Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fire and Ice: Failure at a Gas Compressor Station  

Science Conference Proceedings (OSTI)

Abstract Scope, There are more than 1,200 natural gas compressor stations in the United States. Compressor stations are an integral part of gas pipelines since  ...

2

Natural Gas Compressor Stations on the Interstate Pipeline Network:Developments Since 1996  

Reports and Publications (EIA)

This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

Information Center

2007-11-07T23:59:59.000Z

3

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

4

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

5

Supersonic gas compressor  

Science Conference Proceedings (OSTI)

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

6

High ratio recirculating gas compressor  

DOE Patents (OSTI)

A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor.

Weinbrecht, John F. (601 Oakwood Pl., NE., Albuquerque, NM 87123)

1989-01-01T23:59:59.000Z

7

High ratio recirculating gas compressor  

DOE Patents (OSTI)

A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

Weinbrecht, J.F.

1989-08-22T23:59:59.000Z

8

Multiple volume compressor for hot gas engine  

DOE Patents (OSTI)

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

9

Economics of Electric Compressors for Gas Transmission  

E-Print Network (OSTI)

Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental regulations, economics, and new compressor technology. In ozone Non-Attainment regions, it is necessary to bring gas compressors into compliance with NOx regulations, and replacement with new electric systems represents a Lowest Achievable Emission Rate (LAER) option. Outside of these regions, new electric drives as well as gas fueled reciprocating engines and turbines are being considered for replacement of older reciprocating gas engines and compressor units, based on improved operating efficiency. We review here the impacts of the Clean Air Act Amendments of 1990 and economics on the selection process for considering electric drives versus alternatives for both ozone Non-Attainment areas and Attainment areas.

Schmeal, W. R.; Hibbs, J. J.

1994-04-01T23:59:59.000Z

10

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

Cell Pump Storage Larger Reformer Natural Gas Compressor FCVPure H 2 Storage Reformer Compressor FCV Natural Gas Lipman,Storage Small Reformer Service Station Compressor Natural Gas

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

11

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

480 kg/day natural gas reformation station. The table belowReciprocating gas compressor Electrolyzer Station: Thisfor reformer-type stations (natural gas), however, is more

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

12

Assessment of Gas Turbine Compressor Health Monitoring Technologies: Interim Report  

Science Conference Proceedings (OSTI)

A major risk item in gas turbine machinery is compressor rotor/stator blade failure, which can lead to the downstream propagation of components through the compressor. Several events of this nature have occurred over the last few years, in some cases causing catastrophic damage to the entire compressor. In response to these issues, a number of compressor monitoring approaches have been proposed, with different degrees of commercial penetration and technological readiness. The simplest approach is to ...

2013-12-18T23:59:59.000Z

13

Virable speed gas-turbine drivers gain in compressor use  

SciTech Connect

Variable-speed drivers, such as gas turbines, for reciprocating compressors enhance overall energy savings and a compressor's operational flexibility. This paper presents the main design aspects of gas-turbine systems and some examples from a recent installation in Germany.

Giacomelli, E.; Bernardini, F. (Nuovo Pignone, Florence (Italy)); Andree, H. (Pipeline Engineering GmbH, Essen (DE))

1990-11-19T23:59:59.000Z

14

Electric Compressor Performance in Gas Transmission: Status Report -- November 2000  

Science Conference Proceedings (OSTI)

A project is nearing completion to evaluate a new technology, the HydroCom compressor valve actuator, for controlling flow on reciprocating compressors driven by electric motors in gas pipeline applications. The actuator is installed on suction valves on compressors and is controlled by a microprocessor to provide stepless capacity control of flow by allowing back flow through the suction valves near the start of each compression stroke. This technology provides similar control capability as an adjustabl...

2000-12-02T23:59:59.000Z

15

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

16

An investigation of real gas effects in supercritical CO? compressors  

E-Print Network (OSTI)

This thesis presents a comprehensive assessment of real gas effects on the performance and matching of centrifugal compressors operating with CO2 at supercritical conditions. The analytical framework combines first principles ...

Baltadjiev, Nikola D. (Nikola Dimitrov)

2012-01-01T23:59:59.000Z

17

Anti-polluting power plant using compressors and gas turbines  

SciTech Connect

An electric power generating plant includes at least two compressors having matched operating characteristics, alternators and turbines and boilers having combustion chambers connected to the turbines. The compressors, alternators and turbines are operatively interconnected such that during no power demand periods the compressors are driven in a series arrangement by the alternators, functioning as electric motors, to store a supply of pressurized air in an air storage tank, and during normal and peak power demand periods the turbines, supplied by the combustion chambers of the boilers, drive the compressors, functioning in parallel relationship, which feed respective ones of the boilers with enriched air and a gas recycled after expansion by one of the turbines. During the normal and peak power demand periods pressurized air previously stored in the air storage tank by the compressors is fed to the combustion chamber of one of the boilers.

Rigollot, G.A.

1977-09-20T23:59:59.000Z

18

Modernization of 50-year-old compressor station produces savings for NGPL  

Science Conference Proceedings (OSTI)

Modernization of Natural Gas Pipeline Co. of America's 50-year-old compressor Station 108 at Truro, Iowa, will save NGPL about $450,000/year in fuel costs and reduce maintenance expenses. Station modernization, which began in 1983 and was completed the following summer, was part of a longterm construction program designed to increase the efficiency of NGPL's mainline system from Beatrice, Neb., to Chicago, Truro's 10 horizontal engines - half of them more than 50 years old - were replaced with 3 highly efficient, fuel-saving 5,500-hp Cooper-Bessemer vertical engines. Five of the old horizontals were 1,750-hp Worthingtons which had accumulated 1.6 million operating hr since installation in 1931. The other five units replaced were 1.750-hp Cooper-Bessemers installed in 1948. The new supervisory control and data acquisition (SCADA) system at Station 108, designed by NGPL with Digital Equipment computer and Texas Instruments programmable logic controller (PLC), is as advanced as the engines it monitors.

Ward, C.

1986-03-17T23:59:59.000Z

19

Gas Turbine Compressor Field Repair Guideline: GE 7FA  

Science Conference Proceedings (OSTI)

This guideline is designed to assist gas turbine owners confronted with limited damage to compressor rotating blade airfoils. The guideline addresses typical damage to the airfoil tip and leading edge where a limited amount of material trimming and blending is allowable. The guideline provides an engineering basis for implementing safe repairs and avoiding possible risk of airfoil failure due to high-cycle fatigue. In-situ field repair criteria are given for each compressor row R-0 through R-17 for ...

2012-12-03T23:59:59.000Z

20

Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing  

E-Print Network (OSTI)

There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries as they confront rapid changes and new realities. New policy and economic considerations, brought on by changes in environmental and business regulations and new compressor/driver technology, are causing these gas industry companies to consider electric motors for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered because of their improved operating efficiencies and lower costs. The Electric Power Research Institute (EPRI), working through the EPRI Chemicals and Petroleum Office, is providing leadership in the efforts to further dialogue among gas companies, electric utilities, and vendors. EN strategists is working closely with EPRI, the electric utilities, and the gas transmission companies to promote consideration of The Electric Option.

Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas compressor with side branch absorber for pulsation control  

SciTech Connect

A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

Harris, Ralph E. (San Antonio, TX); Scrivner, Christine M. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX)

2011-05-24T23:59:59.000Z

22

FIRE EXTINGUISHING OF GAS TURBO COMPRESSOR ...  

Science Conference Proceedings (OSTI)

... This process is two-phase flow of water-gas mixture in pipeline and atomization water by pressure 30-35 bar to drops average size 50 µm moving ...

2011-10-27T23:59:59.000Z

23

A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor  

E-Print Network (OSTI)

A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

1998-01-01T23:59:59.000Z

24

Miniature solid-state gas compressor  

DOE Patents (OSTI)

A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

Lawless, William N. (518 Illinois Ct., Westerville, OH 43081); Cross, Leslie E. (401 Glenn Rd., State College, PA 16801); Steyert, William A. (c/o Oakhurst Dr., R.D. 1, Box 99, Center Valley, PA 18034)

1985-01-01T23:59:59.000Z

25

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

26

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

27

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

28

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

29

The design, selection, and application of oil-free screw compressors for fuel gas service  

SciTech Connect

Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines. The screw compressor can usually be designed to meet most of the gas flow rates and pressure conditions generally required for such installations. To an ever-increasing degree, alternative sources are being found for the fuel gas supply, such as coke-oven gas, blast-furnace gas, flare gas, landfill gas, and synthesis gas from coal gasification or from pyrolysis. A feature of the oil-free screw compressor when such gases are being considered is the isolation of the gas compression space from the bearing and gear lubrication system by using positive shaft seals. This ensures that the process gas cannot be contaminated by the lubricating oil, and that there is not risk of loss of lubricant viscosity by gas solution in the oil. This feature enables the compressed gas to contain relatively high levels of particulate contamination without danger of ``sludge`` formation, and also permits the injection of water or liquid solvents into the compression space, to reduce the temperature rise due to the heat of compression, or to ``wash`` any particulate manner through the compressor.

Lelgemann, K.D. [MAN Gutehoffnungshuette AG, Oberhausen (Germany)

1995-01-01T23:59:59.000Z

30

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

Chen, G.; Beale, W.T.

1990-04-03T23:59:59.000Z

31

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

1990-01-01T23:59:59.000Z

32

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

diameter pipeline with the capacity to transport 477 million cubic feet (MMcf) of natural gas per day. Facilities would also include a compressor station, 2 meter stations, 19...

33

Natural Gas Compressor Stations on the Interstate Pipeline ...  

U.S. Energy Information Administration (EIA)

facilities, emergency shutdown systems, and an on-site computerized flow control and dispatch system that maintains the operational integrity of the ...

34

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

35

Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects  

E-Print Network (OSTI)

The fouling of axial flow compressors and turbines is a serious operating problem in gas turbine engines. These prime movers are being increasingly used in cogeneration applications and with the large air mass flow rate (e.g. 633 Lbs/Sec for a 80 MWe gas turbine) foulants even in the ppm range can cause deposits on the blading resulting in severe performance decrements. This is a common operating problem experienced by almost all operators of gas turbines. The effect of compressor fouling is a drop in airflow and a drop in compressor isentropic efficiency. Fouling of the axial compressor results in a drop in output and thermal efficiency of the system. In some cases, fouling can also result in surge problems as its effect is to move the compressor surge line to the right i.e. towards the operating line. This paper discusses the mechanism of fouling and the aerodynamic and thermodynamic effects. This paper also discusses types of foulants commonly experienced, detection methods and filtration techniques. A brief discussion of turbine fouling, which is particularly relevant when heavy fuels are utilized, is also discussed.

Meher-Homji, C. B.

1987-09-01T23:59:59.000Z

36

Gas Turbine Compressor Field Repair Guideline: GE 9FA  

Science Conference Proceedings (OSTI)

Rotating compressor blades are subject to foreign object damage, corrosion, erosion, rubbing, and occasionally clashing, causing localized bent edges, dents, grooves, pits, cracks, and thinning. Removal and replacement of damaged blades can require extensive disassembly and associated outage time. It is general practice to address these commonly occurring issues by trimming or blending out the damaged area. Any modification of an original blade design should carefully consider structural impacts, ...

2013-11-25T23:59:59.000Z

37

Gas Turbine Compressor Field Repair Guideline: GE 7FA  

Science Conference Proceedings (OSTI)

Rotating compressor blades are subject to foreign object damage, corrosion, erosion, rubbing, and occasionally clashing, causing localized bent edges, dents, grooves, pits, cracks, and thinning. Removal and replacement of damaged blades can require extensive disassembly and associated outage time. It is general practice to address these commonly occurring issues by trimming or blending out the damaged area. Any modification of an original blade design should carefully consider structural impacts, ...

2013-12-18T23:59:59.000Z

38

Refueling stations for natural gas vehicles  

DOE Green Energy (OSTI)

The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

1991-01-01T23:59:59.000Z

39

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

40

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

operational by April 1, 2010. Tennessee Gas Pipeline Company issued a notice of an emergency repair at its Compressor Station 827 near Alexandria, Louisiana. The pipeline...

42

INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL  

Science Conference Proceedings (OSTI)

The objective of this Direct Surge Control project was to develop a new internal method to avoid surge of pipeline compressors. This method will safely expand the range and flexibility of compressor operations, while minimizing wasteful recycle flow at the lower end of the operating envelope. The approach is to sense the onset of surge with a probe that directly measures re-circulation at the impeller inlet. The signals from the probe are used by a controller to allow operation at low flow conditions without resorting to a predictive method requiring excessive margin to activate a recycle valve. The sensor developed and demonstrated during this project was a simple, rugged, and sensitive drag probe. Experiments conducted in a laboratory compressor clearly showed the effectiveness of the technique. Subsequent field demonstrations indicated that the increase in range without the need to recycle flow was on the order of 19% to 25%. The cost benefit of applying the direct surge control technology appears to be as much as $120 per hour per compressor for operation without the current level of recycle flow. This could amount to approximately $85 million per year for the U.S. Natural Gas Transmission industry, if direct surge control systems are applied to most pipeline centrifugal compressors.

Robert J. McKee; Shane P. Siebenaler; Danny M. Deffenbaugh

2005-02-25T23:59:59.000Z

43

Temperature stratified turbine compressors  

SciTech Connect

A method and apparatus for improving the efficiency of a compressor of a gas turbine engine is disclosed. The inlet gas entering the compressor is stratified into two portions of different temperatures. The higher temperature gas is introduced adjacent the outer tipe of the compressor blades to reduce the relative Mach number of the flow at the area.

Earnest, E.R.; Passinos, B.

1979-01-09T23:59:59.000Z

44

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

45

Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow  

SciTech Connect

Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

Steward, W. Gene

1999-11-14T23:59:59.000Z

46

Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow  

DOE Green Energy (OSTI)

Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

Steward, W. Gene

1999-11-14T23:59:59.000Z

47

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

48

National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota  

Science Conference Proceedings (OSTI)

A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

2008-02-01T23:59:59.000Z

49

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations

50

INCREASED FLEXIBILITY OF TURBO-COMPRESSORS IN NATURAL GAS TRANSMISSION THROUGH DIRECT SURGE CONTROL  

Science Conference Proceedings (OSTI)

This preliminary phase 1 report summarizes the background and the work on the ''Increased Flexibility of Turbo-Compressors in Natural Gas Transmission through Direct Surge Control'' project to date. The importance of centrifugal compressors for natural gas transmission is discussed, and the causes of surge and the consequences of current surge control approaches are explained. Previous technology development, including findings from early GMRC research, previous surge detection work, and selected publications, are presented. The project is divided into three Phases to accomplish the project objectives of verifying near surge sensing, developing a prototype surge control system (sensor and controller), and testing/demonstrating the benefits of direct surge control. Specification for the direct surge control sensor and controller developed with guidance from the industry Oversight Committee is presented in detail. Results of CFD modeling conducted to aid in interpreting the laboratory test results are shown and explained. An analysis of the system dynamics identified the data sampling and handling requirements for direct surge control. A detailed design process for surge detection probes has been developed and explained in this report and has been used to prepare drag probes for the laboratory compressor test and the first field test. The surge detection probes prepared for testing have been bench tested and flow tested to determine and calibrate their sensitivity to flow forces as shown in data presented in this report. The surge detection drag probes have been shown to perform as expected and as required to detect approaching surge. Laboratory test results of surge detection in the SwRI centrifugal compressor demonstrated functionality of the surge detection probes and a change in the impeller inlet flow pattern prior to surge. Although the recirculation cannot be detected because of the specific geometry of this compressor, there are changes that indicate the approach of surge that can be detected. Preparations for a field test had been completed at one point in the project. However, a failure of the surge probe wiring just inside the compressor case has caused a delay in the field testing. Repairs for the wiring in the compressor have been scheduled and the field test will take place shortly after the repairs.

Robert J. McKee

2003-05-01T23:59:59.000Z

51

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

52

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

53

Design and off-design analysis of a centrifugal compressor for natural gas.  

E-Print Network (OSTI)

??Centrifugal is the main compressor type used in process industries and pipelines. This work presents the design of a centrifugal compressor in three steps. The… (more)

Sandro Kojiro Kurauchi

2012-01-01T23:59:59.000Z

54

Optimization Online - Optimal structure of gas transmission trunklines  

E-Print Network (OSTI)

Jan 7, 2009 ... Suppose a gas pipeline is to be designed to transport a specified ... the number of compressor stations, the lengths of pipeline segments ...

55

Supersonic compressor  

DOE Patents (OSTI)

A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-02-26T23:59:59.000Z

56

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

57

Variable Screw Compressor, Variable Screw Compressor Suppliers ...  

U.S. Energy Information Administration (EIA)

Variable Screw Compressor Suppliers & air compressor Manufacturers Directory. Source Top Quality Variable Screw Compressor Suppliers, air ...

58

Hydride compressor  

DOE Patents (OSTI)

Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

Powell, James R. (Wading River, NY); Salzano, Francis J. (Patchogue, NY)

1978-01-01T23:59:59.000Z

59

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

60

Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report  

Science Conference Proceedings (OSTI)

An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

NONE

1995-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat-actuated metal hydride hydrogen compressor testing  

SciTech Connect

Electric utilities use hydrogen for cooling turbine generators. The majority of the utilities purchase the gas from industrial gas markets. On-site electrolytic hydrogen production may prove advantageous both logistically and economically. In order to demonstrate this concept, Public Service Electric and Gas Co. (PSE and G) and EPRI installed an electrolyzer at the Sewaren (NJ) station. To compress the gas, PSE and G purchased a heat-activated metal hydride compressor from Ergenics, Inc. This report describes closed- and open-cycle tests conducted on this metal hydride hydrogen compressor. Test systems, plans, methodologies, and results are presented. A brief discussion evaluates these performance results, addresses some of the practical problems involved with electrolyzer-compressor interface, and compares the costs and benefits of metal hydride versus mechanical hydrogen compression for utility generator cooling.

Piraino, M.; Metz, P.D.; Nienke, J.L.; Freitelberg, A.S.; Rahaman, R.S.

1985-09-01T23:59:59.000Z

62

Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation  

SciTech Connect

Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute were analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.

Flathers, M.B.; Bache, G.E.

1999-10-01T23:59:59.000Z

63

Development of turbine driven centrifugal compressors for non-condensible gas removal at geothermal power plants. Final report  

SciTech Connect

Initial field tests have been completed for a Non-Condensible Gas (NCG) turbocompressor for geothermal power plants. It provides alternate technology to steam-jet ejectors and liquid-ring vacuum pumps that are currently used for NCG removal. It incorporates a number of innovative design features to enhance reliability, reduce steam consumption and reduce O&M costs. During initial field tests, the turbocompressor has been on-line for more than 4500 hours as a third stage compressor at The Geysers Unit 11 Power Plant. Test data indicates its overall efficiency is about 25% higher than a liquid-ring vacuum pump, and 250% higher than a steam-jet ejector when operating with compressor inlet pressures of 12.2 in-Hga and flow rates over 20,000 lbm/hr.

