallout of such carbon-rich particulate matter over the urban airsheds. This, in turn, has led to local health effects on human populations and a decrease in the quality of regional hydrological cycling. Due to continuous coastal development and increase in population in Puget Sound, Washington, it is vital to determine what the impacts of such growth have had on air and water quality and if greater needs in regulation are needed to curtail emissions. A bi-weekly deposition study of atmospheric particulate matter at seven sites around the Puget Sound (from urban to rural) have been performed for the purpose of developing appropriate regional and temporal estimates of contaminant fluxes to the surface of Puget Sound. The present study focuses on anhydrosugars, molecular markers of biomass combustion, in atmospheric particles to characterize the sources of combustion-derived materials. These are then compared to combustion-derived condensed hydrocarbon (PAH) concentrations and their signature ratios. Sample series were extracted for anhydrosugars and analyzed via gas chromatography mass spectrometry. All stations showed temporal variability in fluxes of levoglucosan, a major biomass combustion anhydrosugar, over the four months studied (Aug-Nov, 2008), with values ranging close to two orders of magnitude (15-450 uGu/m2.day). Replicate sampling at different stations during the study period showed a good reproducibility (wood burning. Levoglucosan concentrations are not correlated to pyrogenic PAHs in all but one rural station suggesting a predominant biomass source of combustion at that site. A specific PAH ratio associated with biomass combustion (1,7 DMP/[1,7+2,6 DMP]) was positively correlated to levoglucosan at all stations confirming the usefulness of this ratio for tracing non fossil fuel sources of pyrogenic PAHs in natural environments.

Aguirre, Danielle

2009-06-09T23:59:59.000Z

302

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23, 2013 May 23, 2013 Secretary Moniz on Natural Gas and Renewables May 17, 2013 Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas Freeport LNG Terminal on Quintana Island, Texas Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries May 17, 2013 FE DOCKET NO. 10-161-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS April 24, 2013 The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

303

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

304

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents (OSTI)

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

305

Implications of "peak oil" for atmospheric CO2 and climate  

E-Print Network (OSTI)

Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

Kharecha, P A

2007-01-01T23:59:59.000Z

306

Atmospheric-pressure guided streamers for liposomal membrane disruption  

Science Conference Proceedings (OSTI)

The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

2012-12-24T23:59:59.000Z

307

Comments on "Shallow gas off the Rhone prodelta, Gulf of Lions" by Garcia-Garcia et al. (2006) Marine Geology 234 (215-231) - Reply  

E-Print Network (OSTI)

Mastalerz, V. on “Shallow gas off the Rhône prodelta, Gulfauthor pattern in our answers: 1- Gas sampling procedure,2-Reported gas concentrations results, 3-General remarks, 4-

2008-01-01T23:59:59.000Z

308

Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 3. Atmospheric sciences.  

SciTech Connect

Separate absracts were prepared for the 15 sections of this progress report which is a description of atmospheric research at PNL organized in terms of the following energy technologies: coal, gas and oil; fission and fusion; and oil shale. (KRM)

Elderkin, C.E.

1981-02-01T23:59:59.000Z

309

Method for the Collection and HPLC Analysis of Hydrogen Peroxide and Cl and C2 Hydroperoxides in the Atmosphere  

Science Conference Proceedings (OSTI)

An HPLC (high-performance liquid chromatography) method was developed to quantify hydrogen peroxide, methyl hydroperoxide. Hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyaectic acid in the atmosphere. Gas-phase hydroperoxides are ...

Meehye Lee; Birgitta C. Noone; Daniel O'sullivan; Brian G. Heikes

1995-10-01T23:59:59.000Z

310

Binary Homogeneous Nucleation: Temperature and Relative Humidity Fluctuations, Nonlinearity, and Aspects of New Particle Production in the Atmosphere  

Science Conference Proceedings (OSTI)

Binary homogeneous nucleation of sulfuric acid and water vapor is thought to be the primary source of new particles in the marine atmosphere. The rate of binary homogeneous nucleation depends strongly on temperature and the gas-phase ...

Richard C. Easter; Leonard K. Peters

1994-07-01T23:59:59.000Z

311

METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE  

DOE Patents (OSTI)

A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.

Monroe, R.E.

1958-10-14T23:59:59.000Z

312

H22: Modeling of Gas Flow and Turbulence in Atmospheric ...  

Science Conference Proceedings (OSTI)

A18: Effect of Local Alendronate Delivery on In Vivo Osteogenesis From PCL ... A7: On-the-fly System Design for High Precision/Ultra Fast/Wide Area Fabrication .... C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array ... High Volume and Fast Turnaround Automated Inline TEM Sample Preparation.

313

Linear Concentrator Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is...

314

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

315

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

316

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

317

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

318

Theoretical Prediction of Ion Clusters Relevant to the Atmosphere: Size and Mobility  

Science Conference Proceedings (OSTI)

The clustering of water vapor about ions is important because of its relevance to atmospheric electrical processes. For this reason we have placed our emphasis particularly on the description of the size distribution (concentrations) and ...

S. H. Suck; J. L. Kassner Jr.; R. E. Thurman; P. C. Yue; R. A. Anderson

1981-06-01T23:59:59.000Z

319

Future Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and Global Atmospheric Chemistry?  

Science Conference Proceedings (OSTI)

Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and ...

Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire Granier

2006-01-01T23:59:59.000Z

320

Combined effects of anthropogenic emissions and resultant climatic changes on atmospheric OH  

E-Print Network (OSTI)

Using a coupled global atmospheric chemistry and climate model we have predicted the evolution of tropospheric concentrations of chemical species along with climate parameters, based on a set of economic model predictions ...

Wang, Chien.; Prinn, Ronald G.