1997-12-16T23:59:59.000Z

64

Problem of sludge formation in benzol division solar oil and ''carbonization'' in coke oven gas compressor systems  

Science Conference Proceedings (OSTI)

A discussion is presented on the problem and possible causes of sludge formation in the return solar oil in benzene recovery units and on the problem of deposits in the pipe systems after coke oven gas compressors. The possible entrainment of fine particles of coal charge in the solar oil was also discussed. Sedimentation of the sludge was recommended with daily removal of the settled sludge. A chemical analysis of the deposits in the piping system of the coke oven gas and the coal charge revealed that the deposits were not caused by entrained coal particles. (JMT)

Rezunenko, Y.I.

1982-01-01T23:59:59.000Z

65

Windback seal design for gas compressors: a numerical and experimental study  

E-Print Network (OSTI)

Seals are considered one of the important flow elements of a turbomachinery device. Traditional labyrinth seals have proven their performance functionality by reducing leakage rates. Significant improvements on labyrinth seal functionality were obtained through altering the design geometry of labyrinth seals to prevent contamination across a seal and maintaining small leakage flowrates. This results in a windback seal that has only one tooth which continuously winds around the shaft like a screw thread. These seals are used in gas compressors to isolate the gas face seal from bearing oil. A purge gas is passed through the seal into the bearing housing. The helical design allows the seal to clear itself of any oil contamination. Windback seal performance is controlled through changing the seal geometry. A 2D graphical design tool for calculating the total and cavity leakage flowrates for windback seals is introduced. The effectiveness of the Fluent CFD (Computational Fluid Dynamics) commercial code to accurately predict the leakage rate for windback seals was evaluated. The objective is to determine if CFD simulations can be used along with a few experimental tests to study windback seals of this design with air as the working fluid. Comparison of measurement and predictions for a windback seal using the �º-�µ turbulence model with enhanced wall treatment functions show predictions and measurements comparing very well with a maximum difference of 5% for leakage rate. Similarly, the leakage rate of the tested smooth seal compares favorably with two dimensional CFD predictions, with a difference of 2%-11% and 8%-15% using laminar and �º-�µ turbulent flow models, respectively. The variation of leakage with shaft speed and pressure ratio across the seals is accurately predicted by the CFD simulations. Increasing the rotor speed to 15000 rpm increases the measured leakage flowrate for the windback seal by 2% at high differential pressure and 4.5% at low differential pressure, and decreases it by 10 % for the smooth seal. The effects of seal clearance, tooth pitch, cavity depth and the tooth number of starts on leakage flowrate, velocity and pressure distributions were studied numerically for three differential pressures and four rotor speeds.

Al-Ghasem, Adnan Mahmoud

2003-05-01T23:59:59.000Z

66

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

67

Flue Gas Conditioning Trial at Rochester Gas and Electric Russell Station  

Science Conference Proceedings (OSTI)

This report presents data and results of a full-scale evaluation of two flue gas conditioning agents considered as upgrades for the existing electrostatic precipitators (ESPs) at Rochester Gas and Electric's (RG&E) Russell Station. The flue gas additives evaluated were anhydrous ammonia and a proprietary chemical agent, ADA-23.

1999-04-06T23:59:59.000Z

68

Development of a Centrifugal Hydrogen Pipeline Gas Compressor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Francis A. Di Bella, P.E. Concepts ETI, Inc., d.b.a. Concepts NREC 285 Billerica Road, Suite 102 Chelmsford, MA 01824-4174 Phone: (781) 937-4718 Email: fdibella@conceptsnrec.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18059 Subcontractors: Texas A&M University, College Station, TX HyGen Industries, Eureka, CA Project Start Date: June 1, 2008 Project End Date: May, 2013 Overall Project Objectives Develop and demonstrate an advanced centrifugal * compressor system for high-pressure hydrogen pipeline transport to support DOE's strategic hydrogen

69

NGPL Louisiana station nears completion  

Science Conference Proceedings (OSTI)

Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

Not Available

1990-10-22T23:59:59.000Z

70

Centrifugal compressor identification using LOLIMOT  

Science Conference Proceedings (OSTI)

In this paper, the dynamics of a nonlinear centrifugal compressor which is used in compression of natural gas process, is identified using Locally Linear Model Tree (LOLIMOT) algorithm. Real data were collected from the performance maps of the system ... Keywords: LOLIMOT, centrifugal compressor, identification, neuro-fuzzy models, nonlinear, performance maps

Najmeh Daroogheh

2009-06-01T23:59:59.000Z

71

Fog Cooling, Wet Compression and Droplet Dynamics In Gas Turbine Compressors.  

E-Print Network (OSTI)

??During hot days, gas turbine power output deteriorates significantly. Among various means to augment gas turbine output, inlet air fog cooling is considered as the… (more)

Khan, Jobaidur Rahman

2009-01-01T23:59:59.000Z

72

Microsoft Word - 3Q2011Gas_Compress  

Office of Legacy Management (LM)

2011 Purpose: Natural gas from local wells in the Parachute field is sent by pipelines to the Holmes Mesa Compressor Station in Garfield County, Colorado. The U.S....

73

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

the issuance of an OFO. Tennessee Gas Pipeline Company announced on April 22 that emergency repairs need to be made to its Compressor Station 409A near Alamo, Texas. The...

74

Standing wave compressor  

DOE Green Energy (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

75

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

76

Semi-active compressor valve  

SciTech Connect

A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

Brun, Klaus (Helotes, TX); Gernentz, Ryan S. (San Antonio, TX)

2010-07-27T23:59:59.000Z

77

Semi-active compressor valve  

DOE Patents (OSTI)

A method and system for fine-tuning the motion of suction or discharge valves associated with cylinders of a reciprocating gas compressor, such as the large compressors used for natural gas transmission. The valve's primary driving force is conventional, but the valve also uses an electromagnetic coil to sense position of the plate (or other plugging element) and to provide an opposing force prior to impact.

Brun, Klaus (Helotes, TX); Gernentz, Ryan S. (San Antonio, TX)

2010-07-27T23:59:59.000Z

78

Energy Savings for Centrifugal Compressors  

E-Print Network (OSTI)

Current design improvements of both the rotating and stationary aerodynamic components of centrifugal compressors can greatly increase the efficiency of vintage machines. A centrifugal compressor built in the 1970's or 1980's might have an external polytropic efficiency in the high 70's, whereas a newer compressor might have an efficiency over 85 percent. Centrifugal compressors are designed to operate at a best efficiency point (BEP) shown on its performance map. Whether a centrifugal compressor is operating at its BEP, near choke, near the surge point, or in recycle, the operator may be able to significantly reduce the total energy consumption by rerating the installed machine with new, higher efficiency aero components. Whether the compressor is driven by an electric motor, steam turbine or gas turbine, costs for operating these drivers is ever increasing and how much it may go up in the future is uncertain. With a greater worldwide focus on protecting the environment by reducing greenhouse gases, improving the efficiency of an installed centrifugal compressor by rerating can go a long way toward that goal. This paper will explain the reasons for rerating a compressor and provide details of the rerate process.

Fisher, D.

2011-01-01T23:59:59.000Z

79

High efficiency compressor uses direct drive  

Science Conference Proceedings (OSTI)

This article focuses on the high efficiency of a compressor which uses only direct drive. This compressor was evaluated by judges and won Top Honors in the 1982 Chemical Processing magazine Vaaler Awards category of compressors, blowers and fans. Applications for the compressor include combustion air, process air and gas booster, incineration, fermentation, and vacuum filtration systems. In addition to a 50% reduction in power comsumption, the use of the compressor eliminated the need for a water seal, thus saving 200 gpm of water. And, since the elimination of the water seal reduced the necessary downtime for seal maintenance, on stream time was increased by 5%.

Not Available

1982-11-01T23:59:59.000Z

80

Analysis on Current Status of the Gas Filling Station Networks Website |  

Open Energy Info (EERE)

Analysis on Current Status of the Gas Filling Station Networks Website Analysis on Current Status of the Gas Filling Station Networks Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis on Current Status of the Gas Filling Station Networks Website Focus Area: Natural Gas Topics: Potentials & Scenarios Website: www.gashighway.net/default.asp?sivuID=25922&component=/modules/bbsView Equivalent URI: cleanenergysolutions.org/content/analysis-current-status-gas-filling-s Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website provides country level analyses of natural gas fueling station networks, the need for further fueling stations and their optimal locations in certain countries. Proposed network expansion strategies are based on available information on vehicle travel patterns and geographic

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuzzy Logic Control of Compressor Surge in a Turbojet Engine Model.  

E-Print Network (OSTI)

??Stable operation of a gas turbine engine's axial compressor is constrained by compressor surge and rotating stall. In order to avoid these flow instabilities, an… (more)

Laderman, Mark

2004-01-01T23:59:59.000Z

82

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

83

Hydrogen Station & ICE Vehicle Operations and Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

psi (total both tanks) Boost Compressor Main Compressor CNG Output Pilot Plant - CNG Substation Street Service Low Pressure Natural Gas High Pressure Storage (3 levels) Pilot Plant...

84

Gas composition issues and implications for natural gas vehicles and fueling stations. Topical report, October 1993-June 1996  

SciTech Connect

This report provides a general overview of gas composition issues related to compressed natural gas for vehicles, recent research, and practical experience gained in the field. Its purpose is to summarize and communicate information and, where possible, to help fuel providers, original equipment manufacturers, and other members of the industry to formulate appropriate responses to emerging challenges and issues. Three critical topics are covered: compressor oil carryover, moisture content, and elevated levels of higher hydrocarbons. Where appropriate, economic analyses and general guidelines are provided to indicate alternative approaches to fuel issues and relative costs.

Schaedel, S.; Czachorski, M.; Rowley, P.; Richards, M.; Shikari, Y.

1996-07-01T23:59:59.000Z

85

Axial Compressor Performance Maintenance Guide Update  

Science Conference Proceedings (OSTI)

To deal with volatile fuel prices and growing pressures to limit greenhouse gas (GHG) emissions, combustion turbine (CT) operators are striving for maximum fuel efficiency. The axial compressor is a leading cause of short term and long term CT efficiency losses due to fouling, corrosion, and erosion. This report reviews the technology being advanced for compressor maintenance to achieve improved compressor and the CT efficiencies.

2005-02-21T23:59:59.000Z

86

Method and apparatus for starting supersonic compressors  

DOE Patents (OSTI)

A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

Lawlor, Shawn P

2013-08-06T23:59:59.000Z

87

Research on Site Selection for Urban Compressed Natural Gas Station  

Science Conference Proceedings (OSTI)

By using basic principle of Quality Function Deployment (QFD) methodology, this article tries to make the site selection for urban CNG station as a design of new product, firstly Considers the requirements of different participants systematically, secondly ... Keywords: CNG station, location planning, Quality Function Deployment (QFD), House of Quality (HOQ)

Liang Tao; Li Qingsong; Zhang Xuejin

2010-05-01T23:59:59.000Z

88

Simulating the daily gasoline price-setting behaviour of gas stations in Cincinnati by agent-based modeling.  

E-Print Network (OSTI)

??In the retail gasoline market, gas stations as independent entities set gas prices according to a number of factors related to global and local economic… (more)

Zhou, Li

2009-01-01T23:59:59.000Z

89

Assessing the Effect of Mercury Emissions from Contaminated Soil at Natural Gas Gate Stations  

Science Conference Proceedings (OSTI)

The effect of mercury emissions from contaminated soil at natural gas distribution stations is presented. The effects were estimated as part of a risk assessment that included inhalation and multimedia exposure pathways. The purpose of the paper ...

A. Roffman; K. Macoskey; R. P. Shervill

1995-03-01T23:59:59.000Z

90

Model relaxations for the fuel cost minimization of steady-state gas pipeline networks  

Science Conference Proceedings (OSTI)

Natural gas, driven by pressure, is transported through pipeline network systems. As the gas flows through the network, energy and pressure are lost due to both friction between the gas and the pipes' inner wall, and heat transfer between the gas and ... Keywords: Compressor stations, Lower bounds, Natural gas, Nonconvex objective, Pipelines, Steady state, Transmission networks

Suming Wu; R. Z. Ríos-Mercado; E. A. Boyd; L. R. Scott

2000-01-01T23:59:59.000Z

91

A comparison of automation techniques for optimization of compressor scheduling  

Science Conference Proceedings (OSTI)

Compressor selection is one of the primary functions in operation of natural gas pipelines, and a major concern of the task is to minimize operating costs. This study presents a comparison of three automation techniques for compressor selection: mixed ... Keywords: Compressor selection optimization, Expert system, Genetic algorithms, Mixed integer linear programming

H. H. Nguyen; V. Uraikul; C. W. Chan; P. Tontiwachwuthikul

2008-03-01T23:59:59.000Z

92

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

93

China Ga Air Compressor, China Ga Air Compressor Products ...  

U.S. Energy Information Administration (EIA)

China Ga Air Compressor, China Ga Air Compressor Suppliers and Manufacturers Directory - Source a Large Selection of Ga Air Compressor Products at ...

94

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

95

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

96

10 Solar powerplants. gas turbines packaged for offshore gas platform  

SciTech Connect

Weatherby Engineering Co. neared completion recently of 8 modules mounting a total of 9 gas turbine engines, all destined for an offshore gas injection platform. The platform capacity is 80 MMcfd. The inlet pressure on the platform is 45 psig and the discharge pressure is 3,410 psig. The system constitutes a complete gas dehydration and compressor station and the modules house the gas turbines which drive the centrifugal and reciprocating compressors for gas injection service, and 2 gas turbine-powered generating units to supply electric power for the platform complex. The gas turbines and compressors are installed in sound attenuated enclosures. These complete power packages are built up by Solar and supplied to Weatherby for the project. The complete module is described.

Alberte, T.

1976-05-01T23:59:59.000Z

97

Free piston inertia compressor  

DOE Patents (OSTI)

A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

Richards, William D. C. (King of Prussia, PA); Bilodeau, Denis (Phoenixville, PA); Marusak, Thomas (Loudenville, NY); Dutram, Jr., Leonard (Trappe, PA); Brady, Joseph (Telford, PA)

1981-01-01T23:59:59.000Z

98

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

99

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE  

Science Conference Proceedings (OSTI)

This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

2005-10-27T23:59:59.000Z

100

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

102

Method and apparatus for starting supersonic compressors  

DOE Patents (OSTI)

A supersonic gas compressor. The compressor includes aerodynamic duct(s) situated on a rotor journaled in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. The convergent inlet is adjacent to a bleed air collector, and during acceleration of the rotor, bypass gas is removed from the convergent inlet via a collector to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is eliminated.

Lawlor, Shawn P. (Bellevue, WA)

2012-04-10T23:59:59.000Z

103

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

104

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

105

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

Natural gas • Air High-pressure hydrogen compressor Compressed hydrogen storageNatural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor Compressed hydrogen storage

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

106

Decision of optimal scheduling scheme for gas field pipeline network based on hybrid genetic algorithm  

Science Conference Proceedings (OSTI)

A mathematical model of optimal scheduling scheme for natural gas pipeline network is established, which takes minimal annual operating cost of compressor stations as objective function after comprehensively considering the resources of gas field, operating ... Keywords: differential evolution algorithm, genetic algorithm, natural gas pipeline network, optimization, scheduling scheme

Wu Liu; Min Li; Yi Liu; Yuan Xu; Xinglan Yang

2009-06-01T23:59:59.000Z

107

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network (OSTI)

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

108

Energy conversion using thermal transpiration : optimization of a Knudsen compressor  

E-Print Network (OSTI)

Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

Klein, Toby A. (Toby Anna)

2012-01-01T23:59:59.000Z

109

Textile - Compressor Trip Investigation  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of an 800 HP, 4160 volt compressor that has been tripping off at a textile manufacturing facility.

2003-12-31T23:59:59.000Z

110

Assessing Air Pollution Control Options at the Hudson Station of Public Service Electric and Gas  

Science Conference Proceedings (OSTI)

This report presents the results of a pilot-scale assessment of air pollutant emission control options at the Hudson Generating Station of Public Service Electric and Gas (PSE&G). Tests over a period of a year and a half evaluated the capabilities of a high air-to-cloth ratio pulse jet baghouse (COHPAC) in controlling particulates, acid gases, and mercury and a tubular electrostatic precipitator (ESP) in controlling mercury emissions.

1998-10-30T23:59:59.000Z

111

Inverter Controlled Screw Air Compressor Manufacturers ...  

U.S. Energy Information Administration (EIA)

Inverter Controlled Screw Air Compressor, Inverter Controlled Screw Air Compressor Manufacturers & Suppliers Directory - Find here Inverter ...

112

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE  

Science Conference Proceedings (OSTI)

This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

2005-01-28T23:59:59.000Z

113

New Energy Department Team Established to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online  

Energy.gov (U.S. Department of Energy (DOE))

As part of the government-wide effort to assist the response and recovery efforts following Hurricane Sandy, the Energy Department has established a team to assist local authorities in their efforts to get help get gas stations back online.

114

RELAP5-3D Compressor Model  

SciTech Connect

A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

James E. Fisher; Cliff B. Davis; Walter L. Weaver

2005-06-01T23:59:59.000Z

115

No loss single line fueling station for liquid natural gas vehicles  

Science Conference Proceedings (OSTI)

A no loss fueling station is described for delivery of liquid natural gas (LNG) to a fuel tank of a use device such as a motor vehicle, comprising: (a) a pressure building tank holding a quantity of LNG and a natural gas head; (b) first means for selectively building the pressure and temperature in the pressure building tank; (c) second means for selectively reducing the pressure and temperature in the pressure building tank; (d) means for controlling the first and second means to maintain a desired pressure and temperature in the pressure building tank without venting natural gas to the atmosphere; and (e) means for delivering LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1993-08-03T23:59:59.000Z

116

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

117

"1. Mystic Generating Station","Gas","Boston Generating LLC",1968  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "1. Mystic Generating Station","Gas","Boston Generating LLC",1968 "2. Brayton Point","Coal","Dominion Energy New England, LLC",1545 "3. Canal","Petroleum","Mirant Canal LLC",1119 "4. Northfield Mountain","Pumped Storage","FirstLight Power Resources Services LLC",1080 "5. Salem Harbor","Coal","Dominion Energy New England, LLC",744 "6. Fore River Generating Station","Gas","Boston Generating LLC",688 "7. Pilgrim Nuclear Power Station","Nuclear","Entergy Nuclear Generation Co",685 "8. Bear Swamp","Pumped Storage","Brookfield Power New England",600

118

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

119

A hybrid meta-heuristic approach for natural gas pipeline network optimization  

Science Conference Proceedings (OSTI)

In this paper we propose a hybrid heuristic solution procedure for fuel cost minimization on gas transmission systems with a cyclic network topology, that is, networks with at least one cycle containing two or more compressor station arcs. Our heuristic ... Keywords: dynamic programming, natural gas, non-convex problem, steady state, tabu search, transmission networks

Conrado Borraz-Sánchez; Roger Z. Ríos-Mercado

2005-08-01T23:59:59.000Z

120

GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT  

SciTech Connect

The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Compressor Dependability: General Electric FA Inlet Blade  

Science Conference Proceedings (OSTI)

Water droplet erosion and fatigue problems associated with the inlet R0 compressor blade in the GE 7FA and 9FA gas turbines have resulted in an aggressive scope of maintenance and inspection to maintain serviceability. Blade cracks and failure incidents prompted an independent root cause investigation. This report addresses the root cause analysis, damage mitigation approaches, and redesign options for this problem.

2010-12-07T23:59:59.000Z

122

IMPROVEMENTS IN OR RELATING TO COMPRESSORS  

SciTech Connect

A compressor for fluids is designed with a rotary driving shaft and a labyrinth sealing gland. The gland incorporates a bleed pipe with a filtering device; any leakage in the gland results in a flow of fluid in the bleed pipe, and any filterable contaminants, e.g., oil or oil vapor, are removed. Easy access is provided to the motors (one of which is auxiliary) for maintenance and overhaul. This compressor design is especially applicable to gas-cooled reactors where coolant contamination must be avoided. (D.L.C.)

Long, E.

1961-01-25T23:59:59.000Z

123

Natural gas and electricity optimal power flow  

E-Print Network (OSTI)

Abstract — In this paper, the combined natural gas and electric optimal power flow (GEOPF) is presented. It shows fundamental modeling of the natural gas network to be used for the GEOPF, and describes the equality constraints which describe the energy transformation between gas and electric networks at combined nodes (i.e., generators). We also present the formulation of the natural gas loadflow problem, which includes the amount of gas consumed in compressor stations. Case studies are presented to show the sensitivity of the real power generation to wellhead gas prices. Results from the simulation demonstrate that the GEOPF can provide social welfare maximizing solutions considering both gas and electric networks. I.

Seungwon An

2003-01-01T23:59:59.000Z

124

Span-Wise Mixing in a Multi-Stage Compressor  

NLE Websites -- All DOE Office Websites (Extended Search)

SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR Penn State Bud Lakshminarayana (Cengiz Camci) #036 * Phenomena that have eluded gas turbine designers include the effects of rotor-stator interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. * Compressor tests were conducted in a three stage compressor where deterministic unsteadiness and random fluctuations causing spanwise mixing are realistically replicated . This provided valuable information on rotor stator interaction effects and the nature of the unsteadiness. * Multi-stage compressor energy efficiency improvements are only possible by careful implementation of spanwise mixing models into modern CFD codes (Computational Fluid Dynamics) . *This investigation provided results that are extremely helpful in improving computer

125

Compressor surge counter  

DOE Patents (OSTI)

A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

Castleberry, Kimberly N. (Harriman, TN)

1983-01-01T23:59:59.000Z

126

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4: On-sitereforming of natural gas at the station b. MeOH 100 (case 3)cost of natural gas at the station is much lower (roughly

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

127

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4. On-siteSMR 300) use natural gas at the station; Case 3 (MeOH 100)reforming of natural gas at the station. 100 (case 3) =

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

128

Compression station key to Texas pipeline project  

SciTech Connect

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

129

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE  

Science Conference Proceedings (OSTI)

This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

2005-07-27T23:59:59.000Z

130

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE  

SciTech Connect

This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

2006-01-24T23:59:59.000Z

131

Thermal Performance of the ABB GT24 Gas Turbine in Peaking Servicer at the Gilbert Station of GPU Energy  

Science Conference Proceedings (OSTI)

EPRI's durability surveillance (DS) program, in place since 1991, is producing the first in-service performance and operating data on the newest high-efficiency gas turbines. This detailed investigation of the ABB GT24 installed at GPU Genco's Gilbert Station in Milford, New Jersey, is providing plant personnel and the manufacturer with valuable information for solving initial problems, and will help all power producers specify, operate, and maintain a new generation of high-performance gas turbines.

1998-12-30T23:59:59.000Z

132

Startup and Testing of the ABB GT24 Gas Turbine in Peaking Service at the Gilbert Station of GPU Energy  

Science Conference Proceedings (OSTI)

Worldwide pressures to reduce power generation costs have led domestic and foreign manufacturers to build high-efficiency gas turbines using leading edge technology. To ensure the staying power of these turbines, EPRI launched a multiyear Durability Surveillance Program in 1991 for monitoring advanced industrial gas turbines currently produced by major turbine manufacturers. This report discusses the startup and initial site testing of a new ABB Model GT24 combustion turbine at the Gilbert Station, opera...

1997-12-11T23:59:59.000Z

133

Screw Air Compressor 220v, Screw Air Compressor 220v Suppliers ...  

U.S. Energy Information Administration (EIA)

Source Top Quality Screw Air Compressor 220v Suppliers, screw mini air compressor 220v Companies, atlas copco screw compressor Manufacturers. Welcome. ...

134

Axial inlet conversion to a centrifugal compressor with magnetic bearings  

Science Conference Proceedings (OSTI)

NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings have been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).

Novecosky, T. (NOVA Corp., Edmonton, Alberta (Canada))

1994-01-01T23:59:59.000Z

135

Apparatus for the liquefaction of a gas and methods relating to same  

DOE Patents (OSTI)

Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

Turner, Terry D. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

2009-12-29T23:59:59.000Z

136

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

137

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

138

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

139

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Costs CNG = compressed natural gas CPUC = California PublicNatural Gas Reformer Reformate Hydrogen H2 Purifier High-pressure hydrogen compressor CompressedNatural gas Air Burner air blower Steam methane reformer (SMR) & pressure shift adsorption reactor (PSA) Compressed

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

140

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Storage Dispenser Delivery and Installation Cost Hydrogen Cost Natural GasNatural Gas Cost ($/MMBTU, HHV) Electricity Cost ($/kWh) Production Volume StorageNatural Gas Reformer Reformate Hydrogen H2 Purifier High -pressure hydrogen compressor Compressed hydrogen storage

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of a high-specific-speed centrifugal compressor  

SciTech Connect

This paper describes the development of a subscale single-stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full-size application as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high-specific-speed compressors, of which limited information is found in the open literature. Stage and component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions for an exploratory analytical calibration of a very high-specific-speed impeller geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% including, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.

Rodgers, C.

1997-07-01T23:59:59.000Z

142

Primary Metals - Compressor Motors Failing  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of four failures of compressor motors for a two stage chiller at a primary metals manufacturing facility.

2003-12-31T23:59:59.000Z

143

References on Modelling and Control of Compressor. . .  

E-Print Network (OSTI)

2> Journal of Propulsion and Power, 5(3):375--381, 1989. [Takata72] H. Takata and S. Nagano. Nonlinear analysis of rotating stall. Journal of engineering for power, 94:279--293, 1972. [Takata77] H. Takata and Y. Tsukuda. Stall margin improvement by casing treatment -- its mechanism and effectiveness. Journal of engineering for power, pages 121--133, January 1977. [Tondel96] J.P. Tøndel. Control of gas turbine under transients. Master's thesis, Norwegian University of Science and Technology, Dept. of Engineering Cybernetics, 1996. (In Norwegian). [Tournes97] C. Tournes and Y.B. Shtessel. Controlling the transient deviations from adaption lines in turbojet engines compressor fields via sliding mode. In Proceedings of the 1997 International Conference on Control Applications, pages 791--796, Hartford, CT, 1997. [Toyama77] K. Toyama, P.W. Runstadtler, Jr., and R.C.Dean, Jr. An experimental study of surge in centrifugal compressors.

Jan Tommy Gravdahl

1998-01-01T23:59:59.000Z

144

Inlet distortion generation for a transonic compressor .  

E-Print Network (OSTI)

??A single-stage transonic research compressor and test rig are to be used to obtain data on the effect of inlet flow distortion on compressor (and… (more)

Papamarkos, Ioannis.

2004-01-01T23:59:59.000Z

145

Failure Analysis of a Reciprocating Compressor Head  

Science Conference Proceedings (OSTI)

Abstract Scope, A major oil company operation experienced a reciprocating compressor failure on one of its offshore platforms. The compressor head on the 1st ...

146

Quantitative Analysis of Station Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Station Analysis of Station Hydrogen * Role of ENAA (Engineering Advancement Association of Japan) - To manage the construction and operation of hydrogen stations in national project, JHFC Project - To act as secretariat of ISO/TC197 (Hydrogen technologies) committee of Japan Kazuo Koseki Chief Secretary of ISO/TC197 of Japan ENAA Yokohama Daikoku Station (Desulfurized Gasoline) Yokohama Asahi Station (Naphtha) Senju Station (LPG) Kawasaki Station (Methanol) Yokohama Asahi Station Naphtha PSA Compressor Storage Tanks Dispenser Reformer Buffer Tank 25 MPa 35 MPa 1073 K 0.8 MPa Inlet : 0.6 MPa Outlet : 40 MPa Vent Stack 40 MPa Result of Quantitative Analysis Concentration. vol.ppm Min.Detect Analysis Impurity Gasoline Naphtha LPG Methanol Conc. Method CO 0.05 0.06 0.02 0.06 0.01 GC-FID

147

High-Speed Permanent-Magnet Motors for the Oil&Gas ...  

Science Conference Proceedings (OSTI)

... Enable tight integration of drive motor with compressor ... raw / wet gas design ... Tighter integration of compressor, motor and drive components and ...

2012-10-14T23:59:59.000Z

148

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

149

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

150

neuron-MOS-based Compressor Designs  

E-Print Network (OSTI)

Partial-product reduction circuits (compressors) are of capital importance in the design of high performance parallel multipliers. This paper proposes compressor designs based on threshold gates which have been implemented as MOS circuits. A typical block, a (4,2) compressor is fully developed. Data for a (6,2) compressor are also provided. Results show that such compressors have the best performance in delay and power-delay product when compared to conventional implementations.

Jose M. Quintana; José M. Quintana; Maria J. Avedillo; María J. Avedillo; Esther Rodriguez-Villegas; Esther Rodríguez-villegas; Adoracion Rueda; Adoración Rueda

2000-01-01T23:59:59.000Z

151

Suction muffler for refrigeration compressor  

SciTech Connect

A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

Nelson, Richard T. (Worthington, OH); Middleton, Marc G. (West Jefferson, OH)

1983-01-01T23:59:59.000Z

152

Suction muffler for refrigeration compressor  

DOE Patents (OSTI)

A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

Nelson, R.T.; Middleton, M.G.

1983-01-25T23:59:59.000Z

153

VALIDATION OF NOMINATIONS IN GAS NETWORK OPTIMIZATION ...  

E-Print Network (OSTI)

Optimierung in der Energiewirtschaft, 2157:115–125, 2011. [46] J. Králik. Compressor Stations in SIMONE. In Proceedings of the 2nd International Workshop.

154

Linear Gain for the Microbunching Instability in an RF Compressor  

E-Print Network (OSTI)

Instability in an RF Compressor M. Venturini Lawrencefor investigating this instability in rf compressors. We useapplied to magnetic compressors [2, 3] and derive some

Venturini, M.

2010-01-01T23:59:59.000Z

155

Development of the fixed-vane revolving vane compressor.  

E-Print Network (OSTI)

??The dissertation deals with the development of a newly introduced positive displacement rotary compressor, named fixed-vane revolving vane compressor. The compressor design is conceived with… (more)

Tan, Kok Ming.

2012-01-01T23:59:59.000Z

156

Multi-Stage Bunch Compressors for the International Linear Collider  

E-Print Network (OSTI)

150 µm RMS. The multi-stage compressors are somewhat longerthan the single-stage compressor and require additional RFof the NLC Bunch Compressor,” (1999). [4] C. Adolphsen,

Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej

2005-01-01T23:59:59.000Z

157

buy vsd air compressor - high quality Manufacturers,Suppliers ...  

U.S. Energy Information Administration (EIA)

vsd air compressor trade offers directory and vsd air compressor business offers list. Trade leads from vsd air compressor Suppliers and vsd air ...

158

Screw Type Ac Air Compressor Manufacturers, Screw Type Ac Air ...  

U.S. Energy Information Administration (EIA)

Screw Type Ac Air Compressor, Screw Type Ac Air Compressor Manufacturers & Suppliers Directory - Find here Screw Type Ac Air Compressor Traders, ...

159

buy Adekom VSD Air Compressor - high quality Manufacturers ...  

U.S. Energy Information Administration (EIA)

Adekom VSD Air Compressor trade offers directory and Adekom VSD Air Compressor business offers list. Trade leads from Adekom VSD Air Compressor ...

160

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Pdc - Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Over 185 Compressors in the Worlds 220+ Hydrogen Energy Facilities Diaphragm Compressor Technology: Benefits of Technology: - Highest duty cycle of all current technologies - Lowest power consumption of the technologies - Lowest cooling requirements Challenges: - High(er) capital cost amongst the technologies - Currently - If not run properly, susceptible to maintenance problems. - Compressor likes to "run often". Cost Constraints of All Technologies General Cost Issues Currently Facing Compressor Manufacturers: Low Volume. Take Away: Buy More, Save More. Lack of clear codes and standards for industry. Take Away: Standardize, Standardize, Standardize Cost Constraints of All Technologies

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution  

E-Print Network (OSTI)

Gasoline Stations Gas Station Density (/km 2 ) Trucks Figurepopulation density or gas station density) to grid spacingstations). • Distance (this is particularly important for compressed gas

Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

2006-01-01T23:59:59.000Z

162

Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report  

DOE Green Energy (OSTI)

The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

Moore, J. A.

1999-06-30T23:59:59.000Z

163

GAS COOLED PEBBLE BED REACTOR FOR A LARGE CENTRAL STATION. Reactor Design and Feasibility Study  

SciTech Connect

An optimum econonic design for a high temperature, helium cooled, central station reactor power plant of about 400 Mw of electric power was determined. The core consists of a randomly packed bed of unclad graphite spheres, approximately one in. in diameter, impregnated with U/sup 233/ and thorium such that a conversion ratio of near unity is achieved. The high temperature helium permits steam conditions, at the turbine throttle, of 1000 deg F and 1450 psia. (auth)

Schock, A.; Bruley, D.F.; Culver, H.N.; Ianni, P.W.; Kaufman, W.F.; Schmidt, R.A.; Supp, R.E.

1957-08-01T23:59:59.000Z

164

Effects of rotor tip clearance on an embedded compressor stage performance  

E-Print Network (OSTI)

Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number being approximately 2 x 106 to ...

Sakulkaew, Sitanun

2012-01-01T23:59:59.000Z

165

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network (OSTI)

. GTI has been developing high-efficiency steam methane reformers and fuel processing technology looks to introduce innovative, compact natural gas steam reforming system and appliance quality hydrogen system integration for efficient operation of the unit. High- Efficiency Natural Gas Steam Reformer

166

Downhole steam generator having a downhole oxidant compressor  

SciTech Connect

Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

167

Centrifugal compressor surge and speed control  

E-Print Network (OSTI)

Abstract—Previous work on stabilization of compressor surge is extended to include control of the angular velocity of the compressor. First a low-order centrifugal compressor model is presented where the states are mass flow, pressure rise, and rotational speed of the spool. Energy transfer considerations are used to develop a compressor characteristic. In order to stabilize equilibria to the left of the surge line, a close coupled valve is used in series with the compressor. Controllers for the valve pressure drop and spool speed are derived. Semiglobal exponential stability is proved using a Lyapunov argument. Index Terms — Compressors, Lyapunov methods, modeling, surge control.

Jan Tommy Gravdahl; Olav Egel

1999-01-01T23:59:59.000Z

168

Experiments and modelling of surge in small centrifugal compressor for automotive engines  

SciTech Connect

In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneous pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)

Galindo, J.; Serrano, J.R.; Climent, H.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, P.O. Box 22012, E 46071 Valencia (Spain)

2008-01-15T23:59:59.000Z

169

Flue Gas Desulfurization Gypsum Agricultural Network: Indiana Kingman Research Station (Corn and Soybeans)  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that is created when sulfur dioxide is removed from the exhaust gases during the combustion of coal for energy production. Research on FGDG has been conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration with individual utilities, the U.S. EPA, the United States Department of Agriculture’s Agricultural ...

2013-10-07T23:59:59.000Z

170

Small gas turbines exhibit single-digit emissions in service  

Science Conference Proceedings (OSTI)

A 10 MW-class, THM 1304-10D gas turbine from MAN-GHH, equipped with dry low-NO[sub x] combustion chambers, including hybrid burners, entered service last October. The unit was installed on the Stegal long-distance natural gas pipeline from the Olbernhau compression station on the Czech border. The pipeline transmits gas from Russia to the central part of Germany. A similar compression station, featuring three THM 1304-D driven compressor packages, started commercial operation last March in the Rehden station on the Midal pipeline. A test program carried out by MAN-GHH has demonstrated that the THM 1304 gas turbine has a wide operating range with NO[sub x] emission well under TA luft limits and, at the same time, negligible CO emissions. This is accomplished by combined effect of large volume combustion chambers, optimized wall cooling and premix dry low-NO[sub x] burners. 3 figs.

Chellini, R.

1994-06-01T23:59:59.000Z

171

Water injected fuel cell system compressor  

DOE Patents (OSTI)

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

2001-01-01T23:59:59.000Z

172

IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR  

SciTech Connect

Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

Michael J. Crowley; Prem N. Bansal; John E. Tessaro

2004-01-01T23:59:59.000Z

173

Hydraulic accumulator-compressor for geopressured enhanced oil recovery  

DOE Patents (OSTI)

A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

Goldsberry, Fred L. (Spring, TX)

1988-01-01T23:59:59.000Z

174

Industrial Compressor Anti-Surge Computer Control  

E-Print Network (OSTI)

Abstract—The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented. Keywords—Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.

Ventzas D; Petropoulos G

2007-01-01T23:59:59.000Z

175

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

176

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

began December 24. Transwestern Pipeline Company on Tuesday, January 25, began emergency maintenance at its Bloomfield compressor station unit in New Mexico. Because the...

177

Coatings to Prevent Diffusion of Fission Products into Turbine Materials Used in High Temperature Gas Cooled Nuclear Electric Genera ting Stations  

Science Conference Proceedings (OSTI)

This report describes EPRI activities relating to turbine blade coatings to prevent diffusion of fission products into turbine materials used in high temperature gas cooled nuclear electric generating stations. Specifically, this report describes activities that have identified candidate coatings and methodologies for evaluating the effectiveness of these coatings.

2003-12-31T23:59:59.000Z

178

Flue Gas Desulfurization Gypsum Agricultural Network: Wisconsin Arlington Research Station Fields 295 and 27 (Alfalfa)  

Science Conference Proceedings (OSTI)

This report describes field research in Wisconsin as part of the Flue Gas Desulfurization Gypsum (FGDG) Agricultural Network. The objective of this study, conducted during 2009-2010, was to evaluate potential beneficial agricultural uses of FGDG as a soil amendment to improve alfalfa production. FGDG was compared to a commercially available gypsum product (C-GYP) widely sold in the U.S. Midwest and other areas. A study was established in two fields (Field 295 in 2009/2010 and Field 27 in 2010) at ...

2013-05-06T23:59:59.000Z

179

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

180

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

182

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network (OSTI)

only 18% of existing gas station number is needed to achievean intersection like 4-corner gas stations in real life, butis only 708 or 18% of gas stations in the study region. This

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

183

Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report  

DOE Green Energy (OSTI)

This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

Francfort; Donald Karner; Roberta Brayer

2006-09-01T23:59:59.000Z

184

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents (OSTI)

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.