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tropospheric Mean Temperature and Its Relationship to the Oceans and Atmospheric Aerosols  

Science Conference Proceedings (OSTI)

Multiple-regression analyses of changes in tropospheric mean temperature as predictands and Pacific, Atlantic and Indian Ocean sea surface temperatures and atmospheric aerosol concentrations as predictors show that large fractions of the ...

Alfredo R. Navato; Reginald E. Newell; Jane C. Hsiung; Clare B. Billing Jr.; Bryan C. Weare

1981-02-01T23:59:59.000Z

322

The Response of the Antarctic Oscillation to Increasing and Stabilized Atmospheric CO2  

Science Conference Proceedings (OSTI)

Recent results from greenhouse warming experiments, most of which follow the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario, have shown that under increasing atmospheric CO2 concentration, the Antarctic Oscillation (AAO) exhibits ...

Wenju Cai; Peter H. Whetton; David J. Karoly

2003-05-01T23:59:59.000Z

323

Simulation of Atmospheric Circulation over Tahiti and of Local Effects on the Transport of 210Pb  

Science Conference Proceedings (OSTI)

Atmospheric transport of the natural radionuclide 210Pb is simulated by a general circulation model (GCM) and calculated surface concentrations are compared with those recorded at the Tahiti station on a daily scale. Numerical results for 2006 ...

P. Heinrich; X. Blanchard

2009-06-01T23:59:59.000Z

324

Investigation of Pole-to-Pole Performances of Spaceborne Atmospheric Chemistry Sensors with the NDSC  

Science Conference Proceedings (OSTI)

Spaceborne atmospheric chemistry sensors provide unique access to the distribution and variation of the concentration of many trace species on the global scale. However, since the measurements and the retrieval algorithms are sensitive to a ...

Jean-Christopher Lambert; Michel Van Roozendael; Martine De Mazière; Paul C. Simon; Jean-Pierre Pommereau; Florence Goutail; Alain Sarkissian; James F. Gleason

1999-01-01T23:59:59.000Z

325

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

326

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

327

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

328

Baiu rainband termination in atmospheric and atmosphere-ocean models  

Science Conference Proceedings (OSTI)

Baiu rainband is a summer rainband stretching from eastern China through Japan towards the Northwest Pacific. The climatological termination of the Baiu rainband is investigated using Japanese 25-year ReAnalysis (JRA25), a stand-alone atmospheric ...

Akira Kuwano-Yoshida; Bunmei Taguchi; Shang-Ping Xie

329

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

A. T. Korsakov; E. G. Tertyshnik

2013-07-09T23:59:59.000Z

330

Krypton-85 in the atmosphere  

E-Print Network (OSTI)

Measurement results are presented on 85Kr content in the atmosphere over the European part of Russia in 1971-1995 based on the analysis of the commercial krypton, which is separated from air by industrial plants. Our results are by 15 per cent lower then 85Kr activites observed over West Europe. According our prediction by 2030 85Kr content in the atmosphere over Europe will amount to 1,5-3 Bq in m3 air. Average 85Kr release to the atmosphere from regeneration of spent nuclear fuel (SNF) is estimated, some 180 TBq per a ton SNF. It is advisable to recommence monitoring of 85Kr content within Russia.

Korsakov, A T

2013-01-01T23:59:59.000Z

331

Spark gap switch with spiral gas flow  

DOE Patents (OSTI)

A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

Brucker, J.P.

1988-03-23T23:59:59.000Z

332

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

333

Discovery of carbon monoxide in the upper atmosphere of Pluto  

E-Print Network (OSTI)

Pluto's icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the...

Greaves, J S; Friberg, P

2011-01-01T23:59:59.000Z

334

1762 OPTICS LETTERS / Vol. 24, No. 23 / December 1, 1999 Methane concentration and isotopic composition  

E-Print Network (OSTI)

and in determining water- vapor levels in natural-gas distribution systems. In these experiments a QC laser designed composition measurements with a mid-infrared quantum-cascade laser A. A. Kosterev, R. F. Curl, and F. K spectroscopy is known to be an effective tool for monitoring atmospheric trace-gas species. The demonstrated

335

A Computational Thermodynamic Analysis of Atmospheric ...  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... The vacuum atmosphere is typically 0.1 atm. However, the vacuum atmosphere creates two major problems: air leakage and batch operation to ...

336

Photovoltaic concentrator initiative: Concentrator cell development  

DOE Green Energy (OSTI)

This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

Wohlgemuth, J.H.; Narayanan, S. [Solarex Corp., Frederick, MD (US)

1993-05-01T23:59:59.000Z

337

Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to...

338

Concentrator Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use...

339

Concentrating Solar Power  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

340

Automated gas chromatography  

DOE Patents (OSTI)

An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

1999-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Workshop in Atmospheric Predictability  

Science Conference Proceedings (OSTI)

A workshop on the subject of atmospheric predictability was held during 23-25 April 2001 at the Naval Postgraduate School in Monterey, California. Of primary concern was the nature of forecast uncertainty due to initial conditionuncertainty of ...

Ronald M. Errico; Rolf Langland; David P. Baumhefner

2002-09-01T23:59:59.000Z

342

(Chemistry of the global atmosphere)  

SciTech Connect

The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

Marland, G.

1990-09-27T23:59:59.000Z

343

Precursors to atmospheric blocking events  

E-Print Network (OSTI)

Atmospheric blocking events disturb synoptic-scale features from their normal eastward progression, causing anomalous weather conditions for the duration of the blocking event. The essence of blocking can be captured by ...