Fresco, A.N.

1997-08-05T23:59:59.000Z

185

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents (OSTI)

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.

Fresco, Anthony N. (P.O. Box 734, Upton, NY 11973)

1997-01-01T23:59:59.000Z

186

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

187

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

188

High Technology Centrifugal Compressor for Commercial Air Conditioning Systems  

Science Conference Proceedings (OSTI)

R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

Ruckes, John

2006-04-15T23:59:59.000Z

189

XMill: an Efficient Compressor for XML Data  

E-Print Network (OSTI)

We describe a tool for compressing XML data, with applications in data exchange and archiving, which usually achieves about twice the compression ratio of gzip at roughly the same speed. The compressor, called XMill, incorporates and combines existing compressors in order to apply them to heterogeneous XML data: it uses zlib, the library function for gzip, a collection of datatype specific compressors for simple data types, and, possibly, user defined compressors for application specific data types. 1 Introduction We have implemented a compressor/decompressor for XML data, to be used in data exchange and archiving, that achieves about twice the compression rate of general-purpose compressors (gzip), at about the same speed. The tool can be downloaded from www.research.att.com/sw/tools/xmill/. XML is now being adopted by many organizations and industry groups, like the healthcare, banking, chemical, and telecommunications industries. The attraction in XML is that it is a self-describi...

Hartmut Liefke; Dan Suciu

1999-01-01T23:59:59.000Z

190

SCREW COMPRESSOR CHARACTERISTICS FOR HELIUM REFRIGERATION SYSTEMS  

SciTech Connect

The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression.At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss

Ganni, Venkatarao; Knudsen, Peter; Creel, Jonathan; Arenius, Dana; Casagrande, Fabio; Howell, Matt

2008-03-01T23:59:59.000Z

191

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

a computerized database inventory of compressor engines used in the oil and natural gas exploration and production (E&P) industry. This database will be used to evaluate...

192

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

193

Natural Gas Organization of Thailand will begin the first phase of its $400-$500 million project  

SciTech Connect

The project consists of collecting, transmitting, and treating facilities for 500-600 million cu ft/day of gas. It will include onshore and offshore pipelines, compressor stations, offshore platforms, a receiving terminal, and gas-treating and processing units to recover propane, butane, and possibly ethane. A large-diameter, 355 mi submarine line will carry gas from offshore fields to onshore facilities at Sattahip, southeast of Bangkok. Treated gas will be transported through a 110 mi onshore line to Bangkok. A letter of intent has been signed with Fluor Corp., which will begin the first phase of the project.

1978-05-29T23:59:59.000Z

194

A methodology for centrifugal compressor stability prediction.  

E-Print Network (OSTI)

??The stable operation of centrifugal compressors is limited by well-known phenomena, rotating stall and surge. Although the manifestation of the full scale instabilities is similar… (more)

Benneke, Björn

2009-01-01T23:59:59.000Z

195

Running fermi with one-stage compressor: advantages, layout, performance  

E-Print Network (OSTI)

Running FERMI with one-stage compressor: advantages, layout,a lattice with one-stage compressor, it was thought at thetime that the two bunch compressors configuration was still

Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M.; Zholents, A.

2008-01-01T23:59:59.000Z

196

IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR  

SciTech Connect

This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow passage requirements and electric motor requirements for support and utilities by bounding the flowpath within the compressor section. However most importantly, the benefits delivered by the new design remained the same as those proposed by the goals of the project. In addition, this alternate configuration resulted in the achievement of a few additional advantages over the original concept such as easier maintenance, operation, and installation. Interaction and feedback solicited from target clients regarding the unit configuration supports the fact that the design addresses industry issues regarding accessibility, maintainability, preferred operating practice, and increased reliability.

Michael J. Crowley; Prem N. Bansal

2004-10-01T23:59:59.000Z

197

IEMDC-IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR  

Science Conference Proceedings (OSTI)

During this reporting period, significant progress has been made towards the development of the IEMDC System design. Considerable effort was put forth by Curtiss-Wright EMD in the resolution of the technical issue of aerodynamically induced radial forces. This has provided a design basis with which to establish the radial magnetic bearing load capacity and the rotordynamic design. Dresser-Rand has made considerable progress on the flowpath design for the compressor section particularly on the volute and inlet aerodynamic design. All efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. These efforts continue to confirm the feasibility of the IEMDC system design.

Michael J. Crowley; Prem N. Bansal; John E. Tessaro

2003-06-01T23:59:59.000Z

198

Distributed monitoring system for electric-motor-driven compressors  

SciTech Connect

Personnel in the Instrumentation and Controls Division at the Oak Ridge National Laboratory, in association with the United States Enrichment corporation (USEC), the Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis (CSA) for several years. In that time CSA has proven to not only be useful for manually applied periodic monitoring of electrically driven equipment but it has also been demonstrated to be well suited for dedicated monitoring systems in industrial settings. Recent work has resulted in the development and installation of a system that can monitor up to 640 motor and compressor stages for various aerodynamic conditions in the gas compressors and electrical problems in the drive motors. This report describes a demonstration of that technology installed on 80 stages at each of the two USEC uranium enrichment plants.

Castleberry, K.N.

1996-01-01T23:59:59.000Z

199

Testing and Performance of the Siemens V84.3A Gas Turbine in Peaking Service at Hawthorn Station of Kansas City Power & Light Compan y  

Science Conference Proceedings (OSTI)

EPRI's durability surveillance (DS) program, in place since 1991, is producing the first in-service performance and operating data on the newest high-efficiency gas turbines. This detailed investigation of the Siemens V84.3A installed at the Kansas City Power & Light (KCP&L) Hawthorn Station is providing plant personnel and the manufacturer with valuable information for solving initial problems, and will help all power producers specify, operate, and maintain a new generation of high-performance gas turb...

1998-12-31T23:59:59.000Z

200

Refrigeration system having standing wave compressor  

DOE Patents (OSTI)

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbine’s compressor health. Effects of various gas… (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

202

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

203

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options Include private stations Include...

204

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Station...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Access Yes Yes Addition to Existing Station With Gasoline Yes With Compressed Natural Gas New Construction Standalone Yes Yes With Gasoline With Compressed Natural Gas...

205

Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

206

THE HGCR-1, A DESIGN STUDY OF A NUCLEAR POWER STATION EMPLOYING A HIGH- TEMPERATURE GAS-COOLED REACTOR WITH GRAPHITE-UO$sub 2$ FUEL ELEMENTS  

SciTech Connect

The preliminary design of a 3095-Mw(thermal), helium-cooled, graphite- moderated reactor employing sign conditions, 1500 deg F reactor outlet gas would be circulated to eight steam generators to produce 1050 deg F, 1450-psi steam which would be converted to electrical power in eight 157-Mw(electrical) turbine- generators. The over-all efficiency of this nuclear power station is 36.5%. The significant activities released from the unclad graphite-UO/sub 2/ fuel appear to be less than 0.2% of those produced and would be equivalent to 0.002 curie/ cm/ sup 3/ in the primary helium circuit. The maintenance problems associated with this contamination level are discussed. A cost analysis indicates that the capital cost of this nuclear station per electrical kilowatt would be around 0, and that the production cost of electrical power would be 7.8 mills/kwhr. (auth)

Cottrell, W.B.; Copenhaver, C.M.; Culver, H.N.; Fontana, M.H.; Kelleghan, V.J.; Samuels, G.

1959-07-28T23:59:59.000Z

207

Experimental analysis of pressure distribution in a twin screw compressor for multiphase duties  

SciTech Connect

This paper presents the results of an experimental investigation of pressure distribution inside working chamber of a twin screw compressor for multiphase duties. A mathematical model for describing the pressure distribution inside working chamber is proposed. By means of a small pressure transducer embedded into the groove at the root of the rotor, the pressure distributions of a multiphase compressor under various running conditions have been recorded successfully to verify the model. It is found that the pressure curve during the discharge process has a higher level under the conditions of the lower gas void fraction, higher discharge pressure, higher rotational speed and higher inlet pressure. The pressure distribution calculated by model in this paper shows good agreement with the data recorded by a small pressure sensor in a prototype multiphase compressor at the high gas void fractions under different operating conditions. (author)

Cao, Feng; Gao, Tieyu; Li, Songshan; Xing, Ziwen; Shu, Pengcheng [School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-01-15T23:59:59.000Z

208

Redesign the 4:2 compressor for partial product reduction  

Science Conference Proceedings (OSTI)

In this paper, we attempt to redesign the 4:2 compressors. Since its inception by Weinberger in 1981[1], this concept of compressor has been used in most digital multiplications and multi operand operation scheme. The original of 4:2 compressor has been ... Keywords: booth multiplier, compressor, partial product reduction

Razaidi Hussin; Ali Yeon Md. Shakaff; Norina Idris; Zaliman Sauli; Rizalafande Che Ismail; Afzan Kamarudin

2007-04-01T23:59:59.000Z

209

Structural Study on Moving Magnet Compressor for Stirling Engine  

Science Conference Proceedings (OSTI)

The article describes a structural study on moving magnet compressor for Stirling engine. The performance of Stirling engine is determined by the linear compressor. The article first establishes mathematics models for ordinary linear compressors and ... Keywords: Stirling engine, moving magnet linear compressor, CAE, magnet field analysis

Ding Guozhong; Zhang Xiaoqing; He Mingshun; Shu Shuiming

2010-06-01T23:59:59.000Z

210

A numerical study of fluid solid interaction in screw compressors  

Science Conference Proceedings (OSTI)

Efforts are continually being made to produce screw compressors with smaller clearances in order to reduce internal leakage. However, since the compression process induces large pressure differences across the rotors and temperature rise, they deform. ... Keywords: analytical grid generation, clearance reduction, compressor deformation, compressor performance, fluid solid interaction, fuid flow, internal leakage reduction, numerical simulation, rotor deflection, screw compressors

Ahmed Kovacevic; Nikola Stosic; Ian K. Smith

2004-12-01T23:59:59.000Z

211

Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) Version 2  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine (CT) axial compressor performance. Utilities can use it to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash.

2000-11-29T23:59:59.000Z

212

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

213

Determining the Lowest-Cost Hydrogen Delivery Mode  

E-Print Network (OSTI)

for compressed gas truck stations compared to pipelineLH 2 Trucks Gas Pipelines Refueling station a RefuelingPlant Compressed Gas Trucks Refueling station a (compressor,

Yang, Christopher; Ogden, Joan M

2008-01-01T23:59:59.000Z

214

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas • Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

215

Compressor ported shroud for foil bearing cooling  

DOE Patents (OSTI)

A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

2011-08-02T23:59:59.000Z

216

Arbitrary surface flank milling of fan, compressor, and impeller blades  

SciTech Connect

It is generally conceived that a blade surface is flank millable if it can be closely approximated by a ruled surface; otherwise the slow machining process of point milling has to be employed. However, the authors have now demonstrated that the ruled surface criterion for flank milling is neither necessary nor sufficient. Furthermore, many complex arbitrary surfaces typical of the blades in fans, axial compressors, and centrifugal impellers in aviation gas turbines are actually closely flank millable and can be rendered exactly flank millable with one or more passes per surface often without sacrificing, indeed usually with gain, in performance.

Wu, C.Y. [Pratt and Whitney Canada Incorporated, Longueuil, Quebec, (Canada). Design Engineering

1995-07-01T23:59:59.000Z

217

Probabilistic analysis of meanline compressor rotor performance  

E-Print Network (OSTI)

This thesis addresses variability in aerodynamic performance of a compressor rotor due to geometric variation. The performance of the rotor is computed using a meanline model that includes the effect of tip clearance ...

Fitzgerald, Nathan Andrew, 1980-

2004-01-01T23:59:59.000Z

218

Surge and Choke Capable Compressor Model  

E-Print Network (OSTI)

Abstract: A compressor model is developed. It is capable of representing mass flow and pressure characteristic for three different regions: surge, normal operation as well as for when the compressor acts as a restriction, i.e. having a pressure ratio of less than unity. Different submodels are discussed and methods to parametrize the given model structure are given. Both the parametrization and validation are supported extensively by measured data. Dynamic data sets include measurements from engine and surge test stands. The compressor model is further validated against a database of stationary compressor maps. The proposed model is shown to have good agreement with measured data for all regions, without the need for extensive geometric information or data.

Oskar Leufven; Lars Eriksson

2011-01-01T23:59:59.000Z

219

Probabilistic aerothermal design of compressor airfoils  

E-Print Network (OSTI)

Despite the generally accepted notion that geometric variability is undesirable in turbomachinery airfoils, little is known in detail about its impact on aerothermal compressor performance. In this work, statistical and ...

Garzón, Víctor E., 1972-

2003-01-01T23:59:59.000Z

220

Improved return passages for multistage centrifugal compressors  

E-Print Network (OSTI)

This thesis presents a design concept for return passages in multistage centrifugal compressors. Flow in a baseline return passage is analyzed to identify loss sources that have substantial potential for reduction. For the ...

Glass, Benjamin W., S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A methodology for centrifugal compressor stability prediction  

E-Print Network (OSTI)

The stable operation of centrifugal compressors is limited by well-known phenomena, rotating stall and surge. Although the manifestation of the full scale instabilities is similar to the ones observed in axial machines, ...

Benneke, Björn

2009-01-01T23:59:59.000Z

222

Hydrogen pipeline compressors annual progress report.  

DOE Green Energy (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

223

Gas only nozzle  

DOE Patents (OSTI)

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

2002-01-01T23:59:59.000Z

224

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler  

E-Print Network (OSTI)

OEIM 210. Industrial Mechanics III 4 cr. Air compressors, sliding surface bearings, boiler maintenance, boiler tube repairs, basic arc and gas welding, measurement tools, gauge glass maintenance, heat by employer and instructor on boiler inspection and cleaning, centrifugal pumps, basic rigging, piping

Castillo, Steven P.

225

The State of the Industrial Compressor Market  

E-Print Network (OSTI)

The industrial compressor industry in the United States has been operating in a textbook example of a mature market. No truly new compressor technology has been introduced in the past thirty years and there is none on the horizon. Competitive pressures have pushed manufacturers to increase per-employee productivity and implement strict inventory and purchasing procedures to maintain profitability. Many major players that were in the rotary screw industry ten to fifteen years ago (Joy, Chicago Pneumatic, Worthington and Kellogg, to name a few) are gone. With Ingersoll-Rand's recent departure, Gardner Denver is the only U.S. company that manufactures an industrial, double-acting, reciprocating compressor. The dynamic compressor manufacturers face a similar situation. When inflation, small as it is, is factored in, industrial compressor prices have held steady or fallen in each of the past five years. With these market conditions, it is likely that the number of companies that manufacture industrial compressors will continue to decline. The companies that survive and grow will be the ones that offer solutions instead of just equipment.

Perry, W.

1998-04-01T23:59:59.000Z

226

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

227

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Carney, Francis H. (Idaho Falls, ID)

2009-09-29T23:59:59.000Z

228

Alternative Fueling Station Locator App Provides Info at Your...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find...

229

"1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC...  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" "1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370 "2. PSEG Linden Generating Station","Gas","PSEG Fossil LLC",1587 "3. Bergen Generating...

230

Development of an Electrochemical Separator and Compressor  

DOE Green Energy (OSTI)

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

231

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

232

Cycling Losses During Screw Air Compressor Operation  

E-Print Network (OSTI)

Air compressors use 10-13 % of a typical industrial facilities' total electricity. Because they often operate at part load, their part load efficiency significantly affects plant energy cost. An intensive study of screw air compressor part load efficiency confirmed that modulation only controls are accurately portrayed by traditional part load models under most conditions. It also confirmed that load-unload type controls are accurately modeled when cycle times are longer than 5 minutes. However, the study revealed compressors with cycling controls require as much as 10-25 % more power than is normally assumed when cycle times decrease below 2 minutes. This short cycle time is common in industrial environments. The study also found that combined modulating and unloading controls operate the compressor as much as 20% more efficiently than previously predicted. Several measures are recommended for improving part load efficiency by up to 25 %: • Increase receiver capacity • Install load-unload controls • Maintain compressor controls • Set higher low-unloading setpoints.

Maxwell, J. B.; Wheeler, G.; Bushnell, D.

1995-04-01T23:59:59.000Z

233

Economic Analysis of Electrolysis-Based Hydrogen Fueling Stations Matt Jones, Sandy Allan, Joan Ogden  

E-Print Network (OSTI)

) to calculate the effect on hydrogen price for three scenarios: constant electricity input, off Electricity Input Shown PRODUCTION STORAGE COMPRESSOR DISPENSER OTHER Storage Tank Electrolyzer Unit Transformer/Reactor Unit Compressor Units (2) Gas Holder Balance of Plant 3 units @ 46 kg/h 3 units Electrical

California at Davis, University of

234

Advanced Gas Turbine Guidelines: Data Acquisition System and Baseline Data: Durability Surveillance at Potomac Electric Power Compan y's Station H  

Science Conference Proceedings (OSTI)

Operational data provides the key resource in establishing baseline data for the new "F class" of advanced gas turbines. These guidelines describe the use of a data acquisition system (DAS) to collect operational data and the subsequent real-time and historical trend analyses of gas turbine performance. The guidelines specifically address the installation and operation of a DAS at a General Electric MS7001F turbine operating in simple-cycle peaking mode.

1999-04-26T23:59:59.000Z

235

Aerodynamic performance measurements in a counter-rotating aspirated compressor.  

E-Print Network (OSTI)

??This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives… (more)

Onnée, Jean-François

2005-01-01T23:59:59.000Z

236

Aerodynamic performance measurements in a counter-rotating aspirated compressor  

E-Print Network (OSTI)

This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

Onnée, Jean-François

2005-01-01T23:59:59.000Z

237

Development of a body force description for compressor stability assessment  

E-Print Network (OSTI)

This thesis presents a methodology for a body force description of a compressor with particular application to compressor stability calculations. The methodology is based on extracting blade forces from an axisymmetric ...