Marino, Garrett P

2009-01-01T23:59:59.000Z

344

Automated Measurements of Atmospheric Visibility  

Science Conference Proceedings (OSTI)

The concept of using a solid-state, linear-array imaging device coupled with computerized scene analysis and display to measure daytime atmospheric visibility is described. Computer software is implemented for routine conversion of observed ...

W. Viezee; W. E. Evans

1983-08-01T23:59:59.000Z

345

The Navy's Operational Atmospheric Analysis  

Science Conference Proceedings (OSTI)

In January of 1988, significant upgrades were made to the Navy Operational Global Atmospheric Prediction System (NOGAPS). Among these improvements was the implementation of a multivariate optimum interpolation analysis scheme. Since that time, ...

James S. Goerss; Patricia A. Phoebus

1992-06-01T23:59:59.000Z

346

Stochastic Simulation of Atmospheric Trajectories  

Science Conference Proceedings (OSTI)

Methods are presented for generating an ensemble of synthetic atmospheric trajectories. These include methods for a set of independent trajectories, and methods for a correlated set of sequential trajectories. The models incorporate first-order ...

Mitchell J. Small; Perry J. Samson

1983-02-01T23:59:59.000Z

347

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of China’s atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

348

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

349

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

350

Detecting of Coal Gas Weak Signals Using Lyapunov Exponent under Strong Noise Background  

Science Conference Proceedings (OSTI)

In coal gas monitoring system, the early detecting of gas concentration is key technique for preventing the gas explosion because the coal gas signals are very weak under strong noise background in mining digging laneway. In this paper, the coal gas ... Keywords: Coal gas, weak signals, coal mine underground, Lyapunov exponent, Duffing chaotic oscillator

Ma Xian-Min

2013-01-01T23:59:59.000Z

351

Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform  

SciTech Connect

Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

1993-09-01T23:59:59.000Z

352

The formation of strong electric fields and volumetric charges in the Solar atmosphere  

E-Print Network (OSTI)

The processes occurring in the solar atmosphere are diverse and depend on many important factors. For example, from magnetic fields, their sudden changes, from emissions of substance from the depths of the Sun, distribution of shock waves and plasma jets, etc. The paper describes the model of formation of the charged volumes of gas in solar atmosphere, which is called solar "storm clouds" by analogy with terrestrial storm clouds. The model will be based on the theory ionization equilibrium and the Saha equation.

Sarsembaeva, A T; Kato, K

2012-01-01T23:59:59.000Z

353

Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head  

NLE Websites -- All DOE Office Websites (Extended Search)

Baring Head Baring Head Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head graphics Graphics data Data Investigators M.R. Manning, A.J. Gomez, K.P. Pohl National Institute of Water and Atmospheric Research, Ltd., Climate Division, Gracefield Road, Gracefield, P.O. Box 31-311, Lower Hutt, New Zealand Period of Record 1970-93 Methods Determinations of atmospheric CO2 mixing ratios are made using a Siemens Ultramat-3 nondispersive infrared (NDIR) gas analyzer. The NDIR CO2 analyzer is connected via a gas manifold consisting of stainless steel tubing and computer-controlled solenoid switches to 12 gas cylinders and 2 sample air lines. The NDIR analyzer compares ambient air CO2 mixing ratios relative to known CO2 mixing ratios in tanks of compressed reference gases.

354

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

355

Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-12-31T23:59:59.000Z

356

Natural gas and efficient technologies: A response to global warming  

DOE Green Energy (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

357

WIPP Gas-Generation Experiments  

DOE Green Energy (OSTI)

An experimental investigation was conducted for gas generation in contact-handled transuranic (CH TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750 ml headspace in each vessel was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure estimated in the repository were it to be inundated. The temperature was maintained at the expected 30°C. The test program objective was to measure the quantities and species of gases generated by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6 1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. Up to 4.2% hydrogen, by volume, was measured. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in vessels containing carbon steel. Visual examination of carbon-steel coupons confirmed the correspondence between the extent of observable corrosion and hydrogen generation. Average corrosion penetration rates in carbon-steel of up to 2.3 microns per year were deduced. Conversion of carbon to carbon dioxide was calculated to be as high as 4.7 µg mol/yr/g carbon. Carbon monoxide was detected in only two waste compositions, and methane was detected in only one. In all three of these cases, the concentrations of these lesser gases detected were barely above the detection limits. No hydrogen sulfide was ever detected. Initial rates of hydrogen generation measured in the carbon-steel-bearing wastes during the first year of testing did not always correspond to rates measured over the longer term. Compared to the long-term trends, the initial gas-generation rates for some waste types were higher, for some lower, and for others remained constant. Although carbon-steel corrosion was clearly the dominant hydrogen generator, the rates of generation were found to be reduced in test vessels where the same quantity of carbon steel was co-mingled with other waste types. This is a beneficial phenomenon relative to performance of the WIPP repository. Statistical analyses of the results were made to quantify these negative interaction effects. Electron microscopy analyses of the carbon-steel coupons revealed that corrosion products were predominantly iron chlorides and oxides. Iron, chlorine, oxygen, uranium, magnesium, calcium, aluminum, silicon were all present in the corrosion products. No americium nor neptunium, both present in the wastes, were detected in any of the corrosion products. All

Frank S. Felicione; Steven M. Frank; Dennis D. Keiser

2007-05-01T23:59:59.000Z

358

Modern Records of Atmospheric Oxygen (O2) from Scripps Institution of  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Oxygen » Modern Records of Atmospheric Oxygen Atmospheric Trace Gases » Oxygen » Modern Records of Atmospheric Oxygen (O2) from Scripps Institution of Oceanography Modern Records of Atmospheric Oxygen (O2) from Scripps Institution of Oceanography Introduction This page provides an introduction and links to records of atmospheric oxygen (O2) concentrations at nine currently active stations. Records since 1989 are available from Scripps Pier and Alert, Alaska, although these are not continuous. Continuous records from seven stations extend back to 1993, and data for the other two stations (Cold Bay, Alaska and Palmer Station, Antarctica) are available back to the mid 1990s. These data are from remote locations or other locations situated so that they represent averages over large portions of the globe rather than local background sources.