Kiwada, George (George Ford)

2008-01-01T23:59:59.000Z

238

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

239

Alignment of chirped-pulse compressor  

Science Conference Proceedings (OSTI)

An original method of alignment of grating compressors for ultrahigh-power CPA laser systems is proposed. The use of this method for adjustment of the grating compressor of a PEARL subpetawatt laser complex made it possible to align the diffraction gratings with a second accuracy in all three angular degrees of freedom, including alignment of the grooves, and to adjust the angles of beam incidence on the grating with a high accuracy. A simple method for measuring the difference in the groove densities of gratings with accuracy better than 0.005 lines mm{sup -1} is proposed and tested. (control of laser radiation parameters)

Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

2012-11-30T23:59:59.000Z

240

Investigation on Virtual Assembly and Motion Simulation of Scroll Compressor  

Science Conference Proceedings (OSTI)

It is efficient and economic to excogitate new product of a scroll compressor by means of virtual design. It accords with development and requirement of scroll compressors products currently. Virtual assembly and motion simulation is important process ... Keywords: scroll compressor, virtual assembly, assembly scheme, motion simulation

Haisheng Li; Yinghua Chen

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED  

E-Print Network (OSTI)

FEASIBILITY OF SOLAR-FIRED, COMPRESSOR-ASSISTED ABSORPTION CHILLERS Prepared For: California Energy REPORT (FAR) FEASIBILITY OF SOLAR FIRED, COMPRESSOR ASSISTED ABSORPTION CHILLERS EISG AWARDEE Bergquam 1 Feasibility Of Solar Fired, Compressor Assisted Absorption Chillers EISG Grant # 99-15 Awardee

242

Assessment of HTGR Helium Compressor Analysis Tool Based on Newton-Raphson Numerical Application to Through-flow Analysis  

SciTech Connect

This study describes the development of a computer program for analyzing the off-design performance of axial flow helium compressors, which is one of the major concerns for the power conversion system of a high temperature gas-cooled reactor (HTGR). The compressor performance has been predicted by the aerodynamic analysis of meridional flow with allowances for losses. The governing equations have been derived from Euler turbomachine equation and the streamline curvature method, and then they have been merged into linearized equations based on the Newton-Raphson numerical method. The effect of viscosity is considered by empirical correlations to introduce entropy rises caused by primary loss sources. Use of the method has been illustrated by applying it to a 20-stage helium compressor of the GTHTR300 plant. As a result, the flow throughout the stages of the compressor has been predicted and the compressor characteristics have been also investigated according to the design specification. The program results show much better stability and good convergence with respect to other through-flow methods, and good agreement with the compressor performance map provided by JAEA. (authors)

Ji Hwan Kim; Hyeun Min Kim; Hee Cheon NO [Korea Advanced Institute of Science and Technology, 335 Gwahangno - 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

2006-07-01T23:59:59.000Z

243

Advanced Gas Turbine Guidelines: Rotating Blade Temperature Measurement System (BTMS): Durability Surveillance at Potomac Electric P ower Company's Station H  

Science Conference Proceedings (OSTI)

The blade scans performed by EPRI's Blade Temperature Measurement System (BTMS) represent an important source of blade metal temperature data. These advanced gas turbine guidelines describe the design, installation, and operation of the BTMS in a utility power plant. The guidelines include an analysis of blade temperature scans as well as a summary of lessons learned.

1999-04-26T23:59:59.000Z

244

A New Compact Cryogenic Air Sampler and Its Application in Stratospheric Greenhouse Gas Observation at Syowa Station, Antarctica  

Science Conference Proceedings (OSTI)

To collect stratospheric air samples for greenhouse gas measurements, a compact cryogenic air sampler has been developed using a cooling device called the Joule–Thomson (J–T) minicooler. The J–T minicooler can produce liquefied neon within 5 s ...

Shinji Morimoto; Takashi Yamanouchi; Hideyuki Honda; Issei Iijima; Tetsuya Yoshida; Shuji Aoki; Takakiyo Nakazawa; Shigeyuki Ishidoya; Satoshi Sugawara

2009-10-01T23:59:59.000Z

245

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

246

NETL: News Release - Natural Gas Compression Technology Improves...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Innovative Compressor Design Can Extend Productive Life of Stripper Wells,...

247

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to create a computerized database inventory of compressor engines being used in the oil and natural gas exploration and production industry to evaluate emissions control...

248

Flow and Plate Motion in Compressor Valves  

E-Print Network (OSTI)

Industry,... Mission: #12;15 Group Engineering Fluid Dynamics Rotating-flow machines ­ Centrifugal pumps Machines · pumps · wind turbines · compressors · propellers EFD-FLOW #12;17 Engineering Fluid Dynamics (HWA, visualisation) · ball-on-disc test rig · Starling Resistor ( lung tubes) · CFD-lab servers, PC

Twente, Universiteit

249

Gas only nozzle fuel tip  

DOE Patents (OSTI)

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

250

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

251

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

252

Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station  

DOE Green Energy (OSTI)

The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

Dina Predisik

2006-09-15T23:59:59.000Z

253

On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines  

Science Conference Proceedings (OSTI)

Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

2009-11-15T23:59:59.000Z

254

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

255

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

256

Degree of compression and energy efficiency of a capillary compressor of femtosecond laser pulses  

Science Conference Proceedings (OSTI)

A relation between the degree of pulse compression and energy efficiency is derived for femtosecond laser pulse compressors that utilise spectral broadening of pulses in a gas-filled capillary. We show that the degree of compression has a maximum at an energy efficiency from 15% to 30%. A 15-fold compression of a 290-fs pulse with an energy efficiency of 24% is demonstrated.

Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

2011-11-30T23:59:59.000Z

257

Evolution of pulse shapes during compressor scans in a CPA system and control of electron acceleration in plasmas  

E-Print Network (OSTI)

of pulse shapes during compressor scans in a CPA system andused optical pulse compressor, the grating pair – withis the grating pulse compressor. In contrast to the most

2002-01-01T23:59:59.000Z

258

Combined cold compressor/ejector helium refrigerator  

DOE Patents (OSTI)

A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

Brown, Donald P. (Southold, NY)

1985-01-01T23:59:59.000Z

259

Combined cold compressor/ejector helium refrigerator  

DOE Patents (OSTI)

A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

Brown, D.P.

1984-06-05T23:59:59.000Z

260

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

262

Considerations in Dealing with the Risk of a Compressor Failure  

E-Print Network (OSTI)

Many plants do not have sufficient backup compressor capacity and risk having production outages due to compressor failures. Today, system designs are available that can eliminate this risk; however, there is a cost associated with doing so. In this article, we first point out why not every plant needs backup capacity and why those that do, do not always need to store sufficient air to carry the system through the start up of the backup compressor. Second, we discuss how personnel may be able to provide backup compressor capacity without installing another compressor and third, we discuss how to configure the system to reduce operating costs. Finally, we discuss how to reduce the required storage capacity needed to carry the system through the start up of the backup compressor.

Beals, C. E.

2007-01-01T23:59:59.000Z

263

IEMDC - In-Line Electric Motor Driven Compressor  

Science Conference Proceedings (OSTI)

This report covers the fifth quarter (01/01/04 to 03/31/04) of the In-Line Electric Motor Driven Compressor (IEMDC) project. Design efforts on the IEMDC continued with compressor efforts focused on performing aerodynamic analyses. These analyses were conducted using computational fluid dynamics. Compressor efforts also entailed developing mechanical designs of components through the use of solid models and working on project deliverables. Electric motor efforts focused on the design of the magnetic bearing system, motor pressure housing, and the motor-compressor interface. The mechanical evaluation of the main interface from both the perspective of the compressor manufacturer and electric motor manufacturer indicates that an acceptable design has been achieved. All mechanical and aerodynamic design efforts have resulted in considerable progress being made towards the completion of the compressor and electric motor design and towards the successful completion of the IEMDC unit.

Michael J. Crowley

2004-03-31T23:59:59.000Z

264

Analysis and developpment of a Turbivo compressor for MRV applications  

E-Print Network (OSTI)

The mechanical vapor recompression is an efficient process to decrease energy consumption of drying processes. In order to use the mechanical vapor recompression (MVR) in residential clothe dryers, the volumetric Turbivo technology is used to design a dry water vapor compressor. The Turbivo volumetric machine is composed mainly of a rotor with one blade, a stator, and a mobile oscillating thrust. The advantages of Turbivo(R) technology are the absence of contact between rotor and stator as well as the oil-free operation. A model of the Turbivo compressor, including kinematic, dynamic, and thermodynamic analysis is presented. The compressor internal tightness is ensured by a surface treatment of the compressor components. Using the model, a water vapor Turbivo compressor of 12m3/h and compression ratio of 5 has been sized and realized. The compressor prototype will be tested on a dedicated test bench to characterize its volumetric and isentropic efficiencies.

Ksayer, Elias Boulawz

2010-01-01T23:59:59.000Z

265

Analysis and developpment of a Turbivo compressor for MRV applications  

E-Print Network (OSTI)

The mechanical vapor recompression is an efficient process to decrease energy consumption of drying processes. In order to use the mechanical vapor recompression (MVR) in residential clothe dryers, the volumetric Turbivo technology is used to design a dry water vapor compressor. The Turbivo volumetric machine is composed mainly of a rotor with one blade, a stator, and a mobile oscillating thrust. The advantages of Turbivo(R) technology are the absence of contact between rotor and stator as well as the oil-free operation. A model of the Turbivo compressor, including kinematic, dynamic, and thermodynamic analysis is presented. The compressor internal tightness is ensured by a surface treatment of the compressor components. Using the model, a water vapor Turbivo compressor of 12m3/h and compression ratio of 5 has been sized and realized. The compressor prototype will be tested on a dedicated test bench to characterize its volumetric and isentropic efficiencies.

Elias Boulawz Ksayer; Denis Clodic

2010-08-12T23:59:59.000Z

266

Topping cycles and advanced conversion machinery for central power stations  

SciTech Connect

From thermal power conference; Pullman, Washington, USA (3 Oct 1973). The possibility of developing dynamic conversion machines for topping cycles --- expanders and turbines ---that might utilize refractory materials not previously applied to this purpose is investigated. A technological basis for topping cycle systems that will extend the conversion efficiency of central power stations to the range of 55 to 60% is provided. The performance of a small (500 cm/sup 3/ displacement) graphite helical rotor compressor-expander set operating on inert gas for nearly 300 hr at temperatures up to 1500 deg C and rotor speeds to 14,000 rpm is described. In a related program, turbine blades and sound monolithic bodies up to 36 in. characteristic dimension were fabricated of the refractory compounds silicon nitride (Si/sub 3/N/sub 4/) and silicon carbide (SiC), which are compatible with air and combustion products. The application of available materials and power-conversion technology to permit a significant improvement in energy conversion efficiency is discussed. The demonstration of this capability is proposed by devising topping cycle systems incorporating ceramic engines capable of extracting useful energy from combustion heat sources at conditions presently inaccessible. 12 references. (auth)

Mohr, P.B.; Rienecker, F.

1973-12-12T23:59:59.000Z

267

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

268

The effect of an integrated catchment management plan on the greenhouse gas balance of the Mangaotama catchment of the Whatawhata Hill Country Research Station.  

E-Print Network (OSTI)

??An integrated catchment management plan implemented in the Mangaotama catchment of the Whatawhata Research Station in 2001 demonstrated that Pinus radiata forestry on marginal land,… (more)

Smiley, Daniel

2012-01-01T23:59:59.000Z

269

Effects of Manufacturing Deviations on Core Compressor Blade Performance.  

E-Print Network (OSTI)

??There has been recent incentive for understanding the possible deleterious effects that manufacturing deviations can have on compressor blade performance. This is of particular importance… (more)

De Losier, Clayton Ray

2009-01-01T23:59:59.000Z

270

Prevention of Compressor Short Cycling in Direct-Expansion (DX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Units, Part 1: Theoretical Analysis and Simulation Title Prevention of Compressor Short Cycling in Direct-Expansion (DX) Rooftop Units, Part 1: Theoretical Analysis and Simulation...

271

Industrial SPP/Partner Teaming Profile - Kaeser Compressors...  

NLE Websites -- All DOE Office Websites (Extended Search)

City Way, Suite 100 Fredericksburg, VA 22404 Houston, TX 77024 Business: Air Compressor Wholesaler Business: Building Materials Michael Camber Bhaskar Dusi Marketing...

272

Prevention of Compressor Short Cycling in Direct-Expansion (DX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Units- Part 2: Field Investigation Title Prevention of Compressor Short Cycling in Direct-Expansion (DX) Rooftop Units- Part 2: Field Investigation Publication Type Journal Article...

273

NUMERICAL STUDY OF A HIGH-SPEED MINIATURE CENTRIFUGAL COMPRESSOR.  

E-Print Network (OSTI)

??A miniature centrifugal compressor is a key component of a reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low… (more)

Li, Xiaoyi

2005-01-01T23:59:59.000Z

274

Modelagem e análise de um compressor linear para refrigeração doméstica.  

E-Print Network (OSTI)

??Compressores lineares utilizam um atuador linear para acionar o pistão diretamente em seu movimento alternativo, eliminando vários mancais que convertem o movimento rotativo em alternativo… (more)

Emílio Rodrigues Hülse

2008-01-01T23:59:59.000Z

275

Multidisciplinary Conceptual Design of a Transonic High Pressure Compressor.  

E-Print Network (OSTI)

??The aim of this work is to develop a systematic approach for multidisciplinary high pressure transonic axial compressor conceptual design. Several aspects have to be… (more)

Ersavas, Funda

2011-01-01T23:59:59.000Z

276

Dynamics of Longitudinal Phase-Space Modulations in an rf Compressor for Electron Beams  

E-Print Network (OSTI)

gain along the rf compressor for perturbation wavelengths (drift followed by a 3 m rf compressor. The beam injected atat the exit of the compressor over a range of perturbation

Venturini, M.

2010-01-01T23:59:59.000Z

277

STATOR FOR SUPERSONIC COMPRESSOR - Energy Innovation Portal  

... for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure.

278

Reducing Air Compressor Work by Using Inlet Air Cooling and Dehumidification.  

E-Print Network (OSTI)

??Air compressor systems play a large role in modern industry. These compressors can account for a significant portion of a manufacturing facility’s electric consumption and… (more)

Hardy, Mark James

2011-01-01T23:59:59.000Z

279

Compairs VFD/VSD Compressor - Kunshan CompAirs Machinery Plant ...  

U.S. Energy Information Administration (EIA)

Compairs VFD/VSD Compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and exporter in china, Professional ...

280

VSD/VFD Screw air compressor, Kunshan CompAirs Machinery Plant ...  

U.S. Energy Information Administration (EIA)

VSD/VFD Screw air compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and exporter in china, Professional ...

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

282

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

283

Small core axial compressors for high efficiency jet aircraft  

E-Print Network (OSTI)

This thesis quantifies mechanisms that limit efficiency in small core axial compressors, defined here as compressor exit corrected flow between 1.5 and 3.0 lbm/s. The first part of the thesis describes why a small engine ...

DiOrio, Austin Graf

2012-01-01T23:59:59.000Z

284

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM  

Science Conference Proceedings (OSTI)

This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for the field demonstration phase in Year 3. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system on an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Commercialization of the retrofit micropilot ignition technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the retrofit micropilot ignition system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-05-01T23:59:59.000Z

285

Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities  

E-Print Network (OSTI)

Fossil fuels remain the dominant source for primary energy production worldwide. In relation to this trend, energy consumption in turbomachinery has been increasing due to the scale up of both the machinery itself as well as the processing plants in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance configurations and applications / selections of steam turbines. According to the change in output demand, in some cases the original plants are modified by increasing capacity and consequently the turbines and compressors are revamped internally or replaced totally. The authors will introduce several case studies on revamping to increase efficiency and reliability as per the following cases: a) Replacement of High Pressure Section Internals b) Replacement of Low Pressure Section Internals c) Replacement of All Internals d) Internals and Casing Replacement e) Efficiency Recovery Technique Modification Finally, life cycle cost (LCC) evaluation and sensitivity due to turbomachinery performance are explained as a case study of a mega ethylene plant.

Hata, S.; Horiba, J.; Sicker, M.

2011-01-01T23:59:59.000Z

286

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

287

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

288

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

289

Efficiency and performance measurements of a PDC Inc. single stage diaphragm hydrogen compressor.  

E-Print Network (OSTI)

??In this thesis I used measured data from Humboldt State University’s hydrogen fueling station, and ideal gas thermodynamic models, to calculate the specific energy (kWh/kg)… (more)

Allen, Andrea Leticia

2009-01-01T23:59:59.000Z

290

DOE Hydrogen Analysis Repository: Hydrogen Fueling Station Economics Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Fueling Station Economics Model Fueling Station Economics Model Project Summary Full Title: Hydrogen Fueling Station Economics Model Project ID: 193 Principal Investigator: Bill Liss Brief Description: The Gas Technology Institute developed a hydrogen fueling station economics model as part of their project to develop a natural gas to hydrogen fuel station. Keywords: Compressed gas; vehicle; refueling station; cost; natural gas Purpose Calculate hydrogen fueling station costs, including capital, operating, and maintenance costs. Performer Principal Investigator: Bill Liss Organization: Gas Technology Institute Address: 1700 South Mount Prospect Road Des Plains, IL 60018-1804 Telephone: 847-768-0530 Email: william.liss@gastechnology.org Project Description Type of Project: Model Category: Hydrogen Fuel Pathways

291

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

292

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

293

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

294

A 16-Bit by 16-Bit MAC Design Using Fast 5: 3 Compressor Cells  

Science Conference Proceedings (OSTI)

3:2 counters and 4:2 compressors have been widely used for multiplier implementations. In this paper, a fast 5:3 compressor is derived for high-speed multiplier implementations. The fast 5:3 compression is obtained by applying two rows of fast 2-bit ... Keywords: 3:2 counter, 4:2 compressor, 5:2 compressor, 5:3 compressor, MAC, multiplier

Ohsang Kwon; Kevin Nowka; Earl E. Swartzlander, Jr.

2002-06-01T23:59:59.000Z

295

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

296

Modelagem semi-empírica de compressores herméticos alternativos.  

E-Print Network (OSTI)

??Neste trabalho aplica-se um método semi-empírico que utiliza uma técnica de otimização não linear para determinação das eficiências volumétrica e combinada do compressor hermético alternativo.… (more)

Fabio Renato Camargo Sirbone

2007-01-01T23:59:59.000Z

297

Development of Inexpensive Turbo Compressor/Expanders for Industrial Use  

E-Print Network (OSTI)

Use of Turbo Compressor/ Expanders (TCEs) as industrial reversed Brayton Cycle Heat Pumps offers many technical and energy saving advantages. Until recently, such devices have been far too expensive in both capital cost and inefficiency mainly because the compressor and expander stages were built for forward Brayton Cycle operation in unmatched compressor/expander efficiencies. A few years ago, NUCON initiated a program to locate sources of TCEs and to engineer cost effective modifications to these standard TCEs for use in reverse Brayton Cycle condensation based pollution control and solvent recovery, material recycle applications. The NUCON program is continuing to further improve the matched compressor/expander efficiency, the availability and cost effectiveness of these uses. This program has resulted in major advances in availability and significant improvements in efficiency.

Jacox, J. W.

1991-06-01T23:59:59.000Z

298

Characterization of unsteady flow processes in a centrifugal compressor stage  

E-Print Network (OSTI)

Numerical experiments have been implemented to characterize the unsteady loading on the rotating impeller blades in a modem centrifugal compressor. These consist of unsteady Reynolds-averaged Navier Stokes simulations of ...

Gould, Kenneth A. (Kenneth Arthur)

2006-01-01T23:59:59.000Z

299

Return channel loss reduction in multi-stage centrifugal compressors  

E-Print Network (OSTI)

This thesis presents concepts for improving the performance of return channels in multi-stage centrifugal compressors. Geometries have been developed to reduce both separation and viscous losses. A number of different ...

Aubry, Anne-Raphaëlle

2012-01-01T23:59:59.000Z

300

Forced response predictions in modern centrifugal compressor design  

E-Print Network (OSTI)

A computational interrogation of the time-averaged and time-unsteady flow fields of two centrifugal compressors of nearly identical design (the enhanced, which encountered aeromechanical difficulty, and production, which ...