359

Chapters 1 and 3 Notion of greenhouse gas  

E-Print Network (OSTI)

1 Chapters 1 and 3 Notion of greenhouse gas · A gas, natural or anthropogenic, that absorbs the paradox of the faint young Sun. Near-infrared greenhouse gas absorption bands (Fig. 3.13) near infrared trace gas concentrations to radiative forcing: the effects of anthropogenic greenhouse gases on global

Wolfe, Alexander P.

360

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Greenhouse Gas Management Program Overview (Fact Sheet)  

Science Conference Proceedings (OSTI)

Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF{sub 6}). Human activities have caused a rapid increase in GHG concentrations. This rising level contributes to global climate change, which contributes to environmental and public health problems.

Not Available

2011-11-01T23:59:59.000Z

362

Gas tracer composition and method  

SciTech Connect

The invention provides a method for tagging methane by adding thereto one or more of the tracer compounds sulfur hexafluoride and chloropentafluoroethane. The methane being tagged is normally being stored in underground storage fields to provide identity and proof of ownership of the gas. The two tracer compounds are readily detectable at very low concentrations by electron capture gas chromatography apparatus which can be made portable and thus suitable for use in the field.

Malcosky, N. D.; Koziar, G.

1985-11-05T23:59:59.000Z

363

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

364

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

365

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

366

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

367

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

368

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

369

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

370

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

371

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

372

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

373

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

374

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

375

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

376

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

377

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

378

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

379

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

380

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gas geochemistry of the Geysers geothermal field  

DOE Green Energy (OSTI)

Increases in gas concentrations in Central and Southeast Geysers steam are related to the decreases in pressure caused by heavy exploitation in the 1980s. When reservoir pressures in the central parts of the field decreased, high-gas steam from undrilled reservoir margins (and possibly from underlying high-temperature zones) flowed into exploited central areas. The Northwest Geysers reservoir probably lacks high-gas marginal steam and a decline in pressure may not cause a significant increase of gas concentrations in produced steam.

Truesdell, A.H.

1993-04-01T23:59:59.000Z

382

Concentrating Solar Power: Technology Overview  

Science Conference Proceedings (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

383

Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy  

Science Conference Proceedings (OSTI)

Water vapor, a triatomic gas, is a green-house gas unless it can be condensed ... Concentrated Solar Power for Producing Liquid Fuels from CO2 and H2O.

384

Spatiotemporal anomaly detection in gas monitoring sensor networks  

Science Conference Proceedings (OSTI)

In this paper, we use Bayesian Networks as a means for unsupervised learning and anomaly (event) detection in gas monitoring sensor networks for underground coal mines. We show that the Bayesian Network model can learn cyclical baselines for gas concentrations, ...

X. Rosalind Wang; Joseph T. Lizier; Oliver Obst; Mikhail Prokopenko; Peter Wang

2008-01-01T23:59:59.000Z

385

Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995  

SciTech Connect

The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.

Jones, P.D.; Wigley, T.M.L.

1995-07-21T23:59:59.000Z

386

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

387

Multichannel blind signal separation in semiconductor-based GAS sensor arrays  

Science Conference Proceedings (OSTI)

Traditional approaches to gas sensing are usually related with gas identification and classification, i.e., recognition of aromas. In this work we propose an innovative approach to determine the concentration of the single species in a gas mixture by ...

Guillermo Bedoya; Sergi Bermejo; Joan Cabestany

2005-06-01T23:59:59.000Z

388

Investigation of air supply conditions in the room of a B11type gas appliance  

Science Conference Proceedings (OSTI)

In Hungary, the prevalently used "B11" type gas appliances equipped with atmospheric burner and they have a draught hood beyond the outlet of the appliance. For the appropriate adjustment of the gas boiler to the conditions of the building, ... Keywords: CFD method, air supply, chimney, design requirements, gas appliances, numerical modelling

Lajos Barna; Róbert Goda

2007-05-01T23:59:59.000Z

389

Uptake of tritium by plants from atmosphere and soil  

Science Conference Proceedings (OSTI)

Uptake of tritiated water (HTO) by plants was examined under field conditions when tritium was available to leaves from only the atmosphere and when tritium was available from both the soil (root uptake) and the atmosphere. Maple, oak, and elm trees, planted in clean soil, were transported to a tritium-contaminated forest, where the atmospheric tritium concentration was elevated, to examine HTO uptake by tree leaves when the source was only in the atmosphere. The results partially agreed with a diffusion model of tritium uptake by plants. Discrepancies found between predicted and measured leaf HTO/air HTO ratios should be attributed to the existence of some isolated water, which is isolated from the transpiration stream in the leaves, that was not available for rapid turnover. The uptake of tritium by trees, when the source was both in the soil and atmosphere, was also examined using deciduous trees (maple and elm) resident to the tritium-contaminated forest. The results were in agreement with a prediction model.

Amano, H [Japan Atomic Energy Research Institute (JAERI); Garten Jr, Charles T [ORNL

1991-01-01T23:59:59.000Z

390

CDIAC Atmospheric Moisture Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Moisture Atmospheric Moisture CDIAC Climate Holdings Containing Atmospheric Moisture Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of dew point depression (combined with air temperature) Land 1971-2009; Ocean 1952-2008 Regional Data Sets Data Set Name Investigators Data Type/Format Period of Record Six- and Three-Hourly Meteorological Observations from 223 Former U.S.S.R. Stations (CDIAC NDP-048) V. Razuvaev et al. Surface stations; 6- and 3-hourly observations of relative humidity, vapor pressure, humidity deficit, and dew point temperature Varies by station; through 2000

391

atmospheric pressure | OpenEI  

Open Energy Info (EERE)

pressure pressure Dataset Summary Description (Abstract):Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated Unknown Keywords atmospheric pressure climate NASA SWERA UNEP Data text/csv icon Download Data (csv, 46 MiB)

392

CDIAC Atmospheric Pressure Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Atmospheric Pressure CDIAC Climate Holdings Containing Atmospheric Pressure Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Global Historical Climatology Network (GHCN); Vs. 1 (CDIAC NDP-041) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; through 1990 Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of sea-level pressure Land 1971-2009; Ocean 1952-2008 Global Historical Climatology Network (GHCN); Vs. 2 (Note: the above link takes you to NOAA's National Climatic Data Center website.) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; some through most recent month

393

National Atmospheric Release Advisory Center  

NLE Websites -- All DOE Office Websites (Extended Search)

NARAC TOC NARAC TOC The National Atmospheric Release Advisory Center, NARAC, provides tools and services to the Federal Government, that map the probable spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC provides atmospheric plume predictions in time for an emergency manager to decide if taking protective action is necessary to protect the health and safety of people in affected areas. Located at the Lawrence Livermore National Laboratory, NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of incidents involving a wide variety of hazards, including nuclear, radiological, chemical, biological, and natural emissions. In an emergency situation (if lives are at risk), event-specific NARAC

394

NREL: Energy Analysis - Concentrating Solar Power Results - Life Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Results - Life Cycle Assessment Harmonization Concentrating Solar Power Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Download the Factsheet Flowchart that shows the life cycle stages for concentrating solar power systems. For help reading this chart, please contact the webmaster. Figure 1. Process flow diagram illustrating the life cycle stages for concentrating solar power (CSP) systems. The yellow box defined by the grey line shows the systems boundaries assumed in harmonization. Enlarge image NREL developed and applied a systematic approach to review literature on life cycle assessments of concentrating solar power (CSP) systems, identify

395

Concentration with uniform flux  

SciTech Connect

A modification of a parabolic cylinder concentrator is developed to procedure uniform flux. The controlling surface equation is given. A three-dimensional ray-trace technique is used to obtain the shape of the image at the focal plane of a thin slice of the mirror. Also, the concentration distribution for uniform flux is given. 1 references, 7 figures.

Not Available

1986-01-01T23:59:59.000Z

396

System and method for detecting gas  

DOE Patents (OSTI)

A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

Chow, Oscar Ken (Simsbury, CT); Moulthrop, Lawrence Clinton (Windsor, CT); Dreier, Ken Wayne (Madison, CT); Miller, Jacob Andrew (Dexter, MI)

2010-03-16T23:59:59.000Z

397

Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics  

Science Conference Proceedings (OSTI)

An idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vorticity continually increased in the mesocyclone ...

Brian J. Gaudet; William R. Cotton; Michael T. Montgomery

2006-04-01T23:59:59.000Z

398

Trajectory Analysis of Summertime Sulfate Concentrations in the Northeastern United States  

Science Conference Proceedings (OSTI)

This paper presents a technique for quantifying the relationships between observed concentrations of atmospheric sulfate aerosol and their corresponding upstream history of sulfur dioxide emissions, wind speed and mixing height. Using reported ...

Perry J. Samson

1980-12-01T23:59:59.000Z

399

Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets  

Science Conference Proceedings (OSTI)

Emissions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. ...

G. J. Boer; V. K. Arora

2013-05-01T23:59:59.000Z

400

Vertical Tracer Concentration Profiles Measured during the Joint Urban 2003 Dispersion Study  

Science Conference Proceedings (OSTI)

An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma, during July of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from the downtown ...

Julia E. Flaherty; Brian Lamb; K. Jerry Allwine; Eugene Allwine

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low Concentration Conversion of Tritium Gas to Tritiated Water  

Science Conference Proceedings (OSTI)

Environmental Study / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

C. E. Easterly,1 H. Noguchi,2; M. R. Bennett3

402

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network (OSTI)

studies of CSP systems were reviewed and screened. Ten studies on parabolic trough and power tower passed in this analysis. Results based on the six estimates for parabolic dish technologies are reported in our journal

403

The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes  

SciTech Connect

Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.

Dillon, M B

2008-05-11T23:59:59.000Z

404

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

405

A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas  

Science Conference Proceedings (OSTI)

A computationally fast line-by-line method for the determination of atmospheric absorption is described. This method is based on the creation of an Automatized Atmospheric Absorption Atlas (4A) covering all possible plausible atmospheric ...

N. A. Scott; A. Chedin

1981-07-01T23:59:59.000Z

406

Emissions of CO/sub 2/ to the atmosphere due to U. S. A. fossil fuel consumption  

SciTech Connect

Analysis and projection of carbon dioxide emitted to the atmosphere are estimated based on the Brookhaven reference energy system. Some new results are given on carbon dioxide contribution to the atmosphere from US fossil fuel consumption by different sectors including residential, commercial, industrial and transportation. The total weight of carbon as carbon dioxide emitted to the atmosphere and the additional CO/sub 2/ concentration over background by different subsectors in the years 1977, 1980, 1985, 1990, 2000 and 2020 are presented.

Dang, V.D.; Steinberg, M.

1980-06-01T23:59:59.000Z

407

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

408

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

409

Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations  

Science Conference Proceedings (OSTI)

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol ...