Smythe, Caitlin J. (Caitlin Jeanne)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Non-intrusive fault detection in reciprocating compressors  

E-Print Network (OSTI)

This thesis presents a set of techniques for non-intrusive sensing and fault detection in reciprocating compressors driven by induction motors. The procedures developed here are "non-intrusive" because they rely only on ...

Schantz, Christopher James

2011-01-01T23:59:59.000Z

302

Active control of tip clearance flow in axial compressors  

E-Print Network (OSTI)

Control of compressor tip clearance flows is explored in a linear cascade using three types of fluidic actuators; Normal Synthetic Jet (NSJ; unsteady jet normal to the mean flow with zero net mass flux), Directed Synthetic ...

Bae, Jinwoo W

2001-01-01T23:59:59.000Z

303

Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines  

DOE Patents (OSTI)

A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

Corey, John A. (North Troy, NY)

1984-05-29T23:59:59.000Z

304

Hyper dispersion pulse compressor for chirped pulse amplification systems  

Science Conference Proceedings (OSTI)

A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

Barty, Christopher P. J. (Hayward, CA)

2011-11-29T23:59:59.000Z

305

Rethink DC Metro Stations.  

E-Print Network (OSTI)

??This thesis intends to rethink the role of Metro stations in the Washington Metropolitan Area. It considers Metro stations as more than infrastructure, but with… (more)

Leung, Yathim

2009-01-01T23:59:59.000Z

306

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

with a regenerated gas turbine sys- tem providing severaltemperature for powering a gas turbine or to supply indus-from the compressor of a gas turbine and passes on to the

Fisk, William J.

2012-01-01T23:59:59.000Z

307

Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System  

SciTech Connect

The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Barbier, Charlotte N [ORNL; Combs, Stephen Kirk [ORNL; Duckworth, Robert C [ORNL; Edgemon, Timothy D [ORNL; Rasmussen, David A [ORNL; Hechler, Michael P [ORNL; Kersevan, R. [ITER Organization, Cadarache, France; Dremel, M. [General Atomics, San Diego; Pearce, R.J.H. [General Atomics, San Diego; Boissin, Jean Claude [Consultant

2011-01-01T23:59:59.000Z

308

Models, Calculation and Optimization of Gas Networks, Equipment and Contracts for Design, Operation, Booking and Accounting  

E-Print Network (OSTI)

There are proposed models of contracts, technological equipment and gas networks and methods of their optimization. The flow in network undergoes restrictions of contracts and equipment to be operated. The values of sources and sinks are provided by contracts. The contract models represent (sub-) networks. The simplest contracts represent either nodes or edges. Equipment is modeled by edges. More sophisticated equipment is represented by sub-networks. Examples of such equipment are multi-poles and compressor stations with many entries and exits. The edges can be of different types corresponding to equipment and contracts. On such edges, there are given systems of equation and inequalities simulating the contracts and equipment. On this base, the methods proposed that allow: calculation and control of contract values for booking on future days and for accounting of sales and purchases; simulation and optimization of design and of operation of gas networks. These models and methods are realized in software syst...

Ostromuhov, Leonid A

2011-01-01T23:59:59.000Z

309

Intercooler flow path for gas turbines: CFD design and experiments  

DOE Green Energy (OSTI)

The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (HP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path.

Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others

1995-12-31T23:59:59.000Z

310

Method of cooling gas only nozzle fuel tip  

DOE Patents (OSTI)

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

311

Conserve Energy by Optimizing Air Compressor System  

E-Print Network (OSTI)

There are many opportunities to conserve energy within an Industrial Plant without adversely impacting the operation or production. Many of these represent only relatively small savings, when compared to the overall utility bill; however, one major benefit of energy conservation is that the resultant savings in dollars goes directly to “the bottom line” as increased profits. To generate the same amount of profit dollars as an effective energy conservation project can generate, in cost avoidance, the plant would have to substantially increase the product shipments. This is not always possible; however, conserving energy is nearly always possible. How should one begin an energy conservation program within a major Industrial Plant? The same as any other task—one step at a time. This paper addresses one of the many small projects available within many industries—the plant air compressing systems. It outlines how one industrial plant was able to reduce the utility bill by approximately $50,000 per year just within the compressor plant alone.

Williams, V. A.

1985-05-01T23:59:59.000Z

312

Advanced Gas Turbine Guidelines: Performance Retention for GE 7FA Unit in Baseload Operation: Durability Surveillance at Florida Pow er & Lights Company's Martin Station  

Science Conference Proceedings (OSTI)

Worldwide pressures for reducing power generation costs have encouraged domestic and foreign manufacturers to build high-efficiency gas turbines implementing the latest technological advances. This report discusses performance monitoring and analysis in a multiyear project, launched in 1991, to assure the staying power of industrial gas turbines produced by major turbine manufacturers.

1999-04-02T23:59:59.000Z

313

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

314

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

315

83-9E9-TOPIC-P3 Unrestricted DOMslon ManagerHIGH-EFFICIENCY DUAL-STROKE COMPRESSOR  

E-Print Network (OSTI)

without ill effect. Compressor performance was measured using a commercially available compressor C) condenser subcooling. Characteristic performance curves for the Mod 0 dual stroke compressor performance; and from the former Westinghouse Commercial and Residential Air Conditioning Division, P. G

Oak Ridge National Laboratory

316

Repowering of the Midland Nuclear Station  

E-Print Network (OSTI)

The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility in the United States. The paper describes the project and the converted facility.

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

1988-09-01T23:59:59.000Z

317

Metering Air Compressor Systems for Efficiency: A Progress Report  

E-Print Network (OSTI)

Air compressors have energy efficiency quantified as SCFM/BHP. However, this efficiency fluctuates over a broad range based on the loading of the compressor. When multiple compressors operate with varying loads, as in a central plant, the overall system efficiency is totally unknown. With funding from California Energy Commission under the PIER Program, we spent considerable effort over the past few years to develop system efficiency for air compressor central plants. The system efficiency was termed CASE Index, which varies from 0 to about 320, and has the units of SCF/KWH. The procedure we developed, involved metering of input (KWH) and output (SCFM), in and out of the central plant. After the initial beta testing of the procedure, as more and more compressor professionals started to use the procedure and as more metering equipments entered the picture, some metering complications were encountered. These problems were dealt with and the procedure developed under this project can produce reliable data. This paper also presents the system efficiencies we have recorded so far and the opportunities they indicate. The data shows a wide range, from a low 82 to about 250 on a 0 to 320 scale. This confirms our expectations of large energy efficiency improvement potential in compressed air systems.

Joseph, B.

2005-01-01T23:59:59.000Z

318

Validation of the Greenhouse Gas Balance of the Netherlands. Observational constraints on CO2, CH4 and N2O from atmospheric monitoring station Lutjewad.  

E-Print Network (OSTI)

??In this PhD thesis a method is described to determine the atmospheric greenhouse gas emissions for a large area using in-situ measurements. The method was… (more)

Laan, Sander van der

2010-01-01T23:59:59.000Z

319

Estudo do desempenho de um compressor axial de vários estágios com injeção de água na sua entrada.  

E-Print Network (OSTI)

??A simulação numérica de compressores axiais é de fundamental importância tanto na fase de projeto quanto na de desenvolvimento do compressor. A simulação numérica é… (more)

Luciano Porto Bontempo

2009-01-01T23:59:59.000Z

320

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Determining the lowest-cost hydrogen delivery mode  

E-Print Network (OSTI)

pressure b Storage Gas truck station (G) 30% a,b Liquid H 2for compressed gas truck stations compared to pipelineplant Compressed gas trucks Refueling station a (compressor,

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

322

A simple criterion for three-dimensional flow separation in axial compressors  

E-Print Network (OSTI)

Most modem blade designs in axial-flow compressors diffuse the flow efficiently over 20% to 80% of blade span and it is the endwall regions that set the limits in compressor performance. This thesis addresses the estimation, ...

Lei, Vai-Man

2006-01-01T23:59:59.000Z

323

Application of a design optimization strategy to multi-stage compressor matching  

E-Print Network (OSTI)

A major challenge in the design of multi-stage compressors is the matching of stages to enable stable operation over a large range of mass flows and operating conditions. Particularly in turbofan low-pressure compressors, ...

Bert, Jérôme

2006-01-01T23:59:59.000Z

324

Turbo-alternator-compressor design for supercritical high density working fluids  

DOE Patents (OSTI)

Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.

Wright, Steven A.; Fuller, Robert L.

2013-03-19T23:59:59.000Z

325

Ingersoll Rand VSD Oil Injected Screw Air Compressor (37-75kW ...  

U.S. Energy Information Administration (EIA)

Ingersoll Rand VSD Oil Injected Screw Air Compressor (37-75kW / 50-100HP VSD),Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor ...

326

LG/BV series water lubrication VSD oil-free screw compressor ...  

U.S. Energy Information Administration (EIA)

LG/BV series water lubrication VSD oil-free screw compressor,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air compressor manufacturer and ...

327

SCAMP Code -- Strategic Capacity Axial-Compressor Maintenance Program, Version 2.00  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine axial compressor and overall turbine performance. It can be used to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash. Important features of the SCAMP spreadsheet include the following: o Operates as a spreadsheet with m...

2000-12-12T23:59:59.000Z

328

New and Underutilized Technology: Water Cooled Oil Free Magnetic Bearing Compressors  

Energy.gov (U.S. Department of Energy (DOE))

The following information outlines key deployment considerations for water cooled oil free magnetic bearing compressors within the Federal sector.

329

PRE-SW Strategic Capacity Axial Compressor Maintenance Program (SCAMP) Version 3.0, Beta  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine axial compressor and overall turbine performance.  It can be used to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash.Benefits & ...

2012-09-23T23:59:59.000Z

330

NUCLEAR GAS ENGINE  

SciTech Connect

A preliminary design study of the nuclear gas engine, consisting of a gas-cooled reactor directly coupled to a reciprocating engine, is presented. The principles of operation of the proposed gas engine are outlined and typical variations anre discussed. The nuclear gas engine is compared with other reciprocating engines and air compressors. A comparison between the ideal and actual cycles is made, with particular attention given to pumping, heat, and other losses to be expected. The applications and development of the nuclear gas engine are discussed. (W.D.M.)

Fraas, A.P.

1958-09-25T23:59:59.000Z

331

CAISO Station Displays  

Science Conference Proceedings (OSTI)

The objective of this report is to describe the results of a project to build Station One-Line Diagram displays for the California Independent System Operator (CAISO) system. The development and maintenance of the Station One-line displays for energy management system applications has historically been a very time consuming, tedious and error prone task. Several man-years of effort may be required to build the station displays for a large interconnected power system. Once these stations displays have bee...

2003-05-07T23:59:59.000Z

332

WWVB Station Library  

Science Conference Proceedings (OSTI)

... NIST time and frequency broadcast stations. ... International Conference, Washington, DC, August 2001. WWVB Improvements: New Power from an ...

2010-10-05T23:59:59.000Z

333

Advanced Gas Turbine Guidelines: Performance Retention for GE 7F Unit in Peaking Operation: Durability Surveillance at Potomac Elect ric Power Company's Station H  

Science Conference Proceedings (OSTI)

Worldwide pressures to reduce power generation costs have encouraged domestic and foreign manufacturers to build high-efficiency gas turbines implementing the latest technological advances. To assure the staying power of these turbines, EPRI launched a multi-year durability surveillance program. This report discusses performance monitoring and analysis of a General Electric 7F unit in peaking operation.

1999-04-26T23:59:59.000Z

334

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

335

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

336

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-11-08T23:59:59.000Z

337

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-05-03T23:59:59.000Z

338

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2003-06-24T23:59:59.000Z

339

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2007-05-22T23:59:59.000Z

340

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Small turbines in distributed utility application: Natural gas pressure supply requirements  

SciTech Connect

Implementing distributed utility can strengthen the local distribution system and help avoid or delay the expense of upgrading transformers and feeders. The gas turbine-generator set is an attractive option based on its low front-end capital cost, reliable performance at unmanned stations, and environmental performance characteristics. This report assesses gas turbine utilization issues from a perspective of fuel supply pressure requirements and discusses both cost and operational factors. A primary operational consideration for siting gas turbines on the electric distribution system is whether the local gas distribution company can supply gas at the required pressure. Currently available gas turbine engines require gas supply pressures of at least 150 pounds per square inch gauge, more typically, 250 to 350 psig. Few LDCs maintain line pressure in excess of 125 psig. One option for meeting the gas pressure requirements is to upgrade or extend an existing pipeline and connect that pipeline to a high-pressure supply source, such as an interstate transmission line. However, constructing new pipeline is expensive, and the small volume of gas required by the turbine for the application offers little incentive for the LDC to provide this service. Another way to meet gas pressure requirements is to boost the compression of the fuel gas at the gas turbine site. Fuel gas booster compressors are readily available as stand-alone units and can satisfactorily increase the supply pressure to meet the turbine engine requirement. However, the life-cycle costs of this equipment are not inconsequential, and maintenance and reliability issues for boosters in this application are questionable and require further study. These factors may make the gas turbine option a less attractive solution in DU applications than first indicated by just the $/kW capital cost. On the other hand, for some applications other DU technologies, such as photovoltaics, may be the more attractive option.

Goldstein, H.L.

1996-05-01T23:59:59.000Z

342

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

SciTech Connect

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

343

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

DOE Patents (OSTI)

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

344

Optimization for Design and Operation of Natural Gas Transmission Networks  

E-Print Network (OSTI)

This study addresses the problem of designing a new natural gas transmission network or expanding an existing network while minimizing the total investment and operating costs. A substantial reduction in costs can be obtained by effectively designing and operating the network. A well-designed network helps natural gas companies minimize the costs while increasing the customer service level. The aim of the study is to determine the optimum installation scheduling and locations of new pipelines and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission problem on tree-structured network is introduced. The problem is a multi-period model, so changes in the network over a planning horizon can be observed and decisions can be made accordingly in advance. The problem is modeled and solved with easily accessible modeling and solving tools in order to help decision makers to make appropriate decisions in a short time. Various test instances are generated, including problems with different sizes, period lengths and cost parameters, to evaluate the performance and reliability of the model. Test results revealed that the proposed model helps to determine the optimum number of periods in a planning horizon and the crucial cost parameters that affect the network structure the most.

Dilaveroglu, Sebnem 1986-

2012-12-01T23:59:59.000Z

345

Stations in Special Wind Regions  

Science Conference Proceedings (OSTI)

Stations in Special Wind Regions. ... station_matrix_912850.xlsx (Excel file). [ SED Home | Extreme Winds Home | Previous | Next ] ...

2013-03-11T23:59:59.000Z

346

Thailand's gas line underway: coating a major achievement  

SciTech Connect

Using primarily local personnel and materials, Bredero Price International's Thai pipe-coating plant has prepared some 374 miles of 34 and 28-in. pipe for service in the Gulf of Thailand gas-pipeline project. The enamel-coating shop cleaned, primed and coated all the pipe with coal-tar enamel, glass-fiber mat, felt, and a kraft-paper outer wrap; the cement-coating facility then added a concrete-weight coating to the portion of the pipe earmarked for offshore duty. Scheduled for a 1981 completion, the pipeline will initially carry 250 million CF/day to power-generating plants in Bangpakong and South Bangkok; the volume transported will eventually reach 500 million CF/day when addition offshore production is tied in to the line and an offshore compressor station added.

Hale, D.

1980-12-01T23:59:59.000Z

347

Microsoft Word - Final Draft Comments on Smart Grid Implementation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas infrastructure is a highly integrated system of transmission and distribution pipelines, compressor stations, and storage facilities serving over 70 million 1 Gas...

348

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

349

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

350

Dubuque generation station, Dubuque, Iowa  

SciTech Connect

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

351

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

Science Conference Proceedings (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

352

Gas turbine intake air quality  

SciTech Connect

This report presents the results of preliminary research intended to evaluate the causes and effects of compressor fouling on pipeline gas turbines. A literature search and field-experience survey of pipeline operators provides the basis for the conclusions and recommendations.

Lawson, C.C.

1988-01-01T23:59:59.000Z

353

The Gas/Electric Partnership  

E-Print Network (OSTI)

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase as this occurs. Through an Electric Power Research Institute initiative, an inter-industry organization, the Gas/Electric Partnership, has formed between the electric utilities and gas pipelines. The initial focus of this partnership is to explore issues of culture, technology, and economics in using electric motor driven compressors for moving gas to market.

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

1997-04-01T23:59:59.000Z

354

"1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 "2. Byron Generating Station","Nuclear","Exelon Nuclear",2300 "3. LaSalle Generating Station","Nuclear","Exelon Nuclear",2238 "4. Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1785 "5. Quad Cities Generating Station","Nuclear","Exelon Nuclear",1774 "6. Dresden Generating Station","Nuclear","Exelon Nuclear",1734 "7. Powerton","Coal","Midwest Generations EME LLC",1538 "8. Elwood Energy LLC","Gas","Dominion Elwood Services Co",1350

355

Gas turbine power plant with supersonic shock compression ramps  

SciTech Connect

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

356

Turbine inter-disk cavity cooling air compressor  

DOE Patents (OSTI)

A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

Little, David Allen (Oviedo, FL)

2001-01-01T23:59:59.000Z

357

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Alternative Fueling Station Locator App Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

358

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

359

Constructions of fault tolerant linear compressors and linear decompressors  

E-Print Network (OSTI)

Abstract — The constructions of optical buffers is one of the most critically sought after optical technologies in all-optical packet-switched networks, and constructing optical buffers directly via optical Switches and fiber Delay Lines (SDL) has received a lot of attention recently in the literature. A practical and challenging issue of the constructions of optical buffers that has not been addressed before is on the fault tolerant capability of such constructions. In this paper, we focus on the constructions of fault tolerant linear compressors and linear decompressors. The basic network element for our constructions is scaled optical memory cell, which is constructed by a 2 × 2 optical crossbar switch and a fiber delay line. We give a multistage construction of a self-routing linear compressor by a concatenation of scaled optical memory cells. We also show that if the delays, say d1, d2,..., dM, of the fibers in the scaled optical memory cells satisfy a certain condition (specifically, the condition in (A2) given in Section I), then our multistage construction can be operated as a self-routing linear compressor with maximum delay ? M?F even after up to F of the M scaled optical memory cells fail to function properly, where 0 ? F ? M ? 1. Furthermore, we prove that our multistage construction with the fiber delays d1, d2,..., dM given by the generalized Fibonacci series of order F is the best among all constructions of a linear compressor that can tolerate up to F faulty scaled optical memory cells by using M scaled optical memory cells. Similarly results are also obtained for the constructions of fault tolerant linear decompressors. I.

Cheng-shang Chang; Tsz-hsuan Chao; Jay Cheng; Duan-shin Lee

2007-01-01T23:59:59.000Z

360

Turbine inter-disk cavity cooling air compressor  

DOE Patents (OSTI)

The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

Chupp, Raymond E. (Oviedo, FL); Little, David A. (Oviedo, FL)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Turbine inter-disk cavity cooling air compressor  

DOE Patents (OSTI)

The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

Chupp, R.E.; Little, D.A.