John Austin; John Wilson; Feng Li; Holger Vömel

2007-03-01T23:59:59.000Z

410

Quality Assurance in Atmospheric Modeling  

Science Conference Proceedings (OSTI)

This paper summarizes a number of best practices associated with the use of numerical models of the atmosphere and is motivated by the rapid growth in the number of model users, who have a range of scientific and technical preparations. An underlying ...

Thomas T. Warner

2011-12-01T23:59:59.000Z

411

Geomagnetic Effects on Atmospheric Neutrinos  

E-Print Network (OSTI)

Geomagnetic effects distort the zenith angle distribution of sub--GeV and few--GeV atmospheric neutrinos, breaking the up--down symmetry that would be present in the absence of neutrino oscillations and without a geomagnetic field. The geomagnetic effects also produce a characteristic azimuthal dependence of the $\

Paolo Lipari; T. K. Gaisser; Todor Stanev

1998-03-09T23:59:59.000Z

412

The oceanic cycle and global atmospheric budget of carbonyl sulfide  

SciTech Connect

A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

Weiss, P.S.

1994-12-31T23:59:59.000Z

413

The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)  

NLE Websites -- All DOE Office Websites (Extended Search)

LBA (Amazon) LBA (Amazon) The Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Overview [LBA Logo] The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is an international research initiative conducted from 1995-2005 and led by Brazil. The LBA Project encompasses several scientific disciplines, or components. The LBA-ECO component focuses on the question: "How do tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in Amazonia?" The Amazon rain forest or Amazonia, is the largest remaining expanse of tropical rain forest on Earth, harboring approximately one-third of all Earth's species. Although the rain forest's area is so large that it

414

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

415

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

the dominant microbial communities in marine sediments containing high concentrations of gas hydrates Distribution of the dominant microbial communities in marine sediments...

416

Large Scale Atmospheric Chemistry Simulations for 2001: An Analysis of Ozone and Other Species in Central Arizona  

DOE Green Energy (OSTI)

A key atmospheric gas is ozone. Ozone in the stratosphere is beneficial to the biosphere because it absorbs a significant fraction of the sun's shorter wavelength ultraviolet radiation. Ozone in the troposphere is a pollutant (respiratory irritant in humans and acts to damage crops, vegetation, and many materials). It affects the Earths energy balance by absorbing both incoming solar radiation and outgoing long wave radiation. An important part of the oxidizing capacity of the atmosphere involves ozone, through a photolysis pathway that leads to the hydroxyl radical (OH). Since reaction with OH is a major sink of many atmospheric species, its concentration controls the distributions of many radiatively important species. Ozone in the troposphere arises from both in-situ photochemical production and transport from the stratosphere. Within the troposphere, ozone is formed in-situ when carbon monoxide (CO), methane (CH4), and non-methane hydrocarbons (NMHCs) react in the presence of nitrogen oxides (NO, = NO + NO2) and sunlight. The photochemistry of the stratosphere differs significantly from that in the troposphere. Within the stratosphere, ozone formation is initiated by the photolysis of 02. Stratospheric ozone may be destroyed via catalytic reactions with NO, H (hydrogen), OH, CI (chlorine) and Br (bromine), or photolysis. In the past, attempts to simulate the observed distributions of ozone (and other important gases) have focused on either the stratosphere or the troposphere. Stratospheric models either employed simplified parameterizations to represent tropospheric chemical and physical processes, or assumed the troposphere behaved as a boundary condition. Likewise, tropospheric models used simplified stratospheric chemistry and transport.

Atherton, C; Bergmann, D; Cameron-Smith, P; Connell, P; Molenkamp, C; Rotman, D; Tannahil, J

2002-10-08T23:59:59.000Z

417

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

418

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

419

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

DOE Green Energy (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

420

Concentrator silicon cell research  

Science Conference Proceedings (OSTI)

This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Organic photovoltaics and concentrators  

E-Print Network (OSTI)

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

422

Concentrator-quality evaluation  

DOE Green Energy (OSTI)

The performance of a reflecting solar concentrator depends, of course, on its surface reflectance, but there are other important factors. Among these are sun-tracking errors, surface-slope errors, and surface irregularities. It is appropriate to use statistics to describe and analyze these non-deterministic factors. A scheme for specifying the quality of a solar concentrator that includes all these effects is described and illustrated. It is believed that this procedure is optimum in the sense that it requires a minimum of measurements to obtain a complete enough description of a concentrator to determine its optical performance under any operating geometry. The specification scheme is, therefore, suitable for use in general systems analysis studies involving solar concentrators.

Biggs, F.; Vittitoe, C.N.

1978-01-01T23:59:59.000Z

423

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

424

Joined concentric tubes  

SciTech Connect

Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

2013-01-01T23:59:59.000Z

425

Process for the desulfurization of flue gas  

SciTech Connect

A process for the removal of sulfur oxides from gases is described that is comprised of the steps of contacting the gas with a cerium oxide sorbent at conditions whereby the sulfur oxides present in the gas are sorbed by the cerium oxide sorbent and regenerate the cerium oxide sorbent by contacting it with a reducing atmosphere at conditions whereby the sorbent is substantially converted to a sulfur-free state. The gas may be an exhaust gas, e.g., from an automobile or a flue gas. This invention is especially preferred for treating flue gas. In this preferred embodiment, the flue gas may be contacted with the cerium oxide sorbent at a temperature of from 300/sup 0/ to 800/sup 0/C, to form cerium sulfate and/or sulfite and the sorbent is regenerated by contacting with a reducing gas, for example, hydrogen in admixture with steam or other inert gases at a temperature of from 500/sup 0/ to 800/sup 0/C to convert the cerium sulfate or sulfite to cerium oxide. During the regeneration step, the desorbed species is initially sulfur dioxide. However, when about 50% of the sulfur is removed from the sorbent, the desorbed species becomes H/sub 2/S. Thus, the instant invention provides SO/sub 2/ and H/sub 2/S in admixture with the excess reducing gas, which can be fed conveniently to the Claus plant for conversion into elemental sulfur.

Longo, J.M.

1977-01-04T23:59:59.000Z

426

CH4 sources estimated from atmospheric observations of CH4 and its C-13/C-12 isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions  

E-Print Network (OSTI)

atmosphere, and CH 4 from fossil fuels such as coal andTermites Biomass burning Fossil Fuels Coal Natural gas andbiomass burning and fossil fuel source processes to the a

Mikaloff Fletcher, S.E.; Tans, P P; Bruhwiler, L M; Miller, J B; Heimann, M

2004-01-01T23:59:59.000Z

427

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

428

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

429

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

430

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

432

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

433

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

434

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

438

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

439

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

440

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

442

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

443

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

444

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

445

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

446

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

447

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

448

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

SciTech Connect

Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 < P{sub 0} < 0.810 MPa, 298 < T{sub 0} < 580K, 18 < U{sub 0} < 60 m/s) to characterize the overall behaviors and emissions of the turbulent premixed flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

2008-03-05T23:59:59.000Z

449

Embracing Complexity: Deciphering Origins and Transformations of Atmospheric Organics through Speciated Measurements  

E-Print Network (OSTI)

oxidation processes. Organic compounds are emitted to the atmosphere from a variety of natural and man temporal resolution are necessary to adequately observe variations in chemical composition caused analytical tools. Current gas and particle-phase instrumentation has focused on measuring organic compounds

Silver, Whendee

450

The effects of snowlines on C/O in planetary atmospheres  

E-Print Network (OSTI)

The C/O ratio is predicted to regulate the atmospheric chemistry in hot Jupiters. Recent observations suggest that some exo-planets, e.g. Wasp 12- b, have atmospheric C/O ratios substantially different from the solar value of 0.54. In this paper we present a mechanism that can produce such atmospheric deviations from the stellar C/O ratio. In protoplanetary disks, different snowlines of oxygen- and carbon-rich ices, especially water and carbon monoxide, will result in systematic variations in the C/O ratio both in the gas and in the condensed phase. In particular, between the H2O and CO snowlines most oxygen is present in icy grains - the building blocks of planetary cores in the core accretion model - while most carbon remains in the gas-phase. This region is coincidental with the giant-planet forming zone for a range of observed protoplanetary disks. Based on standard core accretion models of planet formation, gas giants that sweep up most of their atmospheres from disk gas outside of the water snowline wil...

Oberg, Karin I; Bergin, Edwin A

2011-01-01T23:59:59.000Z

451

The Extraction of the Thermal Emission Band of Methane from the Longwave Spectrum of the Atmosphere  

Science Conference Proceedings (OSTI)

The thermal emission band at 1306 cm?1 of atmospheric methane, an important greenhouse gas, is presented for a cold, clear day in January 1994. A spectrum of the nonmethane emission features has been simulated using the FASCD3P radiation code and ...

W. F. J. Evans; E. Puckrin

1995-12-01T23:59:59.000Z

452

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

Paris-Sud XI, Université de

453

GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING  

SciTech Connect

Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

Howard S. Meyer

2002-06-30T23:59:59.000Z

454

Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)  

Science Conference Proceedings (OSTI)

This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

Ramsdell, James V.; Rishel, Jeremy P.

2006-07-01T23:59:59.000Z

455

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical subsurface gas sampling and chemical and isotopic analyses can be undertaken. Integrated analysis of all measurements will d

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-12-15T23:59:59.000Z

456

CRC handbook of high resolution infrared laboratory spectra of atmospheric interest  

Science Conference Proceedings (OSTI)

The handbook presents spectra to be utilized for the detection and measurement of new constituents in the earth's atmosphere and to obtain data for common minor species with large gas amounts in the absorption cell (such as CH/sub 4/ and N/sub 2/O). These results can be applied in the identification of absorption features in atmospheric spectra determined over long atmospheric paths. The spectra were recorded with Fourier Transform Spectrometers which are more precise than grating spectrometers. Each molecule spectrum was plotted on two scales: a condensed scale covering the range from 75 to 300/cm in one frame, and an expanded view covering 20 or 10/cm per frame. Each plot contains the name of the molecule, chemical formula, the gas pressure, cell length, and estimated resolution of the spectrum.

Murcray, D.G.; Goldman, A.

1981-01-01T23:59:59.000Z

457

Radiative Forcing of Climate By Ice-Age Atmospheric Dust  

E-Print Network (OSTI)

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to e#ects of low precipitation and low atmospheric (CO 2 ) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The e#ect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45#) mean change in forcing (LGM minus modern) is estimated to be small (--0.9 to +0.2 W m ), especially when compared to nearly --20 W m due to reflection from the extended ice sheets. Although the net e#ect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (--2.2 to --3.2 W m ) to the radiative cooling e#ect of low atmospheric (CO 2 ). Thus, the largest long-term climatic e#ect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO 2 ) and high atmospheric dust loading may be mutually reinforcin...