1998-01-06T23:59:59.000Z

362

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

363

Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine  

Science Conference Proceedings (OSTI)

The operational envelope of gas turbine engines such as those employed in the Army Blackhawk helicopter is constrained by the stability limit of the compression system. Technologies developed to improve the stable operating range of gas turbine compressors ...

Michael D. Hathaway; Greg Herrick; Jenping Chen; Robert Webster

2004-06-01T23:59:59.000Z

364

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

365

Dual capacity compressor with reversible motor and controls arrangement therefor  

DOE Patents (OSTI)

A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.

Sisk, Francis J. (Washington Township, Fayette County, PA)

1980-12-02T23:59:59.000Z

366

Hydrogen fuel dispensing station for transportation vehicles  

DOE Green Energy (OSTI)

A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1995-07-01T23:59:59.000Z

367

NUMERICAL NEAR-STALL PERFORMANCE PREDICTION FOR A LOW SPEED SINGLE STAGE COMPRESSOR.  

E-Print Network (OSTI)

??Computational Fluid Dynamics is used to model turbomachinery compressor performance throughout the entire operating range. While it can be very accurate for peak performance calculations,… (more)

SHUEY, MICHAEL G.E.

2005-01-01T23:59:59.000Z

368

A novel design methodology for enhanced compressor performance based on a dynamic stability metric.  

E-Print Network (OSTI)

??(cont.) compressor design optimization framework allows a versatile definition of the objective function such that any combination of pressure ratio, efficiency and dynamic stability can… (more)

Castiella Ruiz de Velasco, Juan Carlos, 1978-

2005-01-01T23:59:59.000Z

369

Application of a design optimization strategy to multi-stage compressor matching.  

E-Print Network (OSTI)

??A major challenge in the design of multi-stage compressors is the matching of stages to enable stable operation over a large range of mass flows… (more)

Bert, Jérôme

2006-01-01T23:59:59.000Z

370

Centrifugal compressor modeling development and validation for a turbocharger component matching system.  

E-Print Network (OSTI)

??This thesis outlines the development of a centrifugal compressor model for the Turbocharger Component Matching System (TuCMS) software package that can be used to inexpensively… (more)

Erickson, Christopher Erik

2008-01-01T23:59:59.000Z

371

A Numerical Study of Water Injection on Transonic Compressor Rotor Performance.  

E-Print Network (OSTI)

??In this study, numerical simulations of two-phase flow in a transonic compressor rotor (NASA Rotor 37) were performed. Both flow and droplets governing equations were… (more)

Szabo, Istvan

2008-01-01T23:59:59.000Z

372

Experimental investigation of high-pressure steam-induced surge in a transonic compressor stage .  

E-Print Network (OSTI)

??Operational experience indicates that steam escaping from carrier catapults has the potential to induce stall or surge in the compressors of jet aircraft during takeoff.… (more)

Hurley, Andrew M.

2008-01-01T23:59:59.000Z

373

Refrigeration system with a compressor-pump unit and a liquid ...  

The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigera ...

374

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III  

Science Conference Proceedings (OSTI)

This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report. Commercialization of the retrofit micropilot ignition (RMI) technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the RMI system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-03-01T23:59:59.000Z

375

Observations of internal relaxation oscillations in the adiabatic toroidal compressor  

SciTech Connect

The soft x ray signal from the Adiabatic Toroidal compressor (ATC) sometimes exhibits a 10 percent modulation with a frequency between 1 and 2 Kilohertz. The radial profile of the soft x ray signal and the electron temperature determined by laser scattering indicate that these fluctuations are associated with a limitation of the central electron temperature and a broadening of the temperature profile. By observing changes in the radial dependence of the relaxation oscillation during neutral injection, an increase of thirty to fifty percent in the radius where q = 1 was measured. (auth)

Smith, R.R.

1975-10-01T23:59:59.000Z

376

New type gas-injection plant readied  

SciTech Connect

A unique gas-injection plant is about to go on stream in Venezuela's Lake Maracaibo. The $10-million installation, designed for unattended operation, is a joint venture of Phillips Petroleum Co., as operator for itself, and Cia. Shell de Venezuela. The plant, housed on a 120 by 130-ft platform, will be the first in the world to use gas turbines to drive reciprocating compressors. The 130 MMscfd facility will use 2 General Electric 15,000-hp gas turbines with gear reducers to drive a pair of 4-stage Cooper- Bessemer LM-8 compressors. No previous attempt has ever been made to drive this type of unit by gas turbines. Phillips says the gas turbines were selected because of inherent flexibility reliability as prime movers, and lack of vibration--an important advantage in offshore gas plants.

Franco, A.

1967-07-17T23:59:59.000Z

377

Unsteady rotor-stator interaction in a low pressure centrifugal compressor  

Science Conference Proceedings (OSTI)

The aim of this paper is to study the unsteady rotor-stator interaction in a low-pressure centrifugal compressor using the finite volume method to solve the Unsteady Reynolds-Averaged Navier-Stokes. In order to understand better, the rotor-stator interaction, ... Keywords: Adamczyk decomposition, CFD, POD, URANS, compressor, unsteady rotor-stator interaction

Mihai Leonida Niculescu; Sterian D?n?il?

2010-04-01T23:59:59.000Z

378

Testing and modeling of compressors for low-lift cooling applications  

E-Print Network (OSTI)

In this thesis, an inverter-driven variable speed scroll compressor is tested on a de-superheater test stand to determine its performance in areas of low-lift and low compressor speed. The goal is to adapt this test stand ...

Willingham, Ryan Alexander

2009-01-01T23:59:59.000Z

379

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

380

Detector for flow abnormalities in gaseous diffusion plant compressors  

DOE Patents (OSTI)

A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.

Smith, Stephen F. (Loudon, TN); Castleberry, Kim N. (Harriman, TN)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Detector for flow abnormalities in gaseous diffusion plant compressors  

DOE Patents (OSTI)

A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

Smith, S.F.; Castleberry, K.N.

1998-06-16T23:59:59.000Z

382

Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine  

DOE Patents (OSTI)

A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

1994-01-01T23:59:59.000Z

383

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

384

Central Station DHC Phase 1 feasibility  

SciTech Connect

This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

Henderson, H.L.

1992-03-01T23:59:59.000Z

385

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

386

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

387

Check Out the New Alternative Fuel Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator November 19, 2012 - 2:29pm Addthis Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles

388

Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Airport Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on AddThis.com... July 1, 2010 Colorado Airport Relies on Natural Gas Fueling Stations

389

Replacing Hazelwood Power Station – Critique of Environment Victoria report  

E-Print Network (OSTI)

Hazelwood Power Station is Australia’s most CO2 emission intensive power station. Replacing it with cleaner technology could reduce Australia’s CO2 emissions by 12 to 16 Mt/a. Energy Victoria recently commissioned a report by Green Energy Markets Pty Ltd to consider options. But the report has a pro-renewables bias, avoids the best option (gas only), and contains many inconsistencies. Comparing the ‘renewables and gas ’ option against the ‘gas only ’ option shows Emissions saved per year: 12.2 Mt/a versus 11.8 Mt/a; Capital cost: $6-$7 billion versus $2 billion;

Peter Lang

2010-01-01T23:59:59.000Z

390

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirschner Mission, Kansas Midwest Region Alternative Fuels Project: Black Hills Energy CNG Infrastructure Installation of a natural gas compressor system and CNG fueling station....

391

Numerical simulation of the impeller tip clearance effect on centrifugal compressor performance  

E-Print Network (OSTI)

This thesis presents the numerical simulation of flow in centrifugal compressors. A three-dimensional Navier-Stokes solver was employed to simulate flow through two centrifugal compressors. The first compressor simulated was the NASA low speed centrifugal compressor (LSCC). The LSCC was selected as a test compressor because of the experimental data available. The numerically simulated data was compared to the experimental data to validate the flow solver. The numerical results were in good agreement with the experimental. The second compressor simulated was a Honeywell turbopump centrifugal compressor (HCC). The HCC was simulated for three tip clearances at six wheel speeds. Six operating conditions were investigated at each tip clearance and wheel speed. The data obtained from the HCC simulations was used to investigate the effect of tip clearance on compressor performance. Specifically, the total-total pressure ratio, mass flow rate and adiabatic efficiencies were tracked to see how each were affected by an increasing tip clearance. The results show that as the tip clearance was increased, the total-total pressure ratio, mass flow rate and adiabatic efficiencies all decreased for the same static-total pressure ratio. The pressure differences and temperature differences, from the pressure side to the suction side of the blade, and the vorticity were all explored as possible causes of this reduced performance. The pressure proved to be the biggest impactor on performance. The increased tip clearance let more flow leak across the blade tip. The leakage flow tried to homogenize the pressure difference across the blade. The overall effect resulted in a much lower pressure difference. The temperature remained nearly the same as the tip clearance increased. The vorticity increased, but this was also a result of the increased tip leakage flow. To aid in total-total pressure ratio predictions, the results for the HCC were put into compressor maps.

Hoenninger, Corbett Reed

2001-01-01T23:59:59.000Z

392

Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser  

Science Conference Proceedings (OSTI)

Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the high kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.

Pinarbasi, A.; Johnson, M.W. [Univ. of Liverpool (United Kingdom). Dept. of Mechanical Engineering

1996-04-01T23:59:59.000Z

393

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

394

NREL: News - NREL Developed Mobile App for Alternative Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. The Alternative Fueling Station Locator App, now available through Apple's App Store, allows iPhone users to select an alternative fuel and

395

Cooling supply system for stage 3 bucket of a gas turbine  

DOE Patents (OSTI)

In a land based gas turbine including a compressor, a combustor and turbine section including at least three stages, an improvement comprising an inlet into a third stage nozzle from the compressor for feeding cooling air from the compressor to the third stage nozzle; at least one passageway running substantially radially through each airfoil of the third stage nozzle and an associated diaphragm, into an annular space between the rotor and the diaphragm; and passageways communicating between the annular space and individual buckets of the third stage.

Eldrid, Sacheverel Quentin (Saratoga Springs, NY); Burns, James Lee (Schenectady, NY); Palmer, Gene David (Clifton Park, NY); Leone, Sal Albert (Scotia, NY); Drlik, Gary Joseph (Fairfield, OH); Gibler, Edward Eugene (Cincinnati, OH)

2002-01-01T23:59:59.000Z

396

MHD compressor---expander conversion system integrated with GCR inside a deployable reflector  

DOE Green Energy (OSTI)

This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.

Tuninetti, G. (Ansaldo S.p.A., Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. (Ansaldo S.p.A., Genoa (Italy). Nuclear Div.); Giammanco, F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot, M. (Florence Univ. (Italy). Dipt. di Fisica)

1989-04-20T23:59:59.000Z

397

Experimental apparatus for simultaneous dehydration and sweetening of natural gas  

E-Print Network (OSTI)

An experimental apparatus was designed and built for the purpose of studying the feasibility of solvent mixtures for the simultaneous dehydration and sweetening of natural gas. The apparatus is versatile and can be used to study gas-solvent systems other than natural gas. The system is capable of operating within limits established by flooding conditions and the limitations of the solvent pump and gas circulating compressor. Calibration and system shakedown runs were performed to test the apparatus for operability

Pace, Christopher Lee

1997-01-01T23:59:59.000Z

398

Robotic dissolution station  

DOE Patents (OSTI)

This invention is comprised of a robotic station for dissolving active metals in acid in an automated fashion. A vessel with cap, containing the active metal is placed onto a shuttle which retracts to a point at which it is directly beneath a cap removing and retaining mechanism. After the cap is removed, a tube carrying an appropriate acid is inserted into the vessel, and the acid is introduced. The structure of the station forms an open hood which is swept of gases generated by the dissolution and the air removed to a remote location for scrubbing. After the reaction is complete, the shuttle extends and the vessel may be removed by a robot arm.

Beugelsdijk, T.J.; Hollen, R.M.; Temer, D.J.; Haggart, R.J.; Erkkila, T.H.

1991-12-31T23:59:59.000Z

399

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1  

E-Print Network (OSTI)

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1 a Worcester Polytechnic piston Gas compression Air compressor Compression efficiency a b s t r a c t A liquid piston concept is proposed to improve the efficiency of gas compression and expansion. Because a liquid can conform

Li, Perry Y.

400

Research and Application of the Natural Gas Heater  

Science Conference Proceedings (OSTI)

The natural gas heater is an indispensable piece of equipment in natural gas production, transmission, and application systems and is widely used in gas wellhead, metering station, transfer station and gas power plant etc. As a special type of furnace, ... Keywords: energy science and technology, natural gas heater, flow field organization, large cylinder, heat-transfer medium

Guo Yun; Cao Wei-wu

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effects of external boost compression on gas turbine performance in an advanced CPFBC application  

SciTech Connect

When a commercial gas turbine, designed and optimized for natural gas fuel, is used in an Advanced Circulating Pressurized Fluid Bed Combustor (CPFBC) application, changes occur that affect both the thermodynamic cycle and the performance of the individual components. These come principally from the increased pressure drop encountered between the compressor discharge and expander inlet, with changes in gas properties and flow rates for the hot combustion products having secondary effects. Net effect is that power output can be reduced and significant design and/or operational compromises may be required for the gas turbine. Application of an external boost compressor can mitigate these effects.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Goldstein, H.N.; White, J.S. [Parsons Power Group, Inc., Reading, PA (United States)

1996-12-31T23:59:59.000Z

402

TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE  

Science Conference Proceedings (OSTI)

This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

2004-08-01T23:59:59.000Z

403

TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE  

Science Conference Proceedings (OSTI)

This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

2004-03-01T23:59:59.000Z

404

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

405

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

406

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet provides framework for gas station owners to access what a reasonable cost would be to install E85 infrastructure.

Not Available

2008-03-01T23:59:59.000Z

407

Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open  

Open Energy Info (EERE)

AirCompressors AirCompressors Jump to: navigation, search This is a property of type String. Air compressors Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 1.86549707602 + Sweden Building 05K0005 + 2.04651162791 + Sweden Building 05K0006 + 1.92596566524 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.970107495214 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 1.30894886364 + Sweden Building 05K0012 + 2.01978262942 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

408

Effect of circumferential groove casing treatment parameters on axial compressor flow range  

E-Print Network (OSTI)

The impact on compressor flow range of circumferential casing grooves of varying groove depth, groove axial location, and groove axial extent is assessed against that of a smooth casing wall using computational experiments. ...

Hanley, Brian K. (Brian Kyle)

2010-01-01T23:59:59.000Z

409

Effect of radial transport on compressor tip clearance flow structures and enhancement of stable flow range  

E-Print Network (OSTI)

The relation between tip clearance flow structure and axial compressor stall is interrogated via numerical simulations, to determine how casing treatment can result in improved flow range. Both geometry changes and flow ...

Nolan, Sean Patrick Rock

2005-01-01T23:59:59.000Z

410

Testing and modeling of compressors for low-lift cooling applications.  

E-Print Network (OSTI)

??In this thesis, an inverter-driven variable speed scroll compressor is tested on a de-superheater test stand to determine its performance in areas of low-lift and… (more)

Willingham, Ryan Alexander

2009-01-01T23:59:59.000Z

411

Discharge characteristics and dynamics of compressive plasma streams generated by a compact magnetoplasma compressor  

SciTech Connect

Results from experimental studies of a compact magnetoplasma compressor designed for operation with heavy gases are presented. The integral characteristics of the discharge and the energy contents and other parameters of the generated xenon plasma streams are determined.

Garkusha, I. E.; Tereshin, V. I.; Chebotarev, V. V.; Solyakov, D. G.; Petrov, Yu. V.; Ladygina, M. S.; Marchenko, A. K.; Staltsov, V. V.; Yelisyeyev, D. V. [National Academy of Sciences of Ukraine, Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology,' (Ukraine)

2011-11-15T23:59:59.000Z

412

HEAT PUMP AND AIR CONDITIONING SYSTEM ANALYSIS BASED ON VARIABLE SPEED COMPRESSOR.  

E-Print Network (OSTI)

??Mechanical Engineering M.S.E. Experiments were carried out to investigate the effect of ambient air temperatures on the heat pump performance using a variable speed compressor.… (more)

Zhang, Hao

2010-01-01T23:59:59.000Z

413

Experimental and computational investigation of flow in a transonic compressor inlet .  

E-Print Network (OSTI)

??As part of an initial baseline survey of the inlet flow-field into a transonic compressor rotor, a five-hole probe was calibrated and used to determine… (more)

Brunner, Matthew D.

2005-01-01T23:59:59.000Z

414

Generation of transform-limited rectangular pulses in a spectral compressor  

SciTech Connect

The generation of 100-fs transform-limited pulses with a rectangular envelope in a spectral compressor is demonstrated experimentally. The pulses are characterised by spectral interferometry. (control of radiation parameters)

Kalashyan, M A; Palandzhyan, K A; Esayan, G L; Muradyan, L Kh [Department of Physics, Yerevan State University, Yerevan (Armenia)

2010-12-09T23:59:59.000Z

415

Property:Building/SPElectrtyUsePercAirCompressors | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercAirCompressors SPElectrtyUsePercAirCompressors Jump to: navigation, search This is a property of type String. Air compressors Pages using the property "Building/SPElectrtyUsePercAirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.86951260628 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 2.82544508471 + Sweden Building 05K0005 + 3.73005319917 + Sweden Building 05K0006 + 2.94977386199 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 1.71574943377 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 4.75949418837 + Sweden Building 05K0012 + 5.31608494158 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

416

Characterization of the flow field response to vaneless space reduction in centrifugal compressors  

E-Print Network (OSTI)

The unsteady three-dimensional flow field for two centrifugal compressors of nearly identical design (one with a marginally smaller impeller-diffuser gap) is interrogated to assess the difference in the time averaged ...

Villanueva V., Alfonso D. (Villanueva Villarreal)

2006-01-01T23:59:59.000Z

417

Effects of upstream wake phasing on the performance of transonic compressors  

E-Print Network (OSTI)

The effect of the upstream wake phase on the work input (i.e., rise in stagnation enthalpy across the blade row) of a transonic rotor is examined computationally and analytically. It is found that the compressor work depends ...

Nolan, Sean Patrick Rock

2009-01-01T23:59:59.000Z

418

A novel design methodology for enhanced compressor performance based on a dynamic stability metric  

E-Print Network (OSTI)

(cont.) compressor design optimization framework allows a versatile definition of the objective function such that any combination of pressure ratio, efficiency and dynamic stability can be prescribed at various operating ...

Castiella Ruiz de Velasco, Juan Carlos, 1978-

2005-01-01T23:59:59.000Z

419

Characterization of unsteady loading due to impeller-diffuser interaction in centrifugal compressors  

E-Print Network (OSTI)

Time dependent simulations are used to characterize the unsteady impeller blade loading due to imipeller-diffuser interaction in centrifugal compressor stages. The capability of simulations are assessed by comparing results ...

Lusardi, Christopher (Christopher Dean)

2012-01-01T23:59:59.000Z

420

Evaluation of air-conditioning compressor performance for assessment of load management potential  

Science Conference Proceedings (OSTI)

Residential air-conditioning contributes heavily to the electrical utilities' summer peak demand. Cycling programs in which utilities turn off air-conditioning compressors a certain percentage of each hour through remotely-controlled switches can help ...