T. Claquin; C. Roelandt; K.E. Kohfeld; S.P. Harrison; I. Tegen; I.C. Prentice; Y. Balkanski; Prentice Æ Y. Balkanski; G. Bergametti; Æ N. Mahowald; Æ M. Schulz; M. Schulz; Æ K. E. Kohfeld; Æ K. E. Kohfeld; C. Roelandt; C. Roelandt; Æ S. P. Harrison; Æ S. P. Harrison; Æ S. P. Harrison; G. Bergametti; H. Rodhe; Æ H. Rodhe; M. Hansson; M. Hansson; N. Mahowald; N. Mahowald

2003-01-01T23:59:59.000Z

458

Development of a Future Representative Concentration Pathway for Use in the IPCC 5th Assessment Earth System Model Simulations  

Science Conference Proceedings (OSTI)

The representative concentration pathway to be delivered is a scenario of atmospheric concentrations of greenhouse gases and other radiatively important atmospheric species, along with land-use changes, derived from the Global Change Assessment Model (GCAM). The particular representative concentration pathway (RCP) that the Joint Global Change Research Institute (JGCRI) has been responsible for is a not-to-exceed pathway that stabilizes at a radiative forcing of 4.5Wm-2 in the year 2100.

None

2010-12-29T23:59:59.000Z

459

Generation of Turbulence by Atmospheric Gravity Waves  

Science Conference Proceedings (OSTI)

The standard current criterion for the generation of turbulence by atmospheric gravity waves and for the associated limitation on wave growth is based upon the standard criterion for static instability of the unperturbed atmosphere, namely, that ...

Colin O. Hines

1988-04-01T23:59:59.000Z

460

AMIP: The Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

The Atmospheric Model Intercomparison Project (AMIP) is an international effort to determine the systematic climate errors of atmospheric models under realistic conditions, and calls for the simulation of the climate of the decade 1979–1988 using ...

W. Lawrence Gates

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas concentrations atmospheric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Retrieval of atmospheric properties of extrasolar planets  

E-Print Network (OSTI)

We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. Our method allows us to run millions of 1-D atmosphere models in order to cover the ...

Nikku, Madhusudhan, 1980-

2009-01-01T23:59:59.000Z

462

Interannual Variation of Global Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The relative atmospheric angular momentum (RAM) integrated over the globe is an explicit variable representing the state of the atmospheric general circulation. After removing the annual, semiannual, and higher-frequency components, the filtered ...

Tsing-Chang Chen; Joseph J. Tribbia; Ming-Cheng Yen

1996-10-01T23:59:59.000Z

463

Statistics Education in the Atmospheric Sciences  

Science Conference Proceedings (OSTI)

Analyses of atmospheric sciences data and models are heavily dependent upon statistical and probabilistic reasoning. Statistical methods have played an important role in establishing physical relationships of atmosphere-ocean-land interactions ...

Timothy J. Brown; L. Mark Berliner; Daniel S. Wilks; Michael B. Richman; Christopher K. Wilke

1999-10-01T23:59:59.000Z

464

Atmospheric Control on the Thermohaline Circulation  

Science Conference Proceedings (OSTI)

In an attempt to elucidate the role of atmospheric and oceanic processes in setting a vigorous ocean overturning circulation in the North Atlantic but not in the North Pacific, a comparison of the observed atmospheric circulation and net surface ...

Arnaud Czaja

2009-01-01T23:59:59.000Z

465

The Promise of GPS in Atmospheric Monitoring  

Science Conference Proceedings (OSTI)

This paper provides an overview of applications of the Global Positioning System (GPS) for active measurement of the Earth's atmosphere. Microwave radio signals transmitted by GPS satellites are delayed (refracted) by the atmosphere as they ...

Steven Businger; Steven R. Chiswell; Michael Bevis; Jingping Duan; Richard A. Anthes; Christian Rocken; Randolph H. Ware; Michael Exner; T. VanHove; Fredrick S. Solheim

1996-01-01T23:59:59.000Z

466

Testing and Evaluating Atmospheric Climate Models  

Science Conference Proceedings (OSTI)

Model validation is a crucial process that underpins model development and gives confidence to the results from running models. This article discusses a range of techniques for validating atmosphere models given that the atmosphere is chaotic and incompletely ...

Vicky Pope; Terry Davies

2002-09-01T23:59:59.000Z

467

Sulfuryl fluoride in the global atmosphere  

E-Print Network (OSTI)

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

Muhle, J.

468

Dynamical Processes of Equatorial Atmospheric Angular Momentum  

Science Conference Proceedings (OSTI)

The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. ...

Steven B. Feldstein

2006-02-01T23:59:59.000Z

469

VALDRIFT—A Valley Atmospheric Dispersion Model  

Science Conference Proceedings (OSTI)

VALDRIFT (valley drift) is a valley atmospheric transport, diffusion, and deposition model. The model is phenomenological—that is, the dominant meteorological processes governing the behavior of the valley atmosphere are formulated explicitly in ...

K. Jerry Allwine; Xindi Bian; C. David Whiteman; Harold W. Thistle

1997-08-01T23:59:59.000Z

470

A Spontaneously Generated Tropical Atmospheric General Circulation  

Science Conference Proceedings (OSTI)

A series of idealized atmospheric general circulation model (AGCM) experiments are presented. These experiments examine whether and how atmospheric deep moist convection, in the absence of meridional gradients in external forcing, interacts with ...

Ben P. Kirtman; Edwin K. Schneider

2000-07-01T23:59:59.000Z

471

Atmospheric Turbidity in the Polar Regions  

Science Conference Proceedings (OSTI)

Analysis is presented of 800 measurements of atmospheric monochromatic aerosol optical depth made poleward of 65° latitude. The atmosphere of the southern polar region appears to be uncontaminated but is charged with a background aerosol having ...

Glenn E. Shaw

1982-08-01T23:59:59.000Z

472

Advanced Atmospheric Modeling for Emergency Response  

Science Conference Proceedings (OSTI)

Atmospheric transport and diffusion models are an important part of emergency response systems for industrial facilities that have the potential to release significant quantities of toxic or radioactive material into the atmosphere. An advanced ...

Jerome D. Fast; B. Lance O'steen; Robert P. Addis

1995-03-01T23:59:59.000Z