Jerry R. Harber; Aileen Henson

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Impact of unsteady flow processes on the performance of a high speed axial flow compressor  

E-Print Network (OSTI)

This thesis examines the unsteady interactions between blade rows in a high Mach number, highly-loaded compressor stage. Two straight vane/rotor configurations with different axial spacing between vane and rotor are ...

Botros, Barbara Brenda

2008-01-01T23:59:59.000Z

422

GA 200-500 (VSD): Oil-injected rotary screw compressors, 200 ...  

U.S. Energy Information Administration (EIA)

GA 200-500 (VSD): Oil-injected rotary screw compressors, 200-500 kW / 268-670 hp.,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

423

GA 11+-30/GA 15-30 VSD: Oil-injected rotary screw compressors ...  

U.S. Energy Information Administration (EIA)

GA 11+-30/GA 15-30 VSD: Oil-injected rotary screw compressors, 11-30 kW / 15-40 hp,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

424

Impingement starting and power boosting of small gas turbines  

SciTech Connect

The technology of high-pressure air or hot-gas impingement from stationary shroud supplementary nozzles onto radial outflow compressors and radial inflow turbines to permit rapid gas turbine starting or power boosting is discussed. Data are presented on the equivalent turbine component performance for convergent/divergent shroud impingement nozzles, which reveal the sensitivity of nozzle velocity coefficient with Mach number and turbine efficiency with impingement nozzle admission arc. Compressor and turbine matching is addressed in the transient turbine start mode with the possibility of operating these components in braking or reverse flow regimes when impingement flow rates exceed design.

Rodgers, C.

1985-10-01T23:59:59.000Z

425

Program on Technology Innovation: Erosion Resistant Coatings for Gas and Steam Turbines - Advanced Nano-Coatings and Vendor Evaluati on Results  

Science Conference Proceedings (OSTI)

Erosion of steam turbine blades and gas turbine compressor blades costs power producers millions of dollars each year. Improved mitigation techniques to reduce erosion damage will improve turbine efficiency and reduce maintenance downtime.

2009-03-31T23:59:59.000Z

426

* Submitted to the ASME Gas Turbine and Aeroengine Congress -June 2-5, 1998 -Stockholm, Sweden THE INFLUENCE OF TAILBOARDS ON  

E-Print Network (OSTI)

* Submitted to the ASME Gas Turbine and Aeroengine Congress - June 2-5, 1998 - Stockholm, Sweden Fig. 1) is supplied continuously with air by a centrifugal compressor at a maximum mass flow rate of

427

Environmental impact of HTGR power stations  

SciTech Connect

From ANS topical meeting on gas-cooled reactors: HTGR and GCFBR; Gatlinburg, Tennessee, USA (8 May 1974). The high-temperature gas-cooled reactor power station has all of the potential environmental impacts associated with any large nuclear station. Construction impacts can be minimized by proper planning and are usually of limited duration. The potentially most significant impacts of station operation result from the operation of the heat dissipation system. The use of cooling towers is assumed. The effects of salt deposition, fogging, and icing are expected to be minor. The magnitude of the adverse effects caused by intake and discharge such as entrainment of eggs, larvae, and fish and chemical impacts from blowdown can only be assessed for a specific site but may be signlficant. The impact of radionuclide releases, constrained by the as-low-as- is-practicable criteria, is small. The only potential environmental advantage over other reactor types is lower consumptive water use for the same net electric power production. (auth)

Kelly, M.J.; Kirslis, S.S.; West, R.G.

1974-04-30T23:59:59.000Z

428

Circuit Breaker Component and Subsystem Performance Maintenance Insights for Pumps and Compressors  

Science Conference Proceedings (OSTI)

This technical update presents initial results of investigations of issues concerning transmission-class circuit breaker pump and compressor maintenance and possible improvements in materials and practices that could improve maintenance effectiveness.The life-cycle performance of a high-voltage circuit breaker is, to a large degree, determined by the performance of the materials and components that make up the complete breaker. The rates of deterioration of components such as compressors ...

2012-12-13T23:59:59.000Z

429

Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line  

DOE Patents (OSTI)

The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

Gaul, Christopher J. (Thornton, CO)

2001-01-01T23:59:59.000Z

430

Gas Turbine Rotor Life: Material Testing  

Science Conference Proceedings (OSTI)

Gas turbine rotor materials are subject to degradation from prolonged hours and multiple start/stop cycles of operation. Periodically, plant operators disassemble the compressor and turbine sections of the rotor system and inspect the components for signs of creep, embrittlement, corrosion, thermal fatigue, and high- and low-cycle fatigue. Beyond limited rotor inspections performed during hot gas path inspections and major overhauls, a more thorough inspection is often required by the equipment ...

2012-12-14T23:59:59.000Z

431

Gas Turbine Rotor Life Assessment Guideline  

Science Conference Proceedings (OSTI)

Gas turbine rotor materials are subject to degradation from prolonged hours and multiple start/stop cycles of operation. Periodically, plant operators disassemble the compressor and turbine sections of the rotor system and inspect the components for signs of creep, embrittlement, corrosion, thermal fatigue, and high- and low-cycle fatigue. Beyond limited rotor inspections performed during hot gas path inspections and major overhauls, a more thorough inspection is often required by the equipment manufactu...

2011-12-14T23:59:59.000Z

432

Control method for mixed refrigerant based natural gas liquefier  

DOE Patents (OSTI)

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

2003-01-01T23:59:59.000Z

433

FrAT2.4 Introducing Back-up to Active Compressor Surge Control System ?  

E-Print Network (OSTI)

Abstract: A novel method for introducing a back-up system to an active compressor surge control system is presented in this paper. Active surge control is a promising method for extending the compressor map towards and into the unstable area at low mass flow by stabilizing the surge phenomenon. The method also has potential for allowing operation at higher efficiencies. However, a failure in the active surge control system may endanger the compressor by entering deep surge as the compressor is allowed to operate in the stabilized surge area. We propose the use of a back-up system applied to the active system to keep the compressor safe should the active system fail. This paper present an active compressor surge control system with piston actuation combined with a blow off system as the back-up. Performance of the combined system is evaluated by simulating the system in situations where the piston is saturated or jammed. The combination results in a system with increased performance by taking advantage of both systems.

Nur Uddin; Jan Tommy Gravdahl

2012-01-01T23:59:59.000Z

434

Compressor performance at high suction temperatures with application to solar heat pump  

DOE Green Energy (OSTI)

As part of the study of Solar Assisted Heat Pump (SAHP) Systems, the performance of the heat pump itself and its components under conditions attendant to series solar input to the evaporator is being investigated at Brookhaven National Laboratory (BNL). Particular emphasis has been placed on the details of the compressor performance, since in order to properly exploit the thermodynamic potential of high solar input temperatures (40 to 100/sup 0/F), the compressor must operate efficiently over a wide range of (saturated) suction temperatures most of which are well above those for which present compressors are designed. A systematic series of experiments is being conducted at evaporating temperatures in the range from 45 to 100/sup 0/F using a Solar Heat Pump Simulator and a specially designed Laboratory Model Heat Pump assembled from off-the-shelf components. Two reciprocating compressors have been tested thus far - an open type driven by a 2-speed motor and a hermetic 2-speed, the multi-speed feature providing capacity control, which is a virtual necessity for effective use of solar source. Thorough and highly accurate instrumentation is used in the simulator and in the heat pump refrigeration loop. The results to date of the compressor aspects of the solar heat pump experiments at BNL are described, and the general application of heat pumps and their compressors to use with solar input are discussed.

Kush, E A

1980-01-01T23:59:59.000Z

435

International Space Station Again  

E-Print Network (OSTI)

For the fifth time in 2 1/2 years, the International Space Station (ISS) had to execute a collision avoidance maneuver in early April to ensure a safe miss distance for a piece of orbital debris. As solar activity increases during the next few years, the frequency of ISS collision avoidance might increase as many hundreds of resident space objects drift down through the ISS orbital regime. The subject of concern in late March 2011 was a fragment from Cosmos 2251, the Russian communications satellite which had accidentally collided with the U.S. Iridium 33 communications satellite in February 2009, producing more than

Iss Airlock Shields; A Note On Active; A Publication Of

2011-01-01T23:59:59.000Z

436

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

437

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

438

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

439

Didcot B: A power station for the 21st century  

Science Conference Proceedings (OSTI)

Didcot B, one of the new generation combined-cycle gas turbine (CCGT) power stations being built on the Didcot site just south of Oxford, England, will eventually be feeding an additional 1370 MW of electrical power into the national grid. It will be more environmentally friendly, considerably more efficient and a great deal less obtrusive than its coal-fired predecessor. The first module of the US$600 million Didcot B project is now almost ready to be handed over to operator, National Power. This will be the first generating station to use Siemen`s latest and most advanced 230 MW V94.3A gas turbine. 3 figs.

Mullins, P.

1996-12-01T23:59:59.000Z

440

An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles  

E-Print Network (OSTI)

579–594. IANGV, 1997. Natural Gas Vehicle Industry Positionmarket penetration of natural gas vehicles in Switzerland.of NGVs versus number of natural gas refueling stations in

Yeh, Sonia

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exhaust gas provides alternative gas source for cyclic EOR  

SciTech Connect

Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

Stoeppelwerth, G.P.

1993-04-26T23:59:59.000Z

442

Steady state and transient measurements within a compressor rotor during steam-induced stall at transonic operational speeds .  

E-Print Network (OSTI)

??Steam leakage from an aircraft carrier catapult is sometimes ingested into the aircraft engines upon launch which may induce compressor stall. Investigation of this phenomenon… (more)

Zarro, Sarah E.

2006-01-01T23:59:59.000Z

443

Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.  

E-Print Network (OSTI)

??Various commercial software packages are available for simulating compressed air network operations. However, none of these software packages are able to dynamically prioritise compressor selection… (more)

Venter, Johan

2012-01-01T23:59:59.000Z

444

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network (OSTI)

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

Paris-Sud XI, Université de

445

Wachs Cutter Tooling Station (4495)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is similar to previously operated facility tooling and will utilize an existing hydraulic unit. The temporary station location will require electrical feed, ventilation,...

446

The Station Nightclub Fire 2003  

Science Conference Proceedings (OSTI)

... The final report, "Report of the Technical Investigation of The Station Nightclub Fire (NIST NCSTAR 2), Volume 1 and Volume 2 ," includes details of ...

2013-02-07T23:59:59.000Z

447

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Brent Run Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brent Run Generating Station Biomass Facility Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Penrose Power Station Biomass Facility Penrose Power Station Biomass Facility Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Archbald Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Archbald Power Station Biomass Facility Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type Landfill Gas Location Lackawanna County, Pennsylvania Coordinates 41.4421199°, -75.5742467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4421199,"lon":-75.5742467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Peoples Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Peoples Generating Station Biomass Facility Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Ottawa Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Generating Station Biomass Facility Generating Station Biomass Facility Jump to: navigation, search Name Ottawa Generating Station Biomass Facility Facility Ottawa Generating Station Sector Biomass Facility Type Landfill Gas Location Ottawa County, Michigan Coordinates 42.953023°, -86.0937312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.953023,"lon":-86.0937312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Toyon Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Toyon Power Station Biomass Facility Toyon Power Station Biomass Facility Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Elk City Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Elk City Station Biomass Facility Elk City Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas County, Nebraska Coordinates 41.3148116°, -96.195132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3148116,"lon":-96.195132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

456

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

457

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

458

Span-Wise Mixing in a Multi-Stage Compressor  

NLE Websites -- All DOE Office Websites (Extended Search)

Camci) 036 * Phenomena that have eluded gas turbine designers include the effects of rotor-stator interactions and the physics of mixing of velocity, pressure, temperature and...

459

Woodsdale Generating Station project management  

Science Conference Proceedings (OSTI)

This paper is written for those who are planning new generation construction, particularly combustion turbine units, which will, according to projections, constitute a significant portion of new generation construction during the 1990's. Our project management and schedule for the Woodsdale Generating Station is presented to aid others in the planning, organization, and scheduling for new combustion turbine stations.

Carey, R.P. (Cincinnati Gas and Electric Co., OH (United States))

1990-01-01T23:59:59.000Z

460

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

Note: This page contains sample records for the topic "gas compressor stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

SciTech Connect

Topics covered include the AGT 101 engine test compressor design modification cold air turbine testing Mod 1 alloy turbine rotor fabrication combustion aspects regenerator development and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.

1982-12-01T23:59:59.000Z

462

Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations  

DOE Green Energy (OSTI)

This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

Ted Barnes; William Liss

2008-11-14T23:59:59.000Z

463

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

variable displacement compressors. Conventional MAC systems have fixed speed compressors with a constant refrigerant flow

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

464

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

variable displacement compressors. Conventional MAC systems have fixed speed compressors with a constant refrigerant flow

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

465

Nonlinear Control and Modeling of Rotating Stall in an Axial Flow Compressor  

E-Print Network (OSTI)

This thesis focuses on understanding the use of air injection as a means of controlling rotating stall in an axial flow compressor, involving modeling, dynamical systems analysis, and experimental investigations. The first step towards this understanding was the development of a low order model for air injection control, the starting point of which was the Moore and Greitzer model for axial flow compressors. The Moore and Greitzer model was extended to include the effects of air injection and bifurcation analysis was performed to determine how the closed loop system dynamics are different from those of the open loop system. This low order model was then used to determine the optimal placement of the air injection actuators. Experimental work focused on verifying that the low order model, developed for air injection actuation, qualitatively captured the behavior of the Caltech compressor rig. Open loop tests were performed to determine how the placement of the air injectors on the rig a...

Robert L. Behnken; Robert L. Behnken

1997-01-01T23:59:59.000Z

466

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

DOE Green Energy (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

467

Economic and technical analysis of distributed utility benefits for hydrogen refueling stations. Final report  

SciTech Connect

This report presents the potential economic benefits of operating hydrogen refueling stations to accomplish two objectives: supply pressurized hydrogen for vehicles, and supply distributed utility generation, transmission and distribution peaking energy and capacity to the utility. The study determined under what circumstances using a hydrogen-fueled generator as a distributed utility generation source, co-located with the hydrogen refueling station components (electrolyzer and storage), would result in cost savings to the station owner, and hence lower hydrogen production costs. The systems studied include a refueling station (including such components as an electrolyzer, storage, hydrogen dispensers, and compressors) plus on-site hydrogen fueled electricity generation units (e.g., fuel cells or combustion engines). The operational strategy is to use off-peak electricity in the electrolyzer to fill hydrogen storage, and to dispatch the electricity generation about one hour per day to meet the utility`s local and system peaks. The utility was assumed to be willing to pay for such service up to its avoided generation, fuel, transmission and distribution costs.

Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M. [Distributed Utility Associates, Livermore, CA (United States)]|[Longitude 122 West, Inc., Menlo Park, CA (United States)

1998-04-01T23:59:59.000Z

468

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

SciTech Connect

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

469

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

470

Running fermi with one-stage compressor: advantages, layout,performance  

Science Conference Proceedings (OSTI)

CBP-Tech Note-345 (July 2005), devoted to a study of microbunching instability in FERMI@ELETTRA linac quotes '...the above analysis shows that the most of the gain in microbunching instability occurs after BC2, i.e. after transformation of the energy modulation to the spatial modulation that takes place in BC2. It is possible to avoid that if we use only BC1 for all our needs for bunch compression. There are also additional advantages for a mitigation of the microbunching instability related to that. First, we would need to increase R56 in BC1 (for given energy chirp in the electron beam). Second, a relative energy spread is significantly larger at BC1 than at BC2. Both these factors would contribute to instability suppression due to increased Landau damping effect.' One additional argument was however missed in that report. Instability smearing due to finite emittance is stronger in BC1 simply because the geometrical emittance is larger than in BC2. In spite of the considerations in favor of a lattice with one-stage compressor, it was thought at the time that the two bunch compressors configuration was still preferable as it appeared difficult to obtain a flat-flat distribution at the end of the linac with only one bunch compressor. A flat-flat distribution has constant medium energy and a constant peak current along the electron bunch. Now, two years later and more studies behind, this problem is solvable. It has been demonstrated1 that shaping the intensity of the electron bunch at the injector using intensity modulation of the photocathode laser allows to use the linac structural wake fields to advantage to obtain a flat-flat distribution at the end of the linac in a two-stage compressor. This report shows that, using the back-tracking technique, it is possible to obtain a flat-flat distribution also in a single-stage compressor. Preliminary results of a study of the microbunching instability applied to the FERMI lattice with one-stage compressor are shown in this report . There is concern that the effect of jitter in accelerator parameters is more pronounced with one bunch compressor: the results of jitter studies are given and are compared with the case of a two-stage compressor.

Cornacchia, M.; Craievich, P.; Di Mitri, S.; Penco, G.; Venturini, M.; Zholents, A.

2007-05-25T23:59:59.000Z

471

Kaeser Compressors, Inc. & CEMEX Teaming Profile | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Kaeser Compressors, Inc. & CEMEX Teaming Profile Kaeser Compressors, Inc. & CEMEX Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

472

Compressor fault identification from overall performance data based on adaptive stage stacking  

SciTech Connect

In the present paper a method for the identification of faulty stages in a multistage compressor is presented. The values of overall compressor parameters, namely mass flow rate, pressure ratio, and efficiency, at different operating points are the input data to the method. Employing these data, the method gives the location and the number of faulty stages, as well as the amount of deviation from intact condition performance. It is shown that the kind of fault that has caused stage performance deterioration can be identified. Features of the method, such as generality of applicability, input data requirement, and reliability of the findings, are discussed.

Mathioudakis, K.; Stamatis, A. (National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines)

1994-01-01T23:59:59.000Z

473

Development of a Turnkey Hydrogen Fueling Station Final Report  

Science Conference Proceedings (OSTI)

The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

2010-07-29T23:59:59.000Z

474

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

475

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA)

Nuclear Power Plant Data for Dresden Generating Station Author: DOE/EIA Keywords: Dresden Generating Station, Illinois, Nuclear, Plant, Reactor, Generation, Capacity

476

Transit Infrastructure Finance Through Station Location Auctions  

E-Print Network (OSTI)

as the primary transit infrastructure finance method.Paper 2009-04 Transit Infrastructure Finance Through StationWP-2009-04 Transit Infrastructure Finance Through Station

Ian Carlton

2009-01-01T23:59:59.000Z

477

Hydrogen at the Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

478

Pilgrim Station | Open Energy Information  

Open Energy Info (EERE)

Station Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner ReunionPower/Exergy Developer Exergy Location Twin Falls County ID Coordinates 42.741336°, -114.865865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.741336,"lon":-114.865865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Process gas solidification system  

DOE Patents (OSTI)

It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

Fort, William G. S. (Oak Ridge, TN); Lee, Jr., William W. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

480

Research on Performance Quality of Compressor Based on Self-Adjust Fuzzy Control  

Science Conference Proceedings (OSTI)

This paper describes a simple model of compressor based on analysis the compression behavior and presents a new self-adjust organization of integrating factor. This organization is capable of self-adjust integral factors based on the values of error. ...

Li Bin

2009-03-01T23:59:59.000Z